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Abstract. Imagine some program and a number of changes. If none of these
changes is applied (“yesterday”), the program works. If all changes are applied
(“today”), the program does not work. Which change is responsible for the fail-
ure? We present an efficient algorithm that determines the minimal set of failure-
inducing changes. Ourdelta debuggingprototype tracked down a single failure-
inducing change from 178,000 changed GDB lines within a few hours.

1 A True Story

The GDB people have done it again. The new release 4.17 of theGNU debugger [6]
brings several new features, languages, and platforms, but for some reason, it no longer
integrates properly with my graphical front-endDDD [10]: the arguments specified
within DDD are not passed to the debugged program. Something has changed within
GDB such that it no longer works for me. Something? Between the 4.16 and 4.17 re-
leases, no less than 178,000 lines have changed. How can I isolate the change that
caused the failure and makeGDB work again?

The GDB example is an instance of the “worked yesterday, not today” problem:
after applying a set of changes, the program no longer works as it should. In finding the
cause of the regression, thedifferencesbetween the old and the new configuration (that
is, the changes applied) can provide a good starting point. We call this techniquedelta
debugging—determining the causes for program behavior by looking at the differences
(thedeltas).

Delta debugging works the better thesmaller the differences are. Unfortunately,
already one programmer can produce so many changes in a day such that the differences
are too large for a human to trace—let alone differences between entire releases. In
general, conventional debugging strategies lead to faster results.

However, delta debugging becomes an alternative when the differences can benar-
rowed down automatically.Ness and Ngo [5] present a method used at Cray research
for compiler development. Their so-calledregression containmentis activated when the
automated regression test fails. The method takes ordered changes from a configuration
management archive and applies the changes, one after the other, to a configuration
until its regression test fails. This narrows the search space from a set of changes to a
single change, which can be isolated temporarily in order to continue development on
a working configuration.

0 To appear inProc. Joint 7th European Software Engineering Conference (ESEC) and 7th ACM
SIGSOFT International Symposium on the Foundations of Software Engineering (FSE-7),
Toulouse, France, September 1999. Copyrightc© 1999 Springer-Verlag.

staff/zeller/
mailto:zeller@acm.org
http://www.cert.fr/anglais/dprs/esec99.html
http://www.springer.de/comp/lncs/


Regression containment is an effective delta debugging technique in some settings,
including the one at Cray research. But there are several scenarios where linear search
is not sufficient:

Interference. There may be not one single change responsible for a failure, but acom-
bination of several changes:each individual change works fine on its own, but
applying the entire set causes a failure. This frequently happens when merging the
products of parallel development—and causes enormous debugging work.

Inconsistency. In parallel development, there may beinconsistent configurations—
combinations of changes that do not result in a testable program. Such configu-
rations must be identified and handled properly.

Granularity. A single logical change may affect several hundred or even thousand
lines of code, but only a few lines may be responsible for the failure. Thus, one
needs facilities tobreak changes into smaller chunks—a problem which becomes
evident in theGDB example.

In this paper, we present automated delta debugging techniques that generalize re-
gression containment such that interference, inconsistencies, and granularity problems
are dealt with in an effective and practical manner. In particular, ourdd+ algorithm

– detects arbitrary interferences of changes in linear time
– detects individual failure-inducing changes in logarithmic time
– handles inconsistencies effectively to support fine-granular changes.

We begin with a few definitions required to present the basicdd algorithm. We
show how its extensiondd+ handles inconsistencies from fine-granular changes. Two
real-life case studies using ourWYNOT prototype1 highlight the practical issues; in par-
ticular, we reveal how theGDB failure was eventually resolved automatically. We close
with discussions of future and related work, where we recommend delta debugging as
standard operating procedure after any failing regression test.

2 Configurations, Tests, and Failures

We first discuss what we mean by configurations, tests, and failures. Our view of a
configurationis the broadest possible:

Definition 1 (Configuration). Let C = {11, 12, . . . , 1n} be the set of all possible
changes1i . A change set c⊆ C is called aconfiguration.

