
Software Unit Test Coverage and Adequacy
HONG ZHU

Nanjing University

PATRICK A. V. HALL AND JOHN H. R. MAY

The Open University, Milton Keynes, UK

Objective measurement of test quality is one of the key issues in software testing.
It has been a major research focus for the last two decades. Many test criteria have
been proposed and studied for this purpose. Various kinds of rationales have been
presented in support of one criterion or another. We survey the research work in
this area. The notion of adequacy criteria is examined together with its role in
software dynamic testing. A review of criteria classification is followed by a
summary of the methods for comparison and assessment of criteria.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and
Debugging

General Terms: Measurement, Performance, Reliability, Verification

Additional Key Words and Phrases: Comparing testing effectiveness, fault-
detection, software unit test, test adequacy criteria, test coverage, testing methods

1. INTRODUCTION

In 1972, Dijkstra claimed that “program
testing can be used to show the presence
of bugs, but never their absence” to per-
suade us that a testing approach is not
acceptable [Dijkstra 1972]. However, the
last two decades have seen rapid growth
of research in software testing as well as
intensive practice and experiments. It
has been developed into a validation and
verification technique indispensable to
software engineering discipline. Then,
where are we today? What can we claim
about software testing?

In the mid-’70s, in an examination of
the capability of testing for demonstrat-
ing the absence of errors in a program,

Goodenough and Gerhart [1975, 1977]
made an early breakthrough in research
on software testing by pointing out that
the central question of software testing
is “what is a test criterion?”, that is, the
criterion that defines what constitutes
an adequate test. Since then, test crite-
ria have been a major research focus. A
great number of such criteria have been
proposed and investigated. Consider-
able research effort has attempted to
provide support for the use of one crite-
rion or another. How should we under-
stand these different criteria? What are
the future directions for the subject?

In contrast to the constant attention
given to test adequacy criteria by aca-

Authors’ addresses: H. Zhu, Institute of Computer Software, Nanjing University, Nanjing, 210093, P.R.
of China; email: ^hzhu@netra.nju.edu.cn&; P.A.V. Hall and J.H.R. May, Department of Computing, The
Open University, Walton Hall, Milton Keynes, MK76AA, UK.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1997 ACM 0360-0300/97/1200–0366 $03.50

ACM Computing Surveys, Vol. 29, No. 4, December 1997

demics, the software industry has been
slow to accept test adequacy measure-
ment. Few software development stan-
dards require or even recommend the
use of test adequacy criteria [Wichmann
1993; Wichmann and Cox 1992]. Are
test adequacy criteria worth the cost for
practical use?

Addressing these questions, we sur-
vey research on software test criteria in
the past two decades and attempt to put
it into a uniform framework.

1.1 The Notion of Test Adequacy

Let us start with some examples. Here
we seek to illustrate the basic notions
underlying adequacy criteria. Precise
definitions will be given later.

—Statement coverage. In software test-
ing practice, testers are often re-
quired to generate test cases to exe-
cute every statement in the program
at least once. A test case is an input
on which the program under test is
executed during testing. A test set is a
set of test cases for testing a program.
The requirement of executing all the
statements in the program under test
is an adequacy criterion. A test set
that satisfies this requirement is con-
sidered to be adequate according to
the statement coverage criterion.
Sometimes the percentage of executed
statements is calculated to indicate
how adequately the testing has been
performed. The percentage of the
statements exercised by testing is a
measurement of the adequacy.

—Branch coverage. Similarly, the branch
coverage criterion requires that all
control transfers in the program un-
der test are exercised during testing.
The percentage of the control trans-
fers executed during testing is a mea-
surement of test adequacy.

—Path coverage. The path coverage cri-
terion requires that all the execution
paths from the program’s entry to its
exit are executed during testing.

—Mutation adequacy. Software testing
is often aimed at detecting faults in

software. A way to measure how well
this objective has been achieved is to
plant some artificial faults into the
program and check if they are de-
tected by the test. A program with a
planted fault is called a mutant of the
original program. If a mutant and the
original program produce different
outputs on at least one test case, the
fault is detected. In this case, we say
that the mutant is dead or killed by
the test set. Otherwise, the mutant is
still alive. The percentage of dead mu-
tants compared to the mutants that
are not equivalent to the original pro-
gram is an adequacy measurement,
called the mutation score or mutation
adequacy [Budd et al. 1978; DeMillo
et al. 1978; Hamlet 1977].

From Goodenough and Gerhart’s
[1975, 1977] point of view, a software
test adequacy criterion is a predicate
that defines “what properties of a pro-
gram must be exercised to constitute a
‘thorough’ test, i.e., one whose success-
ful execution implies no errors in a
tested program.” To guarantee the cor-
rectness of adequately tested programs,
they proposed reliability and validity
requirements of test criteria. Reliability
requires that a test criterion always
produce consistent test results; that is,
if the program tested successfully on
one test set that satisfies the criterion,
then the program also tested success-
fully on all test sets that satisfies the
criterion. Validity requires that the test
always produce a meaningful result;
that is, for every error in a program,
there exists a test set that satisfies the
criterion and is capable of revealing the
error. But it was soon recognized that
there is no computable criterion that
satisfies the two requirements, and
hence they are not practically applica-
ble [Howden 1976]. Moreover, these two
requirements are not independent since
a criterion is either reliable or valid for
any given software [Weyuker and Os-
trand 1980]. Since then, the focus of
research seems to have shifted from
seeking theoretically ideal criteria to

Test Coverage and Adequacy • 367

ACM Computing Surveys, Vol. 29, No. 4, December 1997

the search for practically applicable ap-
proximations.

Currently, the software testing litera-
ture contains two different, but closely
related, notions associated with the
term test data adequacy criteria. First,
an adequacy criterion is considered to
be a stopping rule that determines
whether sufficient testing has been
done that it can be stopped. For in-
stance, when using the statement cover-
age criterion, we can stop testing if all
the statements of the program have
been executed. Generally speaking,
since software testing involves the pro-
gram under test, the set of test cases,
and the specification of the software, an
adequacy criterion can be formalized as
a function C that takes a program p, a
specification s, and a test set t and gives
a truth value true or false. Formally, let
P be a set of programs, S be a set of
specifications, D be the set of inputs of
the programs in P, T be the class of test
sets, that is, T 5 2D, where 2X denotes
the set of subsets of X.

Definition 1.1 (Test Data Adequacy
Criteria as Stopping Rules). A test
data adequacy criterion C is a function
C: P 3 S 3 T 3 {true, false}. C(p, s, t) 5
true means that t is adequate for testing
program p against specification s accord-
ing to the criterion C, otherwise t is inad-
equate.

Second, test data adequacy criteria
provide measurements of test quality
when a degree of adequacy is associated
with each test set so that it is not sim-
ply classified as good or bad. In practice,
the percentage of code coverage is often
used as an adequacy measurement.
Thus, an adequacy criterion C can be
formally defined to be a function C from
a program p, a specification s, and a test
set t to a real number r 5 C(p, s, t),
the degree of adequacy [Zhu and Hall
1992]. Formally:

Definition 1.2 (Test Data Adequacy
Criteria as Measurements). A test data
adequacy criterion is a function C, C:
P 3 S 3 T 3 [0,1]. C(p, s, t) 5 r means

that the adequacy of testing the pro-
gram p by the test set t with respect to
the specification s is of degree r accord-
ing to the criterion C. The greater the
real number r, the more adequate the
testing.

These two notions of test data ade-
quacy criteria are closely related to one
another. A stopping rule is a special
case of measurement on the continuum
since the actual range of measurement
results is the set {0,1}, where 0 means
false and 1 means true. On the other
hand, given an adequacy measurement
M and a degree r of adequacy, one can
always construct a stopping rule Mr
such that a test set is adequate if and
only if the adequacy degree is greater
than or equal to r; that is, Mr(p, s, t) 5
true N M(p, s, t) $ r. Since a stopping
rule asserts a test set to be either ade-
quate or inadequate, it is also called a
predicate rule in the literature.

An adequacy criterion is an essential
part of any testing method. It plays two
fundamental roles. First, an adequacy
criterion specifies a particular software
testing requirement, and hence deter-
mines test cases to satisfy the require-
ment. It can be defined in one of the
following forms.

(1) It can be an explicit specification for
test case selection, such as a set of
guidelines for the selection of test
cases. Following such rules one can
produce a set of test cases, although
there may be some form of random
selections. Such a rule is usually
referred to as a test case selection
criterion. Using a test case selection
criterion, a testing method may be
defined constructively in the form of
an algorithm which generates a test
set from the software under test and
its own specification. This test set is
then considered adequate. It should
be noticed that for a given test case
selection criterion, there may exist a
number of test case generation algo-
rithms. Such an algorithm may also
involve random sampling among
many adequate test sets.

368 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

(2) It can also be in the form of specify-
ing how to decide whether a given
test set is adequate or specifying
how to measure the adequacy of a
test set. A rule that determines
whether a test set is adequate (or
more generally, how adequate) is
usually referred to as a test data
adequacy criterion.

However, the fundamental concept
underlying both test case selection cri-
teria and test data adequacy criteria is
the same, that is, the notion of test
adequacy. In many cases they can be
easily transformed from one form to an-
other. Mathematically speaking, test
case selection criteria are generators,
that is, functions that produce a class of
test sets from the program under test
and the specification (see Definition
1.3). Any test set in this class is ade-
quate, so that we can use any of them
equally.1 Test data adequacy criteria
are acceptors that are functions from
the program under test, the specifica-
tion of the software and the test set to a
characteristic number as defined in Def-
inition 1.1. Generators and acceptors
are mathematically equivalent in the
sense of one-one correspondence. Hence,
we use “test adequacy criteria” to de-
note both of them.

Definition 1.3 (Test Data Adequacy
Criteria as Generators [Budd and An-
gluin 1982]). A test data adequacy cri-
terion C is a function C: P 3 S 3 2T. A
test set t [C(p, s) means that t satis-
fies C with respect to p and s, and it is
said that t is adequate for (p, s) accord-
ing to C.

The second role that an adequacy cri-
terion plays is to determine the observa-
tions that should be made during the
testing process. For example, statement
coverage requires that the tester, or the
testing system, observe whether each
statement is executed during the pro-

cess of software testing. If path cover-
age is used, then the observation of
whether statements have been executed
is insufficient; execution paths should
be observed and recorded. However, if
mutation score is used, it is unneces-
sary to observe whether a statement is
executed during testing. Instead, the
output of the original program and the
output of the mutants need to be re-
corded and compared.

Although, given an adequacy crite-
rion, different methods could be devel-
oped to generate test sets automatically
or to select test cases systematically
and efficiently, the main features of a
testing method are largely determined
by the adequacy criterion. For example,
as we show later, the adequacy criterion
is related to fault-detecting ability, the
dependability of the program that
passes a successful test and the number
of test cases required. Unfortunately,
the exact relationship between a partic-
ular adequacy criterion and the correct-
ness or reliability of the software that
passes the test remains unclear.

Due to the central role that adequacy
criteria play in software testing, soft-
ware testing methods are often com-
pared in terms of the underlying ade-
quacy criteria. Therefore, subsequently,
we use the name of an adequacy crite-
rion as a synonym of the corresponding
testing method when there is no possi-
bility of confusion.

1.2 The Uses of Test Adequacy Criteria

An important issue in the management
of software testing is to “ensure that
before any testing the objectives of that
testing are known and agreed and that
the objectives are set in terms that can
be measured.” Such objectives “should
be quantified, reasonable and achiev-
able” [Ould and Unwin 1986]. Almost
all test adequacy criteria proposed in
the literature explicitly specify particu-
lar requirements on software testing.
They are objective rules applicable by
project managers for this purpose.

For example, branch coverage is a

1 Test data selection criteria as generators should
not be confused with test case generation software
tools, which may only generate one test set.

Test Coverage and Adequacy • 369

ACM Computing Surveys, Vol. 29, No. 4, December 1997

test requirement that all branches of
the program should be exercised. The
objective of testing is to satisfy this
requirement. The degree to which this
objective is achieved can be measured
quantitatively by the percentage of
branches exercised. The mutation ade-
quacy criterion specifies the testing re-
quirement that a test set should be able
to rule out a particular set of software
faults, that is, those represented by mu-
tants. Mutation score is another kind of
quantitative measurement of test qual-
ity.

