On the Consistency, Expressiveness, and Precision of
Partial Modeling Formalism$

Ou Wei~a¢ Arie GurfinkeP, Marsha Chech#

aDepartment of Computer Science, University of Toronto,a@an
bSoftware Engineering Institute, Carnegie Mellon UnivigtsUSA
®Nanijing University of Aeronautics and Astronautics, China

Abstract

Partial transition systems support abstract model chgekinomplex temporal proper-
ties by combining both over- and under-approximating @gsions into a single model.
Over the years, three families of such modeling formalism&lemerged, represented
by (1) Kripke Modal Transition Systems (KMTSs), with restidns on necessary and
possible behaviors; (2) Mixed Transition Systems (MixT38)h relaxation on these
restrictions; and (3) Generalized Kripke MTSs (GKMTSs)thaiyper-transitions, re-
spectively. In this paper, we investigate these formalibamsed on two fundamental
ways of using partial transition systems (PTSs) — as obfectabstracting concrete
systems (and thus, a PTS is semantically consistent if itadis at least one concrete
system) and as models for checking temporal propertiestfargj a PTS is logically
consistent if it gives consistent interpretation to all paral logic formulas). We study
the connection between semantic and logical consistenBf 86, compare the three
families w.r.t. their expressive power (i.e., what can baleied, what abstractions can
be captured using them), and discuss the analysis poweesé flormalisms, i.e., the
cost and precision of model checking.

Specifically, we identify a class of PTSs for which semantid lngical consistency
coincide and define a necessary and sufficient structuraiitomto guarantee consis-
tency. We also show that all three families of PTSs have thesxpressive power (but
do differ in succinctness). However, GKMTSs are more peegig, can establish more
properties) for model checking than the other two famili#se direct use of GKMTSs
in practice has been hampered by the difficulty of encodiegntisymbolically. We
address this problem by developing a new semantics for teahfmgic of PTSs that
makes the MixTS family as precise for model checking as théGE& family. The
outcome is a symbolic model checking algorithm that combthe efficient encoding
of MixTSs with the model checking precision of GKMTSs. Oueliminary experi-
ments indicate that the new algorithm is a good match foripade-abstraction-based
model checkers.

U Preliminary version of some aspects of this paper has appéaf32].
*Corresponding author
Email addressesowei @s. t or ont 0. edu (Ou Wei),ar i e@mu. edu (Arie Gurfinkel),
chechi k@s. t or ont 0. edu (Marsha Chechik)

Preprint submitted to Elsevier September 15, 2010

Key words: Partial transition systems, modal transition systemsal@ed analysis,
abstraction, model-checking.

1. Introduction

Abstraction is the key to scaling model checking to inda$tsized problems. Typ-
ically, a large (or infinite) concrete system is approxinddig a smaller abstract system
via: (a) abstracting the concrete states, (b) analyzingdbelting abstract system, and
(c) lifting the result back to the concrete system. Two comrabstraction schemes
areover-approximation- the abstract system contaim®re behaviours than the con-
crete one, andnder-approximatior the abstract system contalessbehaviours than
the concrete one. Over-approximation is sound for univgnegperties (e.g., absence
of errors). Under-approximation is sound for existentiadperties (e.g., presence of
errors).

Abstractions that are sound for arbitrary properties, sischull y-calculusL , [23],
must combine over- and under-approximation insiraglemodel [25, 10]. This leads
to transition systems (TSs) with two types of transitiomgyandmust representing
possible(or over-approximating), andecessaryor under-approximating) behaviours,
respectively. We call such systempartial. A temporal property is interpreted over a
partial TS in one of four waygrue or falsg if the partial TS is precise enough to prove
or disprove the propertyunknownif the TS is imprecise, anithiconsistenbtherwise.

There are three families of partial modeling formalismaniifeed in the literature:

1. Kripke Modal Transition System&MTSs) [22] and their equivalent variants,
Modal Transition Systems (MTS®5], Partial Kripke StructuregPKSs) [7],
and3-valued Kripke Structurg8]. KMTSs require that everynusttransition is
also amaytransition. They were introduced as computational modelpértial
specifications of reactive systems [25] and then adaptenhémtel checking [7,
22, 8].

2. Mixed Transition System#ixTSs) [10], and equivalentlyBelnap Transition
Systemg$19]. MixTSs extend KMTSs by allowingnust onlytransitions (i.e.,
transitions that armustbut notmay). MixTSs were introduced in [10] as abstract
models forL,,, and have been used for predicate abstraction and softwatelm
checking in [18].

3. Generalized KMTS§GKMTSSs) [29], and equivalentlyAbstract TS§13] and
Disjunctive MTSH26]. GKMTSs extend MixTSs by allowingnust hyper-
transitions (i.e., transitions into sets of states).

In this paper, we study these formalisms from two points efwia semantic one,
using partial TSs as objects for abstracting concrete systand a logical one, using
partial TSs for temporal logic model checking. A partial BS@émantically consistent
if it abstracts at least one concrete system. A partial T&gigally consistenif it gives
consistent interpretation to all temporal logic formul&sr semantic consistency, we
investigate partial transition systems for abstract metiecking, where a partial tran-
sition system and its concrete refinement are related thrtheysoundness relation of

abstract and concrete states. The notion of semantic ¢ensysin this setting (for-

mally defined in Section 4) is slightly different from the oot of implementability

where partial transition systems are used as specificatibasystem’s behavior. A
discussion of this difference is given in Section 9. Speailffc in this paper we first

study the connection between semantic and logical consigtaf partial TSs. We then
compare the expressive power of the formalisms, i.e., whstractions can be cap-
tured using them. Finally, we discuss the analysis powenege formalisms, i.e., the
cost and precision of model checking.

ConsistencySemantic consistency implies logical consistency buttiveverse is not
true in general: Temporal logic is not expressive enougteteat all forms of incon-
sistency.

In this paper, we answer several questions about consystémithere a subclass
of partial TSs for which semantic and logical consistencincide? Do TSs outside
of this subclass have additional expressive power? |Is theecessary and sufficient
condition for ensuring consistency?

We show that there is a class of partial TSs for which semamtitlogical consis-
tency coincide. We call this clagsonotonéecause of the monotonicity condition we
impose on the transition relation. The class of monotonei§@s expressive as the
class of all partial TSs. Thus, for every partial TS, ther@igquivalent monotone one.

At a first glance, it may appear that a structural requirerf@rery musttransition
is also amaytransition” is sufficient and necessary to guarantee bottaséc and
logical consistency. However, this is not the case. We st for logical consis-
tency, this requirement is sufficient but not necessary:keeaondition exists. For
semantic consistency, the requirement is neither negessaisufficient. Instead, for
monotone TSs, where semantic and logical consistencyideinee define an alterna-
tive structural condition and show that it is both necesseny sufficient to guarantee
consistency.

Expressive PowelWe show that all three families of partial TSs, KMTSs, MixsT @nd
GKMTSs, are equally expressive: for any partial #5expressed in one formalism,
there exists a partial T8/’ in the other such that/ and M’ approximate the same
set of concrete systems. That is, neither hyper-transitiam restrictions omayand
musttransitions affect expressiveness. They do, howevextifie size of the models:
GKMTSs and KMTSs can be converted to semantically equitdiexir Ss of (possibly
exponentially) smaller or equal size. Dams and Namjosheétsnown that the three
families of partial TSs are less expressive than tree autfi@]. We complete the
picture by showing the expressive equivaleheaveerthese families.

Model Checking We call a semantics of temporal logimductiveif it is defined in-
ductively on the syntax of the logic. We refer to the typigadlictive semantics of
L, on partial TSs as th&tandard Inductive Semanti¢SIS). This is the semantics
most widely used in other works on this subject as well as atfce. A GKMTSG
can prove/disprove more properties under SIS than eithax@$/or KMTS obtained
from G by semantics-preserving translation. However, while it Ss and KMTSs
have been used in practical symbolic model checkers (&.8;. 20, 8]), the direct use
of GKMTSs has been hampered by the difficulty of encoding myramsitions into
BDDs. To address this problem, we develop a new semantitedeaduced(RIS),

that is inductive (and tractable) but is more precise tha&h Ble show that GKMTSs
and MixTSs are equivalent with respect to RIS, and give aoiefft symbolic model
checking procedure for RIS. The outcome is an algorithm ¢batbines the benefits
of the efficient symbolic encoding of MixTSs with the modekcking precision of
GKMTSs.

To show the practicality of the above result, we develop almjicn model checking
algorithm with respect to RIS and apply it to MixTSs constegacusing predicate ab-
straction. We evaluate our implementation empiricallyiagtaa SIS-based algorithm.

The rest of the paper is organized as follows. Section 2 wevide necessary
background on partial TSs and abstraction. We define themofimonotonepartial
TSs in Section 3. In Section 4, we investigate semantic agitdd consistency of
partial TSs. In Section 5, we prove that KMTSs, MixTSs and GK34 are equally
expressive by developing semantics-preserving trapsiafrom GKMTSs to MixTSs,
and from MixTSs to KMTSs. In Section 6, we introduReduced Inductive Semantics
(RIS) for L,,. In Section 7, we present a symbolic model checking algaoriitith
respect to RIS in the context of predicate abstraction. \fWenten our experience with
this algorithm in Section 8. We discuss related work andaetedirections following
our results in Section 9 and conclude the paper in Section 10.

2. Preliminaries

In this section, we review several modeling formalisms, dradr use for abstrac-
tion.

2.1. Transition Systems

Definition 1 (Transition Systems). [10, 6, 22, 29] A Generalized Kripke Modal
Transition System{(GKMTS) is a tuple M = (S, R™ R™SY where S is the
statespace, anB™ C S x S, R™St C S x 2% are themay and musttransition
relations, respectively. Mixed TS(MixTS) is a GKMTS such thak™StC S x S. A
Kripke Modal TSKMTS) is a MixTS such thaiz™'st C ™, A Boolean TYBTS)
is a KMTS such thafzM& = pmust

For example, a MixT3/; is shown in Figure 1, a GKMT& is shown in Figure 2,
and a KMTSK]; is shown in Figure 3. In these figuraaustandmaytransitions are
indicated by solid and dashed edges, respectively. In thiidey the statespace of a
transition system corresponds to an abstract domain. $rcHse, a state is labeled by
its abstract element. For example, stat®f M in Figure 1 corresponds to an abstract
elementr < 0. A transition systenfTS) is any of GKMTS, MixTS, KMTS, and BTS.
A partial transition systenfPTS) is any of GKMTS, MixTS, and KMTS.

We write s —=% ¢ for (s,) € R™, s ™% ¢ ands ™% @ for (s, t) € R™tand

(s,Q) € RM™S! respectively. Intuitivelymayandmusttransitions represent possible
and necessary behaviours, respectively. BTS differs fribotlzer transitions systems
in that in it all mayandmusttransitions coincide. We say that BTS is a complete (or,
a concrete) transition system. For simplicity, we only steogingle transition relation
when specifying a BTS.

Let AP be a set of atomic propositions. A literabver AP is either an atomic
propositionp or its negation-p. Let Lit(AP) be a set of literals oAP, andS be a
statespace. Atate labelings a functionL : S — 2L%(4P) that assigns to each state
a set of literals that are true in A pair (M, L) of a TSM and a labelind. is called a
model

In this paper, we make a distinction between a “transiticgteay” and a “model”.
Although the two are often used interchangeably in modekking literature, for-
mally, there is a difference. #&ansition systenis built out of states and transitions.
A modelextends a transition system with an interpretation of atgonopositions. In
our work, we find it convenient to talk about properties ofansition system, and then
show that they hold in all corresponding models.

We use the following naming convention. Roman capital fetteenote transition
systems:M for a MixTS, K for a KMTS, G for a GKMTS, andB for a BTS. Sub-
scripts indicate a particular transition system. For eXamld; is a MixTS (see Fig-
ure 1), whereag:; is a GKMTS (see Figure 2). Script capital letters denote risode
M for a MixTS model,K for a KMTS model,G for a GKMTS model, and3 for a
BTS model. Subscripts indicate a model corresponding taricplar transition sys-
tem. For exampleM; is a model whose underlying transition system is the MixTS
M (see Figure 1). The lettdr is used exclusively to indicate a labeling function of a
model.

The modalu-calculus [23]) is the set of all formulas satisfying the following
BNF grammar:

pu=p|Z |~ |lone|Op|puZ -,

wherep is an atomic proposition, and a fixpoint variable. Furthermore; in ¢ of the
form puZ - ¢ must occur under the scope of an even number of negationstiéwd
operators are defined as abbreviations:

@V h £ (= A-p)
Op £ =0
vZ - p(Z) & ~pZ - —~p(-Z) .

Let M = (M, L) be a model, wher&/ = (S, R™, R™SY and¢ be anL,
formula. Aninterpretation(or semanticsof over M, denoted by||p|™, is a pair
(U,0), whereU C S is a set of states that satisfy andO C S is the set of states
that do not refutep. Intuitively, U and O represent amnderapproximation and an
overapproxiamtion of the set of all the states that satisfyespectively. For a state
s € S, we say thap istrueatsiff s € UNO, pisfalseatsiff s € S\ (UUO), ¢
isunknownat s iff s € O\ U, andy is inconsistentt s iff s € U \ O. Alternatively
(e.g., [29]), the semantics gfover M can be defined by a pair of statgg D), where
U is the set of all states that satispy(same as above), and is the set of all states
that refutep. In this paper, we use the first approach to remain compatititethe
partitioning of the transition relation intmustandmaytransitions.