A configuration is constructed by applying changes to abaseline.

Definition 2 (Baseline).An empty configuration c= ∅ is called abaseline.

Note that we do not impose any constraints on how changes may be combined; in
particular, we do not assume that changes are ordered. Thus, in the worst case, there are
2n possible configurations forn changes.

To determine whether a failure occurs in a configuration, we assume atesting func-
tion.According to thePOSIX1003.3 standard for testing frameworks [3], we distinguish
three outcomes:
1 WYNOT = “Worked Yesterday, NOt Today”



– The test succeeds (PASS, written here as✔)
– The test has produced the failure it was indented to capture (FAIL, ✘)
– The test produced indeterminate results (UNRESOLVED, ).2

Definition 3 (Test). The function test: 2C → {✘, ✔, } determines for a configura-
tion c ∈ C whether some given failure occurs (✘) or not (✔) or whether the test is
unresolved ().

In practice,testwould construct the configuration from the given changes, run a
regression test on it and return the test outcome.3

Let us now model our initial scenario. We have some configuration “yesterday” that
works fine and some configuration “today” that fails. For simplicity, we only consider
the changes present “today”, but not “yesterday”. Thus, we model the “yesterday” con-
figuration as baseline and the “today” configuration as set of all possible changes.

Axiom 1 (Worked yesterday, not today).test(∅) = ✔ (“yesterday”) and test(C) = ✘
(“today”) hold.

What do we mean by changes that cause a failure? We are looking for a specific
change set—those changes that make the program fail by including them in a configu-
ration. We call such changesfailure-inducing.

Definition 4 (Failure-inducing change set).A change set c⊆ C is failure-inducingif

∀c′ (
c ⊆ c′ ⊆ C → test(c′) 6= ✔

)

holds.

The set of all changesC is failure-inducing by definition. However, we are more
interested in finding theminimal failure-inducing subset ofC, such that removing any
of the changes will make the program work again:

Definition 5 (Minimal failure-inducing set). A failure-inducing change set B⊆ C is
minimal if

∀c ⊂ B
(
test(c) 6= ✘

)

holds.

And exactlythis is our goal:For a configurationC, to find a minimal failure-inducing
change set.

3 Configuration Properties

If every change combination produced arbitrary test results, we would have no choice
but to test all 2n configurations. In practice, this is almost never the case. Instead, con-
figurations fulfill one or more specificpropertiesthat allow us to devise much more
efficient search algorithms.

2 POSIX1003.3 also listsUNTESTEDandUNSUPPORTEDoutcomes, which are of no relevance here.
3 A single test case may take time. Recompilation and re-execution of a program may be a matter

of several minutes, if not hours. This time can be considerably reduced by smart recompilation
techniques [7] or caching derived objects [4].



The first useful property ismonotony:once a change causes a failure, any configu-
ration that includes this change fails as well.

Definition 6 (Monotony). A configurationC is monotoneif

∀c ⊆ C
(
test(c) = ✘ → ∀c′ ⊇ c (test(c′) 6= ✔)

)
(1)

holds.

Why is monotony so useful? Because once we know a change set doesnot cause a
failure, so do all subsets:

Corollary 1. LetC be a monotone configuration. Then,

∀c ⊆ C
(
test(c) = ✔ → ∀ c′ ⊆ c(test(c′) 6= ✘)

)
(2)

holds.

Proof. By contradiction. For all configurations c⊆ C with test(c) = ✔, assume that
∃c′ ⊆ c

(
test(c′) = ✘

)
holds. Then, definition 6 implies test(c) 6= ✔, which is not the

case.

Another useful property isunambiguity:a failure is caused by only one change
set (and not independently by two disjoint ones). This is mostly a matter of economy:
once we have detected a failure-inducing change set, we do not want to search the
complement for more failure-inducing change sets.