Test data adequacy criteria are also
very helpful tools for software testers.
There are two levels of software testing
processes. At the lower level, testing is
a process where a program is tested by
feeding more and more test cases to it.
Here, a test adequacy criterion can be
used as a stopping rule to decide when
this process can stop. Once the mea-
surement of test adequacy indicates
that the test objectives have been
achieved, then no further test case is
needed. Otherwise, when the measure-
ment of test adequacy shows that a test
has not achieved the objectives, more
tests must be made. In this case, the
adequacy criterion also provides a
guideline for the selection of the addi-
tional test cases. In this way, adequacy
criteria help testers to manage the soft-
ware testing process so that software
quality is ensured by performing suffi-
cient tests. At the same time, the cost of
testing is controlled by avoiding redun-
dant and unnecessary tests. This role of
adequacy criteria has been considered
by some computer scientists [Weyuker
1986] to be one of the most important.

At a higher level, the testing proce-
dure can be considered as repeated cy-
cles of testing, debugging, modifying
program code, and then testing again.
Ideally, this process should stop only
when the software has met the required
reliability requirements. Although test
data adequacy criteria do not play the
role of stopping rules at this level, they
make an important contribution to the
assessment of software dependability.

Generally speaking, there are two basic
aspects of software dependability as-
sessment. One is the dependability esti-
mation itself, such as a reliability fig-
ure. The other is the confidence in
estimation, such as the confidence or
the accuracy of the reliability estimate.
The role of test adequacy here is a con-
tributory factor in building confidence
in the integrity estimate. Recent re-
search has shown some positive results
with respect to this role [Tsoukalas
1993].

Although it is common in current soft-
ware testing practice that the test pro-
cesses at both the higher and lower
levels stop when money or time runs
out, there is a tendency towards the use
of systematic testing methods with the
application of test adequacy criteria.

1.3 Categories of Test Data Adequacy
Criteria

There are various ways to classify ade-
quacy criteria. One of the most common
is by the source of information used to
specify testing requirements and in the
measurement of test adequacy. Hence,
an adequacy criterion can be:

—specification-based, which specifies
the required testing in terms of iden-
tified features of the specification or
the requirements of the software, so
that a test set is adequate if all the
identified features have been fully ex-
ercised. In software testing literature
it is fairly common that no distinction
is made between specification and re-
quirements. This tradition is followed
in this article also;

—program-based, which specifies test-
ing requirements in terms of the pro-
gram under test and decides if a test
set is adequate according to whether
the program has been thoroughly ex-
ercised.

It should not be forgotten that for both
specification-based and program-based
testing, the correctness of program out-
puts must be checked against the speci-
fication or the requirements. However,

370 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

in both cases, the measurement of test
adequacy does not depend on the results
of this checking. Also, the definition of
specification-based criteria given previ-
ously does not presume the existence of
a formal specification.

It has been widely acknowledged that
software testing should use information
from both specification and program.
Combining these two approaches, we
have:

—combined specification- and program-
based criteria, which use the ideas of
both program-based and specification-
based criteria.

There are also test adequacy criteria
that specify testing requirements with-
out employing any internal information
from the specification or the program.
For example, test adequacy can be mea-
sured according to the prospective us-
age of the software by considering
whether the test cases cover the data
that are most likely to be frequently
used as input in the operation of the
software. Although few criteria are ex-
plicitly proposed in such a way, select-
ing test cases according to the usage of
the software is the idea underlying ran-
dom testing, or statistical testing. In
random testing, test cases are sampled
at random according to a probability
distribution over the input space. Such
a distribution can be the one represent-
ing the operation of the software, and
the random testing is called representa-
tive. It can also be any probability dis-
tribution, such as a uniform distribu-
tion, and the random testing is called
nonrepresentative. Generally speaking,
if a criterion employs only the “inter-
face” information—the type and valid
range for the software input—it can be
called an interface-based criterion:

—interface-based criteria, which specify
testing requirements only in terms of
the type and range of software input
without reference to any internal fea-
tures of the specification or the pro-
gram.

In the software testing literature, peo-
ple often talk about white-box testing
and black-box testing. Black-box testing
treats the program under test as a
“black box.” No knowledge about the
implementation is assumed. In white-
box testing, the tester has access to the
details of the program under test and
performs the testing according to such
details. Therefore, specification-based
criteria and interface-based criteria be-
long to black-box testing. Program-
based criteria and combined specifica-
tion and program-based criteria belong
to white-box testing.

Another classification of test ade-
quacy criteria is by the underlying test-
ing approach. There are three basic ap-
proaches to software testing:

(1) structural testing: specifies testing
requirements in terms of the cover-
age of a particular set of elements in
the structure of the program or the
specification;

(2) fault-based testing: focuses on de-
tecting faults (i.e., defects) in the
software. An adequacy criterion of
this approach is some measurement
of the fault detecting ability of test
sets.2

(3) error-based testing: requires test
cases to check the program on cer-
tain error-prone points according to
our knowledge about how programs
typically depart from their specifica-
tions.

The source of information used in the
adequacy measurement and the under-
lying approach to testing can be consid-
ered as two dimensions of the space of
software test adequacy criteria. A soft-
ware test adequacy criterion can be
classified by these two aspects. The re-
view of adequacy criteria is organized
according to the structure of this space.

2 We use the word fault to denote defects in soft-
ware and the word error to denote defects in the
outputs produced by a program. An execution that
produces an error is called a failure.

Test Coverage and Adequacy • 371

ACM Computing Surveys, Vol. 29, No. 4, December 1997

1.4 Organization of the Article

The remainder of the article consists of
two main parts. The first part surveys
various types of test data adequacy cri-
teria proposed in the literature. It in-
cludes three sections devoted to struc-
tural testing, fault-based testing, and
error-based testing. Each section con-
sists of several subsections covering the
principles of the testing method and
their application to program-based and
specification-based test criteria. The
second part is devoted to the rationale
presented in the literature in support of
the various criteria. It has two sections.
Section 5 discusses the methods of com-
paring adequacy criteria and surveys
the research results in the literature.
Section 6 discusses the axiomatic study
and assessment of adequacy criteria. Fi-
nally, Section 7 concludes the paper.

2. STRUCTURAL TESTING

This section is devoted to adequacy cri-
teria for structural testing. It consists of
two subsections, one for program-based
criteria and the other for specification-
based criteria.

2.1 Program-Based Structural Testing

There are two main groups of program-
based structural test adequacy criteria:
control-flow criteria and data-flow crite-
ria. These two types of adequacy crite-
ria are combined and extended to give
dependence coverage criteria. Most ade-
quacy criteria of these two groups are
based on the flow-graph model of pro-
gram structure. However, a few control-
flow criteria define test requirements in
terms of program text rather than using
an abstract model of software structure.

2.1.1 Control Flow Adequacy Crite-
ria. Before we formally define various
control-flow-based adequacy criteria, we
first give an introduction to the flow
graph model of program structure.

A. The flow graph model of program
structure. The control flow graph
stems from compiler work and has long

been used as a model of program struc-
ture. It is widely used in static analysis
of software [Fenton et al. 1985; Ko-
saraju 1974; McCabe 1976; Paige 1975].
It has also been used to define and
study program-based structural test ad-
equacy criteria [White 1981]. In this
section we give a brief introduction to
the flow-graph model of program struc-
ture. Although we use graph-theory ter-
minology in the following discussion,
readers are required to have only a pre-
liminary knowledge of graph theory. To
help understand the terminology and to
avoid confusion, a glossary is provided
in the Appendix.

A flow graph is a directed graph that
consists of a set N of nodes and a set
E # N 3 N of directed edges between
nodes. Each node represents a linear
sequence of computations. Each edge
representing transfer of control is an
ordered pair ^n1, n2& of nodes, and is
associated with a predicate that repre-
sents the condition of control transfer
from node n1 to node n2. In a flow
graph, there is a begin node and an end
node where the computation starts and
finishes, respectively. The begin node
has no inward edges and the end node
has no outward edges. Every node in a
flow graph must be on a path from the
begin node to the end node. Figure 1 is
an example of flow graph.

Example 2.1 The following program
computes the greatest common divisor
of two natural numbers by Euclid’s al-
gorithm. Figure 1 is the corresponding
flow graph.

Begin
input (x, y);
while (x . 0 and y . 0) do

if (x . y)
then x: 5 x 2 y
else y: 5 y 2 x

endif
endwhile;
output (x 1 y);

end

It should be noted that in the litera-
ture there are a number of conventions
of flow-graph models with subtle differ-

372 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

ences, such as whether a node is al-
lowed to be associated with an empty
sequence of statements, the number of
outward edges allowed for a node, and
the number of end nodes allowed in a
flow graph, and the like. Although most
adequacy criteria can be defined inde-
pendently of such conventions, using
different ones may result in different
measures of test adequacy. Moreover,
testing tools may be sensitive to such
conventions. In this article no restric-
tions on the conventions are made.

For programs written in a procedural
programming language, flow-graph
models can be generated automatically.
Figure 2 gives the correspondences be-
tween some structured statements and
their flow-graph structures. Using these
rules, a flow graph, shown in Figure 3,
can be derived from the program given
in Example 2.1. Generally, to construct
a flow graph for a given program, the
program code is decomposed into a set
of disjoint blocks of linear sequences of
statements. A block has the property
that whenever the first statement of the
block is executed, the other statements
are executed in the given order. Fur-
thermore, the first statement of the
block is the only statement that may be
executed directly after the execution of
a statement in another block. Each
block corresponds to a node in the flow
graph. A control transfer from one block

to another is represented by a directed
edge between the nodes such that the
condition of the control transfer is asso-
ciated with it.

B. Control-flow adequacy criteria.
Now, given a flow-graph model of a pro-
gram and a set of test cases, how do we
measure the adequacy of testing for the
program on the test set? First of all,
recall that the execution of the program
on an input datum is modeled as a
traverse in the flow graph. Every execu-
tion corresponds to a path in the flow
graph from the begin node to the end
node. Such a path is called a complete
computation path, or simply a computa-
tion path or an execution path in soft-
ware testing literature.

A very basic requirement of adequate
testing is that all the statements in the
program are covered by test executions.
This is usually called statement cover-
age [Hetzel 1984]. But full statement
coverage cannot always be achieved be-
cause of the possible existence of infea-
sible statements, that is, dead code.
Whether a piece of code is dead code is
undecidable [Weyuker 1979a; Weyuker
1979b; White 1981]. Because state-
ments correspond to nodes in flow-
graph models, this criterion can be de-
fined in terms of flow graphs, as follows.

Definition 2.1 (Statement Coverage
Criterion). A set P of execution paths

Figure 1. Flow graph for program in Example 2.1.

Test Coverage and Adequacy • 373

ACM Computing Surveys, Vol. 29, No. 4, December 1997

satisfies the statement coverage crite-
rion if and only if for all nodes n in the
flow graph, there is at least one path p
in P such that node n is on the path p.

Notice that statement coverage is so
weak that even some control transfers

may be missed from an adequate test.
Hence, we have a slightly stronger re-
quirement of adequate test, called
branch coverage [Hetzel 1984], that all
control transfers must be checked. Since
control transfers correspond to edges in
flow graphs, the branch coverage crite-
rion can be defined as the coverage of
all edges in the flow graph.

Definition 2.2 (Branch Coverage Crite-
rion). A set P of execution paths satis-
fies the branch coverage criterion if and
only if for all edges e in the flow graph,
there is at least one path p in P such
that p contains the edge e.

Branch coverage is stronger than
statement coverage because if all edges
in a flow graph are covered, all nodes
are necessarily covered. Therefore, a
test set that satisfies the branch cover-
age criterion must also satisfy state-
ment coverage. Such a relationship be-
tween adequacy criteria is called the
subsumes relation. It is of interest in
the comparison of software test ade-

Figure 2. Example flow graphs for structured statements.

Figure 3. Flow graph for Example 2.1.

374 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

quacy criteria (see details in Section
5.1.3).