For a universes, lete be a pair{U, O) with U, O C S. We writeU(e) andO(e) to
denotel/ andO, respectively, and) for the complement of) in S, i.e.,Q = S\ Q.

We write ~ andr for the operators defined below:

~(U,0) = (0,T)
<U1,0l> M <U2,02> £ <U1 NUs, O ﬂOg>.

A semantics oL, is inductiveif it is defined inductively on the syntax of the logic.
We refer to the commonly used (e.g., [10, 6, 22, 29, 19]) itslacsemantics as the
Standard Inductive Semanti¢SIS). It is defined as follows

Definition 2 (Standard Inductive Semantics (SIS)). [10, 6, 22, 29, 19]. LetM =
(M, L) be a modelM = (S, R™», R™SY " Var a set of fixpoint variables, and :
Var — 25 x 29. Thestandard inductive semantics (St8)p € L,, is:

({slpeL(s)}{s]-p¢Ls)})
~lells

lell?s T I¥l1e

(preu(U(ll¢ll{3)), preo(Oll¢ll#5))
o(Z)

(i (AQ - (Il 50) - 110 (AQ - OUllelX 1)))

S
>
=
Seivis
> 1> e 1> e (>

nZ - ol

whereZ € Var, Ifp is the least fixpoint, and there-imageoperatorgrey andpreo
are defined as follows:

prey(Q) = {s|HteqQ s ™1} if MisaMixTS
(s|UCQ-s ™) if MisaGKMTS

preo(Q) 2 {s|3HteQ s >t}

2.2. Partial Models and Abstraction

Abstraction Relation.In this paper, we maintain an explicit connection betwesm c
crete and abstract statespaces. We define these formaily:bel

Definition 3. An abstraction relatioris a structuréC, p, S), whereC andS are arbi-
trary sets angp C C x S is a binary relation satisfying the “existence of best agpro
mation” condition [9]:

Vee C-3s €S- (p(c,s) A\Vs' € S ple,s') = ~(s") Dv(s)).

For an abstraction relatiotC, p, S), we say thatC' is the concretestatespace (or
domain), S is the abstractstatespace (or domain), apdis the soundnesselation,
where(c, s) € p means that p-approximates:. p induces aconcretizatiorfunction
v(s) £ {c| (¢, s) € p}. Thatis,y(s) is the set of all concrete states approximated.by
We extendy to a set C S by lettingy(Q) = Useg7(s). v induces an approximation
ordering=, on S defined as follows <, t < ~v(s) 2 v(¢). Thatis,s <, tif sisless
precise(more approximate) than Following [9], we require thak, is a partial order.

Finally, anabstractionfunction« : C — S is defined to map each concrete element to
its best approximation. The image @fis denoted byv[C] £ {a(c) | ¢ € C}.

Note that it is common to assume thatind~ form a Galois connection between
S and powerset of®. We prefer a more general setting, as described in [9], and do
not make this assumption. Contrary to most of the work on relesinterpretation, we
write a <, b to mean that is less precise thah i.e., <, is the “precision ordering”.

In other works on Abstract Interpretation, it is common tét&ve < b to mean that:

is less abstract thah i.e., < is the “abstraction ordering”, which is the reverse of the
precison ordering. We are aware of the confusion this cabsgéfollow the convention
typical of the work on partial transition systems.

In the rest of the paper, we require that labeling of a coe@&ttespace momplete
for any concrete statee C and any concrete labeling, p € L(c) < —p ¢ L(c).

An abstract state is consisteniff v(s) # 0. We require that any state labeling
function L over an abstract statespacédsally consistenti.e., for any consistent ab-
stract state and proposition, at most one op and—p belongs tal.(s). Furthermore,
we requireL to bemonotonewith respect tex,: s1 <, s2 = L(s1) C L(s2). We
say thatp is true ins if p € L(s), and false if-p € L(s); otherwise, we say thatis
unknown ins.

Abstract Domain of Predicate AbstractiorLet C' be a concrete statespacepe a
natural number, an@® = {p1,...,p,} be a set of quantifier-free first-order boolean
predicates ovef’. A monomialis a conjunction of literals oP; amintermis a mono-
mial in which each variablg; appears exactly once (either positively or negatively).
We write Mon(P) and MT(P) for the set of all monomials and minterms®f respec-
tively. The set MofiP) is the domain of predicate abstraction. The abstracticrtiogl

(C, pp,Mon(P)) is defined such thdk, s) € pp iff ¢ = s, i.e.,c satisfies all literals

in s; the abstractiomp(c) = (Aep; Pi) N (Aepep, 7pi)i ap[C] = MT(P); and the
approximation ordering is reverse implications,, ¢ iff s < t.

Simulation and ApproximationAn approximation relation is extended from a states-
pace to transition systems using the concephided simulation

Definition 4 (Mixed Simulation). [10] LetM = (S, R™ R™SY and M’ =
(8, R™' RMust) he two MixTSs.H C S x S’ is amixed simulatioretween)/ and
M’ iff forany (s, s’) € H, the following two conditions hold:

y , may

(@ VteS- st =IHes ¢ YA t)eH
must

) Wes ¢ 2y=3tes. s M iatt)eH
We say that\/’ H-simulatesM, written M’ <z M.

Intuitively, M’ simulates)M wheneverM’ is less precise about its behaviour thiah
This definition generalizes to GKMTSs (cf. [29]).

Let (C, p, S) be an abstraction relation. A partial T$ with statespac# approx-
imatesa concrete BTSB with statespacé€’ iff the soundness relatiop is a mixed
simulation betweed/ andB, i.e., M =<, B. Equivalently, we say thaB refinesi/.
For a fixed TSM, the set of all BTSs that refine it is denoted®\/].

Let Lj; and L be the state labeling functions fSrandC, respectively. We say
that L, approximated. s, denotedLy; <, L, iff p(c,s) = La(s) € Lg(c).

Definition 5 (Approximation Relation). [10] Let (C, p, S) be an abstraction relation,
M = (M, L) be a partial model ove$, andB = (B, L) be a concrete model over
C. M approximates3 iff M =<, B, andLy; =, Lg. Equivalently, we say thas
refinesM.

Since this paper investigates partial models from the getsm of abstract model
checking, we define concrete refinements of a partial moddl eispect to a fixed
mixed simulation relation, i.e., the abstraction relatittris possible to consider con-
crete refinements of a partial model with respect to all thesjtide mixed simulations.
We discuss this difference in Section 9.

Theorem 1. [10] Let (C, p, S) be an abstraction relatior’3 = (B, L) be a concrete
model, whereB = (C,R), and M = (M, L) be a partial model, wherd/ =
(S, R™ R™UsY If M =<, B, then, for anyL,, formula:

(U (llel) € U(llell?) . and vO(llell*)) € Odllelf) -

That is, if M approximated3 andy is true/false in a state of M, then it is, respec-
tively, true/false in all states df approximated by.

Let C[M] be the set of all concrete refinements/of. Intuitively, C[M] is the
semantic meaning o1. An interpretation of,, with respect to the semantic meaning
of a model is calledhorough Note that since we consider concretizationg\dfwith
respect to a fixed abstraction relation, the thorough sensa¢fined here is different
from the original definition in [7], which is based @l possible concretizations of the
given partial model.

Definition 6 (Thorough Semantics). Let (C, p, S) be an abstraction relation, avd
be a partial model over an abstract statespgicd he thoroughsemantics of ari,,
formulay over M is defined ag{p||M = (U, O), where

U={a€S|VBeCM] (a)CU(le|?)}
O ={a€ S|3BeCM]-(v(a)nO(|¢|%)) # 0}

In order to compare different interpretationsaf, we introduce two ordering re-
lations on the spac2® x 2°.

Definition 7 (Information and Semantics Orderings). Let (C, p, S) be an abstrac-
tion relation, and le¢; = (U, O;) andey = (Us, O2) be two elements ig® x 2°. e;
is less informativehane,, writtene; <; e, iff

U, C U, and 0O, COq.
ey is semantically less precighanes, writtene; <, eo, iff
v(U1) Cv(U2) and ~(01) € 7(02).

We saye; andes are semantically equivalent, denoted =, e, iff ¢; <, es and
es =<, e1. Note that we use the same notatigp to denote the precision orderings,

defined with respect to concretization, for both the elemémtS and the ones in
25 x 29,

Finally, we definesemantic equivalender partial models and TSs, arapressive
equivalencdor partial modeling formalisms as follows:

Definition 8 (Semantic Equivalence).Two partial modelsM and M’ are semanti-
cally equivalentif and only if they have the same set of concrete refinemeiets,
C[M] = C[M’]. Similarly, two partial transition system8/ and M’, aresemanti-
cally equivalentif and only if C[M] = C[M’].

Definition 9 (Expressive Equivalence).Two partial modeling formalisms aexpres-
sively equivalentf and only if for every transition systemM/ from one formalism,
there exists a transition systeld’ from the other, such that/ and M’ are semanti-
cally equivalent.

3. Monotone Partial Transition Systems

In this section, we defineonotonepartial TSs. We show that monotone patrtial
TSs are expressively equivalent (in the sense of Definitjaio $heir regular counter-
parts: for any partial TS there exists an equivalent mormtore, i.e., they approximate
the same set of concrete systems. The monotonicity conditinply ensures that all
information that can be derived from existingay and musttransitions is made ex-
plicitin the TS. As we show in later sections, this condit@lows us to perform local
reasoning of partial TSs more effectively.

For simplicity, we present the results with respect to MigsT$hey can be easily
adapted to GKMTSs as well. Throughoutthe section, we assbate, o, and=, are
interpreted with respect to a fixed an abstraction relafi@p, .5).

Definition 10. A MixXTS M = (S, R™®_ R™USY is monotoneff

(a) Vs, t1,tg € 8-ty <4 t1 = (S,tg) € RM = (S,tl) S Rmay)/\
((s,t1) € R™'= (s,t2) € R™9)

(
(b) Vs1,82,t €S+ 81 =g $2 = ((s2,t) € R™ = (s1,t) € R™) A
((s1,t) € RMUSt= (sq,t) € RMSY

A modelM = (M, L) is monotonéff its MixTS component)/ is monotone.
Intuitively, a transition system is monotone if the infortioa captured by its tran-
sition relation is monotone with respect to the approxioratirdering=<,, of its states.
For example, letM be a transition systems; ands, be two states ofi/ such that
s1 =4 s2. (1) Suppose there ismaytransition fromss to some other state The
meaning of this transition is that any system that refihnesan have a transition from
a state iny(s2) to a state iny(¢). Recall that we assumed that <, s2; hence,
~(s1) 2 v(s2). Thus, the same behavior is allowed from the stategin). For M to
be monotone with this information, it must havenaytransition froms; to ¢. (2) Sim-
ilarly, suppose there israusttransition froms; to some other state Then, every state

Figure 1: Four MixTSs:M1, M2, M3, and My, whereM; and M4 are monotone. Solid and dashed lines
represenmustandmaytransitions, respectively.

in v(s1) must have a transition to some statey{i). Sincey(s1) 2 v(s2), the same is
true for the states in(s2). Therefore, forM to be monotone with this information, it
should have anusttransition froms, to t.

For example, the MixT313 shown in Figure 1 is monotone; the MixTg; in the
same figure is not monotone. For state@ndas: as <, a1 andas must, as, but there

is nomusttransition froma; to as; and for stategs anda4: a4 <, a3 andas may, aq,
but there is nanaytransition fromas to as.

In the rest of this section, we show that every partial TS (odet) can be trans-
lated into a semantically equivalent (in the sense of D&fimi8) monotone one. We
first define such translation for MixTSs. The translationsists of two steps: BTT
(destination translation) andR8T (source translation) that produce a monotone tran-
sition system preserving the behaviors of the original one.

Definition 11 (Translation DSTT). LetM = (S, R}”, RT¥Y) be a MixTS. The result
of translation BTT(M) is a MiXTSN = (S, R\, RWSY, such that

R 2 f(a,b) € Sx S| €S-V =< bA(ab) € RT)
RS2 {(a,b) € Sx S| € 5-b =<, ' A(a,b) € RIS

10

The translation BTT checks the transition from each state in its input TS andadd
missing transitions derived from the approximation ondgrk, over abstract states,
ensuring that the result satisfies condition (a) of Definitid. A may transition is
added between stateandb if the source TS hasmaytransition between and some
stateb’ that is less precise than Similarly, amusttransition between statesandb is
added if the source TS hagswusttransition between and some stat& that is more
precise tha. For example, BTT(M;) results in the MixTSV,: two new transitions

ma’ t
are addedgs ™2 a5 anday ™% q,.

Lemma 1. Let M be a MixTS, andV = DSTT(M). Then,N is a MixTS that satisfies
condition (a) of Definition 10.

Definition 12 (Translation SRCT). Let M = (S, R}, RTSY be a MixTS. The re-
sult of the translation &cT(G) is a MIXTS N = (S, Ry, RT¥SY, such that

RYY 2 {(a,) € Sx S |Vd €S-d =4a= (a,b) € Ry
RYWS'2 {(a,b) € Sx S| 3d €S -d <,an(d,b) e RS

The translation 8CT ensures that its outpul/, satisfies condition (b) of Definition 10.
It guarantees that the transitions from more precise statesore defined: for each
stateq, it has amusttransition to a staté in IV if a less precise stai€ already has

amusttransition tob in M; it has amaytransition tob in N only when all the states
that are less precise than it already henegytransitions tab in M. For example M

in Figure 1 is the result of &cT(M-): because is less precise tham and there are

. t t . o 1
musttransitionsas ——s a3 andas ——% a, in M, two musttransitionsa; ——s as

anda; must a4 are added td//3; on the other hand, theaytransitiona; may, as IS
removed fromM3 because, has namaytransition toas in M.