Definition 7 (Unambiguity). A configurationC is unambiguousif

∀c1, c2 ⊆ C
(
test(c1) = ✘ ∧ test(c2) = ✘ → test(c1 ∩ c2) 6= ✔

)
(3)

holds.

The third useful property isconsistency:every subset of a configuration returns an
determinate test result. This means that applying any combination of changes results in
a testable configuration.

Definition 8 (Consistency).A configurationC is consistentif

∀c ⊆ C
(
test(c) 6= )

holds.

If a configuration does not fulfill a specific property, there are chances that one of
its subsetsfulfills them. This is the basic idea of thedivide-and-conqueralgorithms
presented below.

4 Finding Failure-Inducing Changes

For presentation purposes, we begin with the simplest case: a configurationc that is
monotone, unambiguous, and consistent. (These constraints will be relaxed bit by bit in
the following sections.) For such a configuration, we can design an efficient algorithm



based onbinary searchto find a minimal set of failure-inducing changes. Ifc contains
only one change, this change is failure-inducing by definition. Otherwise, wepartitionc
into two subsetsc1 andc2 and test each of them. This gives us three possible outcomes:

Found in c1. The test ofc1 fails—c1 contains a failure-inducing change.
Found in c2. The test ofc2 fails—c2 contains a failure-inducing change.
Interference. Both tests pass. Since we know that testingc = c1 ∪ c2 fails, the failure

must be induced by the combination of some change set inc1 and some change set
in c2.

In the first two cases, we can simply continue the search in the failing subset, as
illustrated in Table 1. Each line of the diagram shows a configuration. A numberi
stands for an included change1i ; a dot stands for an excluded change. Change 7 is the
one that causes the failure—and it is found in just a few steps.

Step ci Configuration test
1 c1 1 2 3 4 . . . . ✔

2 c2 . . . . 5 6 7 8 ✘

3 c1 . . . . 5 6 . . ✔

4 c2 . . . . . . 7 8 ✘

5 c1 . . . . . . 7 . ✘ 7 is found
Result . . . . . . 7 .

Table 1.Searching a single failure-inducing change

But what happens in case of interference? In this case, we must search inboth
halves—with all changes in the other half remaining applied, respectively. This variant
is illustrated in Table 2. The failure occurs only if the two changes 3 and 6 are applied
together. Step 3 illustrates how changes 5–7 remain applied while searching through 1–
4; in step 6, changes 1–4 remain applied while searching in 5–7.4

Step ci Configuration test
1 c1 1 2 3 4 . . . . ✔

2 c2 . . . . 5 6 7 8 ✔

3 c1 1 2 . . 5 6 7 8 ✔

4 c2 . . 3 4 5 6 7 8 ✘

5 c1 . . 3 . 5 6 7 8 ✘ 3 is found
6 c1 1 2 3 4 5 6 . . ✘

7 c1 1 2 3 4 5 . . . ✔ 6 is found
Result . . 3 . . 6 . .

Table 2.Searching two failure-inducing changes

We can now formalize the search algorithm. The functiondd(c) returns all failure-
inducing changes inc; we use a setr to denote the changes that remain applied.

4 Delta debugging is not restricted to programs alone. On this LATEX document, 14 iterations of
manual delta debugging had to be applied until Table 2 eventually re-appeared on the same
page as its reference.



Algorithm 1 (Automated delta debugging). The automated delta debugging algo-
rithm dd(c) is

dd(c) = dd2(c, ∅) where

dd2(c, r ) = let c1, c2 ⊆ c with c1 ∪ c2 = c, c1 ∩ c2 = ∅, |c1| ≈ |c2| ≈ |c|/2

in




c if |c| = 1 (“found”)

dd2(c1, r ) else iftest(c1 ∪ r ) = ✘ (“in c1”)

dd2(c2, r ) else iftest(c2 ∪ r ) = ✘ (“in c2”)

dd2(c1, c2 ∪ r ) ∪ dd2(c2, c1 ∪ r ) otherwise (“interference”)

The recursion invariant (and thus precondition) fordd2 is test(r ) = ✔∧ test(c∪r ) = ✘.

