
On the Consistency, Expressiveness, and Precision of
Partial Modeling Formalisms✩

Ou Wei∗,a,c, Arie Gurfinkelb, Marsha Chechika

aDepartment of Computer Science, University of Toronto, Canada
bSoftware Engineering Institute, Carnegie Mellon University, USA

cNanjing University of Aeronautics and Astronautics, China

Abstract

Partial transition systems support abstract model checking of complex temporal proper-
ties by combining both over- and under-approximatingabstractions into a single model.
Over the years, three families of such modeling formalisms have emerged, represented
by (1) Kripke Modal Transition Systems (KMTSs), with restrictions on necessary and
possible behaviors; (2) Mixed Transition Systems (MixTSs), with relaxation on these
restrictions; and (3) Generalized Kripke MTSs (GKMTSs), with hyper-transitions, re-
spectively. In this paper, we investigate these formalismsbased on two fundamental
ways of using partial transition systems (PTSs) – as objectsfor abstracting concrete
systems (and thus, a PTS is semantically consistent if it abstracts at least one concrete
system) and as models for checking temporal properties (andthus, a PTS is logically
consistent if it gives consistent interpretation to all temporal logic formulas). We study
the connection between semantic and logical consistency ofPTSs, compare the three
families w.r.t. their expressive power (i.e., what can be modeled, what abstractions can
be captured using them), and discuss the analysis power of these formalisms, i.e., the
cost and precision of model checking.

Specifically, we identify a class of PTSs for which semantic and logical consistency
coincide and define a necessary and sufficient structural condition to guarantee consis-
tency. We also show that all three families of PTSs have the same expressive power (but
do differ in succinctness). However, GKMTSs are more precise (i.e, can establish more
properties) for model checking than the other two families.The direct use of GKMTSs
in practice has been hampered by the difficulty of encoding them symbolically. We
address this problem by developing a new semantics for temporal logic of PTSs that
makes the MixTS family as precise for model checking as the GKMTS family. The
outcome is a symbolic model checking algorithm that combines the efficient encoding
of MixTSs with the model checking precision of GKMTSs. Our preliminary experi-
ments indicate that the new algorithm is a good match for predicate-abstraction-based
model checkers.

✩Preliminary version of some aspects of this paper has appeared in [32].
∗Corresponding author
Email addresses:owei@cs.toronto.edu (Ou Wei),arie@cmu.edu (Arie Gurfinkel),

chechik@cs.toronto.edu (Marsha Chechik)

Preprint submitted to Elsevier September 15, 2010

Key words: Partial transition systems, modal transition systems, 3-valued analysis,
abstraction, model-checking.

1. Introduction

Abstraction is the key to scaling model checking to industrial-sized problems. Typ-
ically, a large (or infinite) concrete system is approximated by a smaller abstract system
via: (a) abstracting the concrete states, (b) analyzing theresulting abstract system, and
(c) lifting the result back to the concrete system. Two common abstraction schemes
areover-approximation– the abstract system containsmorebehaviours than the con-
crete one, andunder-approximation– the abstract system containslessbehaviours than
the concrete one. Over-approximation is sound for universal properties (e.g., absence
of errors). Under-approximation is sound for existential properties (e.g., presence of
errors).

Abstractions that are sound for arbitrary properties, suchas fullµ-calculusLµ [23],
must combine over- and under-approximation into asinglemodel [25, 10]. This leads
to transition systems (TSs) with two types of transitions,mayandmust, representing
possible(or over-approximating), andnecessary(or under-approximating) behaviours,
respectively. We call such systemspartial. A temporal property is interpreted over a
partial TS in one of four ways:trueor false, if the partial TS is precise enough to prove
or disprove the property,unknown, if the TS is imprecise, andinconsistentotherwise.

There are three families of partial modeling formalisms identified in the literature:

1. Kripke Modal Transition Systems(KMTSs) [22] and their equivalent variants,
Modal Transition Systems (MTSs)[25], Partial Kripke Structures(PKSs) [7],
and3-valued Kripke Structures[8]. KMTSs require that everymusttransition is
also amaytransition. They were introduced as computational models for partial
specifications of reactive systems [25] and then adapted formodel checking [7,
22, 8].

2. Mixed Transition Systems(MixTSs) [10], and equivalently,Belnap Transition
Systems[19]. MixTSs extend KMTSs by allowingmust onlytransitions (i.e.,
transitions that aremustbut notmay). MixTSs were introduced in [10] as abstract
models forLµ, and have been used for predicate abstraction and software model
checking in [18].

3. Generalized KMTSs(GKMTSs) [29], and equivalently,Abstract TSs[13] and
Disjunctive MTSs[26]. GKMTSs extend MixTSs by allowingmust hyper-
transitions, (i.e., transitions into sets of states).

In this paper, we study these formalisms from two points of view: a semantic one,
using partial TSs as objects for abstracting concrete systems, and a logical one, using
partial TSs for temporal logic model checking. A partial TS is semantically consistent
if it abstracts at least one concrete system. A partial TS islogically consistentif it gives
consistent interpretation to all temporal logic formulas.For semantic consistency, we
investigate partial transition systems for abstract modelchecking, where a partial tran-
sition system and its concrete refinement are related through the soundness relation of

2

abstract and concrete states. The notion of semantic consistency in this setting (for-
mally defined in Section 4) is slightly different from the notion of implementability
where partial transition systems are used as specificationsof a system’s behavior. A
discussion of this difference is given in Section 9. Specifically, in this paper we first
study the connection between semantic and logical consistency of partial TSs. We then
compare the expressive power of the formalisms, i.e., what abstractions can be cap-
tured using them. Finally, we discuss the analysis power of these formalisms, i.e., the
cost and precision of model checking.

Consistency. Semantic consistency implies logical consistency but theconverse is not
true in general: Temporal logic is not expressive enough to detect all forms of incon-
sistency.

In this paper, we answer several questions about consistency: Is there a subclass
of partial TSs for which semantic and logical consistency coincide? Do TSs outside
of this subclass have additional expressive power? Is therea necessary and sufficient
condition for ensuring consistency?

We show that there is a class of partial TSs for which semanticand logical consis-
tency coincide. We call this classmonotonebecause of the monotonicity condition we
impose on the transition relation. The class of monotone TSsis as expressive as the
class of all partial TSs. Thus, for every partial TS, there isan equivalent monotone one.

At a first glance, it may appear that a structural requirement“everymusttransition
is also amay transition” is sufficient and necessary to guarantee both semantic and
logical consistency. However, this is not the case. We show that for logical consis-
tency, this requirement is sufficient but not necessary: weaker condition exists. For
semantic consistency, the requirement is neither necessary nor sufficient. Instead, for
monotone TSs, where semantic and logical consistency coincide, we define an alterna-
tive structural condition and show that it is both necessaryand sufficient to guarantee
consistency.

Expressive Power. We show that all three families of partial TSs, KMTSs, MixTSs, and
GKMTSs, are equally expressive: for any partial TSM expressed in one formalism,
there exists a partial TSM ′ in the other such thatM andM ′ approximate the same
set of concrete systems. That is, neither hyper-transitions nor restrictions onmayand
musttransitions affect expressiveness. They do, however, affect the size of the models:
GKMTSs and KMTSs can be converted to semantically equivalent MixTSs of (possibly
exponentially) smaller or equal size. Dams and Namjoshi have shown that the three
families of partial TSs are less expressive than tree automata [12]. We complete the
picture by showing the expressive equivalencebetweenthese families.

Model Checking. We call a semantics of temporal logicinductiveif it is defined in-
ductively on the syntax of the logic. We refer to the typical inductive semantics of
Lµ on partial TSs as theStandard Inductive Semantics(SIS). This is the semantics
most widely used in other works on this subject as well as in practice. A GKMTSG
can prove/disprove more properties under SIS than either a MixTS or KMTS obtained
fromG by semantics-preserving translation. However, while bothMixTSs and KMTSs
have been used in practical symbolic model checkers (e.g., [18, 20, 8]), the direct use
of GKMTSs has been hampered by the difficulty of encoding hyper-transitions into
BDDs. To address this problem, we develop a new semantics, called reduced(RIS),

3

that is inductive (and tractable) but is more precise than SIS. We show that GKMTSs
and MixTSs are equivalent with respect to RIS, and give an efficient symbolic model
checking procedure for RIS. The outcome is an algorithm thatcombines the benefits
of the efficient symbolic encoding of MixTSs with the model checking precision of
GKMTSs.

To show the practicality of the above result, we develop a symbolic model checking
algorithm with respect to RIS and apply it to MixTSs constructed using predicate ab-
straction. We evaluate our implementation empirically against a SIS-based algorithm.

The rest of the paper is organized as follows. Section 2 reviews the necessary
background on partial TSs and abstraction. We define the notion of monotonepartial
TSs in Section 3. In Section 4, we investigate semantic and logical consistency of
partial TSs. In Section 5, we prove that KMTSs, MixTSs and GKMTSs are equally
expressive by developing semantics-preserving translations from GKMTSs to MixTSs,
and from MixTSs to KMTSs. In Section 6, we introduceReduced Inductive Semantics
(RIS) for Lµ. In Section 7, we present a symbolic model checking algorithm with
respect to RIS in the context of predicate abstraction. We report on our experience with
this algorithm in Section 8. We discuss related work and research directions following
our results in Section 9 and conclude the paper in Section 10.

2. Preliminaries

In this section, we review several modeling formalisms, andtheir use for abstrac-
tion.

2.1. Transition Systems

Definition 1 (Transition Systems). [10, 6, 22, 29] A Generalized Kripke Modal
Transition System(GKMTS) is a tupleM = 〈S,Rmay, Rmust〉, where S is the
statespace, andRmay ⊆ S × S, Rmust ⊆ S × 2S are themay and must transition
relations, respectively. AMixed TS(MixTS) is a GKMTS such thatRmust⊆ S × S. A
Kripke Modal TS(KMTS) is a MixTS such thatRmust ⊆ Rmay. A Boolean TS(BTS)
is a KMTS such thatRmay = Rmust.

For example, a MixTSM1 is shown in Figure 1, a GKMTSG2 is shown in Figure 2,
and a KMTSK1 is shown in Figure 3. In these figures,mustandmaytransitions are
indicated by solid and dashed edges, respectively. In this article, the statespace of a
transition system corresponds to an abstract domain. In this case, a state is labeled by
its abstract element. For example, statea4 ofM1 in Figure 1 corresponds to an abstract
elementx ≤ 0. A transition system(TS) is any of GKMTS, MixTS, KMTS, and BTS.
A partial transition system(PTS) is any of GKMTS, MixTS, and KMTS.

We writes
may
−−→ t for (s, t) ∈ Rmay, s

must
−−→ t, ands

must
−−→ Q for (s, t) ∈ Rmust and

(s,Q) ∈ Rmust, respectively. Intuitively,mayandmusttransitions represent possible
and necessary behaviours, respectively. BTS differs from all other transitions systems
in that in it all mayandmusttransitions coincide. We say that BTS is a complete (or,
a concrete) transition system. For simplicity, we only showa single transition relation
when specifying a BTS.

4

Let AP be a set of atomic propositions. A literall overAP is either an atomic
propositionp or its negation¬p. Let Lit(AP) be a set of literals ofAP , andS be a
statespace. Astate labelingis a functionL : S → 2Lit(AP) that assigns to each states
a set of literals that are true ins. A pair 〈M,L〉 of a TSM and a labelingL is called a
model.

In this paper, we make a distinction between a “transition system” and a “model”.
Although the two are often used interchangeably in model-checking literature, for-
mally, there is a difference. Atransition systemis built out of states and transitions.
A modelextends a transition system with an interpretation of atomic propositions. In
our work, we find it convenient to talk about properties of a transition system, and then
show that they hold in all corresponding models.

We use the following naming convention. Roman capital letters denote transition
systems:M for a MixTS,K for a KMTS,G for a GKMTS, andB for a BTS. Sub-
scripts indicate a particular transition system. For example,M1 is a MixTS (see Fig-
ure 1), whereasG2 is a GKMTS (see Figure 2). Script capital letters denote models:
M for a MixTS model,K for a KMTS model,G for a GKMTS model, andB for a
BTS model. Subscripts indicate a model corresponding to a particular transition sys-
tem. For example,M1 is a model whose underlying transition system is the MixTS
M1 (see Figure 1). The letterL is used exclusively to indicate a labeling function of a
model.

The modalµ-calculus [23] (Lµ) is the set of all formulas satisfying the following
BNF grammar:

ϕ ::= p | Z | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | µZ · ϕ ,

wherep is an atomic proposition, andZ a fixpoint variable. Furthermore,Z in ϕ of the
form µZ · ϕ must occur under the scope of an even number of negations. Additional
operators are defined as abbreviations:

ϕ ∨ ψ , ¬(¬ϕ ∧ ¬ψ)

�ϕ , ¬♦¬ϕ

νZ · ϕ(Z) , ¬µZ · ¬ϕ(¬Z) .

Let M = 〈M,L〉 be a model, whereM = 〈S,Rmay, Rmust〉, andϕ be anLµ

formula. An interpretation(or semantics) of ϕ overM, denoted by‖ϕ‖M, is a pair
〈U,O〉, whereU ⊆ S is a set of states that satisfyϕ, andO ⊆ S is the set of states
that do not refuteϕ. Intuitively, U andO represent anunder-approximation and an
over-approxiamtion of the set of all the states that satisfyϕ, respectively. For a state
s ∈ S, we say thatϕ is true at s iff s ∈ U ∩ O, ϕ is falseat s iff s ∈ S \ (U ∪ O), ϕ
is unknownat s iff s ∈ O \ U , andϕ is inconsistentat s iff s ∈ U \ O. Alternatively
(e.g., [29]), the semantics ofϕ overM can be defined by a pair of states〈U,D〉, where
U is the set of all states that satisfyϕ (same as above), andD is the set of all states
that refuteϕ. In this paper, we use the first approach to remain compatiblewith the
partitioning of the transition relation intomustandmaytransitions.

For a universeS, let e be a pair〈U,O〉 with U,O ⊆ S. We writeU(e) andO(e) to
denoteU andO, respectively, andQ for the complement ofQ in S, i.e.,Q = S \ Q.

5

We write∼ and⊓ for the operators defined below:

∼〈U,O〉 , 〈O,U〉

〈U1, O1〉 ⊓ 〈U2, O2〉 , 〈U1 ∩ U2, O1 ∩O2〉 .