Lemma 2. Let M be a MixTS, andV = SRCT(M). Then,N is a MixTS that satisfies
condition (b) of Definition 10.

We define the monotone translatioroMoT be the composition of the translations
for source and destination statesoMOT £ SRCT o DSTT. The following theorem
shows that MONOT translates a MixTS into an equivalent monotone one.

Theorem 2. Let M be a MixTS, andV = MONOT(M). Then,N is a monotone
MisTS semantically equivalent fd.

PROOF (1) Let N; = DSTT(M) and N, = SRCT(NVy). According to Lemmas 1
and 2,N; and N, satisfy conditions (a) and (b) of Definition 10, respectvédlo show
that MONOT (M) is monotone, we only need to show thés also satisfies condition
(a). Proof of this follows from the definition of &&T.

(2) To prove that\/ and N, are semantically equivalent, we show that any concrete
BTS B = (C, R) refinesM iff it refines N. It is equivalent to showing that (i) the
soundness relatiop C C x S is a mixed simulation betweeB and M iff it is a
mixed simulation betweeB and Ny; and (ii) p is a mixed simulation betweeld and
Nj iff it is a mixed simulation betwee® and N,. This follows from the definitions

11

of DSTT and RCT. O

The translation MNOT can also be used to convert a partial model into its mono-
tone equivalent.

Corollary 1. Let M = (M, Lys) be a MixTS modelN = MoNOT(M), andLy =
L. Then the modeV = (N, Ly) is monotone and semantically equivalent\tt.

In this section, we have shown that monotone partial TSssexjaressive as their
“regular” counterparts. The monotone conditions make didiansitions explicit, al-
lowing us to do better local reasoning about partial TSs. sThiillustrated in the
following sections.

4. Consistency

There are two alternatives for defining consistency of aiglars: either based on
satisfaction of temporal logic formulal®§ical consistency or based on possible con-
crete refinementsémantic consistentyWhile semantic consistency implies logical
consistency, the converse is not true. There exists a lbgicansistent TS that has
no concrete refinements. In this section, we investigateeth&o notions, show when
they coincide, and provide a new structural condition whéahecessary and sufficient
to ensure that a TS is consistent.

4.1. Logical and Semantic Consistency for Consistent §tates

Throughout this section, we assume a fixed abstractioriaeléf’, p, S). Further-
more, in this subsection, we assume that every states is consistent, i.eq(a) # 0.
We extend our definitions to deal with inconsistent state3dation 4.2.

A modelM is logically consistent over a consistent abstract staissif and only
if it gives a consistent interpretation, i.e., eittiare, falsg or unknown to every tem-
poral formula.

Definition 13. A modelM is logically consistenbver a consistent abstract statespace
it for every ¢ € Ly, U(|l¢ll:) € O(lls).

Logical consistency naturally extends from models to titaorssystems: a transi-
tion systemM is logically consistent iff for any labeling functiah the model(M, L)
is logically consistent.

A transition system\/ is semantically consistent iff there exists at least one BTS
that refines it:

Definition 14. A transition system\/ is semantically consisteiif€ C[A] # 0.

Semantic consistency extends naturally from transitiGtesys to models. A model
M = (M, L) is semantically consistent iff the transition systdrhis semantically
consistent. Because we require that the labeling fundtite monotone with respect
to <,, this is equivalent to requiring that the modet has a consistent refinement.
Semantic consistency implies logical consistency:

12

Theorem 3. Every semantically consistent transition system is algichlly consis-
tent.

PROOF. Let M be a consistent transition system. We show fifais logically consis-
tent by contradiction.

AssumeM is not logically consistent. Then, there exists a labelingctionZ and a
temporal formular such thatp is inconsistent in some state of the modél= (M, L).
Formally, there exists a stateof M such that is in U(||||M) \ O(||¢[IM).

Let B be a concrete (BTS) model refiningt. Since M is semantically consis-
tent, suchB is guaranteed to exist. By Theorem~LU(||¢|M)) € U(||¢||®), and
Y(O(lellM)) € O(|l¢ll®). Then, there exists a concrete state ~(a) such that
¢ € U(lo|1?) ande € O([l¢]F).

Since B is concrete,U(||¢]|?) = O(||¢||¥). Hence,c € U(||¢||¥) and
c € C\ U(]|l¢||P) — a contradiction. ThusM is logically consistent. O

Interestingly, the converse of Theorem 3 is not true in ganaie illustrate this
on an example. Consider the MixTH, in Figure 1. InM,, everymusttransition
is matched by anaytransition, i.e.,R™St C R™, By [22, 13], R™USt C R™¥ g
a sufficient condition for logical consistency. Therefalé; is logically consistent.
However,Ms is not semantically consistent as we show using a proof biradiction.
Assume there is a BT® that refinesM,. Letc; : (x = 1) be a state oB; ¢, is

approximated by both; anda,. BecauseB refinesM,, andMs has amusttransition

as must as, B has a transition from; to a state approximated lay, say,cs : (x =

—1). SinceM, approximates3, by the definition of mixed simulation (Definition 4),
a1 must have anaytransition to a state that approximaies i.e., eitheras or ay.
There is no sucimaytransition inM,, contradicting the assumption. Thudy is not
semantically consistent.

Below, we show that monotone MixTSs is a class of systems faclwiogical and
semantic consistency coincide. Intuitively, the reasahas the approximation order-
ing, <., of the statespace of monotone MixTSs is “pushed” down tdr@ssitions.
This gives rise to the following theorem:

Theorem 4. Let M be a monotone MixT8S, RMUS R™&) and assume that every
state inS is consistent. Then, the following are equivalent:

(a) M is semantically consistent (Definition 14),

(b) M is logically consistent (Definition 13),

©) Va,by€S-a % by = 3by € 5 by <4 by Aa — by,
PrROOF. We show thata) = (b), (b) = (c), and(c) = (a).

Part1.(a) = (b) The proof follows from Theorem 3.

Part2.(b) = (¢) Leta andb; be two states i such that ML 3, is a transition

in R™st We show that (i) there exists a labeling functibnand (ii) there exists a

13

formulae, such thatp is consistent in the stateof the modelM = (M, L) only if M
has a transition = bs for some staté, that is more precise than.

(i) To defineL, we partition the statespaéeinto setsSy, S, andSs:
Slé{SGS“)l jas}
Sgé{S€S|3t651-Sjat}\Sl
S3és\(51U52)
S is the set of all states that are more precise thaiys is the set of all states that
are not inSy, but are less precise than some stat§:n.Ss contains all states that are

neither inS; nor Ss.
Let AP = {p}. L is defined as follows:

{p} ifses
L(s) =< {} if s €5,
{-p} ifses;s.

L is consistent. We need to show thHats monotone, i.e., it <, ¢t thenL(s) C
L(t). Lets andt be two states such that=<, ¢. Then, eithers and¢ belong to the

same partition os € S, andt € S; U Ss. In both cases, monotonicity follows trivially.
(ii) We definep as the formulap. Note that because of the must transitiof—>
b1, ais in U(||Op||M). And, becauseM is logically consistentg € O(||Op[|M) as

well. We use this fact to show existencebef needed for condition (c) of the theorem.

must
a— by

= (by the definition ofL, ||p||™ = (S1, S1 U Sa))
a 5 by A by € U([lplM)
= (by SIS of0p)
a € U(||0pli")
= (sinceM is logically consistent)p is consistent at)

a € O(]|0p|12)
= (by SIS ofOp)
E|b2651U52~aﬂ>b2
= (logic)
(3by € S1-a 25 by) V (Tby € S - a 2 by)
In the first caseh, € S1. By definition of S1, by <, bs. This fulfills condition (c)
of the theorem.
In the second casé; € 5.

dby € S - a ﬂ bo
= (by the definition ofS5)

by € Sy a L by ATV € Sy by =g V
= (by assumption) is monotone)

W eS a2y

14

Hence}/ fulfills the condition (c) of the theorem.
Thus, if M is logically consistent, then

Va,b1 €S -a ™% by = by € S by <a bo Aa 2 by

Part 3. (¢) = (a) The proof proceeds by constructing a concrete BF $hat
refinesM. Let (C, p, S) be the abstraction relation and: C — S the corresponding
abstraction function. LeB be a BTS(C, R), where

R&{(c,d)eCxC|3beS-(afc),b) € R"™A (d,b) € p}

We show thap is a mixed simulation relation betweéd andB, i.e.,, M =<, B. Let
¢ € C,anda € S be two states such thét,a) € p. Recall that this implies that
a =4 afc).

First, we show thap satisfies condition (a) of Definition 4. Létbe a state in\/

such that there is a must transition™ ». Then,

(a,b) € RMUSt

= (by assumption) is monotone and <, «(c))
(a(c),b) € RM!

= (by assumption of condition (c) of the theorem)
W eSS b=, A(alc),b) e R™Y

= (by the definition ofB)
WeS-AdeC-b=,bAN(c,d) € RAN(dV)eEp

= (by monotonicity ofp)
dde C-(¢,d) e RA(d,b) €p

Second, we show thatsatisfies condition (b) of Definition 4. Létbe a state irB
such that there is a transitien— d. Then,

(c,d) e R

= (by the definition ofB)
e S (ae),b) € R™YA(d,b) €p

= (by assumption) is monotone, and <, «(c))
e S (a,b) e R"YA(d,b) €p

Thus, we have constructed a BT and produceg which is a mixed mixed
simulation betweed/ andB. Hence,M is semantically consistent. O

In the rest of this section, we highlight some of the conseqes of Theorem 4.
First, note that Theorem 4 does not extend to monotone partidels! For example,
consider a monotone MixT8#/5 in Figure 1. By Theorem 4}/5 is inconsistent: there
is amusttransitiona must, as, but nomaytransitiona, M. 4 to a states such that
as =4 a. Letp be an atomic propositionz'is a prime number”. Lef.3 be a labeling
function: for any state of Ms, L3(s) = (). That is,p is unknown at all the states in
Ms. The modelM s = (Ms, Ls) is semantically inconsistent. Buls is logically

15

consistent — there does not exists a formupisuch thatd (||| ') \ O(||¢l|lM2) # 0.
Intuitively, the labeling functiors is too coarse to detect the inconsistency logically.

Second, part (c) of Theorem 4 gives a necessary and suffgtiesctural condition
for a monotone MixTS to be consistent. Let us compare it withgreviously known
condition to ensure logical consistency [22, 13]:

Va,be S-(a 25 b) = (a =2).

Our new condition is weaker. Thus, there is a consistent toor@oMixTS which has
a musttransition that is not anaytransition. For example, consider the MixT\%,

in Figure 1. Note that thenusttransitiona; must as is not matched by anynay
transition. LetB be a BTS(Z, R), whereZ is the set of integers, anfl is defined as
follows:

RE{(2,2)€ZxZ|(z>0A2 =-1)V(z<0Az =2—2)}.

B refinesM,. Thus, by definition)M, is semantically consistent. By Theorem/d,,
is logically consistent as well.

Third, by definition, a KMTS always satisfies condition (c) @ieorem 4. Ex-
isting work on KMTSs [22] often implicitly assumes that thies&ract domain is flat
(i.e., the abstract ordering, on S is discrete). This assumption ensures that every
KMTS is monotone. For such TSs, semantic and logical casistcoincide. Yet the
assumption about the flatness of the abstract domain is sbactere. For example, it
is not true in a typical application of predicate abstrat{e.g., in [18]). By looking
at a wider range of transition systems and considering nigtftat abstract domains,
we have uncovered the subtle but important differencesdsvogical and semantic
consistency.

4.2. Logical and Semantic Consistency for Arbitrary Stadees

In Section 4.1, we have assumed that the abstract stateSglEs not contain any
inconsistent states. That is,dfis in S, then its concretization(a) is non-empty. We
now lift this restriction, i.e., we aim to redefine (i) logla@onsistency, (i) semantic
consistency and (iii) the structural condition of Theorem 4

(i) Aninconsistent state does not abstract any concretesstso a temporal formula
can have any value in that state, including being both sadisfnd refuted. We thus
strengthen Definition 13 as follows:

Definition 15. A modelM is logically consistentff for every p € L,,,

a € (U(llelli) \ O(llell) = v(a) = 0.

If the abstract statespaéehas no inconsistent states, this definition reduces to Defini
tion 13.

(i) Semantic consistency does not need a new definitionamsition system is
semantically consisteiiff there is a BTS that refines it, independently of the stuoet
of the abstract statespace.

16

(iif) We now need to strengthen the structural condition ttech the new Defini-
tion 15. Specifically, we add the requirement that evansttransition from aconsis-
tentstate must be matched byraaytransition into aconsistenstate.

Under these conditions, we now restate Theorem 4 to hanchagistent states:

Theorem 5. Let M = (S, R™St R™&) be a monotone MixTS. Then, the following are
equivalent:

(a) M is semantically consistent (Definition 14),

(b) M is logically consistent (Definition 15),

must

Va,by €S- (y(a) #DNa — b)) =

C
© (Fby €S -by =q by Ay(ba) # DA a =2 by).