However, even if all branches are ex-
ercised, this does not mean that all com-
binations of control transfers are
checked. The requirement of checking
all combinations of branches is usually
called path coverage or path testing,
which can be defined as follows.

Definition 2.3 (Path Coverage Crite-
rion). A set P of execution paths satis-
fies the path coverage criterion if and
only if P contains all execution paths
from the begin node to the end node in
the flow graph.

Although the path coverage criterion
still cannot guarantee the correctness of
a tested program, it is too strong to be
practically useful for most programs,
because there can be an infinite number
of different paths in a program with
loops. In such a case, an infinite set of
test data must be executed for adequate
testing. This means that the testing
cannot finish in a finite period of time.
But, in practice, software testing must
be fulfilled within a limited fixed period
of time. Therefore, a test set must be
finite. The requirement that an ade-
quacy criterion can always be satisfied
by a finite test set is called finite appli-
cability [Zhu and Hall 1993] (see Sec-
tion 6).

The statement coverage criterion and
branch coverage criterion are not fi-
nitely applicable either, because they
require testing to cover infeasible ele-
ments. For instance, statement cover-
age requires that all the statements in a
program are executed. However, a pro-
gram may have infeasible statements,
that is, dead code, so that no input data
can cause their execution. Therefore, in
such cases, there is no adequate test set
that can satisfy statement coverage.
Similarly, branch coverage is not fi-
nitely applicable because a program
may contain infeasible branches. How-
ever, for statement coverage and also
branch coverage, we can define a fi-
nitely applicable version of the criterion
by requiring testing only to cover the

feasible elements. Most program-based
adequacy criteria in the literature are
not finitely applicable, but finitely ap-
plicable versions can often be obtained
by redefinition in this way. Subse-
quently, such a version is called the
feasible version of the adequacy crite-
rion. It should be noted, first, that al-
though we can often obtain finite appli-
cability by using the feasible version,
this may cause the undecidability prob-
lem; that is, we may not be able to
decide whether a test set satisfies a
given adequacy criterion. For example,
whether a statement in a program is
feasible is undecidable [Weyuker 1979a;
Weyuker 1979b; White 1991]. There-
fore, when a test set does not cover all
the statements in a program, we may
not be able to decide whether a state-
ment not covered by the test data is
dead code. Hence, we may not be able to
decide if the test set satisfies the feasi-
ble version of statement coverage. Sec-
ond, for some adequacy criteria, such as
path coverage, we cannot obtain finite
applicability by such a redefinition.

Recall that the rationale for path cov-
erage is that there is no path that does
not need to be checked by testing, while
finite applicability forces us to select a
finite subset of paths. Thus, research
into flow-graph-based adequacy criteria
has focused on the selection of the most
important subsets of paths. Probably
the most straightforward solution to the
conflict is to select paths that contain no
redundant information. Hence, two no-
tions from graph theory can be used.
First, a path that has no repeated occur-
rence of any edge is called a simple path
in graph theory. Second, a path that has
no repeated occurrences of any node is
called an elementary path. Thus, it is
possible to define simple path coverage
and elementary path coverage criteria,
which require that adequate test sets
should cover all simple paths and ele-
mentary paths, respectively.

These two criteria are typical ones
that select finite subsets of paths by
specifying restrictions on the complexity
of the individual paths. Another exam-

Test Coverage and Adequacy • 375

ACM Computing Surveys, Vol. 29, No. 4, December 1997

ple of this type is the length-n path
coverage criterion, which requires cover-
age of all subpaths of length less than
or equal to n [Gourlay 1983]. A more
complicated example of the type is
Paige’s level-i path coverage criterion
[Paige 1978; Paige 1975]. Informally,
the criterion starts with testing all ele-
mentary paths from the begin node to
the end node. Then, if there is an ele-
mentary subpath or cycle that has not
been exercised, the subpath is required
to be checked at next level. This process
is repeated until all nodes and edges are
covered by testing. Obviously, a test set
that satisfies the level-i path coverage
criterion must also satisfy the elemen-
tary path coverage criterion, because
elementary paths are level-0 paths.

A set of control-flow adequacy criteria
that are concerned with testing loops is
loop count criteria, which date back to
the mid-1970s [Bently et al. 1993]. For
any given natural number K, the loop
count-K criterion requires that every
loop in the program under test should
be executed zero times, once, twice, and
so on, up to K times [Howden 1975].
Another control-flow criterion con-
cerned with testing loops is the cycle
combination criterion, which requires
that an adequate test set should cover
all execution paths that do not contain a
cycle more than once.

An alternative approach to defining
control-flow adequacy criteria is to spec-
ify restrictions on the redundancy
among the paths. McCabe’s cyclomatic
measurement is such an example [Mc-
Cabe 1976; McCabe 1983; McCabe and
Schulmeyer 1985]. It is based on the
theorem of graph theory that for any
flow graph there is a set of execution
paths such that every execution path
can be expressed as a linear combina-
tion of them. A set of paths is indepen-
dent if none of them is a linear combina-
tion of the others. According to McCabe,
a path should be tested if it is indepen-
dent of the paths that have been tested.
On the other hand, if a path is a linear
combination of tested paths, it can be
considered redundant. According to

graph theory, the maximal size of a set
of independent paths is unique for any
given graph and is called the cyclomatic
number, and can be easily calculated by
the following formula.

v~G! 5 e 2 n 1 p,

where v(G) denotes the cyclomatic num-
ber of the graph G, n is the number of
vertices in G, e is the number of edges,
and p is the number of strongly con-
nected components.3 The adequacy cri-
terion is then defined as follows.

Definition 2.4 (Cyclomatic-Number
Criterion). A set P of execution paths
satisfies the cyclomatic number crite-
rion if and only if P contains at least
one set of v independent paths, where
v 5 e 2 n 1 p is the cyclomatic number
of the flow graph.

McCabe also gave an algorithm to
generate a set of independent paths
from any given flow graph [McCabe
1976]. Paige [1978] has shown that the
level-i path coverage criterion subsumes
McCabe’s cyclomatic number criterion.

The preceding control-flow test ade-
quacy criteria are all defined in terms of
flow-graph models of program structure
except loop count criteria, which are
defined in terms of program text. A
number of other test adequacy criteria
are based on the text of program. One of
the most popular criteria in software
testing practice is the so-called multiple
condition coverage discussed in Myers’
[1979] classic book which has proved
popular in commercial software testing
practice. The criterion focuses on the
conditions of control transfers, such as
the condition in an IF-statement or a
WHILE-LOOP statement. A test set is
said of satisfying the decision coverage
criterion if for every condition there is
at least one test case such that the
condition has value true when evalu-

3 A graph is strongly connected if, for any two
nodes a and b, there exists a path from a to b and
a path from b to a. Strongly connected compo-
nents are maximal strongly connected subgraphs.

376 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

ated, and there is also at least one test
case such that the condition has value
false. In a high-level programming lan-
guage, a condition can be a Boolean
expression consisting of several atomic
predicates combined by logic connec-
tives like and, or, and not. A test set
satisfies the condition coverage crite-
rion if for every atomic predicate there
is at least one test case such that the
predicate has value true when evalu-
ated, and there is also at least one test
case such that the predicate has value
false. Although the result value of an
evaluation of a Boolean expression can
only be one of two possibilities, true or
false, the result may be due to different
combinations of the truth values of the
atomic predicates. The multiple condi-
tion coverage criterion requires that a
test set should cover all possible combi-
nations of the truth values of atomic
predicates in every condition. This crite-
rion is sometimes also called extended
branch coverage in the literature. For-
mally:

Definition 2.5 (Multiple Condition
Coverage). A test set T is said to be
adequate according to the multiple-con-
dition-coverage criterion if, for every
condition C, which consists of atomic
predicates (p1, p2, . . . , pn), and all the
possible combinations (b1, b2, . . . , bn)
of their truth values, there is at least
one test case in T such that the value of
pi equals bi, i 5 1, 2, . . . , n.

Woodward et al. [1980] proposed and
studied a hierarchy of program-text-
based test data adequacy criteria based
on a class of program units called linear
code sequence and jump (LCSAJ). These
criteria are usually referred to as test
effectiveness metrics in the literature.
An LCSAJ consists of a body of code
through which the flow of control may
proceed sequentially and which is ter-
minated by a jump in the control flow.
The hierarchy TERi, i 5 1, 2, . . . ,
n, . . . of criteria starts with statement
coverage as the lowest level, followed by
branch coverage as the next lowest
level. They are denoted by TER1 and

TER2, respectively, where TER repre-
sents test effectiveness ratio. The cover-
age of LCSAJ is the third level, which is
defined as TER3. The hierarchy is then
extended to the coverage of program
paths containing a number of LCSAJs.

Definition 2.6 (TER3: LCSAJ Cover-
age)

TER3 5

number of LCSAJs exercised
at least once

total number of LCSAJs.

Generally speaking, an advantage of
text-based adequacy criteria is that test
adequacy can be easily calculated from
the part of program text executed dur-
ing testing. However, their definitions
may be sensitive to language details.
For programs written in a structured
programming language, the application
of TERn for n greater than or equal to 3
requires analysis and reformatting of
the program structure. In such cases,
the connection between program text
and its test adequacy becomes less
straightforward. In fact, it is observed
in software testing practice that a small
modification to the program may result
in a considerably different set of linear
sequence code and jumps.

It should be noted that none of the
adequacy criteria discussed in this sec-
tion are applicable due to the possible
existence of infeasible elements in a
program, such as infeasible statements,
infeasible branches, infeasible combina-
tions of conditions, and the like. These
criteria, except path coverage, can be
redefined to obtain finite applicability
by only requiring the coverage of feasi-
ble elements.

2.1.2 Data-Flow-Based Test Data Ad-
equacy Criteria. In the previous sec-
tion, we have seen how control-flow in-
formation in the program under test is
used to specify testing requirements. In
this section, data-flow information is
taken into account in the definition of
testing requirements. We first introduce
the way that data-flow information is

Test Coverage and Adequacy • 377

ACM Computing Surveys, Vol. 29, No. 4, December 1997

added into the flow-graph models of pro-
gram structures. Then, three basic
groups of data-flow adequacy criteria
are reviewed. Finally, their limitations
and extensions are discussed.

A. Data-flow information in flow
graph. Data-flow analysis of test ade-
quacy is concerned with the coverage of
flow-graph paths that are significant for
the data flow in the program. Therefore,
data-flow information is introduced into
the flow-graph models of program struc-
tures.

Data-flow testing methods are based
on the investigation of the ways in
which values are associated with vari-
ables and how these associations can
effect the execution of the program. This
analysis focuses on the occurrences of
variables within the program. Each
variable occurrence is classified as ei-
ther a definition occurrence or a use
occurrence. A definition occurrence of a
variable is where a value is bound to the
variable. A use occurrence of a variable
is where the value of the variable is
referred. Each use occurrence is further
classified as being a computational use
or a predicate use. If the value of a
variable is used to decide whether a
predicate is true for selecting execution
paths, the occurrence is called a predi-
cate use. Otherwise, it is used to com-
pute a value for defining other variables
or as an output value. It is then called a
computational use. For example, the as-
signment statement “y :5 x1 1 x2” con-
tains computational uses of x1 and x2
and a definition of y. The statement “if
x1 , x2 then goto L endif” contains
predicate uses of x1 and x2.

Since we are interested in tracing the
flow of data between nodes, any defini-
tion that is used only within the node in
which the definition occurs is of little
importance. Therefore a distinction is
made between local computational uses
and global computational uses. A global
computational use of a variable x is
where no definition of x precedes the
computational use within the node in
which it occurs. That is, the value must

have been bound to x in some node
other than the one in which it is being
used. Otherwise it is a local computa-
tional use.