A semantics ofLµ is inductiveif it is defined inductively on the syntax of the logic.
We refer to the commonly used (e.g., [10, 6, 22, 29, 19]) inductive semantics as the
Standard Inductive Semantics(SIS). It is defined as follows

Definition 2 (Standard Inductive Semantics (SIS)). [10, 6, 22, 29, 19]. LetM =
〈M,L〉 be a model,M = 〈S,Rmay, Rmust〉, Var a set of fixpoint variables, andσ :
Var → 2S × 2S . Thestandard inductive semantics (SIS)of ϕ ∈ Lµ is:

||p||Mi,σ , 〈{s | p ∈ L(s)}, {s | ¬p /∈ L(s)}〉

||¬ϕ||Mi,σ , ∼||ϕ||Mi,σ
||ϕ ∧ ψ||Mi,σ , ||ϕ||Mi,σ ⊓ ||ψ||Mi,σ

||♦ϕ||Mi,σ , 〈preU(U(||ϕ||Mi,σ)), preO(O(||ϕ||Mi,σ))〉

||Z||Mi,σ , σ(Z)

||µZ · ϕ||Mi,σ , 〈lfp⊆
(

λQ · U(||ϕ||Mi,σ[Z 7→Q])
)

, lfp⊆
(

λQ · O(||ϕ||Mi,σ[Z 7→Q])
)

〉

whereZ ∈ Var, lfp is the least fixpoint, and thepre-imageoperatorspreU andpreO
are defined as follows:

preU(Q) ,

{

{s | ∃t ∈ Q · s
must
−−→ t} if M is a MixTS

{s | ∃U ⊆ Q · s
must
−−→ U} if M is a GKMTS

preO(Q) , {s | ∃t ∈ Q · s
may
−−→ t}

2.2. Partial Models and Abstraction

Abstraction Relation.. In this paper, we maintain an explicit connection between con-
crete and abstract statespaces. We define these formally below:

Definition 3. An abstraction relationis a structure〈C, ρ, S〉, whereC andS are arbi-
trary sets andρ ⊆ C × S is a binary relation satisfying the “existence of best approxi-
mation” condition [9]:

∀c ∈ C · ∃s ∈ S · (ρ(c, s) ∧ ∀s′ ∈ S · ρ(c, s′) ⇒ γ(s′) ⊇ γ(s)) .

For an abstraction relation〈C, ρ, S〉, we say thatC is the concretestatespace (or
domain),S is the abstractstatespace (or domain), andρ is the soundnessrelation,
where(c, s) ∈ ρ means thats ρ-approximatesc. ρ induces aconcretizationfunction
γ(s) , {c | (c, s) ∈ ρ}. That is,γ(s) is the set of all concrete states approximated bys.
We extendγ to a setQ ⊆ S by lettingγ(Q) , ∪s∈Qγ(s). γ induces an approximation
ordering�a onS defined as followss �a t⇔ γ(s) ⊇ γ(t). That is,s �a t if s is less
precise(more approximate) thant. Following [9], we require that�a is a partial order.

6

Finally, anabstractionfunctionα : C → S is defined to map each concrete element to
its best approximation. The image ofα is denoted byα[C] , {α(c) | c ∈ C}.

Note that it is common to assume thatα andγ form a Galois connection between
S and powerset ofC. We prefer a more general setting, as described in [9], and do
not make this assumption. Contrary to most of the work on Abstract Interpretation, we
write a �a b to mean thata is less precise thanb, i.e.,�a is the “precision ordering”.
In other works on Abstract Interpretation, it is common to write a � b to mean thata
is less abstract thanb, i.e.,� is the “abstraction ordering”, which is the reverse of the
precison ordering. We are aware of the confusion this causes, but follow the convention
typical of the work on partial transition systems.

In the rest of the paper, we require that labeling of a concrete statespace iscomplete:
for any concrete statec ∈ C and any concrete labelingL, p ∈ L(c) ⇔ ¬p /∈ L(c).

An abstract states is consistentiff γ(s) 6= ∅. We require that any state labeling
functionL over an abstract statespace islocally consistent, i.e., for any consistent ab-
stract states and propositionp, at most one ofp and¬p belongs toL(s). Furthermore,
we requireL to bemonotonewith respect to�a: s1 �a s2 ⇒ L(s1) ⊆ L(s2). We
say thatp is true ins if p ∈ L(s), and false if¬p ∈ L(s); otherwise, we say thatp is
unknown ins.

Abstract Domain of Predicate Abstraction. Let C be a concrete statespace,n be a
natural number, andP = {p1, . . . , pn} be a set of quantifier-free first-order boolean
predicates overC. A monomialis a conjunction of literals ofP ; a mintermis a mono-
mial in which each variablepi appears exactly once (either positively or negatively).
We write Mon(P) and MT(P) for the set of all monomials and minterms ofP , respec-
tively. The set Mon(P) is the domain of predicate abstraction. The abstraction relation
〈C, ρP ,Mon(P)〉 is defined such that(c, s) ∈ ρP iff c |= s, i.e.,c satisfies all literals
in s; the abstractionαP (c) , (

∧

c|=pi
pi) ∧ (

∧

c 6|=pi
¬pi); αP [C] = MT(P); and the

approximation ordering is reverse implication,s �a t iff s⇐ t.

Simulation and Approximation. An approximation relation is extended from a states-
pace to transition systems using the concept ofmixed simulation.

Definition 4 (Mixed Simulation). [10] LetM = 〈S,Rmay, Rmust〉 and M ′ =
〈S′, Rmay′, Rmust′〉 be two MixTSs.H ⊆ S×S′ is amixed simulationbetweenM and
M ′ iff for any (s, s′) ∈ H , the following two conditions hold:

(a) ∀t ∈ S · s
may
−−→ t ⇒ ∃t′ ∈ S′ · s′

may
−−→ t′ ∧ (t, t′) ∈ H

(b) ∀t′ ∈ S′ · s′
must
−−→ t′ ⇒ ∃t ∈ S · s

must
−−→ t ∧ (t, t′) ∈ H

We say thatM ′ H-simulatesM , writtenM ′ �H M .

Intuitively,M ′ simulatesM wheneverM ′ is less precise about its behaviour thanM .
This definition generalizes to GKMTSs (cf. [29]).

Let 〈C, ρ, S〉 be an abstraction relation. A partial TSM with statespaceS approx-
imatesa concrete BTSB with statespaceC iff the soundness relationρ is a mixed
simulation betweenM andB, i.e.,M �ρ B. Equivalently, we say thatB refinesM .
For a fixed TSM , the set of all BTSs that refine it is denoted byC[M].

Let LM andLB be the state labeling functions forS andC, respectively. We say
thatLM approximatesLB, denotedLM �ρ LB, iff ρ(c, s) ⇒ LM (s) ⊆ LB(c).

7

Definition 5 (Approximation Relation). [10] Let 〈C, ρ, S〉 be an abstraction relation,
M = 〈M,LM 〉 be a partial model overS, andB = 〈B,LB〉 be a concrete model over
C. M approximatesB iff M �ρ B, andLM �ρ LB. Equivalently, we say thatB
refinesM.

Since this paper investigates partial models from the perspective of abstract model
checking, we define concrete refinements of a partial model with respect to a fixed
mixed simulation relation, i.e., the abstraction relation. It is possible to consider con-
crete refinements of a partial model with respect to all the possible mixed simulations.
We discuss this difference in Section 9.

Theorem 1. [10] Let 〈C, ρ, S〉 be an abstraction relation,B = 〈B,LB〉 be a concrete
model, whereB = 〈C,R〉, andM = 〈M,LM 〉 be a partial model, whereM =
〈S,Rmay, Rmust〉. If M �ρ B, then, for anyLµ formulaϕ:

γ(U(‖ϕ‖Mi)) ⊆ U(‖ϕ‖Bi) , and γ(O(‖ϕ‖Mi)) ⊆ O(‖ϕ‖Bi) .

That is, ifM approximatesB andϕ is true/false in a states of M, then it is, respec-
tively, true/false in all states ofB approximated bys.

Let C[M] be the set of all concrete refinements ofM. Intuitively, C[M] is the
semantic meaning ofM. An interpretation ofLµ with respect to the semantic meaning
of a model is calledthorough. Note that since we consider concretizations ofM with
respect to a fixed abstraction relation, the thorough semantics defined here is different
from the original definition in [7], which is based onall possible concretizations of the
given partial model.

Definition 6 (Thorough Semantics).Let 〈C, ρ, S〉 be an abstraction relation, andM
be a partial model over an abstract statespaceS. The thoroughsemantics of anLµ

formulaϕ overM is defined as‖ϕ‖Mt = 〈U,O〉, where

U = {a ∈ S | ∀B ∈ C[M] · γ(a) ⊆ U(‖ϕ‖Bi)}

O = {a ∈ S | ∃B ∈ C[M] · (γ(a) ∩ O(‖ϕ‖Bi)) 6= ∅}

In order to compare different interpretations ofLµ, we introduce two ordering re-
lations on the space2S × 2S .

Definition 7 (Information and Semantics Orderings). Let 〈C, ρ, S〉 be an abstrac-
tion relation, and lete1 = 〈U1, O1〉 ande2 = 〈U2, O2〉 be two elements in2S × 2S . e1
is less informativethane2, writtene1 �i e2, iff

U1 ⊆ U2 and O2 ⊆ O1 .

e1 is semantically less precisethane2, writtene1 �a e2, iff

γ(U1) ⊆ γ(U2) and γ(O1) ⊆ γ(O2) .

We saye1 ande2 are semantically equivalent, denotede1 ≡a e2, iff e1 �a e2 and
e2 �a e1. Note that we use the same notation�a to denote the precision orderings,

8

defined with respect to concretization, for both the elements in S and the ones in
2S × 2S.

Finally, we definesemantic equivalencefor partial models and TSs, andexpressive
equivalencefor partial modeling formalisms as follows:

Definition 8 (Semantic Equivalence).Two partial modelsM andM′ aresemanti-
cally equivalent, if and only if they have the same set of concrete refinements,i.e.,
C[M] = C[M′]. Similarly, two partial transition systems,M andM ′, aresemanti-
cally equivalent, if and only if C[M] = C[M ′].

Definition 9 (Expressive Equivalence).Two partial modeling formalisms areexpres-
sively equivalentif and only if for every transition systemM from one formalism,
there exists a transition systemM ′ from the other, such thatM andM ′ are semanti-
cally equivalent.

3. Monotone Partial Transition Systems

In this section, we definemonotonepartial TSs. We show that monotone partial
TSs are expressively equivalent (in the sense of Definition 9) to their regular counter-
parts: for any partial TS there exists an equivalent monotone one, i.e., they approximate
the same set of concrete systems. The monotonicity condition simply ensures that all
information that can be derived from existingmayandmust transitions is made ex-
plicit in the TS. As we show in later sections, this conditionallows us to perform local
reasoning of partial TSs more effectively.

For simplicity, we present the results with respect to MixTSs. They can be easily
adapted to GKMTSs as well. Throughout the section, we assumethatγ, α, and�a are
interpreted with respect to a fixed an abstraction relation〈C, ρ, S〉.

Definition 10. A MixTS M = 〈S,Rmay, Rmust〉 is monotoneiff

(a) ∀s, t1, t2 ∈ S · t2 �a t1 ⇒ ((s, t2) ∈ Rmay ⇒ (s, t1) ∈ Rmay)∧

((s, t1) ∈ Rmust⇒ (s, t2) ∈ Rmust)

(b) ∀s1, s2, t ∈ S · s1 �a s2 ⇒ ((s2, t) ∈ Rmay ⇒ (s1, t) ∈ Rmay)∧

((s1, t) ∈ Rmust⇒ (s2, t) ∈ Rmust)

A modelM = 〈M,L〉 is monotoneiff its MixTS componentM is monotone.
Intuitively, a transition system is monotone if the information captured by its tran-

sition relation is monotone with respect to the approximation ordering�a of its states.
For example, letM be a transition system,s1 ands2 be two states ofM such that
s1 �a s2. (1) Suppose there is amay transition froms2 to some other statet. The
meaning of this transition is that any system that refinesM can have a transition from
a state inγ(s2) to a state inγ(t). Recall that we assumed thats1 �a s2; hence,
γ(s1) ⊇ γ(s2). Thus, the same behavior is allowed from the states inγ(s1). ForM to
be monotone with this information, it must have amaytransition froms1 to t. (2) Sim-
ilarly, suppose there is amusttransition froms1 to some other statet. Then, every state

9

M1

a1

a2

a3

a4x > 0

x > 0
odd(x)

x ≤ 0

x ≤ 0
odd(x)

M2

a1

a2

a3

a4x > 0

x > 0
odd(x)

x ≤ 0

x ≤ 0
odd(x)

M3

a1

a2

a3

a4x > 0

x > 0
odd(x)

x ≤ 0

x ≤ 0
odd(x)

M4

a1

a2

a3x > 0 x ≤ 0

x ≤ 0
odd(x)

Figure 1: Four MixTSs:M1, M2, M3, andM4, whereM1 andM4 are monotone. Solid and dashed lines
representmustandmaytransitions, respectively.

in γ(s1) must have a transition to some state inγ(t). Sinceγ(s1) ⊇ γ(s2), the same is
true for the states inγ(s2). Therefore, forM to be monotone with this information, it
should have amusttransition froms2 to t.

For example, the MixTSM3 shown in Figure 1 is monotone; the MixTSM1 in the
same figure is not monotone. For statesa1 anda2: a2 �a a1 anda2

must
−−→ a3, but there

is nomusttransition froma1 to a3; and for statesa3 anda4: a4 �a a3 anda2
may
−−→ a4,

but there is nomaytransition froma2 to a3.
In the rest of this section, we show that every partial TS (or model) can be trans-

lated into a semantically equivalent (in the sense of Definition 8) monotone one. We
first define such translation for MixTSs. The translation consists of two steps: DSTT
(destination translation) and SRCT (source translation) that produce a monotone tran-
sition system preserving the behaviors of the original one.

Definition 11 (Translation DSTT). LetM = 〈S,Rmay
M , Rmust

M 〉 be a MixTS. The result
of translation DSTT(M) is a MixTSN = 〈S,Rmay

N , Rmust
N 〉, such that

Rmay
N , {(a, b) ∈ S × S | ∃b′ ∈ S · b′ �a b ∧ (a, b′) ∈ Rmay

M }

Rmust
N , {(a, b) ∈ S × S | ∃b′ ∈ S · b �a b

′ ∧ (a, b′) ∈ Rmust
M }

10

The translation DSTT checks the transition from each state in its input TS and adds
missing transitions derived from the approximation ordering �a over abstract states,
ensuring that the result satisfies condition (a) of Definition 10. A may transition is
added between statesa andb if the source TS has amaytransition betweena and some
stateb′ that is less precise thanb. Similarly, amusttransition between statesa andb is
added if the source TS has amusttransition betweena and some stateb′ that is more
precise thanb. For example, DSTT(M1) results in the MixTSM2: two new transitions

are added,a2
may
−−→ a3 anda2

must
−−→ a4.

Lemma 1. LetM be a MixTS, andN = DSTT(M). Then,N is a MixTS that satisfies
condition (a) of Definition 10.

Definition 12 (Translation SRCT). Let M = 〈S,Rmay
M , Rmust

M 〉 be a MixTS. The re-
sult of the translation SRCT(G) is a MixTSN = 〈S,Rmay

N , Rmust
N 〉, such that

R
may
N , {(a, b) ∈ S × S | ∀a′ ∈ S · a′ �a a⇒ (a′, b) ∈ R

may
M }

Rmust
N , {(a, b) ∈ S × S | ∃a′ ∈ S · a′ �a a ∧ (a′, b) ∈ Rmust

M }

The translation SRCT ensures that its output,N , satisfies condition (b) of Definition 10.
It guarantees that the transitions from more precise statesare more defined: for each
statea, it has amusttransition to a stateb in N if a less precise statea′ already has
a musttransition tob in M ; it has amaytransition tob in N only when all the states
that are less precise than it already havemaytransitions tob in M . For example,M3

in Figure 1 is the result of SRCT(M2): becausea2 is less precise thana1 and there are

musttransitionsa2
must
−−→ a3 anda2

must
−−→ a4 in M2, two musttransitionsa1

must
−−→ a3

anda1
must
−−→ a4 are added toM3; on the other hand, themaytransitiona1

may
−−→ a2 is

removed fromM3 becausea2 has nomaytransition toa2 in M2.