The basic properties ofdd are discussed and proven in [9]. In particular, we show
thatdd(c) returns a minimal set of failure-inducing changes inc if c is monotone, un-
ambiguous, and consistent.

Sincedd is a divide-and-conquer algorithm with constant time requirement at each
invocation,dd’s time complexity is at worst linear. This is illustrated in Table 3, where
only the combination ofall changes is failure-inducing, and wheredd requires less than
two tests per change to find them. If there is only one failure-inducing change to be
found,dd even has logarithmic complexity, as illustrated in Table 1.

Step ci Configuration test
1 c1 1 2 3 4 . . . . ✔

2 c2 . . . . 5 6 7 8 ✔

3 c1 1 2 . . 5 6 7 8 ✔

4 c2 . . 3 4 5 6 7 8 ✔

5 c1 1 . 3 4 5 6 7 8 ✔ 2 is found
6 c2 . 2 3 4 5 6 7 8 ✔ 1 is found
7 c1 1 2 3 . 5 6 7 8 ✔ 4 is found
8 c2 1 2 . 4 5 6 7 8 ✔ 3 is found
9 c1 1 2 3 4 5 6 . . ✔

10 c2 1 2 3 4 . . 7 8 ✔

11 c1 1 2 3 4 5 . 7 8 ✔ 6 is found
12 c2 1 2 3 4 . 6 7 8 ✔ 5 is found
13 c1 1 2 3 4 5 6 7 . ✔ 8 is found
14 c2 1 2 3 4 5 6 . 8 ✔ 7 is found

Result 1 2 3 4 5 6 7 8

Table 3.Searching eight failure-inducing changes

Let us now recall the propertiesdd requires from configurations: monotony, unam-
biguity, and consistency. How doesdd behave whenc is not monotone or when it is
ambiguous? In case of interference,dd still returns a failure-inducing change set, al-
though it may not be minimal. But maybe surprisingly, a single failure-inducing change
(and hence a minimal set) is found even for non-monotone or ambiguous configura-
tions:

– If a configuration is ambiguous, multiple failure-inducing changes may occur;dd
returns one of them. (After undoing this change set, re-rundd to find the next one.)



– If a configuration is not monotone, then we can devise “undoing” changes that,
when applied to a previously failing configurationc, causec to pass the test again.
But still, today’s configuration is failing; hence, there must beanotherfailure-
inducing change that is not undone and that can be found bydd.

5 Handling Inconsistency

The most important practical problem in delta debugging isinconsistent configurations.
When combining changes in an arbitrary way, such as done bydd, it is likely that several
resulting configurations are inconsistent—the outcome of the test cannot be determined.
Here are some of the reasons why this may happen:

Integration failure. A change cannot be applied. It may require earlier changes that
are not included in the configuration. It may also be in conflict with another change
and a third conflict-resolving change is missing.

Construction failure. Although all changes can be applied, the resulting program has
syntactical or semantical errors, such that construction fails.

Execution failure. The program does not execute correctly; the test outcome is unre-
solved.

Since it is improbable that all configurations tested bydd have been checked for
inconsistencies beforehand, tests may well outcome unresolved during add run. Thus,
dd must be extended to deal with inconsistent configurations.

Let us begin with the worst case: after splitting upc into subsets, all tests are
unresolved—ignorance is complete. How we increase our chances to get a resolved
test? We know two configurations that are consistent:∅ (“yesterday”) andC (“today”).
By applyinglesschanges to “yesterday’s” configuration, we increase the chances that
the resulting configuration is consistent—the difference to “yesterday” is smaller. Like-
wise, we can remove less changes from “today’s” configuration and decrease the differ-
ence to “today”.