Data-flow test adequacy analysis is
concerned with subpaths from defini-
tions to nodes where those definitions
are used. A definition-clear path with
respect to a variable x is a path where
for all nodes in the path there is no
definition occurrence of the variable x.
A definition occurrence of a variable x
at a node u reaches a computational use
occurrence of the variable at node v if
and only if there is a path p from u to v
such that p 5 (u, w1, w2, . . . , wn, v),
and (w1, w2, . . . , wn) is definition-clear
with respect to x, and the occurrence of
x at v is a global computational use. We
say that the definition of x at u reaches
the computational occurrence of x at v
through the path p. Similarly, if there is
a path p 5 (u, w1, w2, . . . , wn, v) from
u to v, and (w1, w2, . . . , wn) is defini-
tion-clear with respect to x, and there is
a predicate occurrence of x associated
with the edge from wn to v, we say that
u reaches the predicate use of x on the
edge (wn, v) through the path p. If a
path in one of the preceding definitions
is feasible, that is, there is at least one
input datum that can actually cause the
execution of the path, we say that a
definition feasibly reaches a use of the
definition.

Three groups of data-flow adequacy
criteria have been proposed in the liter-
ature, and are discussed in the follow-
ing.

B. Simple definition-use association
coverage—the Rapps-Weyuker-Frankl
family. Rapps and Weyuker [1985]
proposed a family of testing adequacy
criteria based on data-flow information.
Their criteria are concerned mainly
with the simplest type of data-flow
paths that start with a definition of a
variable and end with a use of the same
variable. Frankl and Weyuker [1988]
later reexamined the data-flow ade-
quacy criteria and found that the origi-
nal definitions of the criteria did not

378 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

satisfy the applicability condition. They
redefined the criteria to be applicable.
The following definitions come from the
modified definitions.

The all-definitions criterion requires
that an adequate test set should cover
all definition occurrences in the sense
that, for each definition occurrence, the
testing paths should cover a path
through which the definition reaches a
use of the definition.

Definition 2.7 (All Definitions Crite-
rion). A set P of execution paths satis-
fies the all-definitions criterion if and
only if for all definition occurrences of a
variable x such that there is a use of x
which is feasibly reachable from the def-
inition, there is at least one path p in P
such that p includes a subpath through
which the definition of x reaches some
use occurrence of x.

Since one definition occurrence of a
variable may reach more than one use
occurrence, the all-uses criterion re-
quires that all of the uses should be
exercised by testing. Obviously, this re-
quirement is stronger than the all-defi-
nition criterion.

Definition 2.8 (All Uses Criterion). A
set P of execution paths satisfies the
all-uses criterion if and only if for all
definition occurrences of a variable x
and all use occurrences of x that the
definition feasibly reaches, there is at
least one path p in P such that p in-
cludes a subpath through which that
definition reaches the use.

The all-uses criterion was also pro-
posed by Herman [1976], and called
reach-coverage criterion. As discussed at
the beginning of the section, use occur-
rences are classified into computational
use occurrences and predicate use oc-
currences. Hence, emphasis can be put
either on computational uses or on
predicate uses. Rapps and Weyuker
[1985] identified four adequacy criteria
of different strengths and emphasis.
The all-c-uses/some-p-uses criterion re-
quires that all of the computational

uses are exercised, but it also requires
that at least one predicate use should be
exercised when there is no computa-
tional use of the variable. In contrast,
the all-p-uses/some-c-uses criterion puts
emphasis on predicate uses by requiring
that test sets should exercise all predi-
cate uses and exercise at least one
computational use when there is no
predicate use. Two even weaker criteria
were also defined. The all-predicate-
uses criterion completely ignores the
computational uses and requires that
only predicate uses need to be tested.
The all-computation-uses criterion only
requires that computational uses should
be tested and ignores the predicate
uses.

Notice that, given a definition occur-
rence of a variable x and a use of the
variable x that is reachable from that
definition, there may exist many paths
through which the definition reaches
the use. A weakness of the preceding
criteria is that they require only one of
such paths to be exercised by testing.
However, the applicability problem
arises if all such paths are to be exer-
cised because there may exist an infi-
nite number of such paths in a flow
graph. For example, consider the flow
graph in Figure 1, the definition of y at
node a1 reaches the use of y at node a3
through all the paths in the form:

~a1, a2! ∧ ~a2, a2!n ∧ ~a2, a3!, n $ 1,

where ∧ is the concatenation of paths,
pn is the concatenation of p with itself
for n times, which is inductively defined
to be p1 5 p and pk 5 p ∧ pk21, for all
k . 1. To obtain finite applicability,
Frankl and Weyuker [1988] and Clarke
et al. [1989] restricted the paths to be
cycle-free or only the end node of the
path to be the same as the start node.

Definition 2.9 (All Definition-Use-
Paths Criterion: Abbr. All DU-Paths
Criterion). A set P of execution paths
satisfies the all-du-paths criterion if
and only if for all definitions of a vari-
able x and all paths q through which

Test Coverage and Adequacy • 379

ACM Computing Surveys, Vol. 29, No. 4, December 1997

that definition reaches a use of x, there
is at least one path p in P such that q is
a subpath of p, and q is cycle-free or
contains only simple cycles.

However, even with this restriction, it
is still not applicable since such a path
may be infeasible.

C. Interactions between variables—the
Ntafos required K-tuples criteria. Ntafos
[1984] also used data-flow information
to analyze test data adequacy. He stud-
ied how the values of different variables
interact, and defined a family of ade-
quacy criteria called required k-tuples,
where k . 1 is a natural number. These
criteria require that a path set cover the
chains of alternating definitions and
uses, called definition-reference interac-
tions (abbr. k–dr interactions) in
Ntafos’ terminology. Each definition in
a k–dr interaction reaches the next use
in the chain, which occurs at the same
node as the next definition in the chain.
Formally:

Definition 2.10 (k–dr interaction).
For k . 1, a k–dr interaction is a se-
quence K 5 [d1(x1), u1(x1), d2(x2),
u2(x2), . . . , dk(xk), uk(xk)] where

(i) di(xi), 1 # i , k, is a definition
occurrence of the variable xi;

(ii) ui(xi), 1 # i , k, is a use occur-
rence of the variable xi;

(iii) the use ui(xi) and the definition
di11(xi) are associated with the
same node ni11;

(iv) for all i, 1 # i , k, the ith defini-
tion di(xi) reaches the ith use
ui(xi).

Note that the variables x1, x2, . . . , xk
and the nodes n1, n2, . . . , nk need not
be distinct. This definition comes from
Ntafos’ [1988] later work. It is different
from the original definition where the
nodes are required to be distinct [Ntafos
1984]. The same modification was also
made by Clark et al. [1989] in their
formal analysis of data flow adequacy
criteria.

An interaction path for a k–dr inter-

action is a path p 5 (n1) p p1 p (n2) p
. . . p (nk21) p pk21 p (nk) such that for
all i 5 1, 2, . . . , k 2 1, di(xi) reaches
ui(xi) through pi. The required k-tuples
criterion then requires that all k–dr
interactions are tested.

Definition 2.11 (Required k-Tuples
Criteria). A set P of execution paths
satisfies the required k-tuples criterion,
k . 1, if and only if for all j–dr interac-
tions L, 1 , j # k, there is at least one
path p in P such that p includes a
subpath which is an interaction path for
L.

Example 2.1 Consider the flow
graph in Figure 2. The following are
3–dr interaction paths.

~a1, a3, a2, a4! for the 3–dr

interaction @d1~ x!, u1~ x!, d2~ y!,

u2~ y!, d3~ x!, u3~ x!#; and

~a1, a2, a3, a4! for the 3–dr

interaction @d1~ y!, u1~ y!, d2~ x!,

u2~ x!, d3~ y!, u3~ y!#.

D. Combinations of definitions—the
Laski-Korel criteria. Laski and Korel
[1983] defined and studied another kind
of testing path selection criteria based
on data-flow analysis. They observed
that a given node may contain uses of
several different variables, where each
use may be reached by several defini-
tions occurring at different nodes. Such
definitions constitute the context of the
computation at the node. Therefore,
they are concerned with exploring such
contexts for each node by selecting
paths along which the various combina-
tions of definitions reach the node.

Definition 2.12 (Ordered Context).
Let n be a node in the flow graph.
Suppose that there are uses of the vari-
ables x1, x2, . . . , xm at the node n.4 Let

4 This assumption comes from Clark et al. [1989].
The original definition given by Laski and Korel

380 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

[n1, n2, . . . , nm] be a sequence of nodes
such that for all i 5 1, 2, . . . , m, there
is a definition of xi on node ni, and the
definition of xi reaches the node n with
respect to xi. A path p 5 p1 p (n1) p p2 p
(n2) p . . . p pm p (nm) p pm11 p (n) is
called an ordered context path for the
node n with respect to the sequence [n1,
n2, . . . , nm] if and only if for all i 5 2,
3, . . . , m, the subpath pi p (ni) p pi11 p
. . . p pm11 is definition clear with re-
spect to xi21. In this case, we say that
the sequence [n1, n2, . . . , nm] of nodes
is an ordered context for n.

Example 2.2 Consider the flow
graph in Figure 1. There are uses of the
two variables x and y at node a4. The
node sequences [a1, a2], [a1, a3], [a2,
a3], and [a3, a2] are ordered contexts
for node a4. The paths (a1, a2, a4),
(a1, a3, a4), (a2, a3, a4), and (a3, a2,
a4) are the ordered context paths for
them, respectively.

The ordered context coverage requires
that an adequate test set should cover
all ordered contexts for every mode.

Definition 2.13 (Ordered-Context Cov-
erage Criterion). A set P of execution
paths satisfies the ordered-context cov-
erage criterion if and only if for all
nodes n and all ordered contexts c for n,
there is at least one path p in P such
that p contains a subpath which is an
ordered context path for n with respect
to c.

Given a node n, let {x1, x2, . . . , xm}
be a nonempty subset of the variables
that are used at the node n, the nodes
ni, i 5 1, 2, . . . , m, have definition
occurrences of the variables xi, that
reach the node n. If there is a permuta-
tion s of the nodes which is an ordered
context for n, then we say that the set
{n1, n2, . . . , nm} is a context for n, and
an ordered context path for n with re-
spect to s is also called a definition
context path for n with respect to the

context {n1, n2, . . . , nm}. Ignoring the
ordering between the nodes, a slightly
weaker criterion, called the context-cov-
erage criterion, requires that all con-
texts for all nodes are covered.

Definition 2.14 (Context-Coverage Cri-
terion). A set P of execution paths sat-
isfies the context coverage criterion if
and only if for all nodes n and for all
contexts for n, there is at least one path
p in P such that p contains a subpath
which is a definition context path for n
with respect to the context.

E. Data-flow testing for structured
data and dynamic data. The data flow
testing methods discussed so far have a
number of limitations. First, they make
no distinction between atomic data such
as integers and structured or aggregate
data such as arrays and records. Modifi-
cations and references to an element of
a structured datum are regarded as
modifications and references to the
whole datum. It was argued that treat-
ing structured data, such as arrays, as
aggregate values may lead to two types
of mistakes [Hamlet et al. 1993]. A com-
mission mistake may happen when a
definition-use path is identified but it is
not present for any array elements. An
omission mistake may happen when a
path is missed because of a false inter-
mediate assignment. Such mistakes oc-
cur frequently even in small programs
[Hamlet et al. 1993]. Treating elements
of structured data as independent data
can correct the mistakes. Such an ex-
tension seems to add no complexity
when the references to the elements of
structured data are static, such as the
fields of records. However, treating ar-
rays element-by-element may introduce
a potential infinity of definition-use
paths to be tested. Moreover, theoreti-
cally speaking, whether two references
to array elements are references to the
same element is undecidable. Hamlet et
al. [1993] proposed a partial solution to
this problem by using symbolic execu-
tion and a symbolic equation solver to
determine whether two occurrences of

[1983] defines a context to be formed from all
variables having a definition that reaches the
node.

Test Coverage and Adequacy • 381

ACM Computing Surveys, Vol. 29, No. 4, December 1997

array elements can be the occurrences
of the same element.