Lemma 2. LetM be a MixTS, andN = SRCT(M). Then,N is a MixTS that satisfies
condition (b) of Definition 10.

We define the monotone translation MONOT be the composition of the translations
for source and destination states: MONOT , SRCT ◦ DSTT. The following theorem
shows that MONOT translates a MixTS into an equivalent monotone one.

Theorem 2. Let M be a MixTS, andN = MONOT(M). Then,N is a monotone
MisTS semantically equivalent toM .

PROOF. (1) LetN1 = DSTT(M) andN2 = SRCT(N1). According to Lemmas 1
and 2,N1 andN2 satisfy conditions (a) and (b) of Definition 10, respectively. To show
that MONOT(M) is monotone, we only need to show thatN2 also satisfies condition
(a). Proof of this follows from the definition of SRCT.

(2) To prove thatM andN2 are semantically equivalent, we show that any concrete
BTSB = 〈C,R〉 refinesM iff it refinesN . It is equivalent to showing that (i) the
soundness relationρ ⊆ C × S is a mixed simulation betweenB andM iff it is a
mixed simulation betweenB andN1; and (ii) ρ is a mixed simulation betweenB and
N1 iff it is a mixed simulation betweenB andN2. This follows from the definitions

11

of DSTT and SRCT. �

The translation MONOT can also be used to convert a partial model into its mono-
tone equivalent.

Corollary 1. LetM = 〈M,LM 〉 be a MixTS model,N = MONOT(M), andLN =
LM . Then the modelN = 〈N,LN 〉 is monotone and semantically equivalent toM.

In this section, we have shown that monotone partial TSs are as expressive as their
“regular” counterparts. The monotone conditions make hidden transitions explicit, al-
lowing us to do better local reasoning about partial TSs. This is illustrated in the
following sections.

4. Consistency

There are two alternatives for defining consistency of a partial TS: either based on
satisfaction of temporal logic formulas (logical consistency), or based on possible con-
crete refinements (semantic consistency). While semantic consistency implies logical
consistency, the converse is not true. There exists a logically consistent TS that has
no concrete refinements. In this section, we investigate these two notions, show when
they coincide, and provide a new structural condition whichis necessary and sufficient
to ensure that a TS is consistent.

4.1. Logical and Semantic Consistency for Consistent Statespaces

Throughout this section, we assume a fixed abstraction relation 〈C, ρ, S〉. Further-
more, in this subsection, we assume that every statea ∈ S is consistent, i.e.,γ(a) 6= ∅.
We extend our definitions to deal with inconsistent states inSection 4.2.

A modelM is logically consistent over a consistent abstract statespace if and only
if it gives a consistent interpretation, i.e., eithertrue, false, or unknown, to every tem-
poral formula.

Definition 13. A modelM is logically consistentover a consistent abstract statespace
iff for everyϕ ∈ Lµ, U(‖ϕ‖i) ⊆ O(‖ϕ‖i).

Logical consistency naturally extends from models to transition systems: a transi-
tion systemM is logically consistent iff for any labeling functionL the model〈M,L〉
is logically consistent.

A transition systemM is semantically consistent iff there exists at least one BTS
that refines it:

Definition 14. A transition systemM is semantically consistentiff C[M] 6= ∅.

Semantic consistency extends naturally from transition systems to models. A model
M = 〈M,L〉 is semantically consistent iff the transition systemM is semantically
consistent. Because we require that the labeling functionL be monotone with respect
to�a, this is equivalent to requiring that the modelM has a consistent refinement.

Semantic consistency implies logical consistency:

12

Theorem 3. Every semantically consistent transition system is also logically consis-
tent.

PROOF. LetM be a consistent transition system. We show thatM is logically consis-
tent by contradiction.

AssumeM is not logically consistent. Then, there exists a labeling functionL and a
temporal formulaϕ such thatϕ is inconsistent in some state of the modelM = 〈M,L〉.
Formally, there exists a statea ofM such thata is in U(‖ϕ‖Mi) \ O(‖ϕ‖Mi).

Let B be a concrete (BTS) model refiningM. SinceM is semantically consis-
tent, suchB is guaranteed to exist. By Theorem 1,γ(U(‖ϕ‖Mi)) ⊆ U(‖ϕ‖Bi), and
γ(O(‖ϕ‖Mi)) ⊆ O(‖ϕ‖Bi). Then, there exists a concrete statec ∈ γ(a) such that

c ∈ U(‖ϕ‖Bi) andc ∈ O(‖ϕ‖Bi).
Since B is concrete,U(‖ϕ‖Bi) = O(‖ϕ‖Bi). Hence, c ∈ U(‖ϕ‖Bi) and

c ∈ C \ U(‖ϕ‖Bi) — a contradiction. Thus,M is logically consistent. �

Interestingly, the converse of Theorem 3 is not true in general. We illustrate this
on an example. Consider the MixTSM2 in Figure 1. InM2, everymusttransition
is matched by amay transition, i.e.,Rmust ⊆ Rmay. By [22, 13],Rmust ⊆ Rmay is
a sufficient condition for logical consistency. Therefore,M2 is logically consistent.
However,M2 is not semantically consistent as we show using a proof by contradiction.
Assume there is a BTSB that refinesM2. Let c1 : 〈x = 1〉 be a state ofB; c1 is
approximated by botha1 anda2. BecauseB refinesM2, andM2 has amusttransition
a2

must
−−→ a3, B has a transition fromc1 to a state approximated bya3, say,c2 : 〈x =

−1〉. SinceM2 approximatesB, by the definition of mixed simulation (Definition 4),
a1 must have amay transition to a state that approximatesc2, i.e., eithera3 or a4.
There is no suchmaytransition inM2, contradicting the assumption. Thus,M2 is not
semantically consistent.

Below, we show that monotone MixTSs is a class of systems for which logical and
semantic consistency coincide. Intuitively, the reason isthat the approximation order-
ing, �a, of the statespace of monotone MixTSs is “pushed” down to itstransitions.
This gives rise to the following theorem:

Theorem 4. Let M be a monotone MixTS(S,Rmust, Rmay), and assume that every
state inS is consistent. Then, the following are equivalent:

(a) M is semantically consistent (Definition 14),

(b) M is logically consistent (Definition 13),

(c) ∀a, b1 ∈ S · a
must
−−→ b1 ⇒ ∃b2 ∈ S · b1 �a b2 ∧ a

may
−−→ b2.

PROOF. We show that(a) ⇒ (b), (b) ⇒ (c), and(c) ⇒ (a).

Part 1.(a) ⇒ (b) The proof follows from Theorem 3.

Part 2.(b) ⇒ (c) Let a andb1 be two states inS such thata
must
−−→ b1 is a transition

in Rmust. We show that (i) there exists a labeling functionL, and (ii) there exists a

13

formulaϕ, such thatϕ is consistent in the statea of the modelM = 〈M,L〉 only if M

has a transitiona
may
−−→ b2 for some stateb2 that is more precise thanb1.

(i) To defineL, we partition the statespaceS into setsS1, S2, andS3:

S1 , {s ∈ S | b1 �a s}

S2 , {s ∈ S | ∃t ∈ S1 · s �a t} \ S1

S3 , S \ (S1 ∪ S2)

S1 is the set of all states that are more precise thanb1. S2 is the set of all states that
are not inS1, but are less precise than some state inS1. S3 contains all states that are
neither inS1 norS2.

LetAP = {p}. L is defined as follows:

L(s) ,











{p} if s ∈ S1

{} if s ∈ S2

{¬p} if s ∈ S3.

L is consistent. We need to show thatL is monotone, i.e., ifs �a t thenL(s) ⊆
L(t). Let s andt be two states such thats �a t. Then, eithers andt belong to the
same partition ors ∈ S2 andt ∈ S1∪S3. In both cases, monotonicity follows trivially.

(ii) We defineϕ as the formula♦p. Note that because of the must transitiona
must
−−→

b1, a is in U(‖♦p‖Mi). And, becauseM is logically consistent,a ∈ O(‖♦p‖Mi) as
well. We use this fact to show existence ofb2, needed for condition (c) of the theorem.

a
must
−−→ b1

⇒ (by the definition ofL, ‖p‖Mi = 〈S1, S1 ∪ S2〉)

a
must
−−→ b1 ∧ b1 ∈ U(‖p‖Mi)

⇒ (by SIS of♦p)
a ∈ U(‖♦p‖Mi)

⇒ (sinceM is logically consistent,♦p is consistent ata)
a ∈ O(‖♦p‖Mi)

⇒ (by SIS of♦p)

∃b2 ∈ S1 ∪ S2 · a
may
−−→ b2

⇒ (logic)

(∃b2 ∈ S1 · a
may
−−→ b2) ∨ (∃b2 ∈ S2 · a

may
−−→ b2)

In the first case,b2 ∈ S1. By definition ofS1, b1 �a b2. This fulfills condition (c)
of the theorem.

In the second case,b2 ∈ S2.

∃b2 ∈ S2 · a
may
−−→ b2

⇒ (by the definition ofS2)

∃b2 ∈ S2 · a
may
−−→ b2 ∧ ∃b′ ∈ S1 · b2 �a b

′

⇒ (by assumption,M is monotone)

∃b′ ∈ S1 · a
may
−−→ b′

14

Hence,b′ fulfills the condition (c) of the theorem.
Thus, ifM is logically consistent, then

∀a, b1 ∈ S · a
must
−−→ b1 ⇒ ∃b2 ∈ S · b1 �a b2 ∧ a

may
−−→ b2 .

Part 3. (c) ⇒ (a) The proof proceeds by constructing a concrete BTSB that
refinesM . Let 〈C, ρ, S〉 be the abstraction relation andα : C → S the corresponding
abstraction function. LetB be a BTS〈C,R〉, where

R , {(c, d) ∈ C × C | ∃b ∈ S · (α(c), b) ∈ Rmay∧ (d, b) ∈ ρ}

We show thatρ is a mixed simulation relation betweenM andB, i.e.,M �ρ B. Let
c ∈ C, anda ∈ S be two states such that(c, a) ∈ ρ. Recall that this implies that
a �a α(c).

First, we show thatρ satisfies condition (a) of Definition 4. Letb be a state inM
such that there is a must transitiona

must
−−→ b. Then,

(a, b) ∈ Rmust

⇒ (by assumption,M is monotone anda �a α(c))
(α(c), b) ∈ Rmust

⇒ (by assumption of condition (c) of the theorem)
∃b′ ∈ S · b �a b

′ ∧ (α(c), b′) ∈ Rmay

⇒ (by the definition ofB)
∃b′ ∈ S · ∃d ∈ C · b �a b

′ ∧ (c, d) ∈ R ∧ (d, b′) ∈ ρ
⇒ (by monotonicity ofρ)

∃d ∈ C · (c, d) ∈ R ∧ (d, b) ∈ ρ

Second, we show thatρ satisfies condition (b) of Definition 4. Letd be a state inB
such that there is a transitionc→ d. Then,

(c, d) ∈ R
⇒ (by the definition ofB)

∃b ∈ S · (α(c), b) ∈ Rmay∧ (d, b) ∈ ρ
⇒ (by assumption,M is monotone, anda �a α(c))

∃b ∈ S · (a, b) ∈ Rmay∧ (d, b) ∈ ρ

Thus, we have constructed a BTSB and producedρ which is a mixed mixed
simulation betweenM andB. Hence,M is semantically consistent. �

In the rest of this section, we highlight some of the consequences of Theorem 4.
First, note that Theorem 4 does not extend to monotone partial models! For example,
consider a monotone MixTSM3 in Figure 1. By Theorem 4,M3 is inconsistent: there

is amusttransitiona1
must
−−→ a3, but nomaytransitiona1

may
−−→ a to a statea such that

a3 �a a. Let p be an atomic proposition: “x is a prime number”. LetL3 be a labeling
function: for any states of M3, L3(s) = ∅. That is,p is unknown at all the states in
M3. The modelM3 = 〈M3, L3〉 is semantically inconsistent. But,M3 is logically

15

consistent – there does not exists a formulaϕ such thatU(‖ϕ‖M3

i) \ O(‖ϕ‖M3

i) 6= ∅.
Intuitively, the labeling functionL3 is too coarse to detect the inconsistency logically.

Second, part (c) of Theorem 4 gives a necessary and sufficientstructural condition
for a monotone MixTS to be consistent. Let us compare it with the previously known
condition to ensure logical consistency [22, 13]:

∀a, b ∈ S · (a
must
−−→ b) ⇒ (a

may
−−→ b) .

Our new condition is weaker. Thus, there is a consistent monotone MixTS which has
a musttransition that is not amay transition. For example, consider the MixTSM4

in Figure 1. Note that themust transitiona1
must
−−→ a3 is not matched by anymay

transition. LetB be a BTS(Z, R), whereZ is the set of integers, andR is defined as
follows:

R , {(x, x′) ∈ Z × Z | (x > 0 ∧ x′ = −1) ∨ (x ≤ 0 ∧ x′ = x− 2)} .

B refinesM4. Thus, by definition,M4 is semantically consistent. By Theorem 3,M4

is logically consistent as well.
Third, by definition, a KMTS always satisfies condition (c) ofTheorem 4. Ex-

isting work on KMTSs [22] often implicitly assumes that the abstract domain is flat
(i.e., the abstract ordering�a on S is discrete). This assumption ensures that every
KMTS is monotone. For such TSs, semantic and logical consistency coincide. Yet the
assumption about the flatness of the abstract domain is too restrictive. For example, it
is not true in a typical application of predicate abstraction (e.g., in [18]). By looking
at a wider range of transition systems and considering not only flat abstract domains,
we have uncovered the subtle but important differences between logical and semantic
consistency.

4.2. Logical and Semantic Consistency for Arbitrary Statespaces

In Section 4.1, we have assumed that the abstract statespaceS does not contain any
inconsistent states. That is, ifa is in S, then its concretizationγ(a) is non-empty. We
now lift this restriction, i.e., we aim to redefine (i) logical consistency, (ii) semantic
consistency and (iii) the structural condition of Theorem 4.

(i) An inconsistent state does not abstract any concrete states, so a temporal formula
can have any value in that state, including being both satisfied and refuted. We thus
strengthen Definition 13 as follows:

Definition 15. A modelM is logically consistentiff for everyϕ ∈ Lµ,

a ∈ (U(‖ϕ‖i) \ O(‖ϕ‖i)) ⇒ γ(a) = ∅ .

If the abstract statespaceS has no inconsistent states, this definition reduces to Defini-
tion 13.

(ii) Semantic consistency does not need a new definition: a transition system is
semantically consistentiff there is a BTS that refines it, independently of the structure
of the abstract statespace.

16

(iii) We now need to strengthen the structural condition to match the new Defini-
tion 15. Specifically, we add the requirement that everymusttransition from aconsis-
tentstate must be matched by amaytransition into aconsistentstate.

Under these conditions, we now restate Theorem 4 to handle inconsistent states:

Theorem 5. LetM = 〈S,Rmust, Rmay〉 be a monotone MixTS. Then, the following are
equivalent:

(a) M is semantically consistent (Definition 14),

(b) M is logically consistent (Definition 15),

(c)
∀a, b1 ∈ S · (γ(a) 6= ∅ ∧ a

must
−−→ b1) ⇒

(∃b2 ∈ S · b1 �a b2 ∧ γ(b2) 6= ∅ ∧ a
may
−−→ b2).