In order to apply less changes, we can partitionc into a larger number of subsets.
The more subsets we have, the smaller they are, and the bigger are our chances to get
a consistent configuration—until each subset contains only one change, which gives us
the best chance to get a consistent configuration. The disadvantage, of course, is that
more subsets means more testing.

To extend the basicdd algorithm to work on an arbitrary numbern of subsets
c1, . . . , cn, we must distinguish the following cases:

Found. If testing anyci fails, thenci contains a failure-inducing subset. This is just as
in dd.

Interference. If testing anyci passes and itscomplementc̄i passes as well, then the
change setsci andc̄i form an interference, just as indd.

Preference. If testing anyci is unresolved, and testinḡci passes, thenci contains a
failure-inducing subset and ispreferred. In the following test cases,c̄i must remain
applied to promote consistency.



As a preference example, consider Table 4. In Step 1, testingc1 turns out unre-
solved, but its complementc̄1 = c2 passes the test in Step 2. Consequently,c2 can-
not contain a bug-inducing change set, butc1 can—possibly in interference withc2,
which is whyc2 remains applied in the following test cases.

Step ci Configuration test
1 c1 1 2 3 4 . . . . Testingc1, c2
2 c2 . . . . 5 6 7 8 ✔ ⇒ Preferc1
3 c1 1 2 . . 5 6 7 8 . . .

Table 4.Preference

Try again. In all other cases, we repeat the process with 2n subsets—resulting with
twice as many tests, but increased chances for consistency.
As a “try again” example, consider Table 5. Change 8 is failure-inducing, and
changes 2, 3 and 7 imply each other—that is, they only can be applied as a whole.
Note how the test is repeated first withn = 2, then withn = 4 subsets.

Step ci Configuration test
1 c1 = c̄2 1 2 3 4 . . . . Testingc1, c2
2 c2 = c̄1 . . . . 5 6 7 8 ⇒ Try again
3 c1 1 2 . . . . . . Testingc1, . . . , c4
4 c2 . . 3 4 . . . .
5 c3 . . . . 5 6 . . ✔

6 c4 . . . . . . 7 8
7 c̄1 . . 3 4 5 6 7 8 Testing complements
8 c̄2 1 2 . . 5 6 7 8
9 c̄3 1 2 3 4 . . 7 8 ✘

10 c̄4 1 2 3 4 5 6 . . ⇒ Try again

Table 5.Searching failure-inducing changes with inconsistencies

In each new run, we can do a littleoptimizing: all ci that passed the test can be ex-
cluded fromc, since they cannot be failure-inducing. Likewise, allci whose com-
plementsc̄i failed the test can remain applied in following tests. In our example,
this applies to changes 5 and 6, such that we can continue withn = 6 subsets.
After testing each change individually, we finally find the failure-inducing change,
as shown in Table 6.

Step ci Configuration test
11 c1 1 . . . 5 6 . . ✔ Testingc1, . . . , c6
12 c2 . 2 . . 5 6 . .
13 c3 . . 3 . 5 6 . .
14 c4 . . . 4 5 6 . . ✔

15 c5 . . . . 5 6 7 .
16 c6 . . . . 5 6 . 8 ✘ 8 is found

Result . . . . . . . 8

Table 6.Searching failure-inducing changes with inconsistencies (continued)



Note that at this stage, changes 1, 4, 5 and 6 have already been identified asnot
failure-inducing, since their respective tests passed. If the failure had not been in-
duced by change 8, but by 2, 3, or 7, we would have found it simply by excluding
all other changes.

