
RuMoR: Monitoring and Recovery of BPEL Applications

Jocelyn Simmonds, Shoham Ben-David, Marsha Chechik
Department of Computer Science

University of Toronto
Toronto, ON M5S 3G4, Canada

{jsimmond, shoham, chechik}@cs.toronto.edu

ABSTRACT
Web service applications are distributed processes that are
composed of dynamically bounded services. Since the over-
all system may only be available at runtime, static analysis
is difficult to perform in this setting. Instead, these sys-
tems are many times checked dynamically, by monitoring
their behavior during runtime. Our tool performs monitor-
ing of web service applications, and, when violations are dis-
covered, we automatically propose and rank recovery plans
which users can then select for execution. Properties, spec-
ified using property patterns, are transformed into finite-
state automata. Finite execution traces of web services de-
scribed in BPEL are checked for conformance at runtime.
For some property violations, recovery plans essentially in-
volve“going back”– compensating the executed actions until
an alternative behaviour of the application is possible. For
other violations, recovery plans include both “going back”
and “re-planning” – guiding the application towards a de-
sired behaviour. These plans are generated using techniques
adapted from AI planning. MC: Do not like the last
sentence. Maybe: just remove “AI”?

Keywords
Web services, behavioural properties, runtime monitoring,
recovery, planning, SAT solving.

THIS IS AN OLD VERSION – paper2.tex is the
correct version

1. INTRODUCTION
The Service-Oriented Architecture (SOA) framework is a

popular guideline for building web-based applications. A
SOA-based application is an orchestration of services offered
by (possibly third-party) components. These components –
which can be written in a traditional compiled language such
as Java, or in an XML-centric language such as BPEL [5] –
communicate through published interfaces. Since an appli-
cation is a composition of several distributed business pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

cesses, its correctness depends on the correctness of its part-
ners and their interactions.

Web service applications are distributed systems, where
partners are dynamically discovered and are going on- and
off-line as the application runs. Their failures can be caused
by bugs in the service orchestration, e.g., due to faulty logic
and bad data manipulation, or by problems with hardware,
network or system software, or by incorrect invocations of
services. With runtime failures of web services inevitable, in-
frastructures for running them typically include the ability
to define faults and compensatory actions for dealing with
exceptional situations. Specifically, the compensation mech-
anism is the application-specific way of reversing completed
activities. For example, the compensation for booking a car
would be to cancel the booking.

Existing infrustructures for web services, e.g., the BPEL
engine, include mechanisms for fault definition, for specifica-
tion of compensation actions, and for dealing with termina-
tion. When an error is detected at runtime, they typically
try to compensate all completed activities for which com-
pensations are defined, with the default compensation being
the reversal of the most recently completed action. This
approach presents several major problems: (1) The applica-
tion is often allowed to continue running until the fault is
discovered, thus executing and then compensating for a lot
of unnecessary and potentially expensive activities. (2) It is
hard to determine, a priori, the state of the application after
executing compensation mechanisms. (3) There might be
multiple compensations available, based on global informa-
tion, but the automatic application of compensations does
not allow the user to choose between them.

This paper describes RuMoR, a user-guided recovery tool
for web services. This tool takes as input the target BPEL
application, a set of safety and liveness properties of the
application (specified using the Specification Pattern Sys-
tem [1]), and the maximum length and number of recovery
plans. Our approach has three phases: Preprocessing, Mon-
itoring and Recovery. Properties are translated into moni-
tors during the Preprocessing phase. During the Monitoring
phase, RuMoR runs these monitors in parallel with the ap-
plication, stopping when one of the monitors is about to be
violated. This triggers the Recovery phase, where various
techniques are used to generate recovery plans.

For violations of safety properties, recovery plans use com-
pensation actions to allow the application to “go back” to an
earlier state at which an alternative path that potentially
avoids the fault is available. We call such states “change
states”; these include user choices and certain partner calls.