In this section, we have investigated the connection beatwgeenantic and logical
consistency of partial models. Semantic consistency i@apt for when partial TSs
are used as objects for abstracting concrete TSs. Loginalstency is important when
partial models are used to interpret temporal logic formaula the following two sec-
tions, we first compare the expressive power of the diffeféformalisms, i.e., what
can be modeled and what abstractions can be captured ($&¢ti®econd, we com-
pare the analyzability of the formalisms, i.e., the cost pratision of model checking
(Section 6).

5. Expressiveness

We show that GKMTSs, MixTSs, and KMTSs are expressivelyeent (in the
sense of Definition 9). The equivalence of the three formadiss proved by defin-
ing semantics-preserving translations from GKMTSs to MBsTand from MixTSs to
KMTSs. Since GKMTSs syntactically subsume KMTSs, the @i from KMTSs
to GKMTSs is basically an identity map.

5.1. GToM: Translation from GKMTSs to MixTSs

We present the translationT®M that converts a GKMTS into a semantically
equivalent MixTS. First, we illustrate the translation olGEKMTS G, in Figure 2.
(G1 is not a MiXTS because afiusthyper-transitionu, must, {az,a3}. This transition
ensures that in every concrete BTS refini#g, all states iny(a,), i.e., those satisfy-
ing (z < 0 A even(z)), must have a transition to a stateyif{as, as}), i.e., satisfying
(z > 0). No single state of7; representéz > 0). Thus, this requirement can only be
captured either by a hyper transition (as donéin, or by extending~; with a new
state, sayis, such thaty(as) = (z > 0). In the latter case, theusthyper-transition

ap 2% {a2, a3} can be replaced by (regularjusttransitiona; must as. The result
is a MixTS M5 in Figure 2. Sincey; replaces a “hyper-stateas, as}, as needs to

. ma ma
preserve itsnaybehaviours. This is done by adding T, a4 andas — a, cor-

. may may . .
responding taz, — a4 andas — as, respectively. There are no outgoinwist
transitions fromus since the existinghusttransitions fromu, andas are sufficient(G

17

Figure 2: Two GKMTSs(=1, G, and two MixTSs:Ms, Mg, whereG; andG» are semantically equivalent
to M5 and Mg, respectively.

andM; are semantically equivalent: any BTS that refitgsalso refines\/s, and vice
versa.

In our example, a new state was added to encode a hypertiwarsi a regular one.
This isn't always necessary. For example, Tssand Mg in Figure 2 are semantically
equivalent. The hyper-transition ™= {as, a3} is encoded by;; ™= a5 in Mj
since the hyper-statgis, a3} is equivalent to an existing statg, i.e.,v({az, as}) =
v(as) = (z > 0).

In summary, a GKMTS7 is translated to a MixT3/ in two steps: (i) everynust

hyper-transitiom MU of Gis replaced by a regulanusttransitiona st g,

whereb is a (possibly new) state such thgb) = ~(U); (ii) maytransitions are added
for every state introduced in the first step, if any. We foiimeathis below.

Definition 16 (GTOM). Let G = (Sg, Rg™, RTSY be a GKMTS. The translation

18

GTOM(G) is a MIXTSM = (Sar, RTFSY RTY), such that

Sy & Se U ST

ST 2 {a]3(s,U) € RG™ v(a) =7(U) A (Vt € Sg - y(t) #~(U))}
RYY 2 REPU{(a,b) |a€ ST Abe SgATs € Sg - (s,b) € REY Av(s) Cv(a)}
RYS'2 {(a,b) |a € Sag A be Sy AU C Sg - (a,U) € RES' A ~v(b) = (U)}

The theorem below shows that the translatioro®l is semantics-preserving.

Theorem 6. LetG be a GKMTS, and/ = GTOM(G). Then,M is a MixTS, and=
and M are semantically equivalent.

PROOF (1) According to the construction in Definition 16, every shihyper-
transition is replaced by a regular one. Therefdiejs a MixTS. (2) To prove that

G and M are semantically equivalent, we show that any concrete BTS (C, R)
refinesG iff it refines M. It is equivalent to showing that the soundness relation
pa € C x Sg is a mixed simulation betweeB and G iff the soundness relation
pym C C x Sy is a mixed simulation betweeB and M. This follows from the
construction of transition relations given in Definition.16 O

A corollary of Theorem 6 is that GKMTSs and MixTSs are equawnabith respect
to thorough semantics. Lél; be a labeling function foz. We extend the translation
GTOM to a GKMTS modelG, L) such that GoM ((G, Lg)) £ (M, Lys), where
M = GTOM(G), andL,, is a labeling function foiS,, defined as follows:

Lar(a) 2 {LG(“) fa €S
Nisesahsrcray Lals) faes

That is, ifa is a state belonging to the original statesp&ge the labels o are the
same as before. For a new statadded by the translation, since the concrete states
approximated by: are theunionof the ones approximated by a set of stateSdn the
labels ona are the literals that are true in all the concrete statesetbee, L/ (a) is
defined as the intersection of the labels on the statég;ithat are more precise than

a.

Theorem 7. The state labelind.,; above is well-defined and approximates the same
labelings asl .

PrROOF The proof follows immediately from the approximation definfor state
labeling and construction df,,. O

As aresult(G, Lg) and(M, L) satisfy the same properties under thorough seman-
tics.

Corollary 2. Let (G, Lg) be a GKMTS model andM, Ly;) = GTOM((G, Lg)).
Then,(G, Lg) and (M, L) are equivalent w.r.t. thorough semantics.

19

Complexity We show that the translationT®@M does not increase the size of the
model. LetG be a GKMTS with the statespacg;, andM = GTOM(G). The size
of G is at mostS¢ x 25¢|. Each new state added byrGM corresponds to a subset
of Sg, i.e.,|ST| < |25¢|. Furthermore, no transitions between the stateSfinare
added. Thus, the size 8f is also at mostSg x 29¢|.

Sometimes GoM can reduce a GKMTS exponentially. For example, assume that
S¢ is a disjunctive completion [9], i.e., for every subgebf S there exists an equiv-
alent element in S¢ such thaty(U) = ~(s). In this case, GoM does not add any
new states, i.e.S*t = (). This makes the size of the output MixTSs [I52; x Sg|,
which is exponentially smaller than that of the input GKMTS.

5.2. MTOK: Translation from MixTSs to KMTSs

We present the translation K that converts a MixTS into a semantically equiv-
alent KMTS. First, we illustrate the translation using a WM/ in Figure 3. My is
not a KMTS because of the twaust onlytransitions,a; must as andas must, ag.
One way to turn\/; into a KMTS is to addnaytransitionsa; may, as andag LA ag,
resulting ink; in Figure 3. This naive transformation is not semanticsereng, i.e.,
K, and M7 are not semantically equivalent. For example, the conesettem

(y>0)A(z>0)Aodd(x) N’ =x+1Ay =y)V
(z>0)Nodd(z) N2’ =z Ny =—-1xx)V
(z>0)A—odd(z) N’ =z + 1Ny =—1xx)

refinesK, but notM7: the transition(z = 1,y = 1) — (x = 2,y = 1) cannot be
simulated by anynaytransition of M7 from a; .

The must onlytransitiona, must as of M, ensures that in any concrete BTS re-
fining M-, all states iny(aq), i.e., those satisfyingz > 0Aodd(z) Ay > 0), must
have a transition to a state ir{az), i.e., satisfying(z > 0). This is further restricted
by the maytransitions froma, that ensure that states ir{a;) have transitions only
to states imy({a1,as}). Hence, in any BTS refinind/;, every state iny(a;) must
(and may) have a transition to a stateyifuz) N y({a1,a3}). Thatis, the restrictions
posed by anust onlytransition froma; are further restricted by the set of all of the

maytransitions fronu; . In general, for abstract statks . . ., bx, amust onlytransition

bo ™% b, and a set ofaytransitionshy — bs, ..., by — by, ensure that every

state iny(bo) has a transition to a statedriby) Ny ({b2,...,bx}).

The must onlytransitionas ust a4 in My is equivalent to a pair ofmay and
musttransitions fromus, t0 a4, sincey(as) N y({a1, a2, az}) = v(as). Themust only

transitiona, ust as can be equivalently represented by (a) adding a new &{atach

thaty(as) = v(az2) N v({a1,a3}) = (x > 0Aodd(z)), and (b) adding anustand a

maytransition froma; to as. Moreover, sinces approximates some of the same states
. . . . may may

asas, i.e.,y(as) C v(a2), as inherits the transitions from,: a5 — a1, a5 — as,

as . as, as must a4, as may, ayq. The final result is the KMTSK; in Figure 3,

which is semantically equivalent /.

In summary, a MixTSM is translated to a KMTSX in two steps. First, every
must onlytransitiona S b of M is replaced by a pair ahustandmaytransitions

20

Figure 3: One MiXTSsM~, and two KMTSs:K 1, K2, whereM~ and K4 are semantically equivalent.

a ™S a— banda ™ ¢ > b b, wherea — bis a (possibly new) abstract state such

thaty(a — b) = v(b) N v(RT™(a)). Secondmayandmusttransitions are added for
all states introduced in the first step. We formalize thiobel

Definition 17 (MTOK). Let M = (Sy, RT;Y, RT¥Y be a MixTS. The translation
MTOK(M)is a KMTSK = (Sk, R%>, RTUSY, such that
Sk £ Sy U ST
R £ RTYUREPLUIMAY UIMO
RYS'E (RYS'N RTY) UREPLUIMUSTU IMO,

where

St 2{a—b]3ab) € (RYS\ RIY) - Vs € Sar - y(s) £ v(a — b)}
REPL 2 {(a,a —b) | 3(a,b) € (R¥\ RY)

IMAY 2 {(a — b,V') | Ja,b,b’ € Sy

(a,b) € (RTUS\ R™) A (b,b') € RT™¥ Aa — b e ST}
IMUST 2 {(a — b,') | Ja, b,V € Spr-
(a,b) € (RT4SY\ R™™) A (b,1) € (RTUSIN R™) A g — b e St}
IMO 2 {(a— b,b— V| Ja,b,b/ € Sy-
(a,b), (b,b') € (RTYSN\ RT™ A g — b e S*}

21

In Definition 17, REPL denotes transitions that replacest onlytransitions, and
IMAY, IMusT and IMO denote transitions from newly added stateSinthat corre-
spond tomay, must andmust onlytransitions of the original system, respectively. In
our example of MoK (M7), we have

St = {as},

REPL = {(al,a5),(ag,a4)},

IMusT = 0,

IMO = {(as,a4)},

IM AY = {(a5,a1),(a5,a2),(a5,a3)}.

The result of the translation MK is a KMTS: everymusttransition is matched by a
maytransition.

Theorem 8. Let M be a MixTS, and{ = MTOK(M). ThenK is a KMTS, and\/
and K are semantically equivalent.

PROOF (1) The construction in Definition 17 ensures that evansttransition in K
is matched by anaytransition. ThereforeK is a KMTS. (2) To prove thaf\/ and
K are semantically equivalent, we show that for any concr@® B = (C, R), the
soundness relatiopy,; € C x Sy is a mixed simulation betweeB and M iff the
soundness relatiopy, € C x Sk is a mixed simulation betweeR and K. This
follows from the construction of transition relations infinétion 17. O

A corollary of Theorem 8 is that MixTSs and KMTSs are equinalith respect
to thorough semantics. Ldt,; be a labeling function fod/. We extend MoK to
(M, L) such that MoK ((M, L)) £ (K, Li), whereK = MTOK (M), and Lk
is a labeling function folSk defined as follows:

A LM((L) ifaES]u
LK (a) = .
{U{sesmm)cws)} Lu(s) ifaes?
Inthis case, it is a new state added by the translation, the concrete sfgiesdamated
by a correspond to thimtersectiorof the concrete states approximated by a set of states
in S¢; the labels om are all the literals which are true on the concrete statesréfbre,

Lk (a) is defined as the union of the labels on the staték jrthat are less precise than
a.

Theorem 9. The state labelind.x above is well-defined and approximates the same
labelings asl ;.

PROOF The proof immediately follows from the approximation definfor state
labeling and the construction dfx. O

As aresult{M, L) and(K, L) satisfy the same properties under thorough seman-
tics.

Corollary 3. Let (M, Ly;) be a MixTS model andK, Lx) = MTOK((M, Ly)).
Then,(M, Ly) and(K, Lk) are equivalent w.r.t. thorough semantics.

22

Complexity.Let M = (Syr, R, R7YY be a MixTS, andk’ be a KMTS such that
K = MTOK(M). The size ofM is bounded byO(|Sys x Sas]). In the worst case,
the translation adds a new state for eauhst onlytransition in RS\ RYY. Thus,
the number of new staté$™| is bounded by Sy, x Sy|, and|K| is bounded by
O(|SM X SM|2).

MixTSs are more succinct than KMTSs: over a fixed statesgcthe set of
MixTSs is more expressive than the set of KMTSs. This holdsabseS* may not
be empty in some cases, i.e., new states have to be added bi{.MT'he following
theorem shows that i’ is a powerset abstract domain [5], therr®dK does not add
new states, and therefore, MixTS and KMTSs a¥are equally expressive.

Theorem 10. Let (C, p, S) be an abstraction relation. For any abstract state= .S
and a subse® C S, there exists a subsét C S such thaty(V') = v(a) N v(Q).