In this section, we have investigated the connection between semantic and logical
consistency of partial models. Semantic consistency is important for when partial TSs
are used as objects for abstracting concrete TSs. Logical consistency is important when
partial models are used to interpret temporal logic formulas. In the following two sec-
tions, we first compare the expressive power of the differentTS formalisms, i.e., what
can be modeled and what abstractions can be captured (Section 5). Second, we com-
pare the analyzability of the formalisms, i.e., the cost andprecision of model checking
(Section 6).

5. Expressiveness

We show that GKMTSs, MixTSs, and KMTSs are expressively equivalent (in the
sense of Definition 9). The equivalence of the three formalisms is proved by defin-
ing semantics-preserving translations from GKMTSs to MixTSs, and from MixTSs to
KMTSs. Since GKMTSs syntactically subsume KMTSs, the translation from KMTSs
to GKMTSs is basically an identity map.

5.1. GTOM: Translation from GKMTSs to MixTSs

We present the translation GTOM that converts a GKMTS into a semantically
equivalent MixTS. First, we illustrate the translation on aGKMTS G1 in Figure 2.
G1 is not a MixTS because ofmusthyper-transitiona1

must
−−→ {a2, a3}. This transition

ensures that in every concrete BTS refiningG1, all states inγ(a1), i.e., those satisfy-
ing (x ≤ 0∧ even(x)), must have a transition to a state inγ({a2, a3}), i.e., satisfying
(x > 0). No single state ofG1 represents(x > 0). Thus, this requirement can only be
captured either by a hyper transition (as done inG1), or by extendingG1 with a new
state, saya5, such thatγ(a5) = (x > 0). In the latter case, themusthyper-transition

a1
must
−−→ {a2, a3} can be replaced by (regular)musttransitiona1

must
−−→ a5. The result

is a MixTSM5 in Figure 2. Sincea5 replaces a “hyper-state”{a2, a3}, a5 needs to

preserve itsmaybehaviours. This is done by addinga5
may
−−→ a4 anda5

may
−−→ a2 cor-

responding toa2
may
−−→ a4 anda3

may
−−→ a2, respectively. There are no outgoingmust

transitions froma5 since the existingmusttransitions froma2 anda3 are sufficient.G1

17

G1

a1 a4

a3

a2

x ≤ 0
even(x)

x ≤ 0
odd(x)

x > 0
even(x)

x > 0
odd(x) M5

a1 a4a5

a3

a2

x ≤ 0
even(x) x > 0 x ≤ 0

odd(x)

x > 0
even(x)

x > 0
odd(x)

G2

a1 a4

a3

a2

x ≤ 0
even(x)

x ≤ 0
odd(x)

x > 0

x > 0
odd(x) M6

a1 a4

a3

a2

x ≤ 0
even(x)

x ≤ 0
odd(x)

x > 0

x > 0
odd(x)

Figure 2: Two GKMTSs:G1, G2, and two MixTSs:M5, M6, whereG1 andG2 are semantically equivalent
to M5 andM6, respectively.

andM5 are semantically equivalent: any BTS that refinesG1 also refinesM5, and vice
versa.

In our example, a new state was added to encode a hyper-transition by a regular one.
This isn’t always necessary. For example, TSsG2 andM6 in Figure 2 are semantically
equivalent. The hyper-transitiona1

must
−−→ {a2, a3} is encoded bya1

must
−−→ a3 in M6

since the hyper-state{a2, a3} is equivalent to an existing statea3, i.e.,γ({a2, a3}) =
γ(a3) = (x > 0).

In summary, a GKMTSG is translated to a MixTSM in two steps: (i) everymust

hyper-transitiona
must
−−→ U of G is replaced by a regularmust transitiona

must
−−→ b,

whereb is a (possibly new) state such thatγ(b) = γ(U); (ii) maytransitions are added
for every state introduced in the first step, if any. We formalize this below.

Definition 16 (GTOM). Let G = 〈SG, R
may
G , Rmust

G 〉 be a GKMTS. The translation

18

GTOM(G) is a MixTSM = 〈SM , Rmust
M , Rmay

M 〉, such that

SM , SG ∪ S+

S+ , {a | ∃(s, U) ∈ Rmust
G · γ(a) = γ(U) ∧ (∀t ∈ SG · γ(t) 6= γ(U))}

Rmay
M , Rmay

G ∪ {(a, b) | a ∈ S+ ∧ b ∈ SG ∧ ∃s ∈ SG · (s, b) ∈ Rmay
G ∧ γ(s) ⊆ γ(a)}

Rmust
M , {(a, b) | a ∈ SG ∧ b ∈ SM ∧ ∃U ⊆ SG · (a, U) ∈ Rmust

G ∧ γ(b) = γ(U)}

The theorem below shows that the translation GTOM is semantics-preserving.

Theorem 6. LetG be a GKMTS, andM = GTOM(G). Then,M is a MixTS, andG
andM are semantically equivalent.

PROOF. (1) According to the construction in Definition 16, every must hyper-
transition is replaced by a regular one. Therefore,M is a MixTS. (2) To prove that
G andM are semantically equivalent, we show that any concrete BTSB = 〈C,R〉
refinesG iff it refines M . It is equivalent to showing that the soundness relation
ρG ⊆ C × SG is a mixed simulation betweenB andG iff the soundness relation
ρM ⊆ C × SM is a mixed simulation betweenB andM . This follows from the
construction of transition relations given in Definition 16. �

A corollary of Theorem 6 is that GKMTSs and MixTSs are equivalent with respect
to thorough semantics. LetLG be a labeling function forG. We extend the translation
GTOM to a GKMTS model〈G,LG〉 such that GTOM(〈G,LG〉) , 〈M,LM 〉, where
M = GTOM(G), andLM is a labeling function forSM defined as follows:

LM (a) ,

{

LG(a) if a ∈ SG
⋂

{s∈SG|γ(s)⊆γ(a)} LG(s) if a ∈ S+

That is, if a is a state belonging to the original statespaceSG, the labels ona are the
same as before. For a new statea added by the translation, since the concrete states
approximated bya are theunionof the ones approximated by a set of states inSG, the
labels ona are the literals that are true in all the concrete states; therefore,LM (a) is
defined as the intersection of the labels on the states inSG that are more precise than
a.

Theorem 7. The state labelingLM above is well-defined and approximates the same
labelings asLG.

PROOF. The proof follows immediately from the approximation defined for state
labeling and construction ofLM . �

As a result,〈G,LG〉 and〈M,LM 〉 satisfy the same properties under thorough seman-
tics.

Corollary 2. Let 〈G,LG〉 be a GKMTS model and〈M,LM 〉 = GTOM(〈G,LG〉).
Then,〈G,LG〉 and〈M,LM 〉 are equivalent w.r.t. thorough semantics.

19

Complexity. We show that the translation GTOM does not increase the size of the
model. LetG be a GKMTS with the statespaceSG, andM = GTOM(G). The size
of G is at most|SG × 2SG |. Each new state added by GTOM corresponds to a subset
of SG, i.e., |S+| ≤ |2SG|. Furthermore, no transitions between the states inS+ are
added. Thus, the size ofM is also at most|SG × 2SG |.

Sometimes GTOM can reduce a GKMTS exponentially. For example, assume that
SG is a disjunctive completion [9], i.e., for every subsetU of SG there exists an equiv-
alent elements in SG such thatγ(U) = γ(s). In this case, GTOM does not add any
new states, i.e.,S+ = ∅. This makes the size of the output MixTSs be|SG × SG|,
which is exponentially smaller than that of the input GKMTS.

5.2. MTOK: Translation from MixTSs to KMTSs
We present the translation MTOK that converts a MixTS into a semantically equiv-

alent KMTS. First, we illustrate the translation using a MixTSM7 in Figure 3.M7 is
not a KMTS because of the twomust onlytransitions,a1

must
−−→ a2 anda2

must
−−→ a4.

One way to turnM7 into a KMTS is to addmaytransitionsa1
may
−−→ a2 anda2

may
−−→ a4,

resulting inK1 in Figure 3. This naive transformation is not semantics-preserving, i.e.,
K1 andM7 are not semantically equivalent. For example, the concretesystem

((y > 0) ∧ (x > 0) ∧ odd(x) ∧ x′ = x+ 1 ∧ y′ = y) ∨

((x > 0) ∧ odd(x) ∧ x′ = x ∧ y′ = −1 × x) ∨

((x > 0) ∧ ¬odd(x) ∧ x′ = x+ 1 ∧ y′ = −1 × x)

refinesK1, but notM7: the transition〈x = 1, y = 1〉 → 〈x = 2, y = 1〉 cannot be
simulated by anymaytransition ofM7 from a1.

Themust onlytransitiona1
must
−−→ a2 of M7 ensures that in any concrete BTS re-

fining M7, all states inγ(a1), i.e., those satisfying(x > 0∧ odd(x)∧ y > 0), must
have a transition to a state inγ(a2), i.e., satisfying(x > 0). This is further restricted
by themay transitions froma1 that ensure that states inγ(a1) have transitions only
to states inγ({a1, a3}). Hence, in any BTS refiningM7, every state inγ(a1) must
(and may) have a transition to a state inγ(a2) ∩ γ({a1, a3}). That is, the restrictions
posed by amust onlytransition froma1 are further restricted by the set of all of the
maytransitions froma1. In general, for abstract statesb0, . . . , bk, amust onlytransition

b0
must
−−→ b1, and a set ofmaytransitionsb0

may
−−→ b2, . . . , b0

may
−−→ bk ensure that every

state inγ(b0) has a transition to a state inγ(b1) ∩ γ({b2, . . . , bk}).

The must onlytransitiona2
must
−−→ a4 in M7 is equivalent to a pair ofmay and

musttransitions froma2 to a4, sinceγ(a4) ∩ γ({a1, a2, a3}) = γ(a4). Themust only

transitiona1
must
−−→ a2 can be equivalently represented by (a) adding a new statea5 such

thatγ(a5) = γ(a2) ∩ γ({a1, a3}) = (x > 0∧ odd(x)), and (b) adding amustand a
maytransition froma1 toa5. Moreover, sincea5 approximates some of the same states
asa2, i.e.,γ(a5) ⊆ γ(a2), a5 inherits the transitions froma2: a5

may
−−→ a1, a5

may
−−→ a2,

a5
may
−−→ a3, a5

must
−−→ a4, a5

may
−−→ a4. The final result is the KMTSK2 in Figure 3,

which is semantically equivalent toM7.
In summary, a MixTSM is translated to a KMTSK in two steps. First, every

must onlytransitiona
must
−−→ b of M is replaced by a pair ofmustandmaytransitions

20

M7

a1 a4

a3

a2

x > 0
odd(x)
y > 0

x > 0
odd(x)
y ≤ 0

odd(x)

x > 0 K1

a1 a4

a3

a2

x > 0
odd(x)
y > 0

x > 0
odd(x)
y ≤ 0

odd(x)

x > 0

K2

a1 a4a5

a3

a2

x > 0
odd(x)
y > 0

x > 0
odd(x)

x > 0
odd(x)
y ≤ 0

odd(x)

x > 0

Figure 3: One MixTSs:M7, and two KMTSs:K1, K2, whereM7 andK4 are semantically equivalent.

a
must
−−→ â→ b anda

may
−−→ â→ b, whereâ→ b is a (possibly new) abstract state such

thatγ(â→ b) = γ(b) ∩ γ(Rmay
M (a)). Second,mayandmusttransitions are added for

all states introduced in the first step. We formalize this below.

Definition 17 (MTOK). Let M = 〈SM , R
may
M , Rmust

M 〉 be a MixTS. The translation
MTOK(M) is a KMTSK = 〈SK , R

may
K , Rmust

K 〉, such that

SK , SM ∪ S+

R
may
K , R

may
M ∪ REPL∪ IM AY ∪ IMO

Rmust
K , (Rmust

M ∩Rmay
M) ∪ REPL∪ IM UST∪ IMO,

where

S+ , {â→ b | ∃(a, b) ∈ (Rmust
M \Rmay

M) · ∀s ∈ SM · γ(s) 6= γ(â→ b)}

REPL , {(a, â→ b) | ∃(a, b) ∈ (Rmust
M \Rmay

M)}

IM AY , {(â→ b, b′) | ∃a, b, b′ ∈ SM ·

(a, b) ∈ (Rmust
M \Rmay

M) ∧ (b, b′) ∈ Rmay
M ∧ â→ b ∈ S+}

IM UST , {(â→ b, b′) | ∃a, b, b′ ∈ SM ·

(a, b) ∈ (Rmust
M \Rmay

M) ∧ (b, b′) ∈ (Rmust
M ∩Rmay

M) ∧ â→ b ∈ S+}

IMO , {(â→ b, b̂→ b′ | ∃a, b, b′ ∈ SM ·

(a, b), (b, b′) ∈ (Rmust
M \Rmay

M) ∧ â→ b ∈ S+}

21

In Definition 17, REPL denotes transitions that replacemust onlytransitions, and
IM AY , IM UST and IMO denote transitions from newly added states inS+ that corre-
spond tomay, must, andmust onlytransitions of the original system, respectively. In
our example of MTOK(M7), we have

S+ = {a5},
REPL = {(a1, a5), (a2, a4)},
IM UST = ∅,
IMO = {(a5, a4)},
IM AY = {(a5, a1), (a5, a2), (a5, a3)}.

The result of the translation MTOK is a KMTS: everymusttransition is matched by a
maytransition.

Theorem 8. LetM be a MixTS, andK = MTOK(M). ThenK is a KMTS, andM
andK are semantically equivalent.

PROOF. (1) The construction in Definition 17 ensures that everymusttransition inK
is matched by amay transition. Therefore,K is a KMTS. (2) To prove thatM and
K are semantically equivalent, we show that for any concrete BTSB = 〈C,R〉, the
soundness relationρM ⊆ C × SM is a mixed simulation betweenB andM iff the
soundness relationρK ⊆ C × SK is a mixed simulation betweenB andK. This
follows from the construction of transition relations in Definition 17. �

A corollary of Theorem 8 is that MixTSs and KMTSs are equivalent with respect
to thorough semantics. LetLM be a labeling function forM . We extend MTOK to
〈M,LM 〉 such that MTOK(〈M,LM 〉) , 〈K,LK〉, whereK = MTOK(M), andLK

is a labeling function forSK defined as follows:

LK(a) ,

{

LM (a) if a ∈ SM
⋃

{s∈SM |γ(a)⊆γ(s)} LM (s) if a ∈ S+

In this case, ifa is a new state added by the translation, the concrete states approximated
bya correspond to theintersectionof the concrete states approximated by a set of states
in SG; the labels ona are all the literals which are true on the concrete states. Therefore,
LK(a) is defined as the union of the labels on the states inSM that are less precise than
a.

Theorem 9. The state labelingLK above is well-defined and approximates the same
labelings asLM .

PROOF. The proof immediately follows from the approximation defined for state
labeling and the construction ofLK . �

As a result,〈M,LM 〉 and〈K,LK〉 satisfy the same properties under thorough seman-
tics.