(a)

(b)

Figure 1: (a) Tool architecture; (b) Recovery plan
generation for liveness properties.

Failure of a liveness monitor during execution means that
some required actions have not been seen before the ap-
plication tried to terminate, and the recovery plan should
attempt to perform these actions.

We generate such plans by adapting techniques from the
field of AI planning. The application itself defines a plan-
ning domain, i.e., which events can be executed and when.
A recovery plan is a sequence of events that, starting at the
current error state, leads to an application state from which
the current liveness property can be satisfied. We call these
states“goal states”, and compute them through static analy-
sis during the Preprocessing phase. When there are multiple
recovery plans available, RuMoR automatically ranks them
based on user preferences (e.g., the shortest, the cheapest,
the one that involves the minimal compensation, etc.) and
enable the application user to choose among them.

2. DESIGN AND IMPLEMENTATION
We have implemented RuMoR using a series of publicly

available tools and several short (200-300 lines) new Python
or Java scripts. The Preprocessing and Monitoring phases of
our tool are the same for both safety and liveness properties,
but different components are required for generating plans
from the two types of properties. We show the architecture
of our tool in Fig. 1a (rectangles and ovals are components
and artifacts, respectively).

Developers create properties for their web services using
property patterns and system events. During the prepro-
cessing phase, the Property Translator (PT) component re-
ceives the specified properties and turns them into monitors.
The LTS Extractor (LE) component extracts an LTS model
of the BPEL program (using the WS-Engineer extension for
LTSA [3]) and creates a second LTS model with compen-
sation. The LTS Analyzer (LA) computes goal links and
change states using the techniques described in [6].

During the execution of the application, the Event In-
terceptor (EI) component intercepts application events and
sends them to the Monitor Manager (MM) for analysis. MM
updates the state of each active monitor, until an error has

been found (which activates the recovery phase) or all part-
ners terminate. MM also stores the intercepted events.

During the recovery phase, artifacts from both the pre-
processing and the runtime monitoring phases are used to
generate recovery plans. The Safety Plan Generator gen-
erates recovery plans that can only compensate executed
activities. For liveness properties, plans can compensate ex-
ecuted activities and execute new activities. In this case,
the Liveness Plan Generator first generates the correspond-
ing planning problem using the model of the application,
error trace and violated monitor. The planning problem is
expressed in STRIPS [2] – an input language to the plan-
ner Blackbox [4], which we use to convert it into a SAT
instance. The maximum plan length is used to limit the size
of the planning graph generated by Blackbox, effectively lim-
iting the size of the plans that can be produced. As shown
in Fig. 1b, we modify the initial SAT instance in order to
produce alternative plans. Plans are extracted from the sat-
isfying assignments produced by the SAT solver SAT4J and
converted into BPEL for displaying and execution. SAT4J
is an incremental SAT solver, i.e., it saves results from one
search and uses them for the next. For our method of gen-
erating multiple plans, where each SAT instance is more
restricted than the previous one, this is particularly useful,
leading to efficient analysis.

All computed plans are presented to the application user
through the Violation Reporter (VR), and the chosen plan
is executed by the Plan Executor (PE). VR generates a web
page snippet with violation information, as well as a form
for selecting a recovery plan. Developers must include this
snippet in the default error page, so that the computed re-
covery plans can be shown when an error is detected. If
no monitor is violated during the execution of the chosen
plan (MM updates the states of the active monitors during
the plan execution), the framework switches back to runtime
monitoring.

3. CONCLUSION
We presented RuMoR, a recovery tool based on monitor-

ing and planning to detect and fix runtime errors detected in
BPEL applications. Recovery plans are generated by doing
a combined static and dynamic analysis of the target appli-
cation and user-specified properties of the application. Our
experience [6] shows that we can effectively generate user-
expected plans, and experiments so far suggest scalability
with respect to runtime complexity.