PROOF LetV £ {b € S| 3c-c € v(a) N¥(Q) Ab = ac)}. The proof of
~(V) 2 v(a) Nnv(Q) follows from the definition of/. To provey(V') C v(a) Nv(Q),
we show that for each € V, v(b) C ~(a) andvy(b) C v(Q), which follows from the
definition of abstraction function. O

6. Reduced Inductive Semantics

GKMTSs and MixTSs are equally expressive: a GKMTS model émdduivalent
MixTS model satisfy the same properties under thorough séiosa However, thor-
ough model checking is expensive. In practice, model cimgckf partial models is
done with respect to a more tractable inductive semanti&,&MTSs are more pre-
cise than MixTSs with respect to SIS: for apye L,,, model checking in a GKMTS
modelG with respect to SIS is more precise than model checking fiterMixTS model
M = GTOM(G). However, the direct use of GKMTSs in symbolic model chesker
has been hampered by the difficulty of encoding hyper-ttiamsi into BDDs. In this
section, we propose a hew semantics, caflketiced inductive semanti¢RIS), that
is inductive while being strictly more precise than SIS. Wew that GKMTSs and
MixTSs are equivalent with respect to RIS. In Section 7, we gin efficient symbolic
model checking procedure for computing RIS over MixTSs. sTeisults in an algo-
rithm that combines the benefits of the efficient symbolicogireg of MixTSs with the
model checking precision of GKMTSs.

In Section 6.1, we illustrate the differences between GKNMIa8d MixTSs with
respect to SIS. We define RIS in Section 6.2, and show how fopemodel checking
with respect to RIS effectively in Section 6.3.

6.1. Example

Let p and ¢ denote predicate§c > 0) andodd(z), respectively. Consider the
modelG; = (G1, Lg,) in Figure 4, whergZ; is shown in Figure 2, andg, is a
labeling function that labels each abstract state as fatlow

Lg,(a1) = {=p,~q} Lg,(az2) = {p,q}
Lg, (a3) = {p,~q} Lg,(as) = {-p,q}-

23

Figure 4: Two modelsg; and M.

Let M5 = (M5, Ly,) = GTOM(G;) be the model obtained frog, by GToM.
The modelM; is shown in Figure 4, its underlying transition systédg is shown in
Figure 2, and

L, (s) = if s = a5 then {p} elseLg, (s).

Compare the value @f 2 ((q vV —~¢) under SIS org; and M :

|‘<IOH§; = <{CL1,CL2,CL3},{CLl,CLQ,ag,a4}>
lell;™ = ({a2,a3},{a1,a2,a3,a4,as})

According toGy, ¢ is true in all states correspondingto. According toM 5, the value
of ¢ is unknown in exactly the same states. Sindg = GTOM(G,), G and M are
semantically equivalent. Thus, although; andG; are semantically equivalent/(;
is less precise thag, for model checking with respect to SIS.

Let us reexamine the above example. First, there is no poedsss during the
evaluation ofy V —¢:

€1 = ”q \ _'QHzgl :<{a13a23a3aa4}a {a17a27a37a4}> (*)

€2 = ”q \ _'Q|‘;'A/15:<{a13 az, az, a4}a {alv a2, a3, a4, CL5}>

Sincey(U(e1)) = v(U(ez)) andy(O(e1)) = v(O(e2)) = (D), e1 =, e2. However,
there is a subtle difference betweenande,. In stateas of M5, ¢ V —¢ is unknown
even though it is true in bothy andas, andvy(as) = v(az2) U v(as). This minor
imprecision is then magnified by tkeoperator.

This loss of precision is not limited to tautologies. For exde, a formulau” -
(-pAq)VOZ, e, EF(—p A q) in CTL, is true in statey; of G, but is unknown in
the same state o¥15.

6.2. Reduced Inductive Semantics for Partial Models

In this section, we define the reduced inductive semantits)(Rhe new semantics
is inductive and istrictly more precis¢han SIS. The key idea is to eliminate any local
imprecision by using a specisductionoperator, defined below:

24

Reduction OperatorLet (C, p, S) be an abstraction relation, and gt € 25 x 25.
Recall that in the information orderis less thare’, i.e.,e <; ¢/, if U(e) is contained
in U(e’), andO(e) containgO(e’). We define theeductionoperator as follows:

RED((U, O)) = (REDy(U),REDg(O))

whereREDy(U) 2 {s | 7(s) C 7(U)} andREDo(0) £ {s | 1(s) & ~
tuitively, for e = (U, O), RED(e) increased/ and decrease® as mu h as pOSSI-

ble without affecting the semantic meaningeof That is,~v(REDy(U)) = ~(U) and
~v(REDo(O)) = v(0O). ThereforeRED(e) is the largest element with respect to infor-
mation ordering that is semantically equivalenttd.e.,RED(¢e) =, e.

For example, consid®ED(e5), wherees is as defined byx) above. Then,

e3 = RED(e2) = ({a1,a2,a3,a4,as5},{a1,az2,a3,a4,as}) (>*)

es differs frome, only in the addition ofi; to U(es). Sincey(U(e2)) = v(U(e3)) and
~v(O(ez2)) = v(0(e3)), e2 =, e3; butes is more informative sincll(ez) C U(es).
An elemente = (U, O) € 29 x 25 is monotonéff

81ja82:>(81EU:>82€U/\81¢O:>82¢O)

That is,U andO are closed under more precise states. The monotonicityeofesits

is preserved under propositional operations: @nde’ are monotone elements, so are
~e ande M e’. MoreoverRED(e) is monotone for any, and it acts homomorphically
with respect to propositional operations on monotone etésad hat is, let ande’ be
monotone elements @f x2°. Then,~e =, ~RED(e), andele’ =, RED(e)MRED(¢’).

Reduced Inductive Semanti¢dlS is defined by applying theED operator before and
after{ to prevent it from propagating imprecision.

Definition 18 (RIS). Let (C, p, S) be an abstraction relation, and Jet = (M, L) be
a model, such that/ = (S, R™, R™SY ando : Var — 2° x 29, Thereduced
inductive semanticsf ¢ € L,, is defined as follows:

Iplls 2 (s p € L)) {s]w ¢ L))
el 2~
lp AYIL 2 el 24T 1l
0g#% 2 RED((preu (RBDU(U(I#]124))): preo (REDo(O(I#I124))))
1214 2 o(2)
12 - el 2 (= (AQ-UllelXg)) 0= (AQ- Ol ¥)

The only difference between RIS (Definition 18) and SIS (O#&én 2) is the se-
mantics of, where theRED operator in RIS uses abstraction information to improve
precision. Since we assume that a state labeling is monoampdyingRED to other
operators as well does not improve precision.

We now show that RIS is sound.

25

Theorem 11. Let (C, p, S) be an abstraction relationM = (M, L) be a partial
model overS, andB = (B, L) be a concrete model ovér. If M approximatess,
then, for anyL,, formulay,

Y(Ullel) € Ullell?) and Y(O(lell#) € Ollell?) -

Proof:
The only difference between RIS and SIS is the application of the RED operator before
and after ¢. Since RED is semantics-preserving, the result holds following Theorem 1.
O

Returning to our running example, RIS gfon M5 is computed as follows: RIS
of ¢, =q, andq Vv —q is the same as SIS. Thyg V —¢||M5 = e,. To compute), recall
from (xx) thatRED(e2) = e3; thus, ||p|| M5 = ({a1,a2,as, a5}, {a1, a2, a3, as, as}).
Hence,||¢|| > is more precise thaffip||".

Theorem 12. RIS is more precise than SIp||; <. [|#]|--

PROOF We begin by fixing an abstraction relatid@, p, S). The proof proceeds by
structural induction orp. For the base case, it is obvious that for any atomic proposi-
tionp, ||pll; =a |2l In the following, we show the inductive case p; the proofs
of other cases are trivial.

We show that||; =a ||l = |[0¢]li =a [|O]], Whichis equivalent to proving
the following two statements:

(@) llelli Za [lellr = ~(U([0¢1:)) € A (U([[0¢]]-))

(®) llelli Za llellr = v(O([0¢ll:)) € v(O(0¢llr))
The proof of (a) is as follows. First, note that for any twass@t, (02, we have that
7(Q1) € v(REDy(Q2)) = Q1 € REDy(Q2) (P1)

This follows from the following derivation: supposg, ¢ REDy(Q2). Then there
exists a state such that € Q1 ands ¢ REDy(Q2). By the definition oREDy, v(s) €

7(Q2); on the other hand, sincg(@1) C v(REDy(Q2)) = v(Q2), 7(s) € v(Q2),
reaching a contradition.

26

We then have the following:

llelli Za Il
= (by the definition of<,)
YU (lelli) € vU(lellr)
= (by the definition oREDy, v(Q) =
(U(l[ells) € v(REDY(U(|l¢l]+)))
= (by (PD)
U(llell:)) < REDy(U(||¢ll-))
= (by monotonicity ofpre)
preu(U(ll¢ll:)) € preu(REDY(U(ll¢llr)))
= (by monotonicity ofy)
Y(preu(U(llelli))) € ~(preu(REDy(U(l|¢]]r))))
= (by the definition oREDy, 7(Q) = v(REDy(Q)))
Y(preu(U(]|el]:))) € 7(REDy (prey (REDy (U([[¢l])))))
= (by the definitions of SIS and RIS)

Y(U([0#l1:)) € (U ([10¢l])

Proof of (b) is dual of the one above. O

7(REDy(Q)))

The previous example illustrates another important pdBKMTSs and MixTSs
are equivalent with respect to RIS. For examgile| > is equivalent tg|p||9:. The
following theorem formalizes this.

Theorem 13. LetG be a GKMTS model, andt = GToM(G). Then,G and M are
equivalent with respect to RISy € L,, - |l¢[|¥ =, |l¢lIM

PROOF We begin by fixing an abstraction relatidf’, p, S). The proof proceeds
by structural induction orp. For the base case, according to the definitior.gf,
Ipl¢ =a ||lp||M for any atomic propositiop. In the following, we show the inductive
case fordp; the proofs of the other cases are trivial.

We show that|¢||¢ =, [[¢|M = [[0¢]|¢ =. [|[O¢l|M, which is equivalent to
proving the following two statements:

(@) llell? =a llell? = 2 UI0el7)) = 1(U10lM)

(®) el =a el = 20 ([[0¢l)) =v(0([[0¢lM))

The proof of (a) is as follows. First, note that for any conergtatec and a set of
abstract state®,

c € vy(REDy(Q)) & Ja € Q- c € v(a) (P2

27

We then have that, for any concrete state

c € v(U(|0¢17))
< (by the definition of RIS)

¢ € ~(REDy (preg (REDu(U([|#[I¥)))))
< ((=) leta be the abstract state iR2),
(«) sincey(Q) = y(REDy(Q)))
¢ € v(a) A a € preg (REDy(U([|#lI7)))
< (by the definition ofprey)
¢ € y(a) A3Q S REDy(U([[¢l7)) - RE“(a, Q)
< (by the definition of GoM)
c € y(a) A 3b-y(b) € v(REDy(U([|¢I7))) A R, b)
& (sincellpll¥ =a [lollM, v (Ullell?) = y(Ullel)
c € y(a) A 3b-y(b) € v(REDy(U(|l¢ll}"))) A RR{¥(a, b)
< (sincey(Q) = v(REDy(Q)), by the definition oREDy)
c € y(a) A 3b € REDy(U([l¢[)) - RR§*(a, b)
< (by the definition ofprey)
c € v(a) Aa € prey' (REDy (U([l¢[|)))
< ((=)sincey(Q) = v(REDy(Q)),
(«=) let a be the abstract state iR2))
¢ € ~(REDy (pref) (REDu(U([[#[17)))))
< (by the definition of RIS)
c € Y(U([10elI3))

The proof of (b) is similar to the one above, based on the ohsen that for any
concrete stateand a set of abstract stat@sc € v(REDo(Q)) < Ja € Q-c € y(a). O

Our new semantics RIS is both inductive and precise enoughaice GKMTSs
and MixTSs equivalent. However, the definition of #&D operator is based on con-
cretization;y. In practice, reasoning directly about concrete stateslmayndecidable
or inefficient. We address this limitation next.

6.3. Reduced Inductive Semantics for Monotone Models

We study the reduction opera®ED of RIS in the context of monotone models. As
shown in Section 3, monotone models are as expressive asdhaiar counterparts.
Furthermore, as shown in [19], monotone models are also prewise. That is, given
an arbitrary modelM, there is a monotone modgéH’ over the same statespace that is
more precise tham under SIS. The following theorem implies that the same tesul
also holds under RIS.

Theorem 14. Let M = (M, L) and M’ = (M’, L') be two partial models, where
M = (S, R™ R™SY and M’ = (S, R™®', R™s!) are two transition systems defined
over the same abstract statespage Then, if M is less precise thaM’ under SIS,
e,V e L, - |llM =< [l¢llM, then,M is also less precise thatt’ under RIS.

PROOF The proofis by structural induction gn In particular, the inductive case for
O follows from the definition oRED and the monotonicity of thpreimageoperator.

28

Furthermore, models built by automated predicate ab&ragt8] in practice are
monotone by construction. Thus, restrictiRED to monotone models is neither a the-
oretical nor a practical restriction.

Note that in any monotone model and any formgld|,||.- is a monotone element.
This holds because of the monotonicity of the state labelimdjthe transition relation.
For monotone elementBED can be computed effectively, as we show below.