The second limitation of the data-flow
testing methods discussed is that dy-
namic data were not taken into account.
One of the difficulties in the data-flow
analysis of dynamic data such as those
referred to by pointers is that a pointer
variable may actually refer to a number
of data storage. On the other hand, a
data storage may have a number of
references to it, that is, the existence of
alias. Therefore, for a given variable V,
a node may contain a definite definition
to the variable if a new value is defi-
nitely bound to the variable at the node.
It has a possible definition at a node n if
it is possible that a new value is bound
to it at the node. Similarly, a path may
be definitely definition-clear or possibly
definition-clear with respect to a vari-
able. Ostrand and Weyuker [1991] ex-
tended the definition-use association re-
lation on the occurrences of variables to
a hierarchy of relations. A definition-
use association is strong if there is a
definite definition of a variable and a
definite use of the variable and every
definition-clear path from the definition
to the use is definitely definition-clear
with respect to the variable. The associ-
ation is firm if both the definition and
the use are definite and there is at least
one path from the definition to the use
that it is definitely definition-clear. The
association is weak if both the definition
and the use are definite, but there is no
path from the definition to the use
which is definitely definition-clear. An
association is very weak if the definition
or the use or both of them are possible
instead of definite.

F. Interprocedural data-flow test-
ing. The data-flow testing methods
discussed so far have also been re-
stricted to testing the data dependence
existing within a program unit, such as
a procedure. As current trends in pro-
gramming encourage a high degree of
modularity, the number of procedure
calls and returns executed in a module
continues to grow. This mandates the

efficient testing of the interaction be-
tween procedures. The basic idea of in-
terprocedural data-flow testing is to test
the data dependence across procedure
interfaces. Harrold and Soffa [1990;
1991] identified two types of interproce-
dural data dependences in a program:
direct data dependence and indirect
data dependence. A direct data depen-
dence is a definition-use association
whose definition occurs in procedure P
and use occurs in a directly called proce-
dure Q of P. Such a dependence exists
when (1) a definition of an actual pa-
rameter in one procedure reaches a use
of the corresponding formal parameter
at a call site (i.e., a procedure call); (2) a
definition of a formal parameter in a
called procedure reaches a use of the
corresponding actual parameter at a re-
turn site (i.e., a procedure return); or (3)
a definition of a global variable reaches
a call or return site. An indirect data
dependence is a definition-use associa-
tion whose definition occurs in proce-
dure P and use occurs in an indirectly
called procedure Q of P. Conditions for
indirect data dependence are similar to
those for direct data dependence, except
that multiple levels of procedure calls
and returns are considered. Indirect
data dependence can be determined by
considering the possible uses of defini-
tions along the calling sequences. When
a formal parameter is passed as an ac-
tual parameter at a call site, an indirect
data dependence may exist. Given this
data dependence information, the data-
flow test adequacy criteria can be easily
extended for interprocedural data-flow
testing. Harrold and Soffa [1990] pro-
posed an algorithm for computing the
interprocedural data dependences and
developed a tool to support interproce-
dural data-flow testing.

Based on Harrold and Soffa’s work,
Ural and Yang [1988; 1993] extended
the flow-graph model for accurate repre-
sentation of interprocedural data-flow
information. Pande et al. [1991] pro-
posed a polynomial-time algorithm for
determining interprocedural definition-

382 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

use association including dynamic data
of single-level pointers for C programs.

2.1.3 Dependence Coverage Criterion—
an Extension and Combination of Data-
Flow and Control-Flow Testing. An ex-
tension of data-flow testing methods
was made by Podgurski and Clarke
[1989; 1990] by generalizing control and
data dependence. Informally, a state-
ment s is semantically dependent on a
statement s9 if the function computed
by s9 affects the execution behavior of s.
Podgurski and Clarke then proposed a
necessary condition of semantic depen-
dence called weak syntactic dependence
as a generalization of data dependence.
There is a weak syntactic dependence
between two statements if there is a
chain of data flow and a weak control
dependence between the statements,
where a statement u is weakly control-
dependent on statement v if v has suc-
cessors v9 and v0 such that if the branch
from v to v9 is executed then u is neces-
sarily executed within a fixed number of
steps, whereas if the branch v to v0 is
taken then u can be bypassed or its
execution can be delayed indefinitely.
Podgurski and Clarke also defined the
notion of strong syntactic dependence:
there is a strong syntactic dependence
between two statements if there is a
chain of data flow and a strong control
dependence between the statements.
Roughly speaking, a statement u is
strongly control dependent on state-
ment v if v has two successors v9 and v0
such that the execution through the
branch v to v9 may result in the execu-
tion of u, but u may be bypassed when
the branch from v to v0 is taken. Pod-
gurski and Clarke proved that strong
syntactic dependence is not a necessary
condition of semantic dependence.

When the definition-use association
relation is replaced with various depen-
dence relations, various dependence-
coverage criteria can be obtained as ex-
tensions to the data-flow test adequacy
criteria. Such criteria make more use of
semantic information contained in the

program under test. Furthermore, these
dependence relations can be efficiently
calculated.

2.2 Specification-Based Structural Testing

There are two main roles a specification
can play in software testing [Richardson
et al. 1992]. The first is to provide the
necessary information to check whether
the output of the program is correct
[Podgurski and Clarke 1989; 1990].
Checking the correctness of program
outputs is known as the oracle problem.
The second is to provide information to
select test cases and to measure test
adequacy. As the purpose of this article
is to study test adequacy criteria, we
focus on the second use of specifications.

Like programs, a specification has
two facets, syntactic structure and se-
mantics. Both of them can be used to
select test cases and to measure test
adequacy. This section is concerned
with the syntactic structure of a specifi-
cation.

A specification specifies the proper-
ties that the software must satisfy.
Given a particular instance of the soft-
ware’s input and its corresponding out-
put, to check whether the instance of
the software behavior satisfies these
properties we must evaluate the specifi-
cation by substituting the instance of
input and output into the input and
output variables in the specification, re-
spectively. Although this evaluation
process may take various forms, de-
pending on the type of the specification,
the basic idea behind the approach is to
consider a particular set of elements or
components in the specification and to
calculate the proportion of such ele-
ments or components involved in the
evaluation.

There are two major approaches to
formal software functional specifica-
tions, model-based specifications and
property-oriented specifications such as
axiomatic or algebraic specifications.
The following discussion is based on
these types of specifications.

Test Coverage and Adequacy • 383

ACM Computing Surveys, Vol. 29, No. 4, December 1997

2.2.1 Coverage of Model-Based For-
mal Functional Specifications. When a
specification is model-based, such as
those written in Z and VDM, it has two
parts. The first describes the state
space of the software, and the second
part specifies the required operations on
the space. The state space of the soft-
ware system can be defined as a set of
typed variables with a predicate to de-
scribe the invariant property of the
state space. The operations are func-
tions mapping from input data and the
state before the operation to the output
data and the state after the operation.
Such operations can be specified by a
set of predicates that give the precondi-
tion, that is, the condition on the input
data and the state before the operation,
and postconditions that specify the rela-
tionship between the input data, output
data, and the states before and after the
operation.

The evaluation of model-based formal
functional specifications is fairly similar
to the evaluation of a Boolean expres-
sion in an imperative programming lan-
guage. When input and output variables
in the expression are replaced with an
instance of input data and program out-
puts, each atomic predicate must be ei-
ther true or false. If the result of the
evaluation of the whole specification is
true, then the correctness of the soft-
ware on that input is confirmed. Other-
wise, a program error is found. How-
ever, the same truth value of a
specification on two instances of input/
output may be due to different combina-
tions of the truth values of the atomic
predicates. Therefore it is natural to
require that an adequate test cover a
certain subset of feasible combinations
of the predicates. Here a feasible combi-
nation means that the combination can
be satisfied; that is, there is an assign-
ment of values to the input and output
variables such that the atomic predi-
cates take their corresponding values in
the predicate combination. In the case
where the specification contains nonde-
terminism, the program may be less
nondeterministic than the specification.

That is, some of the choices of output
allowed by the specification may not be
implemented by the program. This may
not be considered a program error, but
it may result in infeasible combinations.

A feasible combination of the atomic
predicates in the preconditions is a de-
scription of the conditions that test
cases should satisfy. It specifies a sub-
domain of the input space. It can be
expressed in the same specification lan-
guage. Such specifications of testing re-
quirements are called test templates.
Stocks and Carrington [1993] suggested
the use of the formal functional specifi-
cation language Z to express test tem-
plates because the schema structure of
Z and its schema calculus can provide
support to the derivation and refine-
ment of test templates according to for-
mal specifications and heuristic testing
rules. Methods have also been proposed
to derive such test templates from mod-
el-based specification languages. Amla
and Ammann [1992] described a tech-
nique to extract information from for-
mal specifications in Z and to derive
test templates written in Z for partition
testing. The key step in their method is
to identify the categories of the test
data for each parameter and environ-
ment variable of a functional unit under
test. These categories categorize the in-
put domain of one parameter or one
environment variable according to the
major characteristics of the input. Ac-
cording to Amla and Ammann, there are
typically two distinct sources of catego-
ries in Z specifications: (a) characteris-
tics enumerated in the preconditions
and (b) characteristics of a parameter or
environment variable by itself. For pa-
rameters, these characteristics are
based on their type. For environment
variables, these characteristics may
also be based on the invariant for the
state components. Each category is then
further divided into a set of choices. A
choice is a subset of data that can be
assigned to the parameter or the envi-
ronment variable. Each category can be
broken into at least two choices: one for
the valid inputs and the other for the

384 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

invalid inputs. Finer partitions of valid
inputs are derived according to the syn-
tactic structure of the precondition
predicate, the parameters, or the invari-
ant predicate of the environment vari-
ables. For example, the predicate “A ∨
B” is partitioned into three choices: (a)
“¬ (A ∨ B)” for the set of data which are
invalid inputs; (b) “A” for the subset of
valid inputs which satisfy condition A;
(3) “B” for the subset of valid inputs
which satisfy the condition B.

Based on Amla and Ammann’s [1992]
work, Ammann and Offutt [1994] re-
cently considered how to test a func-
tional unit effectively and efficiently by
selecting test cases to cover various sub-
sets of the combinations of the catego-
ries and choices when the functional
unit has more than one parameter and
environment variable. They proposed
three coverage criteria. The all-combi-
nations criterion requires that software
is tested on all combinations of choices;
that is, for each combination of the
choices of the parameters and the envi-
ronment variables, there is at least one
test datum in the combination. Let x1,
x2, . . . , xn be the parameters and envi-
ronment variables of the functional unit
under test. Suppose that the choices for
xi are Ai,1, Ai,2, . . . , Ai,ki

, ki . 0, i 5 1,
2, . . . , n. Let C 5 {A1,u1

3 A2,u2
3 . . .

3 An,un
u 1 # ui # ki and 1 # i # n}. C

is then the set of all combinations of
choices. The all combination criterion
can be formally defined as follows.

Definition 2.15 (All-Combination Cri-
terion). A set of test data T satisfies
the all-combination criterion if for all
c [C, there exists at least one t [T
such that t [c.

This criterion was considered to be
inefficient, and the each-choice-used cri-
terion was considered ineffective [Am-
mann and Offutt 1994]. The each-
choice-used criterion requires that each
choice is used in the testing; that is, for
each choice of each parameter or envi-

ronment variable, there is at least one
test datum that belongs to the choice.
Formally:

Definition 2.16 (Each-Choice-Used
Criterion). A set of test data T satis-
fies the each-choice-used criterion if the
subset E 5 {e u e [C and ?t [T.(t [
e)} satisfies the condition:

@i.~1 # i # n

f~Ei 5 $Ai,1 , Ai,2 , . . . , Ai,ki%!!,

where

Ei 5 $eu ?X1 , . . . , Xi21 ,

Xi11 , . . . , Xn .~X1 3 . . . 3 Xi21 3 e

3 Xi11 3 . . . 3 Xn [E!%.

Ammann and Offutt suggested the
use of the base-choice-coverage criterion
and described a technique to derive test
templates that satisfy the criterion. The
base-choice-coverage criterion is based
on the notion of base choice, which is a
combination of the choices of parame-
ters and environment variables that
represents the normal operation of the
functional unit under test. Therefore,
test cases of the base choice are useful
to evaluate the function’s behavior in
normal operation mode. To satisfy the
base-choice-coverage criterion, software
needs to be tested on the subset of com-
binations of choices such that for each
choice in a category, the choice is com-
bined with the base choices for all other
categories. Assume that A1,1 3 A2,1 3
. . . 3 An,1 is the base choice. The base-
choice coverage criterion can be for-
mally defined as follows.