4. REFERENCES
[1] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in Property

Specifications for Finite-State Verification. In ICSE’99,
pages 411–420, May 1999.

[2] R. Fikes and N. J. Nilsson. STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving. Artif.
Intell., 2(3/4):189–208, 1971.

[3] H. Foster, S. Uchitel, J. Magee, and J. Kramer. LTSA-WS: a
Tool for Model-Based Verification of Web Service
Compositions and Choreography. In Proc. of ICSE’06, pages
771–774, 2006.

[4] H. A. Kautz and B. Selman. Unifying SAT-based and
Graph-based Planning. In IJCAI’99, pages 318–325, 1999.

[5] OASIS. Web Services Business Process Execution Language
Version 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html, Accessed January 2009.

[6] J. Simmonds, S. Ben-David, and M. Chechik. Guided
Recovery for Web Service Applications. In Proc. of FSE’10,
2010. To appear.

APPENDIX
A. DEMO

Demonstration plan:

1. Explain example application

2. Preprocessing:

(a) Convert properties into monitors

(b) Generate the application model

3. Monitoring and Recovery:

(a) Execute scenario S1 (S2), which violates P1 (P2)

(b) Generate planning domain

(c) Generate multiple recovery plans

(d) Execute a plan chosen by the audience

A.1 Example - the Trip Advisor System (TAS)
Fig. 2a shows the BPEL-expressed workflow of the Trip

Advisor System. In a typical scenario of this system, a cus-
tomer either chooses to arrive at her destination via a rental
car (and thus books it), or via an air/ground transportation
combination, combining the flight with either a rental car
from the airport or a limo. The requirement of the system
is to make sure the customer has the transportation needed
to get to her destination (this is a desired behavior which
we refer to as P1) while keeping the costs down, i.e., she is
not allowed by her company to reserve an expensive flight
and a limo (this is a forbidden behavior which we refer to as
P2).
TAS interacts with four external services: 1) book a rental

car (bc), 2) book a limo (bl), 3) book a flight (bf), and 4)
check price of the flight (cf). The result of cf is then passed
to local services to determine whether it is expensive (expF)

or cheap (cheapF). Service interactions are preceded by a
symbol.

The workflow begins with <receive>’ing input (ri), fol-
lowed by <pick>’ing (indicated by labeled) either
the car rental (onMessage onlyCar) or the air/ground trans-
portation combination (onMessage carAndFlight). The latter
choice is modeled using a <flow> (scope enclosed in bold,
blue lines , labeled) since air (getFlight) and ground
transportation (getCar) can be arranged independently, so
they are executed in isolation. The air branch sequentially
books a flight, checks if it is expensive and updates the state
of the system accordingly. The ground branch <pick>’s be-
tween booking a rental car and a limo. The end of the
workflow is marked by a <reply> activity, reporting that
the destination has been reached (rd).

A.2 Preprocessing
Fig. 2b shows the TAS LTS model (with compensation).

To increase legibility, each transition represents an action
and its compensation, labeled in the form a/ā, where a is
the application activity and ā is its compensation. Monitor
A1 in Fig. 3a represents P1: if the application terminates
before rd appears, the monitor moves to the (error) state 3.
State 1 is a good state since the monitor enters it once the
booked transportations reach the destination (rd). Monitor
A2 in Fig. 3b represents P2. It enters its error state (4) when

either a limo was booked and later an expensive flight, or
an expensive flight was booked first and then a limo.

A.3 Scenario S1

Consider the execution of TAS in which the customer chooses
the air/ground option (carAndFlight), and then tries to book
the flight before the car. In this example, there is a com-
munication problem with the flight system partner, and the
invocation of the cf service time outs. This scenario cor-
responds to the trace t1, depicted by dotted transitions in
Fig. 2b.