To summarize, here is the formal definition of the extendeddd+ algorithm:

Algorithm 2 (Delta debugging with unresolved test cases).
Theextended delta debugging algorithmdd+(c) is

dd+(c) = dd3(c, ∅, 2) where

dd3(c, r, n) =
let c1, . . . , cn ⊆ c such that

⋃
ci = c, all ci are pairwise disjoint,

and∀ci (|ci | ≈ |c|/n);

let c̄i = c − (ci ∪ r ), ti = test(ci ∪ r ), t̄i = test(c̄i ∪ r ),

c′ = c ∩ ⋂{c̄i | t̄i = ✘}, r ′ = r ∪ ⋃{ci | ti = ✔}, n′ = min(|c′|, 2n),

di = dd3(ci , c̄i ∪ r, 2), andd̄i = dd3(c̄i , ci ∪ r, 2)

in




c if |c| = 1 (“found”)

dd3(ci , r, 2) else ifti = ✘ for somei (“found in ci ”)

di ∪ d̄i else ifti = ✔ ∧ t̄i = ✔ for somei (“interference”)

di else ifti = ∧ t̄i = ✔ for somei (“preference”)

dd3(c′, r ′, n′) else ifn < |c| (“try again”)

c′ otherwise (“nothing left”)

The recursion invariant fordd3 is test(r ) 6= ✘ ∧ test(c ∪ r ) 6= ✔ ∧ n ≤ |c|.
Apart its extensions for unresolved test cases, thedd3 function is identical todd2

with an initial value ofn = 2. Like dd, dd+ has linear time complexity (but requires
twice as many tests).

Eventually,dd+ finds a minimal set of failure-inducing changes, provided that they
aresafe—that is, they can either be applied to the baseline or removed from today’s
configuration without causing an inconsistency. If this condition is not met, the set
returned bydd+ may not be minimal, depending on the nature of inconsistencies en-
countered. But at least, all changes that are safe and not failure-inducing are guaranteed
to be excluded.5

6 Avoiding Inconsistency

In practice, we can significantly reduce the risk of inconsistencies by relying on spe-
cific knowledgeabout the nature of the changes. There are two ways to influence the
dd+ algorithm:

5 True minimality can only be achieved by testing all 2n configurations. Consider a hypothetic
set of changes where only three configurations are consistent: yesterday’s, today’s, and one
arbitrary configuration. Only by trying all combinations can we find this third configuration;
inconsistency has no specific properties like monotony that allow for more effective methods.



Grouping Related Changes.Reconsider the changes 2, 3, and 7 of Table 5. If we
had some indication that the changes imply each other, we could keep them in a
common subset as long as possible, thereby reducing the number of unresolved test
cases. To determine whether changes are related, one can use

– process criteria,such as common change dates or sources,
– location criteria,such as the affected file or directory,
– lexical criteria,such as common referencing of identifiers,
– syntactic criteria,such as common syntactic entities (functions, modules) af-

fected by the change,
– semantic criteria,such as common program statements affected by the changed

control flow or changed data flow.
For instance, it may prove useful to group changes together that all affect a specific
function (syntactic criteria) or that occurred at a common date (process criteria).

Predicting Test Outcomes.If we haveevidencethat specific configurations will be
inconsistent, we canpredict their test outcomes as unresolved instead of carrying
out the test. In Table 5, if we knew about the implications, then only 5 out of 16
tests would actually be carried out.
Predicting test outcomes is especially useful if we can impose anorderingon the
changes. Consider Table 7, where each change1i implies all “earlier” changes
11, . . . , 1i −1. Given this knowledge, we can predict the test outcomes of steps
2 and 4; only three tests would actually carried out to find the failure-inducing
change.

Step ci Configuration test
1 c1 1 2 3 4 . . . . ✔

2 c2 . . . . 5 6 7 8 ( ) predicted outcome
3 c1 1 2 3 4 5 6 . . ✔

4 c2 1 2 3 4 . . 7 8 ( ) predicted outcome
5 c1 1 2 3 4 5 6 7 . ✘ 7 is found

Result . . . . . . 7 .

Table 7.Searching failure-inducing changes in a total order

We see that when changes can be ordered, predicting test outcomes makesdd+ act
like a binary search algorithm.

Both grouping and predicting will be used in two case studies, presented below.

7 First Case Study: DDD 3.1.2 Dumps Core

DDD 3.1.2, released in December, 1998, exhibited a nasty behavioral change: When
invoked with a the name of a non-existing file,DDD 3.1.2 dumped core, while its pre-
decessorDDD 3.1.1 simply gave an error message. We wanted to find the cause of this
failure by usingWYNOT.