Let (C, p, S) be an abstraction relation, arde S be a state. Thepsetof s is
defined as

Ts&{teal0]|s=.t}.

Thus,Ts is the set of all those statesariC] that are more precise thanFor example,
consider the abstraction relatid®, p, S1), whereS; be the statespace éf; shown
in Figure 2. Recall thaty[Z] denotes the set of abstract statesSinthat are best
approximations of concrete states. Since every value ohigér variable: can be
best approximated by, , az, as, Or a4, a[Z] = {a1,as2,as,a4}. Furthermore, since
ay andag are more precise thams;, we have thafas; = {az2,a3}. A states and the
upset]s approximate the same set of concrete states;i(e),= v(1s). For example,
v(as) = v(Tas) = v({a1, a2, a3,a4}) = (z > 0).

The next theorem shows that for monotone elemen?s of 2° the upset operator
lifts set inclusion from concrete to the abstract domain.

Theorem 15. Let (C, p, S) be an abstraction relatione = (U, O) be a monotone
element oR° x 2% ands € S be a state. Themy(s) € ~(U) iff s € U and
v(s) £7(0)iff 1s £ O.

PROOF First, we show that/(s) C v(U) < 1s C U. The (<) direction follows
directly from the definition ofy. We prove the£-) direction by contradiction. Let’
be the concrete statespace approximatefl.b§uppose thats ¢ U. Then,

TsgU

JaeS-aclsha¢U

(by the definition offs, a € a[S])

JaeS-s=<,anha¢UANTceC- a=ale)

= (sinces =, a,v(a) C (s); sincevy(s) C y(U))
JaeS-a¢UANTceC-a=alc)hce~{U)

= (by the definition ofy)
JaeS-a¢UNIceC-a=alc)ATbeU-ce ()

= (by the definition o)
JaeS-a¢UANTeU-b=,a

= (by monotonicity ofe, a € U)
JdaeS-a¢UNaelU

= false

=
=

The proof ofy(s) Z v(O) < 1s € O is dual to the one above. O

29

We now define a new operatoed for monotone elements. Let= (U, O) be a
monotone element & x 2°. red is defined as

red(e) = (redy(U),redo(0))

whereredy(U) £ {s | s C U} andredo(O) £ {s | Ts ¢ O)}. A corollary of
Theorem 15 is thated andRED are equivalent.

Corollary 4. Let(C, p, S) be an abstraction relation, anelbe a monotone element in
25 x 29, Thenred(e) = RED(e).

For example, the element, defined in &) is monotone. We have that
red(U(e2)) = {a1,az2,as,a4,as5} sincefas = {az,as} C U(ez), andred(O(ez))
is the same a®(ez) sinceO(ez) is empty. Thereforesed(e2) andRED(ez) are equal.
Note thatred can be computed effectively since it does not reason abawatrete ele-
ments directly.

In this section, we have introduced a new inductive semaiRlS, and shown that
it is more precise than SIS, and that GKMTSs and MixTSs arévabpnt with respect
to RIS. RIS can be computed effectively on monotone moddig;iwis not a limitation
since monotone models are as expressive as their non-mmenatanterparts.

7. Symbolic Model Checking of RIS using BDDs

In this section, we describe a symbolic algorithm RIS thgblaments the RIS
semantics fomonotonenodels constructed using predicate abstraction. Thedbare
models used by some existing software model checkers, U0k

Our implementation is based on the following observatiarsch allow us to sim-
ply the encoding of computation results and transitionesyst

Let (C,p,S) be an abstraction relation. Then, for any monotone elemént o
25 x 25, there exists asemantically equivalenelement in2°[5] x 22[51. For
example, the monotone elemeet defined in &) is semantically equivalent to

<{G1, a2, as, G4}, {Gl, az, az, a4}>.

Theorem 16. Let (C, p, S) be an abstraction relatiors; = (U;, 01) be a monotone
element oR® x 2%, ande, = (Us, Os) be in2¢€1 x 2¢1€1 1f U; N a[C] = U, and
01N a[C] = O,, thene; =, es.

PROOF This is proved by showing th&ED(e;) = RED(eq); SINnCeRED is semantics-
preserving, the result holds. O

Recall that the RIS semantics uses BE® operator to compute most precise ele-
ments with respect to information ordering without affagtsemantic meaning. For
two semantically equivalent elementsnde’, RED(e) is the same aRED(e’); more-
over,RED can be effectively computed over monotone models using ldraents in
a[C). Therefore, Theorem 16 allows us to restrict the algorithieomputing sets over
a[C] instead of sets ove$. The benefit of this restriction is that we can use fewer
variables to encode computation results.

30

Furthermore, since the result ¢foperator is contained in[C], it only depends
on transitiongrom the states ofy[C]. The following theorem shows that the transition
relations can be simplified as well. Specifically, we only tremaytransitions from
a[C] to a[C] and themusttransitions fromx[C] to S. We applyREDy over the states
of a[C] before computing the result of the pre-image owersttransitions to prevent
it from propagating imprecision.

Theorem 17. Let (C, p, S) be an abstraction relation)/ = (S, R™, R™) be a
monotone MixTS, and= (U, O) be amonotone elementdf x2°. LetU £ UnalS],
O £ ONalS], RMUStE RMUSIY (o[C] x S), and R™ & RN (aS] x ofS]). Then,

(pre[R™=}(REDy (U)), pre[R™](REDo (0))) =, {pre[R™}(REDy (1)), pre[R™](0))

PrROOF By the definition of=,, the theorem is equivalent to proving the following
results:

(a) ~(pre[R™}(REDy(U))) = ~(pre[R™}(REDy (U))))

(b) ~(pre[R™](REDo (0))) = ~(pre[R™](0))

(1) We first show that (a) holds. The proof efpre[R™|(REDy(U))) C
v(pre[R:1](REDy(U))) is shown below. For any concrete stafe

¢ € ~(pre[R™S}(REDy (1))
= Ja€ S -cey(a)Aac prelR™SY(REDy(U))
= (by the definition ofpre)
Ja € S-c€~y(a) ANIb€REDY(U) - R™Ya, b)
= (letad’ = a(c); by the definition ofv)
cevy(@)Nad €afS]ATa €S a=,a ATbeREDYU) - R™Ya,b)
= (by monotonicity of the transition relations)
cev(a)Na' € a[S] ATb e REDY(U) - R™SYa’, b)
= (by the definition ofRmusY
ce~(a)Ad € alS]ATbeREDY(U) - R™SYa’, b)
= (sincee is a monotone element(U) = ~(U))
ce~(a)Ad € alS]ATbeREDY(U) - R™S{(d’, b)
= (by the definition ofpre)
cey(d)Nd e preR™SY(REDy (U))
= ¢ € y(pre[R™)(REDy(U)))

The proof ofy(pre[R™SY(REDy (U))) 2 ~(prelR™Y(REDy(U'))) follows from the
definitions of RMUStandU .

(2) We now show that/(prelR™](REDo (0))) = ~(pre[R™](0)). The proof of

31

~(pre[R™] (REDo (O))) C ~(pre[RM](0)) is shown below. For any concrete stafe

¢ € y(pre{R™¥|(REDo (0)))
da € S-ce~y(a)Aa € prelRM|(REDo(O))
(by the definition ofpre)
da €S- cev(a) N R"™(a) C REDo(O)
= (leta’ = a(c); by the definition of)
cevy(a)Nnd € a[SIA
da € S-a=,ad ANR™(a) CREDo(O)
= (by monotonicity of the transition relations)
cev(a)Nnd € a[SIA
Jda € S+ R™(a’) C R™¥(a) C REDp(O)
= (by the definition ofR™, R™¥(a') N a[S] = R™(a’))
ce~(d) A € alS]AR™(a') C (REDo(O) N afS))
= (sincee is amonotone elements € a[S] - s € REDg(0O) < s € O)
cer(d)na € alS]AR™(d') C (0N als))
= (by the definition o))
cey(@)Nnd € alS]AR™(a) C alS]\ O
= (by the definition ofpre)
¢ €~(a) Ad' € y(pre[Rm)(0))
= ¢ (prelR™)(0))

$U

The proof ofy(pre[R™](REDo (0))) 2 ~(pre[R™](0)) is similar to the one above.
O

The algorithm RIS is shown in Figure 5. It uses BDDs to syndadly represent
and manipulate sets of states and transition relationsctfeuns that are prefixed with
“BDD" are the standard BDD operations, shown in Figure 6. Therélgo works
recursively on the structure of the input formyta The fixpoints are computed as
usual, by iterating until convergence. We describe theildaté the implementation
below.

Let C be a concrete statespace, dnek {p1,...,p,} be a set of predicates over
C. Recall that the abstraction relation of predicate ab8tmads (C, pp, Mon(P)),
where Mor{P) denotes the set of monomials ov@r Furthermore, MTP) denotes
the set of minterms ove?, anda[C] = MT(P). The input to the algorithmis a MixTS
model(M, L), s.t. M = (S, R™, R™sY S = Mon(P), and L, (s) = Lit(s), and
an L, propertyp. Without loss of generality, by Theorem 17, we assume that th
transition relations are restricted such t#{t?Y C MT(P) x MT(P), and RSt C
MT(P) x Mon(P).

The algorithm uses the following sets of BDD variablés= {b; | p; € P} — the
current state Boolean variablds, = {b} | b; € B} — the next state Boolean variables,
H = {h; | p; € P} —the current state unknown variables, d@ftl= {h. | h, € H} —
the next state unknown variables. In what follows, we do nstirtjuish between the
BDDs and the corresponding propositional formulas.

32

1: global var Rmay, Rmust : BDD 18: func ABSAND(BDD v1,BDD v2) = BDDAND(v1,v2)

2: func RIS(Exprey) : BDD 19: func ABSOR(BDD v1,BDD v2) = BDDOR(v1,v2)
3: match ¢ with 20: func ABSEQ(BDD v1,BDD v2) = BDDEQ(v1,v2)
4 ATOMIC(p) : return ABSV (BDDVAR(“p"), 21:
BDDVAR(“p")) 22: func ABSNOT(BDD v) : BDD
5 - : return ABSNOT(RIS(¢)) 23 0:=ABSO(v), u:=ABSU(v)
6: 11 A1y @ return ABSAND(RIS(v1), RIS(¢)2)) 24: return ABSV (BDDNOT(o0), BDDNOT(u))
7: 11 V 1hs : return ABSOR(RIS(¢1), RIS(1)2)) 25:
8: Q1) : return ABSPRE(Rmay, Rmust, RIS(1))) 26: func ABSREDU(BDD v) : BDD
9 w - return RISy, (1) 27: if (BDDISCONST(v)) return v
10: v return RISy (v) 28: b:=BDDROOTVAR(v), h:= UVAR(b)
11: 29: T := ABSREDU(v[1/b]),F := ABSREDU(v[0/b])
12: func ABSV (BDD u, BDD o) : BDD 30: tmp:=BDDITE(H, T, F)
13: sel:=BDDVAR(“sel") 31: return BDDITE(h,BDDAND(T, F'), tmp)
14: return BDDITE(sel,u,0) 32:
15: 33: func ABSPRE(BDD Rmay, BDD Rmust, BDD v) : BDD
16: func ABSO(BDD v) = v[0/sel] 34: 0:=ABSO(V), u:= ABSREDU(ABSU(V))
17: func ABSU(BDD v) = v[1/sel] 35: return ABSV (BDDPRE(Rmust,u), BDDPRE(Rmay, 0))

Figure 5: The RIS algorithm and its supporting functions.

[Operation | Definition

BDDVAR(s) returns a BDD node with the nanse
BDDITE(f,g,h) |returnsaBDD forf Ag)V (—f Ah)
BDDAND(f, g) returns a BDD for conjunctioft A g

BDDOR(f, g) returns a BDD for disjunctiot V g
BDDEQ(f, g) checks whether BDR equals BDDg
BDDPRE(r, v) returns a BDD for the preimage ofoverr

BDDISCONST(£) |checks whether BDI is a constant
BDDROOTVAR() | returns the top node of BDBD

Figure 6: Common BDD operations.

A set of mintermsX C MT(P) is encoded by a propositional formula o8y as
usual. For example, I1e® = {p1, p2, ps}. Thenb; A —bs encodes the sdp; A —ps A
p3,p1 A —p2 A —ps}. A set of monomials C Mon(P) is encoded by a formula over
B U H. Intuitively, for a monomialn, a variableh; indicates whethep; is present in
m, and a variablé, specifies the polarity of the occurrence. Formally, the ditapis

\/ ((/\ =h; A bz) A (/\ =h; A ﬁbl) A\ (/\ hl))
)

meX p;eLit(m) —p; €Lit(m) pi€ P\Term(m

For example(—hy A b1) A (mha A —b2) A hg represents a singleton sgf; A —pa2}.

An abstract value = (U, O) is encoded in a single BDD by a formulae1 AU) v
(—selAO), wheresel is a designated BDD variable. This encoding is implemenyed b
functionaBsV. TheU andO elements of value are extracted usinggsU andABsO,
respectively. Abstract intersectionRfSAND), union (ABSOR), and equality ABSEQ)
are done using the corresponding BDD operations. Abstragation ABSNOT) is
implemented following its definition in Section 2.

The may transition relatioR™® C MT(P) x MT(P) is encoded by a formula over

33

B U B’ as usual. Similarly, the must relatidi™st C MT(P) x Mon(P) is encoded
by a formula overB U B’ U H’, where the primed variables are used to encode the
destination state. For examplegrausttransition from a statép; A p2 A p3) to a state
(p1 A —p2) is represented by A by A bz) A ((mh) AbBY) A (=hl A =b) A RY).