Definition 2.17 (Base-Choice-Coverage
Criterion). A set of test data T satis-
fies the base-choice-coverage criterion if
the subset E 5 {e u e [C ∧ ?t [T.(t [
e)} satisfies the following condition:

E $ ø
i51

n

Bi ,

Test Coverage and Adequacy • 385

ACM Computing Surveys, Vol. 29, No. 4, December 1997

where

Bi 5 $A1,1 3 . . . 3 Ai21,1 3 Ai, j 3 Ai11,1

3 . . . 3 An,1u j 5 1, 2, . . . , ki%.

There are a number of works on spec-
ification-based testing that focus on der-
ivation of test cases from specifications,
including Denney’s [1991] work on test-
case generation from Prolog-based spec-
ifications and many others [Hayes 1986;
Kemmerer 1985; McMullin and Gannon
1983; Wild et al. 1992].

Model-based formal specification can
also be in an executable form, such as a
finite state machine or a state chart.
Aspects of such models can be repre-
sented in the form of a directed graph.
Therefore, the program-based adequacy
criteria based on the flow-graph model
can be adapted for specification-based
testing [Fujiwara et al. 1991; Hall and
Hierons 1991; Ural and Yang 1988;
1993].

2.2.2 Coverage of Algebraic Formal
Functional Specifications. Property-
oriented formal functional specifications
specify software functions by a set of
properties that the software should pos-
sess. In particular, an algebraic specifi-
cation consists of a set of equations that
the operations of the software must sat-
isfy. Therefore checking if a program
satisfies the specification means check-
ing whether all of the equations are
satisfied by the program.

An equation in an algebraic specifica-
tion consists of two terms as two sides
of the equation. A term is constructed
from three types of symbols: variables
representing arbitrary values of a given
data type, constants representing a
given data value in a data type, and
operators representing data construc-
tors and operations on data types.

Each term has two interpretations in
the context of testing. First, a term rep-
resents a sequence of calls to the opera-
tions that implement the operators
specified in the specification. When the
variables in the term are replaced with
constants, such a sequence of calls to

the operations represents a test execu-
tion of the program, where the test case
consists of the constants substituted for
the variables. Second, a term also repre-
sents a value, that is, the result of the
sequence of operations. Therefore,
checking an equation means executing
the operation sequences for the two
terms on the two sides of the equation
and then comparing the results. If the
results are the same or equivalent, the
program is considered to be correct on
this test case, otherwise the implemen-
tation has errors. This interpretation
allows the use of algebraic specifica-
tions as test oracles.

Since variables in a term can be re-
placed by any value of the data type,
there is a great deal of freedom to choose
input data for any given sequence of oper-
ations. For algebraic specification, values
are represented by ground terms, that is,
terms without variables. Gaudel [Bouge
et al. 1986; Bernot et al. 1991] and her
colleagues suggested that the selection of
test cases should be based on partitioning
the set of ground terms according to their
complexity so that the regularity and uni-
formity hypotheses on the subsets in the
partition can be assumed. The complexity
of a test case is then the depth of nesting
of the operators in the ground term.
Therefore, roughly speaking, the selection
of test cases should first consider con-
stants specified by the specification, then
all the values generated by one applica-
tion of operations on constants, then val-
ues generated by two applications on con-
stants, and so on until the test set covers
data of a certain degree of complexity.

The following hypothesis, called the
regularity hypothesis [Bouge et al. 1986;
Bernot et al. 1991], formally states the
gap between software correctness and
adequate testing by the preceding ap-
proach.

Regularity Hypothesis

@x~complexity~ x! # K f t~ x!

5 t9~ x!! f @x~t~ x! 5 t9~ x!! (2.1)

386 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

Informally, the regularity hypothesis
assumes that for some complexity de-
gree k, if a program satisfies an equa-
tion t(x) 5 t9(x) on all data of complex-
ity not higher than k, then the program
satisfies the equation on all data. This
hypothesis captures the intuition of in-
ductive reasoning in software testing.
But it cannot be proved formally (at
least in its most general form) nor vali-
dated empirically. Moreover, there is no
way to determine the complexity k such
that only the test cases of complexity
less than k need to be tested.

2.3 Summary of Structure Coverage
Criteria

In summary, when programs are mod-
eled as directed graphs, paths in the
flow graph should be exercised by test-
ing. However, only a finite subset of the
paths can be checked during testing.
The problem is therefore to choose
which paths should be exercised.

Control-flow test data adequacy crite-
ria answer this question by specifying
restrictions on the complexity of the
paths or by specifying restrictions on
the redundancy among paths. Data-flow
adequacy criteria use data-flow infor-
mation in the program and select paths
that are significant with respect to such
information. Data-flow and control-flow
adequacy criteria can be extended to
dependence coverage criteria, which
make more use of semantic information
contained in the program under test.
However, none of these criteria use in-
formation about software requirements
or functional specifications.

Specification-based structure cover-
age criteria specify testing require-
ments and measure test adequacy ac-
cording to the extent that the test data
cover the required functions specified in
formal specifications. These criteria fo-
cus on the specification and ignore the
program that implements the specifica-
tion.

As discussed in Section 1, software
testing should employ information con-
tained in the program as well as infor-

mation in the specification. A simple
way to combine program-based struc-
tural testing with specification-based
structure coverage criteria is to mea-
sure test adequacy with criteria from
both approaches.

3. FAULT-BASED ADEQUACY CRITERIA

Fault-based adequacy criteria measure
the quality of a test set according to its
effectiveness or ability to detect faults.

3.1 Error Seeding

Error seeding is a technique originally
proposed to estimate the number of
faults that remain in software. By this
method, artificial faults are introduced
into the program under test in some
suitable random fashion unknown to
the tester. It is assumed that these arti-
ficial faults are representative of the
inherent faults in the program in terms
of difficulty of detection. Then, the soft-
ware is tested and the inherent and
artificial faults discovered are counted
separately. Let r be the ratio of the
number of artificial faults found to the
number of total artificial faults. Then
the number of inherent faults in the
program is statistically predicted with
maximum likelihood to be f/r, where f is
the number of inherent faults found by
testing.

This method can also be used to mea-
sure the quality of software testing. The
ratio r of the number of artificial faults
found to the total number of artificial
faults can be considered as a measure of
the test adequacy. If only a small pro-
portion of artificial faults are found dur-
ing testing, the test quality must be
poor. In this sense, error seeding can
show weakness in the testing.

An advantage of the method is that it
is not restricted to measuring test qual-
ity for dynamic testing. It is applicable
to any testing method that aims at find-
ing errors or faults in the software.

However, the accuracy of the measure
is dependent on how faults are intro-
duced. Usually, artificial faults are

Test Coverage and Adequacy • 387

ACM Computing Surveys, Vol. 29, No. 4, December 1997

manually planted, but it has been
proved difficult to implement error
seeding in practice. It is not easy to
introduce artificial faults that are
equivalent to inherent faults in diffi-
culty of detection. Generally, artificial
errors are much easier to find than in-
herent errors. In an attempt to over-
come this problem, mutation testing in-
troduces faults into a program more
systematically.

3.2 Program Mutation Testing

3.2.1 Principles of Mutation Ade-
quacy Analysis. Mutation analysis is
proposed as a procedure for evaluating
the degree to which a program is tested,
that is, to measure test case adequacy
[DeMillo et al. 1978; Hamlet 1977].
Briefly, the method is as follows. We
have a program p and a test set t that
has been generated in some fashion.
The first step in mutation analysis is
the construction of a collection of alter-
native programs that differ from the
original program in some fashion. These
alternatives are called mutants of the
original program, a name borrowed
from biology. Each mutant is then exe-
cuted on each member of the test set t,
stopping either when an element of t is
found on which p and the mutant pro-
gram produce different responses, or
when t is exhausted.

In the former case we say that the
mutant has died since it is of no further
value, whereas in the latter case we say
the mutant lives. These live mutants
provide valuable information. A mutant
may remain alive for one of the follow-
ing reasons.

(1) The test data are inadequate.

If a large proportion of mutants live,
then it is clear that on the basis of these
test data alone we have no more reason
to believe that p is correct than to be-
lieve that any of the live mutants are
correct. In this sense, mutation analysis
can clearly reveal a weakness in test
data by demonstrating specific pro-
grams that are not ruled out by the test

data presented. For example, the test
data may not exercise the portion of the
program that was mutated.

(2) The mutant is equivalent to the
original program.

The mutant and the original program
always produce the same output, hence
no test data can distinguish between
the two. Normally, only a small percent-
age of mutants are equivalent to the
original program.

Definition 3.1 (Mutation Adequacy
Score). The mutation adequacy of a set
of test data is measured by an adequacy
score computed according to the follow-
ing equation.

Adequacy Score S 5
D

M 2 E

where D is the number of dead mutants,
M is the total number of mutants, and
E is the number of equivalent mutants.

Notice that the general problem of
deciding whether a mutant is equiva-
lent to the original program is undecid-
able.

3.2.2 Theoretical Foundations of Mu-
tation Adequacy. Mutation analysis is
based on two basic assumptions—the
competent programmer hypothesis and
the coupling effect hypothesis. These
two assumptions are based on observa-
tions made in software development
practice, and if valid enable the practi-
cal application of mutation testing to
real software [DeMillo et al. 1988].
However, they are very strong assump-
tions whose validity is not self-evident.

A. Competent programmer assump-
tion. The competent programmer hy-
pothesis assumes that the program to
be tested has been written by competent
programmers. That is, “they create pro-
grams that are close to being correct”
[DeMillo et al. 1988]. A consequence
drawn from the assumption by DeMillo
et al. [1988] is that “if we are right in
our perception of programs as being
close to correct, then these errors should

388 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

be detectable as small deviations from
the intended program.” In other words,
the mutants to be considered in muta-
tion analysis are those within a small
deviation from the original program. In
practice, such mutants are obtained by
systematically and mechanically apply-
ing a set of transformations, called mu-
tation operators, to the program under
test. These mutation operators would
ideally model programming errors made
by programmers. In practice, this may
be only partly true. We return to muta-
tion operators in Section 3.2.3.

B. Coupling effect assumption. The
second assumption in mutation analysis
is the coupling effect hypothesis, which
assumes that simple and complex errors
are coupled, and hence test data that
cause simple nonequivalent mutants to
die will usually also cause complex mu-
tants to die.

Trying to validate the coupling effect
assumption, Offutt [1989; 1992] did an
empirical study with the Mothra muta-
tion-testing tool. He demonstrated that
a test set developed to kill first-order
mutants (i.e., mutants) can be very suc-
cessful at killing second-order mutants
(i.e., mutants of mutants). However, the
relationship between second-order mu-
tants and complex faults remains un-
clear.

In the search for the foundation of
mutation testing, theories have been de-
veloped for fault-based testing in gen-
eral and mutation testing in particular.
Program correctness is usually taken to
mean that the program computes the
intended function. But in mutation
analysis there is another notion of cor-
rectness, namely, that a certain class of
faults has been ruled out. This is called
local correctness here to distinguish it
from the usual notion of correctness.

According to Budd and Angluin [1982]
local correctness of a program p can be
defined relative to a neighborhood F of
p, which is a set of programs containing
the program p itself. Precisely speaking,
F is a mapping from a program p to a

set of programs F(p). We say that p is
locally correct with respect to F if, for
all programs q in F(p), either q is
equivalent to p or q fails on at least one
test point in the input space. In other
words, in the neighborhood of a pro-
gram only the program and its equiva-
lents are possibly correct, because all
others are incorrect. With the compe-
tent programmer hypothesis, local cor-
rectness implies correctness if the
neighborhood is always large enough to
cover at least one correct program.

Definition 3.2 (Neighborhood Ade-
quacy Criterion). A test set t is F-ade-
quate if for all programs q Þ p in F,
there exists x in t such that p(x) Þ q(x).

Budd and Angluin [1982] studied the
computability of the generation and rec-
ognition of adequate test sets with re-
spect to the two notions of correctness,
but left the neighborhood construction
problem open.