Corollary 3. Let 〈M,LM 〉 be a MixTS model and〈K,LK〉 = MTOK(〈M,LM 〉).
Then,〈M,LM 〉 and〈K,LK〉 are equivalent w.r.t. thorough semantics.

22

Complexity.Let M = 〈SM , Rmay
M , Rmust

M 〉 be a MixTS, andK be a KMTS such that
K = MTOK(M). The size ofM is bounded byO(|SM × SM |). In the worst case,
the translation adds a new state for eachmust onlytransition inRmust

M \ Rmay
M . Thus,

the number of new states|S+| is bounded by|SM × SM |, and |K| is bounded by
O(|SM × SM |2).

MixTSs are more succinct than KMTSs: over a fixed statespaceS, the set of
MixTSs is more expressive than the set of KMTSs. This holds becauseS+ may not
be empty in some cases, i.e., new states have to be added by MTOK. The following
theorem shows that ifS is a powerset abstract domain [5], then MTOK does not add
new states, and therefore, MixTS and KMTSs overS are equally expressive.

Theorem 10. Let 〈C, ρ, S〉 be an abstraction relation. For any abstract statea ∈ S
and a subsetQ ⊆ S, there exists a subsetV ⊆ S such thatγ(V) = γ(a) ∩ γ(Q).

PROOF. Let V , {b ∈ S | ∃c · c ∈ γ(a) ∩ γ(Q) ∧ b = α(c)}. The proof of
γ(V) ⊇ γ(a)∩γ(Q) follows from the definition ofV . To proveγ(V) ⊆ γ(a)∩γ(Q),
we show that for eachb ∈ V , γ(b) ⊆ γ(a) andγ(b) ⊆ γ(Q), which follows from the
definition of abstraction function. �

6. Reduced Inductive Semantics

GKMTSs and MixTSs are equally expressive: a GKMTS model and its equivalent
MixTS model satisfy the same properties under thorough semantics. However, thor-
ough model checking is expensive. In practice, model checking of partial models is
done with respect to a more tractable inductive semantics, SIS. GKMTSs are more pre-
cise than MixTSs with respect to SIS: for anyϕ ∈ Lµ, model checkingϕ in a GKMTS
modelG with respect to SIS is more precise than model checking it in the MixTS model
M = GTOM(G). However, the direct use of GKMTSs in symbolic model checkers
has been hampered by the difficulty of encoding hyper-transitions into BDDs. In this
section, we propose a new semantics, calledreduced inductive semantics(RIS), that
is inductive while being strictly more precise than SIS. We show that GKMTSs and
MixTSs are equivalent with respect to RIS. In Section 7, we give an efficient symbolic
model checking procedure for computing RIS over MixTSs. This results in an algo-
rithm that combines the benefits of the efficient symbolic encoding of MixTSs with the
model checking precision of GKMTSs.

In Section 6.1, we illustrate the differences between GKMTSs and MixTSs with
respect to SIS. We define RIS in Section 6.2, and show how to perform model checking
with respect to RIS effectively in Section 6.3.

6.1. Example
Let p and q denote predicates(x > 0) andodd(x), respectively. Consider the

modelG1 = 〈G1, LG1
〉 in Figure 4, whereG1 is shown in Figure 2, andLG1

is a
labeling function that labels each abstract state as follows:

LG1
(a1) = {¬p,¬q} LG1

(a2) = {p, q}

LG1
(a3) = {p,¬q} LG1

(a4) = {¬p, q} .

23

G1

a1 a4

a3

a2

¬p
¬q

¬p
q

p
¬q

p
q M5

a1 a4a5

a3

a2

¬p
¬q p ¬p

q

p
¬q

p
q

Figure 4: Two models:G1 andM5.

Let M5 = 〈M5, LM5
〉 = GTOM(G1) be the model obtained fromG1 by GTOM.

The modelM5 is shown in Figure 4, its underlying transition systemM5 is shown in
Figure 2, and

LM5
(s) , if s = a5 then {p} elseLG1

(s) .

Compare the value ofϕ , ♦(q ∨ ¬q) under SIS onG1 andM5:

‖ϕ‖G1

i = 〈{a1, a2, a3}, {a1, a2, a3, a4}〉

‖ϕ‖M5

i = 〈{a2, a3}, {a1, a2, a3, a4, a5}〉

According toG1,ϕ is true in all states corresponding toa1. According toM5, the value
of ϕ is unknown in exactly the same states. SinceM5 = GTOM(G1), G1 andM5 are
semantically equivalent. Thus, althoughM5 andG1 are semantically equivalent,M5

is less precise thanG1 for model checking with respect to SIS.
Let us reexamine the above example. First, there is no precision loss during the

evaluation ofq ∨ ¬q:

e1 = ‖q ∨ ¬q‖G1

i =〈{a1, a2, a3, a4}, {a1, a2, a3, a4}〉 (⋆)

e2 = ‖q ∨ ¬q‖M5

i =〈{a1, a2, a3, a4}, {a1, a2, a3, a4, a5}〉

Sinceγ(U(e1)) = γ(U(e2)) andγ(O(e1)) = γ(O(e2)) = γ(∅), e1 ≡a e2. However,
there is a subtle difference betweene1 ande2. In statea5 of M5, q ∨ ¬q is unknown
even though it is true in botha2 anda3, andγ(a5) = γ(a2) ∪ γ(a3). This minor
imprecision is then magnified by the♦ operator.

This loss of precision is not limited to tautologies. For example, a formulaµZ ·
(¬p ∧ q) ∨ ♦Z, i.e.,EF (¬p ∧ q) in CTL, is true in statea1 of G1, but is unknown in
the same state ofM5.

6.2. Reduced Inductive Semantics for Partial Models

In this section, we define the reduced inductive semantics (RIS). The new semantics
is inductive and isstrictly more precisethan SIS. The key idea is to eliminate any local
imprecision by using a specialreductionoperator, defined below:

24

Reduction Operator. Let 〈C, ρ, S〉 be an abstraction relation, and lete, e′ ∈ 2S × 2S.
Recall that in the information ordere is less thane′, i.e.,e �i e

′, if U(e) is contained
in U(e′), andO(e) containsO(e′). We define thereductionoperator as follows:

RED(〈U,O〉) , 〈REDU(U), REDO(O)〉

whereREDU(U) , {s | γ(s) ⊆ γ(U)} andREDO(O) , {s | γ(s) * γ(O)}. In-
tuitively, for e = 〈U,O〉, RED(e) increasesU and decreasesO as much as possi-
ble without affecting the semantic meaning ofe. That is,γ(REDU(U)) = γ(U) and
γ(REDO(O)) = γ(O). Therefore,RED(e) is the largest element with respect to infor-
mation ordering that is semantically equivalent toe, i.e.,RED(e) ≡a e.

For example, considerRED(e2), wheree2 is as defined by (⋆) above. Then,

e3 = RED(e2) = 〈{a1, a2, a3, a4, a5}, {a1, a2, a3, a4, a5}〉 (⋆⋆)

e3 differs frome2 only in the addition ofa5 to U(e3). Sinceγ(U(e2)) = γ(U(e3)) and
γ(O(e2)) = γ(O(e3)), e2 ≡a e3; bute3 is more informative sinceU(e2) ⊂ U(e3).

An elemente = 〈U,O〉 ∈ 2S × 2S is monotoneiff

s1 �a s2 ⇒ (s1 ∈ U ⇒ s2 ∈ U ∧ s1 /∈ O ⇒ s2 /∈ O)

That is,U andO are closed under more precise states. The monotonicity of elements
is preserved under propositional operations: ife ande′ are monotone elements, so are
∼e ande ⊓ e′. Moreover,RED(e) is monotone for anye, and it acts homomorphically
with respect to propositional operations on monotone elements. That is, lete ande′ be
monotone elements of2S×2S. Then,∼e ≡a ∼RED(e), ande⊓e′ ≡a RED(e)⊓RED(e′).

Reduced Inductive Semantics. RIS is defined by applying theRED operator before and
after♦ to prevent it from propagating imprecision.

Definition 18 (RIS). Let 〈C, ρ, S〉 be an abstraction relation, and letM = 〈M,L〉 be
a model, such thatM = 〈S,Rmay, Rmust〉 andσ : V ar → 2S × 2S. The reduced
inductive semanticsof ϕ ∈ Lµ is defined as follows:

||p||Mr,σ , 〈{s | p ∈ L(s)}, {s | ¬p /∈ L(s)}〉

||¬ϕ||Mr,σ , ∼||ϕ||Mr,σ
||ϕ ∧ ψ||Mr,σ , ||ϕ||Mr,σ ⊓ ||ψ||Mr,σ

||♦ϕ||Mr,σ , RED(〈preU(REDU(U(||ϕ||Mr,σ))), preO(REDO(O(||ϕ||Mr,σ)))〉)

||Z||Mr,σ , σ(Z)

||µZ · ϕ||Mr,σ , 〈lfp⊑
(

λQ · U(||ϕ||M
r,σ[Z 7→Q])

)

, lfp⊑
(

λQ · O(||ϕ||M
r,σ[Z 7→Q])

)

〉

The only difference between RIS (Definition 18) and SIS (Definition 2) is the se-
mantics of♦, where theRED operator in RIS uses abstraction information to improve
precision. Since we assume that a state labeling is monotone, applyingRED to other
operators as well does not improve precision.

We now show that RIS is sound.

25

Theorem 11. Let 〈C, ρ, S〉 be an abstraction relation,M = 〈M,LM 〉 be a partial
model overS, andB = 〈B,LB〉 be a concrete model overC. If M approximatesB,
then, for anyLµ formulaϕ,

γ(U(‖ϕ‖Mr)) ⊆ U(‖ϕ‖Br) and γ(O(‖ϕ‖Mr)) ⊆ O(‖ϕ‖Br) .

Proof:
The only difference between RIS and SIS is the application of the RED operator before
and after ♦. Since RED is semantics-preserving, the result holds following Theorem 1.

Returning to our running example, RIS ofϕ onM5 is computed as follows: RIS
of q, ¬q, andq ∨¬q is the same as SIS. Thus,‖q ∨¬q‖M5

r = e2. To compute♦, recall
from (⋆⋆) thatRED(e2) = e3; thus,‖ϕ‖M5

r = 〈{a1, a2, a3, a5}, {a1, a2, a3, a4, a5}〉.
Hence,‖ϕ‖M5

r is more precise than‖ϕ‖M1

i .

Theorem 12. RIS is more precise than SIS:‖ϕ‖i �a ‖ϕ‖r.

PROOF. We begin by fixing an abstraction relation〈C, ρ, S〉. The proof proceeds by
structural induction onϕ. For the base case, it is obvious that for any atomic proposi-
tion p, ‖p‖i ≡a ‖p‖r. In the following, we show the inductive case for♦ϕ; the proofs
of other cases are trivial.

We show that||ϕ||i �a ||ϕ||r ⇒ ||♦ϕ||i �a ||♦ϕ||r, which is equivalent to proving
the following two statements:

(a) ||ϕ||i �a ||ϕ||r ⇒ γ(U(||♦ϕ||i)) ⊆ γ(U(||♦ϕ||r))

(b) ||ϕ||i �a ||ϕ||r ⇒ γ(O(||♦ϕ||i)) ⊆ γ(O(||♦ϕ||r))

The proof of (a) is as follows. First, note that for any two setsQ1,Q2, we have that

γ(Q1) ⊆ γ(REDU(Q2)) ⇒ Q1 ⊆ REDU(Q2) (P1)

This follows from the following derivation: supposeQ1 * REDU(Q2). Then there
exists a states such thats ∈ Q1 ands /∈ REDU(Q2). By the definition ofREDU, γ(s) *
γ(Q2); on the other hand, sinceγ(Q1) ⊆ γ(REDU(Q2)) = γ(Q2), γ(s) ⊆ γ(Q2),
reaching a contradition.

26

We then have the following:

||ϕ||i �a ||ϕ||r
⇒ (by the definition of�a)

γ(U(||ϕ||i) ⊆ γ(U(||ϕ||r))
⇒ (by the definition ofREDU, γ(Q) = γ(REDU(Q)))

γ(U(||ϕ||i) ⊆ γ(REDU(U(||ϕ||r)))
⇒ (by (P1))

U(||ϕ||i)) ⊆ REDU(U(||ϕ||r))
⇒ (by monotonicity ofpre)

preU(U(||ϕ||i)) ⊆ preU(REDU(U(||ϕ||r)))
⇒ (by monotonicity ofγ)

γ(preU(U(||ϕ||i))) ⊆ γ(preU(REDU(U(||ϕ||r))))
⇒ (by the definition ofREDU, γ(Q) = γ(REDU(Q)))

γ(preU(U(||ϕ||i))) ⊆ γ(REDU(preU(REDU(U(||ϕ||r)))))
⇒ (by the definitions of SIS and RIS)

γ(U(||♦ϕ||i)) ⊆ γ(U(||♦ϕ||r))

Proof of (b) is dual of the one above. �

The previous example illustrates another important point:GKMTSs and MixTSs
are equivalent with respect to RIS. For example,‖ϕ‖M5

r is equivalent to‖ϕ‖G1

r . The
following theorem formalizes this.

Theorem 13. LetG be a GKMTS model, andM = GTOM(G). Then,G andM are
equivalent with respect to RIS:∀ϕ ∈ Lµ · ‖ϕ‖Gr ≡a ‖ϕ‖Mr.

PROOF. We begin by fixing an abstraction relation〈C, ρ, S〉. The proof proceeds
by structural induction onϕ. For the base case, according to the definition ofLM ,
‖p‖Gr ≡a ‖p‖Mr for any atomic propositionp. In the following, we show the inductive
case for♦ϕ; the proofs of the other cases are trivial.

We show that‖ϕ‖Gr ≡a ‖ϕ‖Mr ⇒ ‖♦ϕ‖Gr ≡a ‖♦ϕ‖Mr , which is equivalent to
proving the following two statements:

(a) ‖ϕ‖Gr ≡a ‖ϕ‖Mr ⇒ γ(U(‖♦ϕ‖Gr)) = γ(U(‖♦ϕ‖Mr))

(b) ‖ϕ‖Gr ≡a ‖ϕ‖Mr ⇒ γ(O(‖♦ϕ‖Gr)) = γ(O(‖♦ϕ‖Mr))

The proof of (a) is as follows. First, note that for any concrete statec and a set of
abstract statesQ,

c ∈ γ(REDU(Q)) ⇔ ∃a ∈ Q · c ∈ γ(a) (P2)

27

We then have that, for any concrete statec,

c ∈ γ(U(‖♦ϕ‖Gr))
⇔ (by the definition of RIS)

c ∈ γ(REDU(preG
U
(REDU(U(‖ϕ‖Gr)))))

⇔ ((⇒) let a be the abstract state in (P2),
(⇐) sinceγ(Q) = γ(REDU(Q)))
c ∈ γ(a) ∧ a ∈ preG

U
(REDU(U(‖ϕ‖Gr)))

⇔ (by the definition ofpreU)
c ∈ γ(a) ∧ ∃Q ⊆ REDU(U(‖ϕ‖Gr)) · Rmust

G (a,Q)
⇔ (by the definition of GTOM)

c ∈ γ(a) ∧ ∃b · γ(b) ⊆ γ(REDU(U(‖ϕ‖Gr))) ∧Rmust
M (a, b)

⇔ (since‖ϕ‖Gr ≡a ‖ϕ‖Mr , γ(U(‖ϕ‖Gr)) = γ(U(‖ϕ‖Mr)))
c ∈ γ(a) ∧ ∃b · γ(b) ⊆ γ(REDU(U(‖ϕ‖Mr))) ∧Rmust

M (a, b)
⇔ (sinceγ(Q) = γ(REDU(Q)), by the definition ofREDU)

c ∈ γ(a) ∧ ∃b ∈ REDU(U(‖ϕ‖Mr)) ·Rmust
M (a, b)

⇔ (by the definition ofpreU)
c ∈ γ(a) ∧ a ∈ preM

U
(REDU(U(‖ϕ‖Mr)))

⇔ ((⇒) sinceγ(Q) = γ(REDU(Q)),
(⇐) let a be the abstract state in (P2))
c ∈ γ(REDU(preM

U
(REDU(U(‖ϕ‖Gr)))))

⇔ (by the definition of RIS)
c ∈ γ(U(‖♦ϕ‖Mr))

The proof of (b) is similar to the one above, based on the observation that for any
concrete statec and a set of abstract statesQ, c ∈ γ(REDO(Q)) ⇔ ∃a ∈ Q·c ∈ γ(a). �

Our new semantics RIS is both inductive and precise enough tomake GKMTSs
and MixTSs equivalent. However, the definition of theRED operator is based on con-
cretization,γ. In practice, reasoning directly about concrete states maybe undecidable
or inefficient. We address this limitation next.