TheDDD configuration management archive lists 116 logical changes between the
3.1.1 and 3.1.2 releases. These changes were split into 344 textual changes to theDDD
source.
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Table 8.Searching a failure-inducing change in DDD

In a first attempt, we ignored any knowledge about the nature or ordering of the
changes; changes were ordered and partitioned at random. Table 8(a) shows the re-
sult of the resultingWYNOT run. After test #4,WYNOT has reduced the number of
remaining changes to 172. The next tests turn out unresolved, soWYNOT gradually
increases the number of subsets; at test #16,WYNOT starts using 8 subsets, each con-
taining 16 changes. At test #23, the 7th subset fails, and only its 16 changes remain.
Eventually, test #31 determines the failure-inducing change.

We then wanted to know whether knowledge from the configuration management
archive would improve performance. We used the followingprocess criteria:

1. Changes were grouped according to the date they were applied.
2. Each change implied all earlier changes. If a configuration would not satisfy this

requirement, its test outcome would be predicted as unresolved.

As shown in Table 8(b), this resulted in a binary search with very few inconsisten-
cies. After only 12 test runs and 58 minutes6, the failure-inducing change was found:

diff -r1.30 -r1.30.4.1 ddd/gdbinit.C
295,296c296
< string classpath =
< getenv("CLASSPATH") ! = 0 ? getenv("CLASSPATH") : ".";
---
> string classpath = source view->class path();

When called with an argument that is not a file name,DDD 3.1.1 checks whether
it is a Java class; soDDD consults its environment for the class lookup path. As an
“improvement”,DDD 3.1.2 uses a dedicated method for this purpose. Unfortunately,
thesource view pointer used is initialized only later, resulting in a core dump. This
problem has been fixed in the currentDDD release.

8 Second Case Study: GDB 4.17 does not Integrate

Let us now face greater challenges. As motivated in Section 1, we wanted to track
down a failure in 178,000 changedGDB lines. In contrast to theDDD setting from

6 All times were measured on a Linux PC with a 200 MHz AMD K6 processor.



Section 7, we had no configuration management archive from which to take ordered
logical changes.

The 178,000 lines were automatically grouped into 8721 textual changes in the
GDB source, with any two textual changes separated by at least two unchanged lines
(“context”). The average reconstruction time after applying a change turned out to be
370 seconds. This means that we could run 233 tests in 24 hours or 8721 changes
individually in 37 days.

Again, we first ignored any knowledge about the nature of the changes. The result
of this WYNOT run is shown in Table 9(a). Most of the first 457 tests turn out unre-
solved, soWYNOT gradually increases the number of subsets, reducing the number of
remaining changes. At test #458, each subset contains only 36 changes, and it is one of
these subsets that turns out to be failure-inducing. After this breakthrough, the remain-
ing 12 tests determine a single failure-inducing change.

Running the 470 tests still took 48 hours. Once more, we decided to improve perfor-
mance. Since process criteria were not available, we usedlocation criteriaandlexical
criteria to group changes:

1. At top-level, changes were grouped according to directories. This was motivated
by the observation that severalGDB directories contain a separate library whose
interface remains more or less consistent across changes.

2. Within one directory, changes were grouped according to common files. The idea
was to identify compilation units whose interface was consistent with both “yester-
day’s” and “today’s” version.

3. Within a file, changes were grouped according to common usage of identifiers.
This way, we could keep changes together that operated on common variables or
functions.

Finally, we added afailure resolution loop:After a failing construction,WYNOT
scans the error messages for identifiers, adds all changes that reference these identifiers
and tries again. This is repeated until construction is possible, or until there are no more
changes to add.

The result of thisWYNOT run is shown in Table 9(b). At first,WYNOT split the
changes according to their directories. After 9 tests with various directory combinations,
WYNOT has a breakthrough: the failure-inducing change is to be found in one specific
directory. Only 2547 changes are left.