The neighborhood construction prob-
lem was investigated by Davis and
Weyuker [1988; 1983]. They developed a
theory of metric space on programs
written in a language defined by a set of
production rules. A transition sequence
from program p to program q was de-
fined to be a sequence of the programs
p1, p2, . . . , pn such that p1 5 p and
pn 5 q, and for each i 5 1, 2, . . . , n 2 1,
either pi11 is obtained from pi (a for-
ward step) or pi can be obtained from
pi11 (a backward step), using one of the
productions of the grammar in addition
to a set of short-cut rules to catch the
intuition that certain kinds of programs
are conceptually close. The length of a
transition sequence is defined to be the
maximum of the number of forward
steps and the number of backward steps
in the transition sequence. The distance
r(p, q) between program p and q is then
defined as the smallest length of a tran-
sition sequence from p to q. This dis-
tance function on the program space can
be proved to satisfy the axioms of a
metric space, that is, for all programs p,
q, r,

Test Coverage and Adequacy • 389

ACM Computing Surveys, Vol. 29, No. 4, December 1997

(1) r(p, q) $ 0;
(2) r(p, q) 5 0 if and only if p 5 q;
(3) r(p, q) 5 r(q, p);
(4) r(p, r) $ r(p, q) 1 r(q, r).

Then, the neighborhood Fd(p) of pro-
gram p within a distance d is the set of
programs within the distance d accord-
ing to r; formally, Fd(p) 5 {q u r(p, q) #
d}. Davis and Weyuker introduced the
notion of critical points for a program
with respect to a neighborhood. Intu-
itively, a critical point for a program is
a test case that is the unique input to
kill some mutant in the neighborhood
set. Formally:

Definition 3.3 (Critical Points). An
input c is a F-critical point for p with
respect to F if there exists a program
q [F such that for all x Þ c, p(x) 5
q(x) but p(c) Þ q(c).

There is a nice relationship between
critical points [Davis and Weyuker
1988] and adequate test sets. First,
F-critical points must be members of
any F-adequate test sets. Second, when
the distance d increases, the neighbor-
hood set Fd(p) as well as the set of
critical points increase in the sense of
set inclusion. That is, if c is Fd(p)-
critical, then for all « $ d, c is also

F«(p)-critical. Finally, by studying min-
imally adequate test sets, Davis and
Weyuker [1988] obtained a lower bound
of the numbers of non-critical points
that must be present in an adequate
test set.

3.2.3 Mutation Transformations. Now
let us consider the problem of how to
generate mutants from a given program.
A practical method is the use of mutation
operators. Generally speaking, a muta-
tion operator is a syntactic transforma-
tion that produces a mutant when applied
to the program under test. It applies to a
certain type of syntactic structure in the
program and replaces it with another. In
current mutation testing tools such as
Mothra [King and Offutt 1991], the muta-
tion operators are designed on the basis
of many years’ study of programmer er-
rors. Different levels of mutation analysis
can be done by applying certain types of
mutation operators to the corresponding
syntactical structures in the program. Ta-
ble I from Budd [1981], briefly describes
the levels of mutation analysis and the
corresponding mutation operators. This
framework has been used by almost all of
the mutation testing tools.

3.2.4 The Pros and Cons. Using a
mutation-based testing system, a tester

Table I. Levels of Analysis in Mutation Testing

a An erroneous expression may coincidentally compute correct output on a particular input. For
example, assume that a reference to a variable is mistaken by referring to another variable, but in a
particular case these two variables have the same value. Then, the expression computes the correct
output on the particular input. If such an input is used as a test case, it is unable to detect the fault.
Coincidental correctness analysis attempts to analyse whether a test set suffers from such weakness.

390 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

supplies the program to be tested and
chooses the levels of mutation analysis
to be performed. Then the system gener-
ates the set of mutants. The tester also
supplies a test set. The testing system
executes the original program and each
mutant on each test case and compares
the outputs produced by the original
program and its mutants. If the output
of a mutant differs from the output of
the original program, the mutant is
marked dead. Once execution is com-
plete, the tester examines any mutants
that are still alive. The tester can then
declare a mutant to be equivalent to the
original program, or can supply addi-
tional test data in an effort to kill the
mutant.

Reports on experiments with muta-
tion-based testing have claimed that
the method is powerful and has a num-
ber of attractive features [DeMillo and
Mathur 1990; DeMillo et al. 1988].

(1) Mutation analysis allows a great de-
gree of automation. Mutants are
generated by applying mutation op-
erators and are then compiled and
executed. The outputs of the mu-
tants and the original programs are
compared and then a mutation ade-
quacy score is calculated. All these
can be supported by mutation-test-
ing software such as that of Mothra
[DeMillo et al. 1988; King and Of-
futt 1991].

(2) Mutation-based testing systems pro-
vide an interactive test environment
that allows the tester to locate and
remove errors. When a program un-
der test fails on a test case and a
mutant does not, the tester should
find it easy to locate and remove the
error by considering the mutation
operator applied and the location
where the mutation operator is ap-
plied.

(3) Mutation analysis includes many
other testing methods as special
cases. For example, statement cov-
erage and branch coverage are spe-
cial cases of statement analysis in
mutation testing. This can be

achieved by replacing a statement
or a branch by the special statement
TRAP, which causes the abortion of
the execution.

The drawback of mutation testing is
the large computation resources (both
time and space) required to test large-
scale software. It was estimated that
the number of mutants for an n-line
program is on the order of n2 [Howden
1982]. Recently, experimental data con-
firmed this estimate; see Section 5.3
[Offutt et al. 1993]. A major expense in
mutation testing is perhaps the sub-
stantial human cost of examining large
numbers of mutants for possible equiva-
lence, which cannot be determined ef-
fectively. An average of 8.8% of equiva-
lent mutants had been observed in
experiments [Offutt et al. 1993].

3.3 Variants of Program Mutation Testing

Using the same idea of mutation analy-
sis, Howden [1982] proposed a testing
method to improve efficiency. His test-
ing method is called weak mutation test-
ing because it is weaker than the origi-
nal mutation testing. The original
method was referred to as strong muta-
tion testing. The fundamental concept
of weak mutation testing is to identify
classes of program components and er-
rors that can occur in the components.
Mutation transformations are then ap-
plied to the components to generate mu-
tants of the components. For each com-
ponent and a mutant of the component,
weak mutation testing requires that a
test datum be constructed so that it
causes the execution of the component
and that the original component and the
mutant compute different values. The
major advantage of weak mutation test-
ing is efficiency. Although there is the
same number of mutants in weak muta-
tion testing as in strong mutation test-
ing, it is not necessary to carry out a
separate program execution for each
mutant. Although a test set that is ade-
quate for weak mutation testing may
not be adequate for the strong mutation

Test Coverage and Adequacy • 391

ACM Computing Surveys, Vol. 29, No. 4, December 1997

testing, experiments with weak muta-
tion testing such as Offutt and Lee’s
[1991] and Marick’s [1991] suggest that it
can still be an effective testing method.

From a more general view of muta-
tion-testing principles, Woodward and
Halewood [1988] proposed firm muta-
tion testing. They regarded mutation
testing as the process of making small
changes in a program and comparing
the outcomes of the original and
changed versions. They identified a set
of parameters of such changes and com-
parisons. The basic idea of firm muta-
tion testing is to make such parameters
explicit so that they can be altered by
testers. Strong and weak mutation test-
ing are two extremes of the firm-mutation
testing method. The advantage of firm-
mutation testing is that it is less expen-
sive than strong-mutation testing but
stronger than weak-mutation testing. In
addition, firm-mutation testing provides
a mechanism for the control of fault intro-
duction and test results comparison. The
major disadvantage of firm-mutation
testing is that there is no obvious system-
atic basis on which to select the parame-
ters and the area of program code.

Returning to frameworks for strong
mutation testing, ordered mutation test-
ing was proposed to improve efficiency
without sacrificing effectiveness. The
idea is to construct an order # between
mutants such that mutant b is stronger
than a (written a # b) if for any test
case t, t kills b implies that t necessar-
ily kills a. Therefore, mutant b should
be executed on test cases before the
execution of a, and a is executed only
when the test data failed to kill b. A
similar ordering can also be defined on
test data. Given a mutant q of program
p, q should be executed on test data t
before the execution on test data s if t is
more likely to kill q than s is. Ordering
on mutation operators was proposed to
achieve the ordering on mutants in
early ’80s by Woodward et al. [1980]
and Riddell et al. [1982], and reap-
peared recently in a note by Duncan
and Robson [1990]. A mutation opera-
tion f is said to be stronger than f9 if
for all programs p, the application of f

to p always gives a mutant that is
stronger than the mutants obtained by
the application of f9 to p at the same
location. Taking the relational opera-
tor 5 as an example, mutants can be
generated by replacing “5” with “Þ”,
“#”, “$”, “,”, and “.”, respectively. In-
tuitively, replacing “5” with “Þ” should
be stronger than replacing with “,”,
because if the test data are not good
enough to distinguish “5” from “Þ”, it
would not be adequate for other rela-
tional operators. Based on such argu-
ments, a partial ordering on relational
operators was defined. However, Wood-
ward [1991] proved that operator order-
ing is not the right approach to achiev-
ing mutant ordering. The situation
turns out to be quite complicated when
a mutation operator is applied to a loop
body, and a counterexample was given.
Experiments are needed to see how ef-
fective ordered mutation testing can be
and to assess the extent of cost saving.

It was observed that some mutation
operators generate a large number of
mutants that are bound to be killed if a
test set kills other mutants. Therefore,
Mathur [1991] suggested applying the
mutation testing method without apply-
ing the two mutation operators that
produce the most mutants. Mathur’s
method was originally called con-
strained mutation testing. Offutt et al.
[1993] extended the method to omit the
first N most prevalent mutation opera-
tors and called it N-selective mutation
testing. They did an experiment on se-
lective testing with the Mothra muta-
tion testing environment. They tested
10 small programs using an automatic
test-case generator, Godzilla [DeMillo
and Offutt 1991; 1993]. Their experi-
mentation showed that with full selec-
tive mutation score, an average nonse-
lective mutation score of 99.99, 99.84
and 99.71% was achieved by 2-selective,
4-selective, and 6-selective mutation
testing, respectively. Meanwhile, the
average savings5 for these selective mu-
tations were 23.98, 41.36, and 60.56%,

5 The savings are measured as the reduction of
the number of mutants.

392 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

respectively [Offutt et al. 1993]. Mathur
theorized that selective mutation test-
ing has complexity linear in program
size measured as the number of variable
references, and yet retains much of the
effectiveness of mutation testing. How-
ever, experimental data show that the
number of mutants is still quadratic
although the savings are substantial
[Offutt et al. 1993].

3.4 Perturbation Testing

While mutation testing systematically
plants faults in programs by applica-
tions of syntactic transformations, Zeil’s
perturbation testing analyses test effec-
tiveness by considering faults in an “er-
ror” space. It is concerned with faults in
arithmetic expressions within program
statements [Zeil 1983]. It was proposed
to test vector-bounded programs, which
have the following properties: (1) vector-
bounded programs have a fixed number
of variables on a continuous input do-
main; (2) in the flow-graph model, each
node n in the flow graph is associated
with a function Cn that transforms the
environment v to a new environment v9.
Here, environment is a vector (x1, x2,
. . . , xn, y1, y2, . . . , ym) which consists
of the current values of the input vari-
ables xi and the values of the intermedi-
ate and output variables yi. The func-
tions associated with nodes are
assumed to be in a class C which is
closed under function composition. (3)
each node may have at most two out-
ward arcs. In such cases the node n is
also associated with a predicate Tn,
which is applied to the new environ-
ment obtained by applying Cn and com-
pared with zero to determine the next
node for execution. It was assumed that
the predicates are simple, not combined
with and, or, or other logical operators.
(4) the predicates are assumed to be in a
class T which is a vector space over the
real numbers R of dimension k and is
closed under composition with C. Exam-
ples of vector spaces of functions include
the set of linear functions, the set of

polynomial functions of degree k, and
the set of multinomials of degree k.