6.3. Reduced Inductive Semantics for Monotone Models

We study the reduction operatorRED of RIS in the context of monotone models. As
shown in Section 3, monotone models are as expressive as their regular counterparts.
Furthermore, as shown in [19], monotone models are also moreprecise. That is, given
an arbitrary modelM, there is a monotone modelM′ over the same statespace that is
more precise thanM under SIS. The following theorem implies that the same result
also holds under RIS.

Theorem 14. Let M = 〈M,L〉 andM′ = 〈M ′, L′〉 be two partial models, where
M = 〈S,Rmay, Rmust〉 andM ′ = 〈S,Rmay′, Rmust′〉 are two transition systems defined
over the same abstract statespaceS. Then, ifM is less precise thanM′ under SIS,
i.e.,∀ϕ ∈ Lµ · ‖ϕ‖Mi �a ‖ϕ‖M

′

i , then,M is also less precise thanM′ under RIS.

PROOF. The proof is by structural induction onϕ. In particular, the inductive case for
♦ϕ follows from the definition ofRED and the monotonicity of thepreimageoperator.

28

�

Furthermore, models built by automated predicate abstraction [18] in practice are
monotone by construction. Thus, restrictingRED to monotone models is neither a the-
oretical nor a practical restriction.

Note that in any monotone model and any formulaϕ, ‖ϕ‖r is a monotone element.
This holds because of the monotonicity of the state labelingand the transition relation.
For monotone elements,RED can be computed effectively, as we show below.

Let 〈C, ρ, S〉 be an abstraction relation, ands ∈ S be a state. Theupsetof s is
defined as

↑s , {t ∈ α[C] | s �a t} .

Thus,↑s is the set of all those states inα[C] that are more precise thans. For example,
consider the abstraction relation〈Z, ρ, S1〉, whereS1 be the statespace ofM5 shown
in Figure 2. Recall thatα[Z] denotes the set of abstract states inS1 that are best
approximations of concrete states. Since every value of an integer variablex can be
best approximated bya1, a2, a3, or a4, α[Z] = {a1, a2, a3, a4}. Furthermore, since
a2 anda3 are more precise thana5, we have that↑a5 = {a2, a3}. A states and the
upset↑s approximate the same set of concrete states, i.e.,γ(s) = γ(↑s). For example,
γ(a5) = γ(↑a5) = γ({a1, a2, a3, a4}) = (x > 0).

The next theorem shows that for monotone elements of2S × 2S the upset operator
lifts set inclusion from concrete to the abstract domain.

Theorem 15. Let 〈C, ρ, S〉 be an abstraction relation,e = 〈U,O〉 be a monotone
element of2S × 2S, and s ∈ S be a state. Then,γ(s) ⊆ γ(U) iff ↑s ⊆ U and
γ(s) 6⊆ γ(O) iff ↑s 6⊆ O.

PROOF. First, we show thatγ(s) ⊆ γ(U) ⇔ ↑s ⊆ U . The (⇐) direction follows
directly from the definition ofγ. We prove the (⇒) direction by contradiction. LetC
be the concrete statespace approximated byS. Suppose that↑s * U . Then,

↑s * U
⇒ ∃a ∈ S · a ∈ ↑s ∧ a /∈ U
⇒ (by the definition of↑s, a ∈ α[S])

∃a ∈ S · s �a a ∧ a /∈ U ∧ ∃c ∈ C · a = α(c)
⇒ (sinces �a a, γ(a) ⊆ γ(s); sinceγ(s) ⊆ γ(U))

∃a ∈ S · a /∈ U ∧ ∃c ∈ C · a = α(c) ∧ c ∈ γ(U)
⇒ (by the definition ofγ)

∃a ∈ S · a /∈ U ∧ ∃c ∈ C · a = α(c) ∧ ∃b ∈ U · c ∈ γ(b)
⇒ (by the definition ofα)

∃a ∈ S · a /∈ U ∧ ∃b ∈ U · b �a a
⇒ (by monotonicity ofe, a ∈ U)

∃a ∈ S · a /∈ U ∧ a ∈ U
⇒ false

The proof ofγ(s) 6⊆ γ(O) ⇔ ↑s 6⊆ O is dual to the one above. �

29

We now define a new operatorred for monotone elements. Lete = 〈U,O〉 be a
monotone element of2S × 2S . red is defined as

red(e) , 〈redU(U), redO(O)〉

whereredU(U) , {s | ↑s ⊆ U} andredO(O) , {s | ↑s * O)}. A corollary of
Theorem 15 is thatred andRED are equivalent.

Corollary 4. Let 〈C, ρ, S〉 be an abstraction relation, ande be a monotone element in
2S × 2S. Then,red(e) = RED(e).

For example, the elemente2 defined in (⋆) is monotone. We have that
red(U(e2)) = {a1, a2, a3, a4, a5} since↑a5 = {a2, a3} ⊆ U(e2), andred(O(e2))
is the same asO(e2) sinceO(e2) is empty. Therefore,red(e2) andRED(e2) are equal.
Note thatred can be computed effectively since it does not reason about concrete ele-
ments directly.

In this section, we have introduced a new inductive semantics RIS, and shown that
it is more precise than SIS, and that GKMTSs and MixTSs are equivalent with respect
to RIS. RIS can be computed effectively on monotone models, which is not a limitation
since monotone models are as expressive as their non-monotone counterparts.

7. Symbolic Model Checking of RIS using BDDs

In this section, we describe a symbolic algorithm RIS that implements the RIS
semantics formonotonemodels constructed using predicate abstraction. These arethe
models used by some existing software model checkers, such as [20].

Our implementation is based on the following observations,which allow us to sim-
ply the encoding of computation results and transition systems.

Let 〈C, ρ, S〉 be an abstraction relation. Then, for any monotone element of
2S × 2S , there exists asemantically equivalentelement in2α[S] × 2α[S]. For
example, the monotone elemente2 defined in (⋆) is semantically equivalent to
〈{a1, a2, a3, a4}, {a1, a2, a3, a4}〉.

Theorem 16. Let 〈C, ρ, S〉 be an abstraction relation,e1 = 〈U1, O1〉 be a monotone
element of2S × 2S , ande2 = 〈U2, O2〉 be in2α[C] × 2α[C]. If U1 ∩ α[C] = U2 and
O1 ∩ α[C] = O2, thene1 ≡a e2.

PROOF. This is proved by showing thatRED(e1) = RED(e2); sinceRED is semantics-
preserving, the result holds. �

Recall that the RIS semantics uses theRED operator to compute most precise ele-
ments with respect to information ordering without affecting semantic meaning. For
two semantically equivalent elementse ande′, RED(e) is the same asRED(e′); more-
over,RED can be effectively computed over monotone models using the elements in
α[C]. Therefore, Theorem 16 allows us to restrict the algorithm to computing sets over
α[C] instead of sets overS. The benefit of this restriction is that we can use fewer
variables to encode computation results.

30

Furthermore, since the result of♦ operator is contained inα[C], it only depends
on transitionsfrom the states ofα[C]. The following theorem shows that the transition
relations can be simplified as well. Specifically, we only usethemaytransitions from
α[C] to α[C] and themusttransitions fromα[C] to S. We applyREDU over the states
of α[C] before computing the result of the pre-image overmusttransitions to prevent
it from propagating imprecision.

Theorem 17. Let 〈C, ρ, S〉 be an abstraction relation,M = 〈S,Rmay, Rmust〉 be a
monotone MixTS, ande = 〈U,O〉 be a monotone element of2S×2S. LetÛ , U∩α[S],
Ô , O∩α[S], R̂must , Rmust∩ (α[C]×S), andR̂may , Rmay∩ (α[S]×α[S]). Then,

〈pre[Rmust](REDU(U)), pre[Rmay](REDO(O))〉 ≡a 〈pre[R̂must](REDU(Û)), pre[R̂may](Ô)〉

PROOF. By the definition of≡a, the theorem is equivalent to proving the following
results:

(a) γ(pre[Rmust](REDU(U))) = γ(pre[R̂must](REDU(Û)))

(b) γ(pre[Rmay](REDO(O))) = γ(pre[R̂may](Ô))

(1) We first show that (a) holds. The proof ofγ(pre[Rmust](REDU(U))) ⊆
γ(pre[R̂1](REDU(Û))) is shown below. For any concrete statec,

c ∈ γ(pre[Rmust](REDU(U)))
⇒ ∃a ∈ S · c ∈ γ(a) ∧ a ∈ pre[Rmust](REDU(U))
⇒ (by the definition ofpre)

∃a ∈ S · c ∈ γ(a) ∧ ∃b ∈ REDU(U) · Rmust(a, b)
⇒ (let a′ = α(c); by the definition ofα)

c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ ∃a ∈ S · a �a a
′ ∧ ∃b ∈ REDU(U) · Rmust(a, b)

⇒ (by monotonicity of the transition relations)
c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ ∃b ∈ REDU(U) ·Rmust(a′, b)

⇒ (by the definition ofR̂must)
c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ ∃b ∈ REDU(U) · R̂must(a′, b)

⇒ (sincee is a monotone element,γ(U) = γ(Û))
c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ ∃b ∈ REDU(Û) · R̂must(a′, b)

⇒ (by the definition ofpre)
c ∈ γ(a′) ∧ a′ ∈ pre[R̂must](REDU(Û))

⇒ c ∈ γ(pre[R̂must](REDU(U)))

The proof ofγ(pre[Rmust](REDU(U))) ⊇ γ(pre[R̂must](REDU(Û))) follows from the
definitions ofR̂must andÛ .

(2) We now show thatγ(pre[Rmay](REDO(O))) = γ(pre[R̂may](Ô)). The proof of

31

γ(pre[Rmay](REDO(O))) ⊆ γ(pre[R̂may](Ô)) is shown below. For any concrete statec,

c ∈ γ(pre[Rmay](REDO(O)))

⇒ ∃a ∈ S · c ∈ γ(a) ∧ a ∈ pre[Rmay](REDO(O))
⇒ (by the definition ofpre)

∃a ∈ S · c ∈ γ(a) ∧Rmay(a) ⊆ REDO(O)
⇒ (let a′ = α(c); by the definition ofα)

c ∈ γ(a′) ∧ a′ ∈ α[S]∧

∃a ∈ S · a �a a
′ ∧Rmay(a) ⊆ REDO(O)

⇒ (by monotonicity of the transition relations)
c ∈ γ(a′) ∧ a′ ∈ α[S]∧

∃a ∈ S ·Rmay(a′) ⊆ Rmay(a) ⊆ REDO(O)

⇒ (by the definition ofR̂may,Rmay(a′) ∩ α[S] = R̂may(a′))
c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ R̂may(a′) ⊆ (REDO(O) ∩ α[S])

⇒ (sincee is a monotone element,∀s ∈ α[S] · s ∈ REDO(O) ⇔ s ∈ O)
c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ R̂may(a′) ⊆ (O ∩ α[S])

⇒ (by the definition ofÔ)
c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ R̂may(a′) ⊆ α[S] \ Ô

⇒ (by the definition ofpre)

c ∈ γ(a′) ∧ a′ ∈ γ(pre[R̂may](Ô))

⇒ c ∈ γ(pre[R̂may](Ô))

The proof ofγ(pre[Rmay](REDO(O))) ⊇ γ(pre[R̂may](Ô)) is similar to the one above.
�

The algorithm RIS is shown in Figure 5. It uses BDDs to symbolically represent
and manipulate sets of states and transition relations. Functions that are prefixed with
“ BDD” are the standard BDD operations, shown in Figure 6. The algorithm works
recursively on the structure of the input formulaϕ. The fixpoints are computed as
usual, by iterating until convergence. We describe the details of the implementation
below.

LetC be a concrete statespace, andP = {p1, . . . , pn} be a set ofn predicates over
C. Recall that the abstraction relation of predicate abstraction is 〈C, ρP ,Mon(P)〉,
where Mon(P) denotes the set of monomials overP . Furthermore, MT(P) denotes
the set of minterms overP , andα[C] = MT(P). The input to the algorithm is a MixTS
model〈M,LM 〉, s.t.M = (S,Rmay, Rmust), S = Mon(P), andLM (s) = Lit(s), and
anLµ propertyϕ. Without loss of generality, by Theorem 17, we assume that the
transition relations are restricted such thatRmay ⊆ MT(P) × MT(P), andRmust ⊆
MT(P) × Mon(P).

The algorithm uses the following sets of BDD variables:B = {bi | pi ∈ P} – the
current state Boolean variables,B′ = {b′i | bi ∈ B} – the next state Boolean variables,
H = {hi | pi ∈ P} – the current state unknown variables, andH ′ = {h′i | hi ∈ H} –
the next state unknown variables. In what follows, we do not distinguish between the
BDDs and the corresponding propositional formulas.

32

1: global var Rmay, Rmust : BDD

2: func RIS(Exprϕ) : BDD

3: matchϕ with
4: ATOMIC(p) : return ABSV(BDDVAR(“p”),

BDDVAR(“p”))
5: ¬ψ : return ABSNOT(RIS(ψ))
6: ψ1∧ψ2 : return ABSAND(RIS(ψ1),RIS(ψ2))
7: ψ1 ∨ ψ2 : return ABSOR(RIS(ψ1),RIS(ψ2))
8: ♦ψ : return ABSPRE(Rmay, Rmust,RIS(ψ))
9: µψ : return RISlfp(ψ)

10: νψ : return RISgfp(ψ)
11:

12: func ABSV(BDD u, BDD o) : BDD

13: sel := BDDVAR(“sel”)
14: return BDDITE(sel, u, o)
15:

16: func ABSO(BDD v) = v[0/sel]
17: func ABSU(BDD v) = v[1/sel]

18: func ABSAND(BDD v1, BDD v2) = BDDAND(v1, v2)
19: func ABSOR(BDD v1, BDD v2) = BDDOR(v1, v2)
20: func ABSEQ(BDD v1, BDD v2) = BDDEQ(v1, v2)
21:

22: func ABSNOT(BDD v) : BDD

23: o := ABSO(v), u := ABSU(v)
24: return ABSV(BDDNOT(o), BDDNOT(u))
25:

26: func ABSREDU(BDD v) : BDD

27: if (BDDISCONST(v)) return v

28: b := BDDROOTVAR(v), h := UVAR(b)
29: T := ABSREDU(v[1/b]), F := ABSREDU(v[0/b])
30: tmp := BDDITE(b, T, F)
31: return BDDITE(h, BDDAND(T, F), tmp)
32:

33: func ABSPRE(BDD Rmay, BDD Rmust, BDD v) : BDD

34: o := ABSO(V), u := ABSREDU(ABSU(V))
35: return ABSV(BDDPRE(Rmust, u), BDDPRE(Rmay, o))

Figure 5: The RIS algorithm and its supporting functions.