FunctionaABSREDU implements theredy reduction operator of Section 6.3. It
takes a set of minterms as input, and returns a set of monefioiathe computation
of pre-image ovemusttransitions. A monomial is added to the output iff its upset i
contained in the input. The implementationa#sREDU uses the following observa-
tion: let@Q C MT(P) be a set of minterms, and € Mon(P). If a € MT(P), then
Ta = {a}, andla C @Q & a € Q; otherwise, some predicateis not present in,
and in this caséa C Q iff T(a Ap) C @ andf(a A —p) C Q. For example, suppose
P = {p1,p2,p3} andQ = {p1 Ap2/Ap3, p1 Ap2A—p3}. For the monomiak = p; Apz,
we have thata C Q becausé(a Aps) = T(p1 Ap2 Aps) = {p1 Ap2 Aps} C Qand
T(a A=ps) = 1(p1 Ap2 A—p3) = {p1 Ap2 A —p3} € Q. FunctionaBsREDU applies
this reasoning recursively on the input diagram, using fioncUVAR to find a vari-
ableh; € H for each variablé; € B. FunctionABSPRE implements the pre-image
computation based on Theorem 17.

Theorem 18. For a monotone MixT3 andy € L, algorithmRIS(y) in Figure 5
returns the symbolic representation ||| M.

PROOF The proofis by structural induction an In particular, the base case follows
from Theorem 16. The inductive case for boolean operatiolia#s from the fact that
RED is semantics-preserving and acts homomorphically witpeeisto propositional
operations on monotone elements. For the inductive cageopfCorollary 4 shows
thatREDy can be computed using:dy implemented byaABSREDU, and Theorem 17
shows that) can be computed over the simplified transition relations. O

The main difference between the symbolic implementatidr&® and our RIS is
the extraABSREDU operation in functiomBsPRE (line 29 in Figure 5).ABSREDU
is similar to existential quantificatiorBODEXxI1STS) of BDDs, with one exception:
BDDEXISTS usesBDDOR in each iteration, budBSREDU uses on@bDAND and two
BDDITE operations. ThusABSREDU has the same complexity @& DEXISTS, and
symbolic implementations of RIS and SIS also have the sammplaxity. This means
that the extra precision of RIS comes “for free”, without agky in complexity.

8. Experiments

To empirically evaluate the cost and performance of RISue8S, we have imple-
mented symbolic algorithms for computing both of them ushegCUDD library [31],
and analyzed reachability and non-termination propeoties a realistic model. While
our algorithm in Figure 5 can analyze amycalculus formula, our experiments consid-
ered just reachability and non-termination propertiesibise of their practical interest.

We have conducted the experiments on instances of a templaggamProg;
shown in Figure 7(a). For a natural numbelan instance dfrog; uses integer vari-
ablesx[0], ..., x[n — 1] and consists of. blocks B(i) shown in Figure 7(b), followed
by a loop. An instance dfrog; for n = 1 is shown in Figure 7(c).

34

Progl (int n) B(int i) LO: if (x[0]>5)

int x[n] if (x[i]>5) x[0] =x[0] +1
x[i]=x[i]+1 else if (x[0]>0)
B(0) else if (x[i]>0) x[0] =x[0] +2
B(1) x[i]=x[i]+2 el se
@ = ®) o se © X[0] =x[0] - 2
x[i]=x[i]-2
. L1: while (x[0]=>0)
B(n-2) while (x[i]>0) if (odd(x[0]))
B(n-1) if (odd(x[i])) x[0]=-1
x[i]=-1 el se
L: while (x[n-1]<=0) el se x[0] =x[0] +1
x[n-1]=x[n-1]-1 x[i]=x[i]+1
END: L: while (x[0]<=0)
x[0]=x[0]-1
END:

Figure 7: Templat®rogi (n) for experiments: (a) the template, (b) definition of blaBk:), and (c) the
instanceProg (1).

We used the method of [18] to build an abstract MixTS usingstiteof predicates
{z[0] > 0,%[1] > 0,...,x[n— 1] > 0} U {odd(x[0]), 0odd(x[1]),...,0dd(x[n — 1])}.
We model checked the following reachability (least fixedapoand non-termination
(greatest fixed-point) properties with respect to the stashend the reduced semantics:

Prop; :FEF(pc=1L1)
Prop, : FEG(pc# END)
Props :EG(pc#ENDA (x[0] >0V x[1]>0V---Vx[n—1]>0)),

wherepc refers to program counter.

The templateProg; is based on an example from [29] that shows that using
GKMTSs can improve the precision of model checking. For gxamconsider the
instanceProg; (1) shown in Figure 7(c). A part of the corresponding abstractTdi
is shown in Figure 8. Here, the propeRyop; is unknown ina; with respect to SIS.
As shown in [29], the precision can be improved by addingusthyper-transition
ai must, {a2,a4}. We use this template to show that the same result can be also
achieved using RIS.

For both SIS and RIS, we measure the size of the abstract swsialg the number
of BDD nodes, the total analysis time, the number of iteratiof the fixpoint compu-
tation, and the time spent in ta@ SREDU operation for RIS. To compare the precision
of the results, we consider two sets of initial states:

I, : (x[0] <OAx[1]]<OA---Axn—1] <0)

Io: (x[0] >0AX%[1]]>0A---Axn—1]>0)

and check whether conclusive results can be obtained oeer.th
The results are summarized in Figure 9. The top part of thie &iows that RIS

models enjoy significantly smaller encodings than their &8nterparts, due to re-
stricted transition relations (see Theorem 17). Note tmasame simplification cannot

35

Figure 8: A partial view of a MixTS approximatirgrog: (1) from Figure 7(c).

| [~ SIS I RIS

_ 100 370,070 216,689

€8 200 1,460,270 853,389

S¥ |[250 2,275,196 1,329,215

[Prop]l n]| Analysis (sec) lter.[I;] I>]| Analysis (sec.) ABsREDU (sec.) lter.[I;] I|
5. 100 2.20 301 3.60 0.74 401
9 1(200 15.36 601 T| U 27.77 6.45 801 T| T
~ 1250 28.92 751 55.19 13.40 1001
8 100 3.60 203 0.03 <107% 2
S 1/200 27.16 403| T| U 0.12 <107* 2 T| T
& 1/250 54.62 503 0.19 <107* 2
8 100 33.96 400 21.24 4.5 400
I 200 395.24 800| F| F 258.72 42.44 800| F| F
A 250 1108.67 1000 546.88 101.20 1000

Figure 9: Experimental results for SIS and RIS okesg: (T, F and U denotdrue, FalseandUnknown
respectively).

be applied to SIS, since SIS does not use a reduction opecatempensate for the
loss of precision over the states other thdf]. RIS is more precise than SIS: for the
two sets of initial states, RIS produces conclusive resattboth of them with respect
to the three properties being checked, whereas SIS canoidedehetheProp; and
Prop, hold inI,. As expected, the extra precision of RIS does not cause alewityp
penalty: the experiments show that the increases of thesiadime with respect to
the size of the models for both RIS and SIS are comparabldl. dhthe cases, the time
spent inABSREDU, which represents the main difference between the two stosa
comprises roughly 20% - 25% of the total time.

36

| [~ SIS [RIS

_ 100 245,584 145,284

8 & [|200 971,062 570,462

S¥ |[250 1,513,796 888,046

[Prop.][n || Analysis (sec) lter.| I,] I,|| Analysis (sec.) ABSREDU (sec.) Iter.[I;] I,]
5 [[100 0.48 603 0.27 <1077 403
It 200 2.15 1203 U| T 0.97 <107* 803 | T| T
~ [|250 3.46 1503 1.44 0.01 1003

Figure 10: Experimental results for SIS and RIS dvesgs,.

Prog2 (int n) Clint i)
int x[n] i f (nondet)
x[i]=x[i]+1
C(0) i f (nondet)
C(1) x[i]=x[i]+1
@ . (b) el se
x[i]=x[i]*x[i]-10
. el se
C(n-2) x[i]=x[i]*x[i]-10
C(n-1)
END: if (x[i]>0)
x[i]=x[i]+1
el se
x[i]=x[i]-1

Figure 11: Templat@rogs (n) for experiments: (a) the template, and (b) definition of kl6y7).

Note that RIS and SIS may require different numbers of itenatof fixpoint com-
putation: in the above experiments, RIS required moretitarathan SIS for the reach-
ability propertyProp;, but fewer iterations than SIS for the non-termination by
Prop,. These differences are determined by the structure of thdehrend by the
fixpoint type (least or greatest) being computed.

As another example, we checked a reachability property stairtes of the tem-
plateProg, shown in Figure 11(a).

Each instance is abstracted using the set of predicates
{x[0] > 0,%[1] > 0,...,x[n — 1] > 0}. The property checked w&sops : EF(pc =
END). The result of model checking was evaluated on the samalisgis of stateg,;
andI,. The results are summarized in Figure 10. In this case, wslillenore precise,
RIS requires fewer iterations than SIS.

These experiments suggest that using the more precise Rihses may improve
the overall performance of model checking, making it a gmesalternative to SIS in
practice. We leave further investigation along this diatfor future work.

37

9. Related Work and Discussion

Consistencylin this paper, we investigated partial TSs and models ftwperspective
of abstract model checking. Partial TSs are also used aispgons of a system’s
behavior [25, 24]. In this case, semantic consistency iloepl by implementability.
A patrtial transition system/ is implementabléf there exists a BTSB that refines\/
through some mixed simulation. Such a BTS is caledmplementationThere is a
subtle, but crucial, difference between implementabdityl semantic consistency as
defined in this paper. We assume that the statespace of andlsinsition system is
an abstract domain, and that it is related to the concreteadohy a given soundness
relation p. In our case, a partial T3/ is semantically consistent iff there exists a
BTS that refinesd\/ via thisp. On the other hand, the definition of implementability
leaves the choice of the mixed simulation relation open.sThamantic consistency is
stronger than implementability.

For example, the MixT3/1, in Figure 1 is not semantically consistent. It is, how-
ever, implementable. L&B be a BTS(Z, R), whereZ is the set of integers, anfl is
defined as follows:

£ {(z,2) | (x > 0Aodd(z) N2’ =2)}U
{(z,2") | (x > 0 A even(z) Ao’ =—-3)}U
{(z,2") | (x > 0Aeven(z) N2’ =-2)} U
{(z,2') | (x <OAZ ==3)} .

Then, B refinesM; through the following mixed simulation relation:

{(c,a1) | ¢>0Aodd(c)} U{(c,az2) | c>0Aeven(c)}U
{(c,a3) | ¢ <OAodd(c)} U{(c,as) | c<0Aeven(c)}

Note that in this case, no concrete stat®iis approximated by botty, anda,. There-
fore, the source of inconsistency discussed in Section 4 dokexist.

In [21], Huth et al. provided thenix condition(MC) on MixTSs to ensure im-
plementability. A MiXTSM = (S, R™ R™SY satisfies the mix condition iff for
all (a,b) € R™S there exists som& € S such thatt’ refinesb, and (a,b’) €
R™MUstn RMaY For example, the MixT3/4; in Figure 1 satisfies this condition, whereas
M, does not. Howevet)/, is semantically inconsistent, aidd, is consistent. There-
fore, MC is neither sufficient nor necessary for semanticsistancy.

The complexity of deciding implementability of a partial TiS EXPTIME-
complete [4, 3, 1]. On the other hand, semantic consisteanybe decided in time
polynomial in the size of the system; this is immediate fronedrem 5. This result is
not surprising since semantic consistency is strongerithplementability.

Huth et al. showed that the KMTS models are logically coesisf22]. To ensure
logical consistency of GKMTSs, de Alfaro et al. defined thaditon that requires
that every destination of musthyper-transition intersects with the destination of a
may transition from the same state [13]. This can be viewed asnatogue of the
condition R™Ust C R™¥ required by KMTSs. In this paper, we showed that such a
condition is not necessary for logical consistency. We fittesl problem by defining

38

a relaxed structural condition which captures both logamaisistency and semantic
consistency of partial models.

Partial model consistency does not have to be based on mixedasion. For
example, a partial model may be built for abstract model kimgcof temporal logic
properties without the next operator, e.g., as describ§2dih Exploring connections
between semantic and logical consistency in this case amddimg algorithms for
deciding them are interesting questions which we leaveufuré work.

Expressiveness The work of Godefroid and Jagadeesan [15], and Gurfinkel and
Chechik [17] showed that the models in the KMTS family have shme expressive
power and are equally precise for SIS. Dams and Namjoshigi@jved that the three
families considered in this paper are subsumed by tree atgoM/e completed the pic-
ture by proving that the three families are equivalent as.v@decifically, we showed
that KMTSs, MixTSs and GKMTSs are relatively complete (ia tense of [12]) with
one another.

We did not consider Hyper TSs (HTSs) [30] which allow for bathhstand may
hyper-transitions. As pointed out in [30hayhyper-transitions can be eliminated by
increasing the abstract statespace, making HTSs exaakpasssive as GKMTSs.

Our results bring forth several interesting research tlves. Since the three mod-
eling formalisms are equally expressive, it would be irdéng to study how to re-
late the results of model checking with respect to thorowghamntics for one formal-
ism, e.g., for KMTSs [7, 16], to the ones for another fornralisAnother direction is
formalizing our translations within the abstract intetaten framework using Galois
connections [9].