A long period without significant success follows;WYNOT partitions changes into
an increasing number of subsets. The second breakthrough occurs at test #280, where
each subset contains only 18 changes and whereWYNOT narrows down the number
of changes to a subset of two files only. The end comes at test #289, after a total of
20 hours. We see that the lexical criteria reduced the number of tests by 38% and the
total running time by more than 50%.

In both cases,WYNOT broke down the 178,000 lines down to the same one-line
change line that, being applied, causesDDD to malfunction:

diff -r gdb-4.16/gdb/infcmd.c gdb-4.17/gdb/infcmd.c
1239c1278
< "Set arguments to give program being debugged when it is started. \n\
---
> "Set argument list to give program being debugged when it is started. \n\
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Table 9.Searching a failure-inducing change in GDB

This change in a string constant fromarguments to argument list was
responsible forGDB 4.17 not interoperating withDDD. Given the commandshow
args , GDB 4.16 replies

Arguments to give program being debugged when it is started is "a b c"

but GDB 4.17 issues a slightly different (and grammatically correct) text:

Argument list to give program being debugged when it is started is "a b c"

which could not be parsed byDDD! To solve the problem here and now, we simply
reversed theGDB change; eventually,DDD was upgraded to make it work with the new
GDB version, too.

9 Related Work

There is only one other work on automated delta debugging we have found: the paper on
regression containmentby Ness and Ngo [5], presented in Section 1.7 Ness and Ngo use
simple linear and binary search to identify a single failure-inducing change. Their goal,
however, lies not in debugging, but inisolating (i.e. removing) the failure-inducing

7 Ness and Ngo cite no related work, so we assume they found none either.



change such that development of the product is not delayed by resolving the failure.
The existence of a configuration management archive with totally ordered changes is
assumed; issues like interference, inconsistencies, granularity, or non-monotony are nei-
ther handled nor discussed.

Consequently, the failure-inducing change inGDB from Section 8 would not be
found at all since there is no configuration management archive from which to take
logical changes; in theDDD setting from Section 7, the logical change would be found,
but could not have been broken down into this small chunk.

10 Conclusions and Future Work

Delta debugging resolves regression causes automatically and effectively. If configu-
ration information is available, delta debugging is easy; otherwise, there are effective
techniques that indicate change dependencies. Although resource-intensive, delta de-
bugging requires no manual intervention and thus saves valuable developer time.

We recommend that delta debugging be an integrated part of regression testing;
each time a regression test fails, a delta debugging program should be started to resolve
the regression cause. The algorithms presented in this paper provide successful delta
debugging solutions that handle difficult details such as interferences, inconsistencies,
and granularity.

Our future work will concentrate on avoiding inconsistencies by exploiting domain
knowledge. Most simple configuration management archives enforce that each change
implies all earlier changes; we want to use full-fledged constraint systems instead [11].
Another issue is to usesyntactic criteriain order to group changes by affected func-
tions and modules. The most complicated, but most promising approach aresemantic
criteria: Given a change and a program, we can determine aslice of the program where
program execution may be altered by applying the change. Such slices have been suc-
cessfully used for semantics-preserving program integration [2] as well as for determin-
ing whether a regression test is required after applying a specific change [1]. The basic
idea is to determine twoprogram dependency graphs(PDGs)—one for “yesterday’s”
and one for “today’s” configuration. Then, for each changec and eachPDG, we deter-
mine the forward slice from the nodes affected byc. We can then group changes by the
common nodescontained in their respective slices; two changes with disjoint slices end
up in different partitions.

Besides consistency issues, we want to usecode coveragetools in order to exclude
changes to code that is never executed. The intertwining of changes to construction
commands, system models, and actual source code must be handled, possibly by multi-
version system models [8]. Further case studies will validate the effectiveness of all
these measures, as of delta debugging in general.
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