The application server detects that the cf invocation timed
out, and sends a TER event (not shown in Fig. 2b) to the
application. Our framework intercepts this TER event and
determines that executing it turns t1 into a failing trace,
because the monitor A1 would enter its error (red) state 3.
In response, our framework does not deliver the TER event
to the application, and instead initiates recovery.

If we set the maximum plan length to be 10, the Liveness
Plan Generator computes the plans shown in Fig. 4a. Plan
p0 is the shortest: if unable to obtain a price for the flight,
cancel the flight and reserve the car instead. Plans p1 and p2
also cancel the flight (since 8 is not a change state whereas
7 is) and then proceed to re-book it and then book the car,
regardless of the flight’s cost. Increasing the plan length,
we also get the option of taking the getCar transition out of
state 6, book the car and then the flight.

Fig. 5a shows the snippet generated by the Violation Re-
porter. Fig. 5b shows the (simplified) source code of such an
error reporting page, where the bolded line has the instruc-
tion to include the snippet, and Fig 5c shows a screen shot of
error.jsp after recovery plans for P1 have been computed.
We will pick one of these plans and execute it.

A.4 Scenario S2

In another scenario, the customer attempts to arrive at
her destination via a limo (bl) and an expensive flight (expF).
This corresponds to the trace t2, depicted by dashed transi-
tions in Fig. 2b. As the monitor A2 has a transition on expF
to an error state, our framework delays the execution of this
event from application state 21. In this example, executing
expF will make A2 enter its error state 4, so t2 is also a fail-
ing trace. The expF event is not delivered, and the recovery
phase is activated.

The Safety Plan Generator returns the recovery plans
shown in Fig. 4b. We add state names between transitions
for clarity and refer to plans rs to mean “recovery to state
s”. A given plan can also become a prefix for the follow-on
one. This is indicated by using the former’s name as part
of definition of the latter. For example, recovery to state 16
starts with recovery to state 18 and then includes two more
backward transitions, the last one with a non-empty com-
pensation. Plan r18 can avoid the error if, after its applica-
tion, the user chooses a cheap flight instead of an expensive
one. Executing plan r15 gives the user the option of chang-
ing the limousine to a rental car, and plan r2 – the option
of changing from an air/ground combination to just renting
a car. Both of these behaviours do not cause the violation
of A2.

B. TOOL MATURITY AND AVAILABILITY
The following components of our tool are still under devel-

opment: Property Translator, Event Interceptor, and Plan

(a) (b)

Figure 2: (a) Workflow of TAS; (b) corresponding LTS model.

(a) (b)

Figure 3: Monitors: (a) A1, (b) A2. Red states are shaded horizontally, green states are shaded vertically, and
yellow states are shaded diagonally.

(a)
p0 = 9

τ−→ 8
cancelF−→ 7

τ−→ 6
τ−→ 2

onlyCar−→ 3
bc−→ 4

p1 = 9
τ−→ 8

cancelF−→ 7
bf−→ 8

cf−→ 9
exp true−→ 10

expF−→ 11
getCar−→ 12

car−→ 13
bc−→ 4

p2 = 9
τ−→ 8

cancelF−→ 7
bf−→ 8

cf−→ 9
exp false−→ 14

cheapF−→ 11
getCar−→ 12

car−→ 13
bc−→ 4

(b)
r18 = 4

τ−→ 21
τ−→ 20

τ−→ 19
cancelF−→ 18 r6 = r15

τ−→ 6

r16 = r18
τ−→ 17

cancelL−→ 16 r2 = r6
τ−→ 2

r15 = r16
τ−→ 15 r1 = r2

τ−→ 1

Figure 4: Recovery plans for TAS: (a) plans of length ≤ 10 for Scenario S1; (b) plans for Scenario S2.

Executor. The tool is not available online, as it includes
IBM intellectual property.

(a) (b)

(c)

Figure 5: Violation reporting: (a) snippet.jsp, automatically generated snippet that contains recovery plans;
(b) error.jsp, the application error handling page; (c) error.jsp displayed on a browser.