Reduced Inductive Semanti€ur reduction operat®ED is an instance of normaliza-
tion from Abstract Interpretation [9]. There it is often dge provide a canonical rep-
resentation of equivalent abstract properties. The syimboplementatiommssSREDU
is similar to the semantic minimization of 3-valued propiosial formulas [28].
Regarding the ability to improve model checking results, ibduction operator is
similar to the focus and defocus operations defined in [1tEokding to the definition
of RED, a formula holds in an abstract staté (i) v(a) can be splitinto (i.e., focused)
different parts approximated by more precise states thamd the formula holds in
each of these states, or (iifa) can be covered (i.e., defocused) by a set approximated
by a state less precise thapand the formula holds in it. In particular, if the partial
model is monotone, then the reduction operator resemhdgfotus operation only.
For a partial modeling formalism, the ability to support thenotonic abstraction
refinement framework allows us to define a best model over sinaadt statespace such
that model checking on it is more precise than on other manadsthe statespace. In
the context of SIS, as shown in [29], KMTSs is inappropriatefionotonic abstraction
refinement — extranaytransitions required by the conditidt™'st C R™® introduce
a loss of precision, and therefore, a best KMTS model overlmtract statespace
may not exist. However, this is not a problem for MixTSs [10] Wwhich support
monotonic abstraction refinement by allowing must-onlpsitions. GKMTSs achieve
the same goal by usingiusthyper-transitions [29], which essentially ensure that no
extramaytransitions are added. Theorem 14 shows that our new ingusdimantics,
RIS, preserves the precision order of partials models wegpect to SIS. Therefore, the

39

best abstract model for SIS is also the best one for RIS, attid\WiaTSs and GKMTSs
still support monotonic abstraction refinement under RIS.

In this paper, we use a notion tiforough semanticwith respect to dixedmixed
simulation (i.e., soundness) relation: by Definition 6, enfalay is true in a model
M with respect to thorough semantics if and only if it is truealhconretizations of
M with respect to a fixed soundness relatjpnin contrast, in the original definition
of Bruns and Godefroid [7]y is true in M under thorough semantics if and only if
it is true in all concrete structures that mix-simuld¢¢. Thus, our definition is more
restrictive (i.e., it considers fewer concrete structyrbat is more appropriate in the
context of software model-checking where the soundneatoglis fixed a priori. We
leave further investigations of model-checking complegitd other properties of our
definition to future work.

For the original definition of thorough semantics, Godeafrand Huth investi-
gated self-minimizing temporal formulas whose inductind ghorough semantics co-
incide [14]. Through a semantic minimization process, gVer formula can be trans-
formed into an equivalent formula that is self-minimizirfmit may be exponentially
larger than the original one. Several results along this, Isased on the comparison
of SIS and thorough semantics, have been reported, e.g17127, 2]. In this paper,
we have used a reduction operator to improve precision afdtice semantics based
on the exploration of the approximation ordering over thstiglzt domain. Our ap-
proach is orthogonal to semantic minimization. For examgbasider the modeM 5
defined in Section 6.1 (its transition systédy is shown in Figure 2) and the formula
Y & EF(-p A q), wherep and ¢ denote predicateéc > 0) andodd(z), respec-
tively. ¢ is self-minimizing. However, its value i, is unknown under SIS, but is true
under RIS. We leave further investigation of the relatiotwsen RIS and semantic
minimization of temporal logic formulas for future work.

We have shown that symbolic model checking of RIS and SIS tteveame com-
plexity. An interesting question left for future study is @ther there exists an induc-
tive semantics that is more precise than RIS, and whethanibe symbolically model
checked with the same complexity as RIS.

10. Conclusion

Several types of partial transition systems (PTSs) have begeloped over the
years to support abstract model checking of complex tenhfpamaulas. Some were
claimed to be more precise; some had a more efficient degisaedure; others were
more succinct. In this paper, we have studied these PTS#jgraed into three fam-
ilies — KMTSs, MixTSs and GKMTSs. We have compared them waigpect to two
fundamental ways of using PTSs: as objects for abstractingrete systems, and as
models for checking temporal properties.

Specifically, we studied the connection between semantidagical consistency
of TSs, which is necessary to ensure meaningful abstracehobécking. We showed
that these notions are not equivalent. However, we prowadltley coincide for mono-
tone PTSs and provided an effective structural conditioitkvis necessary and suffi-
cient to guarantee consistency.

40

We have also compared the expressive power of the threeidamil PTSs w.r.t.
their ability to capture abstractions. We showed, by defiréemantics-preserving
transformations between the formalisms, that while theeestructural differences,
all three formalisms are equally expressive. Thus, nellgper-transitions nor restric-
tions onmayandmusttransitions affect expressiveness. They do, of coursectitfie
succinctness of the resulting TSs.

We then turned to looking at the power of these formalismg.wthe cost and
precision of model checking. We have introduced a new indeisemantics, RIS, for
PTSs and showed not only that it is more precise than the atdrsgmantics, SIS,
but also that model-checking under this semantics for Mx@8d GKMTSs has the
same results. We have further described a symbolic impl&atien of model checking
with respect to RIS. The outcome is an algorithm that conwbihe efficient symbolic
encoding of MixTSs with the model checking precision of GKSEL The symbolic
algorithm was evaluated empirically, and our preliminatgeriments suggest that RIS
should be a good alternative to SIS for predicate abstradtased model checkers. We
leave further experimental comparisons between the twasteos for future work.

We hope that the results of our investigation help eliminlageconfusion about the
expressive power of the different partial transition systeand enable their increasing
usage as underlying formalisms for abstract model checking

Acknowledgmentdle thank Sagar Chaki, Orna Grumberg, and Yael Meller for com-
ments on the paper; and Laurie Lugrin for her help with theseixpents.

References

[1] Antonik, A., September 2008. Decision Problems for Bh&pecifications: Em-
pirical and Worst-Case Complexity. Ph.D. thesis, ImpeCiallege, London, UK.

[2] Antonik, A., Huth, M., 2006. Efficient Patterns for Modéhecking Partial State
Spaces in CTlintersectionLTL. Electronic Notes in Theoretical Computer Sci-
ence 158, 41-57.

[3] Antonik, A., Huth, M., Larsen, K. G., Nyman, U., Wasowsk., March 2008.
Complexity of Decision Problems for Mixed and Modal Speaifions. In: Pro-
ceedings of the 11th International Conference of Foundatih Software Science
and Computational Structures (FOSSACS’08). Vol. 4962 o€\ pp. 112-126.

[4] Antonik, A., Huth, M., Larsen, K. G., Nyman, U., WasowskA., 2009.
EXPTIME-complete Decision Problems for Modal and Mixed &fieations.
Electronic Notes in Theoretical Computer Science 242 (333B.

[5] Bagnara, R., Hill, P., Zaffanella, E., 2006. Wideningedators for Powerset Do-
mains. International Journal on Software Tools for TecbgglTransfer (STTT)
8 (4-5), 449-466.

[6] Bruns, G., Godefroid, P., July 1999. Model Checking R&i$tate Spaces with
3-Valued Temporal Logics. In: Proceedings of the 11th maéional Conference
on Computer-Aided Verification (CAV’'99). Vol. 1633 of LNC$8p. 274-287.

41

[7] Bruns, G., Godefroid, P., August 2000. Generalized M&lecking: Reasoning
about Partial State Spaces. In: Proceedings of the 11tmhttenal Conference
on Concurrency Theory (CONCUR’00). Vol. 1877 of LNCS. pp81682.

[8] Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, 2003. Multi-Valued
Symbolic Model-Checking. ACM Transactions on Software iBegring and
Methodology (TOSEM) 12 (4), 1-38.

[9] Cousot, P., Cousot, R., 1992. Abstract Interpretaticanteworks. Jornal of Logic
and Computation 2 (4), 511-547.

[10] Dams, D., Gerth, R., Grumberg, O., 1997. Abstract imtetation of Re-
active Systems. ACM Transactions on Programming LanguagdsSystems
(TOPLAS) 2 (19), 253-291.

[11] Dams, D., Namjoshi, K. S., July 2004. The Existence aiitéi Abstractions for
Branching Time Model Checking. In: Proceedings of the 18#BE Symposium
on Logic in Computer Science (LICS’'04). pp. 335-344.

[12] Dams, D., Namjoshi, K. S., January 2005. Automata astrbsons. In: Pro-
ceedings of the 6th International Conference on Verificgtdodel Checking,
and Abstract Interpretation (VMCAI'05). Vol. 3385 of LNCBp. 216-232.

[13] de Alfaro, L., Godefroid, P., Jagadeesan, R., July 200vee-Valued Abstrac-
tions of Games: Uncertainty, but with Precision. In: Pratiegs of the 19th
IEEE Symposium on Logic in Computer Science (LICS’04). pp04179.

[14] Godefroid, P., Huth, M., June 2005. Model Checking G&neralized Model
Checking: Semantic Minimizations for Temporal Logics. Rroceedings of the
20th IEEE Symposium on Logic in Computer Science (LICS'@f).158-167.

[15] Godefroid, P., Jagadeesan, R., January 2003. On thesgsipeness of 3-Valued
Models. In: Proceedings of the 4th International Confeeean Verification,
Model Checking, and Abstract Interpretation (VMCAI'03)0IV2575 of LNCS.
pp. 206-222.

[16] Godefroid, P., Piterman, N., January 2009. LTL Gerieeal Model Checking
Revisited. In: Proceedings of the 10th International Camfee on Verification,
Model Checking, and Abstract Interpretation (VMCAI'090I5403 of LNCS.
pp. 89-104.

[17] Gurfinkel, A., Chechik, M., October 2005. How Thoroughlihorough Enough.
In: Proceedings of 13th IFIP WG 10.5 Advanced Research Wgrkionference
on Correct Hardware Design and Verification Methods (CHAROSE Vol. 3725
of LNCS. pp. 65-80.

[18] Gurfinkel, A., Chechik, M., March 2006. Why Waste a Petlie Good Abstrac-
tion? In: Proceedings of the 12th International Conferemtdools and Algo-
rithms for the Construction and Analysis of Systems (TAC2&: Vol. 3920 of
LNCS. pp. 212-226.

42

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

(29]

(30]

Gurfinkel, A., Wei, O., Chechik, M., January 2006. Sysatic Construction
of Abstractions for Model-Checking. In: Proceedings of #th International
Conference on Verification, Model Checking, and Abstrat¢rpretation (VM-
CAI'06). Vol. 3855 of LNCS. pp. 381-397.

Gurfinkel, A., Wei, O., Chechik, M., August 2006A¥M: A Software Model-
Checker for Verification and Refutation. In: Proceedingthef18th International
Conference on Computer-Aided Verification (CAV'06). Voll44 of LNCS. pp.
170-174.

Huth, M., Jagadeesan, R., Schmidt, D., 2004. A Domaindiign for Refinement
of Partial Systems. Mathematical Structures in Computéride 14 (4), 469—
505.

Huth, M., Jagadeesan, R., Schmidt, D. A., April 2001 ddbTransition Systems:
A Foundation for Three-Valued Program Analysis. In: Pratiegs of 10th Euro-
pean Symposium on Programming (ESOP). Vol. 2028 of LNCS1pp--169.

Kozen, D., 1983. Results on the Propositiopatalculus. Theoretical Computer
Science 27, 334-354.

Larsen, K. G., Nyman, U., Wasowski, A., September 20Dii.Modal Refine-
ment and Consistency. In: Proceedings of the 18th IntematiConference on
Concurrency Theory (CONCUR’07). Vol. 4703 of LNCS. pp. 10%8.

Larsen, K. G., Thomsen, B., July 1988. A Modal Procesgitadn: Proceedings
of the 3rd Annual Symposium on Logic in Computer Science &I88). pp.
203-210.

Larsen, P., July 1991. The Expressive Power of Imp$giecifications. In: Pro-
ceedings of the 18th International Colloquium on Autombagmguages and Pro-
gramming (ICALP’91). Vol. 510 of LNCS. pp. 204-216.

Nejati, S., Gheorghiu, M., Chechik, M., November 200B6orough Checking Re-
visited. In: Proceedings of the 6th International Confeeean Formal Methods
in Computer-Aided Design (FMCAD’06). pp. 106-116.

Reps, T. W., Loginov, A., Sagiv, S., July 2002. Semamicimization of 3-
Valued Propositional Formulae. In: Proceedings of the 1#EE Symposium on
Logic in Computer Science (LICS’02). pp. 40-54.

Shoham, S., Grumberg, O., March 2004. Monotonic Alusiva-Refinement for
CTL. In: Proceedings of the 10th International Conferenceélools and Algo-
rithms for the Construction and Analysis of Systems (TAC2@E: Vol. 2988 of
LNCS. pp. 546-560.

Shoham, S., Grumberg, O., August 2006. 3-Valued Abttra: More Precision
at Less Cost. In: Proceedings of the 21th IEEE Symposium giclio Computer
Science (LICS'06). pp. 399-410.

43

[31] Somenzi, F., 2001. CUDD: CU Decision Diagram Package&xe.

[32] Wei, O., Gurfinkel, A., Chechik, M., January 2009. Mix&dansition Systems
Revisited. In: Proceedings of the 10th International Camfee on Verification,

Model Checking, and Abstract Interpretation (VMCAI'090IV5403 of LNCS.
pp. 349-365.

44