Operation Definition

BDDVAR(s) returns a BDD node with the names
BDDITE(f, g, h) returns a BDD for(f ∧ g) ∨ (¬f ∧ h)

BDDAND(f, g) returns a BDD for conjunctionf ∧ g

BDDOR(f, g) returns a BDD for disjunctionf ∨ g

BDDEQ(f, g) checks whether BDDf equals BDDg
BDDPRE(r, v) returns a BDD for the preimage ofv overr
BDDISCONST(f) checks whether BDDf is a constant
BDDROOTVAR(f) returns the top node of BDDf

Figure 6: Common BDD operations.

A set of mintermsX ⊆ MT(P) is encoded by a propositional formula overB, as
usual. For example, letP = {p1, p2, p3}. Thenb1 ∧ ¬b2 encodes the set{p1 ∧ ¬p2 ∧
p3, p1 ∧ ¬p2 ∧ ¬p3}. A set of monomialsX ⊆ Mon(P) is encoded by a formula over
B ∪H . Intuitively, for a monomialm, a variablehi indicates whetherpi is present in
m, and a variablebi specifies the polarity of the occurrence. Formally, the encoding is

∨

m∈X

(

(
∧

pi∈Lit(m)

¬hi ∧ bi) ∧ (
∧

¬pi∈Lit(m)

¬hi ∧ ¬bi) ∧ (
∧

pi∈P\Term(m)

hi)

)

For example,(¬h1 ∧ b1) ∧ (¬h2 ∧ ¬b2) ∧ h3 represents a singleton set{p1 ∧ ¬p2}.
An abstract valuee = 〈U,O〉 is encoded in a single BDD by a formula(sel∧U)∨

(¬sel∧O), wheresel is a designated BDD variable. This encoding is implemented by
functionABSV. TheU andO elements of valuee are extracted usingABSU andABSO,
respectively. Abstract intersection (ABSAND), union (ABSOR), and equality (ABSEQ)
are done using the corresponding BDD operations. Abstract negation (ABSNOT) is
implemented following its definition in Section 2.

The may transition relationRmay ⊆ MT(P)×MT(P) is encoded by a formula over

33

B ∪ B′ as usual. Similarly, the must relationRmust ⊆ MT(P) × Mon(P) is encoded
by a formula overB ∪ B′ ∪ H ′, where the primed variables are used to encode the
destination state. For example, amusttransition from a state(p1 ∧ p2 ∧ p3) to a state
(p1 ∧ ¬p2) is represented by(b1 ∧ b2 ∧ b3) ∧ ((¬h′1 ∧ b

′
1) ∧ (¬h′2 ∧ ¬b′2) ∧ h

′
3).

FunctionABSREDU implements theredU reduction operator of Section 6.3. It
takes a set of minterms as input, and returns a set of monomials for the computation
of pre-image overmusttransitions. A monomial is added to the output iff its upset is
contained in the input. The implementation ofABSREDU uses the following observa-
tion: letQ ⊆ MT(P) be a set of minterms, anda ∈ Mon(P). If a ∈ MT(P), then
↑a = {a}, and↑a ⊆ Q ⇔ a ∈ Q; otherwise, some predicatep is not present ina,
and in this case↑a ⊆ Q iff ↑(a ∧ p) ⊆ Q and↑(a ∧ ¬p) ⊆ Q. For example, suppose
P = {p1, p2, p3} andQ = {p1∧p2∧p3, p1∧p2∧¬p3}. For the monomiala = p1∧p2,
we have that↑a ⊆ Q because↑(a∧ p3) = ↑(p1 ∧ p2 ∧ p3) = {p1 ∧ p2 ∧ p3} ⊆ Q and
↑(a∧¬p3) = ↑(p1 ∧ p2 ∧¬p3) = {p1 ∧ p2 ∧¬p3} ⊆ Q. FunctionABSREDU applies
this reasoning recursively on the input diagram, using function UVAR to find a vari-
ablehi ∈ H for each variablebi ∈ B. FunctionABSPRE implements the pre-image
computation based on Theorem 17.

Theorem 18. For a monotone MixTSM andϕ ∈ Lµ, algorithmRIS(ϕ) in Figure 5
returns the symbolic representation of‖ϕ‖Mr .

PROOF. The proof is by structural induction onϕ. In particular, the base case follows
from Theorem 16. The inductive case for boolean operations follows from the fact that
RED is semantics-preserving and acts homomorphically with respect to propositional
operations on monotone elements. For the inductive case of♦ϕ, Corollary 4 shows
thatREDU can be computed usingredU implemented byABSREDU, and Theorem 17
shows that♦ can be computed over the simplified transition relations. �

The main difference between the symbolic implementations of SIS and our RIS is
the extraABSREDU operation in functionABSPRE (line 29 in Figure 5).ABSREDU
is similar to existential quantification (BDDEXISTS) of BDDs, with one exception:
BDDEXISTS usesBDDOR in each iteration, butABSREDU uses oneBDDAND and two
BDDITE operations. Thus,ABSREDU has the same complexity asBDDEXISTS, and
symbolic implementations of RIS and SIS also have the same complexity. This means
that the extra precision of RIS comes “for free”, without a penalty in complexity.

8. Experiments

To empirically evaluate the cost and performance of RIS versus SIS, we have imple-
mented symbolic algorithms for computing both of them usingthe CUDD library [31],
and analyzed reachability and non-termination propertiesover a realistic model. While
our algorithm in Figure 5 can analyze anyµ-calculus formula, our experiments consid-
ered just reachability and non-termination properties because of their practical interest.

We have conducted the experiments on instances of a templateprogramProg1
shown in Figure 7(a). For a natural numbern, an instance ofProg1 usesn integer vari-
ablesx[0], . . . , x[n− 1] and consists ofn blocksB(i) shown in Figure 7(b), followed
by a loop. An instance ofProg1 for n = 1 is shown in Figure 7(c).

34

Prog1 (int n)
int x[n]

B(0)
B(1)
.
.
.

B(n-2)
B(n-1)

L: while (x[n-1]<=0)
x[n-1]=x[n-1]-1

END:

B(int i)
if (x[i]>5)
x[i]=x[i]+1

else if (x[i]>0)
x[i]=x[i]+2

else
x[i]=x[i]-2

while (x[i]>0)
if (odd(x[i]))

x[i]=-1
else
x[i]=x[i]+1

L0: if (x[0]>5)
x[0]=x[0]+1

else if (x[0]>0)
x[0]=x[0]+2

else
x[0]=x[0]-2

L1: while (x[0]>0)
if (odd(x[0]))

x[0]=-1
else

x[0]=x[0]+1

L: while (x[0]<=0)
x[0]=x[0]-1

END:

(a) (b) (c)

Figure 7: TemplateProg1(n) for experiments: (a) the template, (b) definition of blockB(i), and (c) the
instanceProg1(1).

We used the method of [18] to build an abstract MixTS using theset of predicates
{x[0] > 0, x[1] > 0, . . . , x[n− 1] > 0} ∪ {odd(x[0]), odd(x[1]), . . . , odd(x[n− 1])}.
We model checked the following reachability (least fixed-point) and non-termination
(greatest fixed-point) properties with respect to the standard and the reduced semantics:

Prop1 : EF (pc = L)
Prop2 : EG(pc 6= END)
Prop3 : EG(pc 6= END ∧ (x[0] > 0 ∨ x[1] > 0 ∨ · · · ∨ x[n− 1] > 0)),

wherepc refers to program counter.
The templateProg1 is based on an example from [29] that shows that using

GKMTSs can improve the precision of model checking. For example, consider the
instanceProg1(1) shown in Figure 7(c). A part of the corresponding abstract MixTS
is shown in Figure 8. Here, the propertyProp1 is unknown ina1 with respect to SIS.
As shown in [29], the precision can be improved by adding amusthyper-transition
a1

must
−−→ {a2, a4}. We use this template to show that the same result can be also

achieved using RIS.
For both SIS and RIS, we measure the size of the abstract models using the number

of BDD nodes, the total analysis time, the number of iterations of the fixpoint compu-
tation, and the time spent in theABSREDU operation for RIS. To compare the precision
of the results, we consider two sets of initial states:

I1 : (x[0] ≤ 0 ∧ x[1] ≤ 0 ∧ · · · ∧ x[n− 1] ≤ 0)

I2 : (x[0] > 0 ∧ x[1] > 0 ∧ · · · ∧ x[n− 1] > 0)

and check whether conclusive results can be obtained over them.
The results are summarized in Figure 9. The top part of the table shows that RIS

models enjoy significantly smaller encodings than their SIScounterparts, due to re-
stricted transition relations (see Theorem 17). Note that the same simplification cannot

35

a2 a4a3

a5

a1

x > 0
odd(x) x > 0 x > 0

even(x)

x ≤ 0
odd(x)

x > 0
odd(x)

x ≤ 0
odd(x)

x ≤ 0
even(x)

a6 a7

pc = L0

pc = L1

pc = L

Figure 8: A partial view of a MixTS approximatingProg1(1) from Figure 7(c).

n SIS RIS

M
od

el
S

iz
e

100 370,070 216,689
200 1,460,270 853,389
250 2,275,196 1,329,215

Prop. n Analysis (sec.) Iter. I1 I2 Analysis (sec.) ABSREDU (sec.) Iter. I1 I2

P
r
o
p
1 100 2.20 301

T U
3.60 0.74 401

T T200 15.36 601 27.77 6.45 801
250 28.92 751 55.19 13.40 1001

P
r
o
p
2 100 3.60 203

T U
0.03 < 10−4 2

T T200 27.16 403 0.12 < 10−4 2
250 54.62 503 0.19 < 10−4 2

P
r
o
p
3 100 33.96 400

F F
21.24 4.5 400

F F200 395.24 800 258.72 42.44 800
250 1108.67 1000 546.88 101.20 1000

Figure 9: Experimental results for SIS and RIS overProg1 (T, F and U denoteTrue, FalseandUnknown,
respectively).

be applied to SIS, since SIS does not use a reduction operatorto compensate for the
loss of precision over the states other thanα[S]. RIS is more precise than SIS: for the
two sets of initial states, RIS produces conclusive resultsfor both of them with respect
to the three properties being checked, whereas SIS cannot decide whetherProp1 and
Prop2 hold inI2. As expected, the extra precision of RIS does not cause a complexity
penalty: the experiments show that the increases of the analysis time with respect to
the size of the models for both RIS and SIS are comparable. In all of the cases, the time
spent inABSREDU, which represents the main difference between the two semantics,
comprises roughly 20% - 25% of the total time.

36

n SIS RIS
M

od
el

S
iz

e
100 245,584 145,284
200 971,062 570,462
250 1,513,796 888,046

Prop. n Analysis (sec.) Iter. I1 I2 Analysis (sec.) ABSREDU (sec.) Iter. I1 I2

P
r
o
p
4 100 0.48 603

U T
0.27 < 10−4 403

T T200 2.15 1203 0.97 < 10−4 803
250 3.46 1503 1.44 0.01 1003

Figure 10: Experimental results for SIS and RIS overProg2.

Prog2 (int n)
int x[n]

C(0)
C(1)
.
.
.
C(n-2)
C(n-1)
END:

C(int i)
if (nondet)

x[i]=x[i]+1
if (nondet)
x[i]=x[i]+1

else
x[i]=x[i]*x[i]-10

else
x[i]=x[i]*x[i]-10

if (x[i]>0)
x[i]=x[i]+1

else
x[i]=x[i]-1

(a) (b)

Figure 11: TemplateProg2(n) for experiments: (a) the template, and (b) definition of block C(i).

Note that RIS and SIS may require different numbers of iterations of fixpoint com-
putation: in the above experiments, RIS required more iterations than SIS for the reach-
ability propertyProp1, but fewer iterations than SIS for the non-termination property
Prop2. These differences are determined by the structure of the model and by the
fixpoint type (least or greatest) being computed.

As another example, we checked a reachability property on instances of the tem-
plateProg2 shown in Figure 11(a).

Each instance is abstracted using the set of predicates
{x[0] > 0, x[1] > 0, . . . , x[n− 1] > 0}. The property checked wasProp4 : EF (pc =
END). The result of model checking was evaluated on the same initial sets of states,I1
andI2. The results are summarized in Figure 10. In this case, whilestill more precise,
RIS requires fewer iterations than SIS.

These experiments suggest that using the more precise RIS semantics may improve
the overall performance of model checking, making it a possible alternative to SIS in
practice. We leave further investigation along this direction for future work.

37

9. Related Work and Discussion

Consistency. In this paper, we investigated partial TSs and models from the perspective
of abstract model checking. Partial TSs are also used as specifications of a system’s
behavior [25, 24]. In this case, semantic consistency is replaced by implementability.
A partial transition systemM is implementableiff there exists a BTSB that refinesM
through some mixed simulation. Such a BTS is calledan implementation. There is a
subtle, but crucial, difference between implementabilityand semantic consistency as
defined in this paper. We assume that the statespace of an abstract transition system is
an abstract domain, and that it is related to the concrete domain by a given soundness
relationρ. In our case, a partial TSM is semantically consistent iff there exists a
BTS that refinesM via thisρ. On the other hand, the definition of implementability
leaves the choice of the mixed simulation relation open. Thus, semantic consistency is
stronger than implementability.

For example, the MixTSM2 in Figure 1 is not semantically consistent. It is, how-
ever, implementable. LetB be a BTS(Z, R), whereZ is the set of integers, andR is
defined as follows:

R , {(x, x′) | (x > 0 ∧ odd(x) ∧ x′ = 2)} ∪

{(x, x′) | (x > 0 ∧ even(x) ∧ x′ = −3)} ∪

{(x, x′) | (x > 0 ∧ even(x) ∧ x′ = −2)} ∪

{(x, x′) | (x < 0 ∧ x′ = −3)} .

Then,B refinesM2 through the following mixed simulation relation:

{(c, a1) | c > 0 ∧ odd(c)} ∪ {(c, a2) | c > 0 ∧ even(c)} ∪

{(c, a3) | c ≤ 0 ∧ odd(c)} ∪ {(c, a4) | c ≤ 0 ∧ even(c)}

Note that in this case, no concrete state inB is approximated by botha1 anda2. There-
fore, the source of inconsistency discussed in Section 4 does not exist.

In [21], Huth et al. provided themix condition(MC) on MixTSs to ensure im-
plementability. A MixTSM = 〈S,Rmay, Rmust〉 satisfies the mix condition iff for
all (a, b) ∈ Rmust, there exists someb′ ∈ S such thatb′ refinesb, and (a, b′) ∈
Rmust∩Rmay. For example, the MixTSM2 in Figure 1 satisfies this condition, whereas
M4 does not. However,M2 is semantically inconsistent, andM4 is consistent. There-
fore, MC is neither sufficient nor necessary for semantic consistency.

The complexity of deciding implementability of a partial TSis EXPTIME-
complete [4, 3, 1]. On the other hand, semantic consistency can be decided in time
polynomial in the size of the system; this is immediate from Theorem 5. This result is
not surprising since semantic consistency is stronger thanimplementability.

Huth et al. showed that the KMTS models are logically consistent [22]. To ensure
logical consistency of GKMTSs, de Alfaro et al. defined the condition that requires
that every destination of amusthyper-transition intersects with the destination of a
may transition from the same state [13]. This can be viewed as an analogue of the
conditionRmust ⊆ Rmay required by KMTSs. In this paper, we showed that such a
condition is not necessary for logical consistency. We fixedthis problem by defining

38

a relaxed structural condition which captures both logicalconsistency and semantic
consistency of partial models.

Partial model consistency does not have to be based on mixed simulation. For
example, a partial model may be built for abstract model checking of temporal logic
properties without the next operator, e.g., as described in[24]. Exploring connections
between semantic and logical consistency in this case and providing algorithms for
deciding them are interesting questions which we leave for future work.

Expressiveness. The work of Godefroid and Jagadeesan [15], and Gurfinkel and
Chechik [17] showed that the models in the KMTS family have the same expressive
power and are equally precise for SIS. Dams and Namjoshi [12]showed that the three
families considered in this paper are subsumed by tree automata. We completed the pic-
ture by proving that the three families are equivalent as well. Specifically, we showed
that KMTSs, MixTSs and GKMTSs are relatively complete (in the sense of [12]) with
one another.

We did not consider Hyper TSs (HTSs) [30] which allow for bothmustandmay
hyper-transitions. As pointed out in [30],mayhyper-transitions can be eliminated by
increasing the abstract statespace, making HTSs exactly asexpressive as GKMTSs.

Our results bring forth several interesting research directions. Since the three mod-
eling formalisms are equally expressive, it would be interesting to study how to re-
late the results of model checking with respect to thorough semantics for one formal-
ism, e.g., for KMTSs [7, 16], to the ones for another formalism. Another direction is
formalizing our translations within the abstract interpretation framework using Galois
connections [9].

Reduced Inductive Semantics. Our reduction operatorRED is an instance of normaliza-
tion from Abstract Interpretation [9]. There it is often used to provide a canonical rep-
resentation of equivalent abstract properties. The symbolic implementationABSREDU
is similar to the semantic minimization of 3-valued propositional formulas [28].

Regarding the ability to improve model checking results, the reduction operator is
similar to the focus and defocus operations defined in [11]. According to the definition
of RED, a formula holds in an abstract statea if (i) γ(a) can be split into (i.e., focused)
different parts approximated by more precise states thana, and the formula holds in
each of these states, or (ii)γ(a) can be covered (i.e., defocused) by a set approximated
by a state less precise thana, and the formula holds in it. In particular, if the partial
model is monotone, then the reduction operator resembles the focus operation only.

For a partial modeling formalism, the ability to support themonotonic abstraction
refinement framework allows us to define a best model over an abstract statespace such
that model checking on it is more precise than on other modelsover the statespace. In
the context of SIS, as shown in [29], KMTSs is inappropriate for monotonic abstraction
refinement — extramaytransitions required by the conditionRmust ⊆ Rmay introduce
a loss of precision, and therefore, a best KMTS model over an abstract statespace
may not exist. However, this is not a problem for MixTSs [10, 19] which support
monotonic abstraction refinement by allowing must-only transitions. GKMTSs achieve
the same goal by usingmusthyper-transitions [29], which essentially ensure that no
extramaytransitions are added. Theorem 14 shows that our new inductive semantics,
RIS, preserves the precision order of partials models with respect to SIS. Therefore, the

39

best abstract model for SIS is also the best one for RIS, and both MixTSs and GKMTSs
still support monotonic abstraction refinement under RIS.

In this paper, we use a notion ofthorough semanticswith respect to afixedmixed
simulation (i.e., soundness) relation: by Definition 6, a formulaϕ is true in a model
M with respect to thorough semantics if and only if it is true inall conretizations of
M with respect to a fixed soundness relationρ. In contrast, in the original definition
of Bruns and Godefroid [7],ϕ is true inM under thorough semantics if and only if
it is true in all concrete structures that mix-simulateM. Thus, our definition is more
restrictive (i.e., it considers fewer concrete structures), but is more appropriate in the
context of software model-checking where the soundness relation is fixed a priori. We
leave further investigations of model-checking complexity and other properties of our
definition to future work.

For the original definition of thorough semantics, Godefroid and Huth investi-
gated self-minimizing temporal formulas whose inductive and thorough semantics co-
incide [14]. Through a semantic minimization process, every Lµ formula can be trans-
formed into an equivalent formula that is self-minimizing,but may be exponentially
larger than the original one. Several results along this line, based on the comparison
of SIS and thorough semantics, have been reported, e.g., [14, 17, 27, 2]. In this paper,
we have used a reduction operator to improve precision of inductive semantics based
on the exploration of the approximation ordering over the abstract domain. Our ap-
proach is orthogonal to semantic minimization. For example, consider the modelM5

defined in Section 6.1 (its transition systemM5 is shown in Figure 2) and the formula
ψ , EF (¬p ∧ q), wherep and q denote predicates(x > 0) andodd(x), respec-
tively. ψ is self-minimizing. However, its value ina1 is unknown under SIS, but is true
under RIS. We leave further investigation of the relation between RIS and semantic
minimization of temporal logic formulas for future work.

We have shown that symbolic model checking of RIS and SIS havethe same com-
plexity. An interesting question left for future study is whether there exists an induc-
tive semantics that is more precise than RIS, and whether it can be symbolically model
checked with the same complexity as RIS.

10. Conclusion

Several types of partial transition systems (PTSs) have been developed over the
years to support abstract model checking of complex temporal formulas. Some were
claimed to be more precise; some had a more efficient decisionprocedure; others were
more succinct. In this paper, we have studied these PTSs, partitioned into three fam-
ilies – KMTSs, MixTSs and GKMTSs. We have compared them with respect to two
fundamental ways of using PTSs: as objects for abstracting concrete systems, and as
models for checking temporal properties.

Specifically, we studied the connection between semantic and logical consistency
of TSs, which is necessary to ensure meaningful abstract model checking. We showed
that these notions are not equivalent. However, we proved that they coincide for mono-
tone PTSs and provided an effective structural condition which is necessary and suffi-
cient to guarantee consistency.

40

We have also compared the expressive power of the three families of PTSs w.r.t.
their ability to capture abstractions. We showed, by defining semantics-preserving
transformations between the formalisms, that while there are structural differences,
all three formalisms are equally expressive. Thus, neitherhyper-transitions nor restric-
tions onmayandmusttransitions affect expressiveness. They do, of course, affect the
succinctness of the resulting TSs.

We then turned to looking at the power of these formalisms w.r.t. the cost and
precision of model checking. We have introduced a new inductive semantics, RIS, for
PTSs and showed not only that it is more precise than the standard semantics, SIS,
but also that model-checking under this semantics for MixTSs and GKMTSs has the
same results. We have further described a symbolic implementation of model checking
with respect to RIS. The outcome is an algorithm that combines the efficient symbolic
encoding of MixTSs with the model checking precision of GKMTSs. The symbolic
algorithm was evaluated empirically, and our preliminary experiments suggest that RIS
should be a good alternative to SIS for predicate abstraction-based model checkers. We
leave further experimental comparisons between the two semantics for future work.

We hope that the results of our investigation help eliminatethe confusion about the
expressive power of the different partial transition systems and enable their increasing
usage as underlying formalisms for abstract model checking.

Acknowledgments.We thank Sagar Chaki, Orna Grumberg, and Yael Meller for com-
ments on the paper; and Laurie Lugrin for her help with the experiments.

References

[1] Antonik, A., September 2008. Decision Problems for Partial Specifications: Em-
pirical and Worst-Case Complexity. Ph.D. thesis, ImperialCollege, London, UK.

[2] Antonik, A., Huth, M., 2006. Efficient Patterns for ModelChecking Partial State
Spaces in CTLintersectionLTL. Electronic Notes in Theoretical Computer Sci-
ence 158, 41–57.

[3] Antonik, A., Huth, M., Larsen, K. G., Nyman, U., Wasowski, A., March 2008.
Complexity of Decision Problems for Mixed and Modal Specifications. In: Pro-
ceedings of the 11th International Conference of Foundations of Software Science
and Computational Structures (FOSSACS’08). Vol. 4962 of LNCS. pp. 112–126.

[4] Antonik, A., Huth, M., Larsen, K. G., Nyman, U., Wasowski, A., 2009.
EXPTIME-complete Decision Problems for Modal and Mixed Specifications.
Electronic Notes in Theoretical Computer Science 242 (1), 19–33.

[5] Bagnara, R., Hill, P., Zaffanella, E., 2006. Widening Operators for Powerset Do-
mains. International Journal on Software Tools for Technology Transfer (STTT)
8 (4-5), 449–466.

[6] Bruns, G., Godefroid, P., July 1999. Model Checking Partial State Spaces with
3-Valued Temporal Logics. In: Proceedings of the 11th International Conference
on Computer-Aided Verification (CAV’99). Vol. 1633 of LNCS.pp. 274–287.

41

[7] Bruns, G., Godefroid, P., August 2000. Generalized Model Checking: Reasoning
about Partial State Spaces. In: Proceedings of the 11th International Conference
on Concurrency Theory (CONCUR’00). Vol. 1877 of LNCS. pp. 168–182.

[8] Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A., 2003. Multi-Valued
Symbolic Model-Checking. ACM Transactions on Software Engineering and
Methodology (TOSEM) 12 (4), 1–38.

[9] Cousot, P., Cousot, R., 1992. Abstract Interpretation Frameworks. Jornal of Logic
and Computation 2 (4), 511–547.

[10] Dams, D., Gerth, R., Grumberg, O., 1997. Abstract Interpretation of Re-
active Systems. ACM Transactions on Programming Languagesand Systems
(TOPLAS) 2 (19), 253–291.

[11] Dams, D., Namjoshi, K. S., July 2004. The Existence of Finite Abstractions for
Branching Time Model Checking. In: Proceedings of the 19th IEEE Symposium
on Logic in Computer Science (LICS’04). pp. 335–344.

[12] Dams, D., Namjoshi, K. S., January 2005. Automata as Abstractions. In: Pro-
ceedings of the 6th International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI’05). Vol. 3385 of LNCS.pp. 216–232.

[13] de Alfaro, L., Godefroid, P., Jagadeesan, R., July 2004. Three-Valued Abstrac-
tions of Games: Uncertainty, but with Precision. In: Proceedings of the 19th
IEEE Symposium on Logic in Computer Science (LICS’04). pp. 170–179.

[14] Godefroid, P., Huth, M., June 2005. Model Checking v.s.Generalized Model
Checking: Semantic Minimizations for Temporal Logics. In:Proceedings of the
20th IEEE Symposium on Logic in Computer Science (LICS’05).pp. 158–167.

[15] Godefroid, P., Jagadeesan, R., January 2003. On the Expressiveness of 3-Valued
Models. In: Proceedings of the 4th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI’03). Vol. 2575 of LNCS.
pp. 206–222.

[16] Godefroid, P., Piterman, N., January 2009. LTL Generalized Model Checking
Revisited. In: Proceedings of the 10th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI’09). Vol. 5403 of LNCS.
pp. 89–104.

[17] Gurfinkel, A., Chechik, M., October 2005. How Thorough is Thorough Enough.
In: Proceedings of 13th IFIP WG 10.5 Advanced Research Working Conference
on Correct Hardware Design and Verification Methods (CHARME’05). Vol. 3725
of LNCS. pp. 65–80.

[18] Gurfinkel, A., Chechik, M., March 2006. Why Waste a Perfectly Good Abstrac-
tion? In: Proceedings of the 12th International Conferenceon Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’06). Vol. 3920 of
LNCS. pp. 212–226.

42

[19] Gurfinkel, A., Wei, O., Chechik, M., January 2006. Systematic Construction
of Abstractions for Model-Checking. In: Proceedings of the7th International
Conference on Verification, Model Checking, and Abstract Interpretation (VM-
CAI’06). Vol. 3855 of LNCS. pp. 381–397.

[20] Gurfinkel, A., Wei, O., Chechik, M., August 2006. YASM: A Software Model-
Checker for Verification and Refutation. In: Proceedings ofthe 18th International
Conference on Computer-Aided Verification (CAV’06). Vol. 4144 of LNCS. pp.
170–174.

[21] Huth, M., Jagadeesan, R., Schmidt, D., 2004. A Domain Equation for Refinement
of Partial Systems. Mathematical Structures in Computer Science 14 (4), 469–
505.

[22] Huth, M., Jagadeesan, R., Schmidt, D. A., April 2001. Modal Transition Systems:
A Foundation for Three-Valued Program Analysis. In: Proceedings of 10th Euro-
pean Symposium on Programming (ESOP). Vol. 2028 of LNCS. pp.155–169.

[23] Kozen, D., 1983. Results on the Propositionalµ-calculus. Theoretical Computer
Science 27, 334–354.

[24] Larsen, K. G., Nyman, U., Wasowski, A., September 2007.On Modal Refine-
ment and Consistency. In: Proceedings of the 18th International Conference on
Concurrency Theory (CONCUR’07). Vol. 4703 of LNCS. pp. 105–119.

[25] Larsen, K. G., Thomsen, B., July 1988. A Modal Process Logic. In: Proceedings
of the 3rd Annual Symposium on Logic in Computer Science (LICS ’88). pp.
203–210.

[26] Larsen, P., July 1991. The Expressive Power of ImplicitSpecifications. In: Pro-
ceedings of the 18th International Colloquium on Automata,Languages and Pro-
gramming (ICALP’91). Vol. 510 of LNCS. pp. 204–216.

[27] Nejati, S., Gheorghiu, M., Chechik, M., November 2006.Thorough Checking Re-
visited. In: Proceedings of the 6th International Conference on Formal Methods
in Computer-Aided Design (FMCAD’06). pp. 106–116.

[28] Reps, T. W., Loginov, A., Sagiv, S., July 2002. SemanticMinimization of 3-
Valued Propositional Formulae. In: Proceedings of the 17thIEEE Symposium on
Logic in Computer Science (LICS’02). pp. 40–54.

[29] Shoham, S., Grumberg, O., March 2004. Monotonic Abstraction-Refinement for
CTL. In: Proceedings of the 10th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’04). Vol. 2988 of
LNCS. pp. 546–560.

[30] Shoham, S., Grumberg, O., August 2006. 3-Valued Abstraction: More Precision
at Less Cost. In: Proceedings of the 21th IEEE Symposium on Logic in Computer
Science (LICS’06). pp. 399–410.

43

[31] Somenzi, F., 2001. CUDD: CU Decision Diagram Package Release.

[32] Wei, O., Gurfinkel, A., Chechik, M., January 2009. MixedTransition Systems
Revisited. In: Proceedings of the 10th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI’09). Vol. 5403 of LNCS.
pp. 349–365.

44