There are some major advantages of
vector boundedness. First, any finite-
dimensioned vector space can be de-
scribed by a finite set of characteristic
vectors such that any member of the
vector space is a linear combination of
the characteristic vectors. Second, vec-
tor spaces are closed under the opera-
tions of addition and scalar multiplica-
tion. Suppose that some correct function
C has been replaced by an erroneous
form C9. Then the expression C 2 C9 is
the effect of the fault on the transforma-
tion function. It is called the error func-
tion of C9 or the perturbation to C. Since
the vector space contains C and C9, the
error function must also be in the vector
space. This enables us to study faults in
a program as functional differences be-
tween the correct function and the in-
correct function rather than simply as
syntactical differences, as in mutation
testing. Thus it builds a bridge between
fault-based testing and error-based test-
ing, which is discussed in Section 4.

When a particular error function
space E is identified, a neighborhood of
a given function f can be expressed as
the set of functions in the form of f 1 fe,
where fe [E. Test adequacy can then
be defined in terms of a test set’s ability
to detect error functions in a particular
error function space. Assuming that
there are no missing path errors in the
program, Zeil considered the error func-
tions in the function C and the predi-
cate T associated with a node. The fol-
lowing gives more details about
perturbation of these two types of func-
tions.

3.4.1 Perturbation to the Predicate.
Let n be a node in a flow graph and Cn
and Tn be the computation function and
predicate function associated with node
n. Let A be a path from the begin node
to node n and CA be the function com-
puted through the path. Let T9 be the
correct predicate that should be used in
place of Tn. Suppose that the predicate
is tested by an execution through the

Test Coverage and Adequacy • 393

ACM Computing Surveys, Vol. 29, No. 4, December 1997

path A. Recall that a predicate is a
real-valued function, and its result is
compared with zero to determine the
direction of control transfer. If in a test
execution the error function e 5 T9 2
Tn is evaluated to zero, it does not affect
the direction of control transfer. There-
fore the error function e 5 T9 2 Tn
cannot be detected by such an execution
if and only if there exists a positive
scalar a such that

Tn ° CA~v0! 5 aT9 ° CA~v0!,

for all initial environments v0 which
cause execution through path A, where °
is functional composition. The subset of T
that consists of the functions satisfying
the preceding equation is called the blind-
ness space for the path A, denoted by
BLIND(A). Zeil identified three types of
blindness and provided a constructive
method to obtain BLIND(A) for any path
A. Assignment blindness consists of func-
tions in the following set.

null~CA! 5 $eue [T ∧ @v. e ° CA~v! 5 0%.

These functions evaluate to zero when
the expressions computed in CA are sub-
stituted for the program variables. After
the assignment statement “X :5 f(v)”,
for example, the expression “X 2 f(v)”
can be added into the set of undetect-
able predicates. Equality blindness con-
sists of equality restrictions on the path
domain. To be an initial environment
that causes execution of a path A, it
must satisfy some restrictions. A re-
striction can be an equality, such as x 5
2. If an input restriction r(v0) 5 0 is
imposed, then the predicate r(v) 5 0 is
an undetectable error function. The fi-
nal component of undetectable predi-
cates is the predicate Tn itself. Because
Tn(v) compared with zero and aTn(v)
compared with zero are identical for all
positive real numbers a, self-blindness
consists of all predicates of the form
aTn(v). These three types of undetect-
able predicates can be combined to form
more complicated undetectable error
functions.

Having given a characterization theo-
rem of the set BLIND(A) and a con-
structive methods to calculate the set,
Zeil defined a test-path selection crite-
rion for predicate perturbations.

Definition 3.4 (Adequacy of Detecting
Predicate Perturbation). A set P of
paths all ending at some predicate T is
perturbation-test-adequate for predicate
T if

ù
p[P

BLIND~ p! 5 B.

Zeil’s criterion was originally stated in
the form of a rejection rule: if a program
has been reliably tested on a set P of
execution paths that all end at some
predicate T, then an additional path p
also ending at T need not be tested if
and only if

ù
x[P

BLIND~ x! # BLIND~ p!.

Zeil also gave the following theorem
about perturbation testing for predicate
errors.

THEOREM 3.1 (Minimal Adequate Test
Set for Predicate Perturbation Testing).
A minimal set of subpaths adequate for
testing a given predicate in a vector
bounded program contains at most k
subpaths, where k is the dimension of T.

3.4.2 Perturbation to Computations.
The perturbation function of the compu-
tation associated with node n can also
be expressed as e 5 C9 2 Cn where C9
is the unknown correct computation.
However, a fault in computation func-
tion may cause two types of errors: do-
main error or computation error. A com-
putation error can be revealed if there is
a path A from the begin node to the
node n and a path B from node n to a
node that contains an output statement
M, such that for some initial environ-
ment v0 that causes the execution of
paths A and B

M ° CB ° Cn ° CA~v0!

Þ M ° CB ° C9 ° CA~v0!.

394 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

A sufficient condition of this inequality
is that M ° CB ° e ° CA(v0) Þ 0. The set
of functions that satisfy the equation
M ° CB ° e ° CA(v0) 5 0 for all v0 that
execute A and B is then the blindness
space of the test execution through the
path A followed by B.

A domain error due to an erroneous
computation function Cn can be re-
vealed by a path A from the begin node
to node n and a path B from node n to a
node m with predicate Tm, if for some
initial environment v0 that causes the
execution of paths A and B to node m.

Tm ° CB ° Cn ° CA~v0!

Þ aTm ° CB ° C9 ° CA~v0!.

In other words, the erroneous computa-
tion may cause domain error if the fault
affects the evaluation of a predicate.
The blindness space of a test path for
detecting such perturbations of a com-
putation function can be expressed by
the equation: Tm ° CB ° e ° CA(v0) 5 0,
where e 5 Cn 2 C9.

A solution to the two preceding equa-
tions was obtained for linear-dominated
programs, which are bounded vector
programs with the additional restric-
tions that C is the set of linear trans-
formations and T is the set of linear
functions [Zeil 1983]. The solution es-
sentially consists of two parts: assign-
ment blindness and equality blindness,
as in predicate perturbation, and blind-
ness due to computation CB masking
out differences between Cn and C9. An
adequacy criterion similar to the predi-
cate perturbation adequacy was also de-
fined.

The principle of perturbation testing
can be applied without the assumptions
about the computation function space C
and the predicate function space T, but
selecting an appropriate error function
space E. Zeil [1983] gave a characteriza-
tion of the blindness space for vector
error spaces without the condition of
linearity. The principle of perturbation
testing can also be applied to individual
test cases [Zeil 1984]. The notion of

error space has been applied to improve
domain-testing methods as well [Afifi et
al. 1992; Zeil et al. 1992], which are
discussed in Section 4.

Although both mutation testing and
perturbation testing are aimed at de-
tecting faults in software, there are a
number of differences between the two
methods. First, mutation testing mainly
deals with faults at the syntactical
level, whereas perturbation testing fo-
cuses on the functional differences. Sec-
ond, mutation testing systematically
generates mutants according to a given
list of mutation operators. The pertur-
bation testing perturbs a program by
considering perturbation functions
drawn from a structured error space,
such as a vector space. Third, in muta-
tion testing, a mutant is killed if on a
test case it produces an output different
from the output of the original program.
Hence the fault is detected. However,
for perturbation testing, the blindness
space is calculated according to the test
cases. A fault is undetected if it remains
in the blindness space. Finally, al-
though mutation testing is more gener-
ally applicable in the sense that there
are no particular restrictions on the
software under test, perturbation test-
ing guarantees that combinations of the
faults can be detected if all simple
faults are detected, provided that the
error space is a vector space.

3.5 The RELAY Model

As discussed in perturbation testing, it
is possible for a fault not to cause an
error in output even if the statement
containing the fault is executed. With
the restriction to linear-domained pro-
grams, Zeil provided conditions on
which a perturbation (i.e., a fault), can
be exposed.

The problem of whether a fault can be
detected was addressed by Morrel
[1990], where a model of error origina-
tion and transfer was proposed. An er-
ror is originated (called “created” by
Morrel) when an incorrect state is intro-
duced at some fault location, and it is

Test Coverage and Adequacy • 395

ACM Computing Surveys, Vol. 29, No. 4, December 1997

transferred (called “propagated” by Mor-
rel) if it persists to the output.

The RELAY model proposed by Rich-
ardson and Thompson [1988; 1993] was
built upon Morrel’s theory, but with
more detailed analysis of how an error
is transferred and the conditions of such
transfers. The errors considered within
the RELAY model are those caused by
particular faults in a module. A poten-
tial fault is a discrepancy between a
node n in the module under test and the
corresponding node n* in the hypotheti-
cally correct module. This potential
fault results in a potential error if the
expression containing the fault is exe-
cuted and evaluated to a value different
from that of the corresponding hypo-
thetically correct expression. Given a
potential fault, a potential error origi-
nates at the smallest subexpression of
the node containing the fault that eval-
uates incorrectly. The potential error
transfers to a superexpression if the su-
perexpression evaluates incorrectly.
Such error transfers are called compu-
tational transfer. To reveal an output
error, execution of a potential fault
must cause an error that transfers from
node to node until an incorrect output
results, where an error in the function
computed by a node is called a context
error. If a potential error is reflected in
the value of some variable that is refer-
enced at another node, the error trans-
fer is called a data-flow transfer. This
process of error transfer is illustrated in
Figure 4.

Therefore the conditions under which
a fault is detected are:

(1) origination of a potential error in
the smallest subexpression contain-
ing the fault;

(2) computational transfer of the poten-
tial error through each operator in
the node, thereby revealing a con-
text error;

(3) data-flow transfer of that context
error to another node on the path
that references the incorrect con-
text;

(4) cycle through (2) and (3) until a
potential error is output.

If there is no input datum for which a
potential error originates and all these
transfers occur, then the potential fault
is not a fault. This view of error detection
has an analogy in a relay race, hence the
name of the model. Based on this view,
the RELAY model develops revealing con-
ditions that are necessary and sufficient
to guarantee error detection. Test data
are then selected to satisfy revealing con-
ditions. When these conditions are in-
stantiated for a particular type of fault,
they provide a criterion by which test
data can be selected for a program so as
to guarantee the detection of an error
caused by any fault of that type.

3.6 Specification-Mutation Testing

Specification-fault-based testing at-
tempts to detect faults in the implemen-
tation that are derived from misinter-
preting the specification or the faults in
the specification. Specification-fault-
based testing involves planting faults
into the specification. The program that

Figure 4. RELAY model of fault detection.

396 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

implements the original specification is
then executed and the results of the
execution are checked against the origi-
nal specification and those with planted
faults. The adequacy of the test is deter-
mined according to whether all the
planted faults are detected by checking.

Gopal and Budd [1983] extended pro-
gram-mutation testing to specification-
mutation testing for specifications writ-
ten in predicate calculus. They identified
a set of mutation operations that are
applied to a specification in the form of
pre/postconditions to generate mutants
of the specification. Then the program
under test is executed on test cases to
obtain the output of the program. The
input/output pair is used to evaluate the
mutants of the specification. If a mutant
is falsified by the test cases in the eval-
uation, we say that it is killed by the
test cases; otherwise it remains alive.

Gopal and Budd [1983] noticed that
some alterations to specifications were
not useful as mutation operators. For
example, replacing the various clauses
in the specification by the truth values
“true” or “false” tends to generate mu-
tants that are trivial to kill and appear
to be of little practical significance.

In an investigation of mutation opera-
tors for algebraic specifications, Wood-
ward [1993] defined his set of mutation
operators based on his analysis of errors
in the specifications made by students.
He considered algebraic specifications as
term-rewriting systems. The original
specification and the mutants of the spec-
ification are compiled into executable
codes. When the executions of the original
specification and a mutant on a given test
case generate two different outputs, the
mutant is regarded as dead. Otherwise, it
is alive. In this way the test adequacy is
measured without executing the program.

3.7 Summary of Fault-Based Adequacy
Criteria

Fault-based adequacy criteria focus on
the faults that could possibly be con-
tained in the software. The adequacy of

a test set is measured according to its
ability to detect such faults.

Error seeding is based on the assump-
tion that the artificial faults planted in
the program are as difficult to detect as
the natural errors. This assumption has
proved not true in general.

Mutation analysis systematically and
automatically generates a large number
of mutants. A mutant represents a pos-
sible fault. It can be detected by the test
cases if the mutant produces an output
different from the output of the original
program. The most important issue in
mutation-adequacy analysis is the de-
sign of mutation operators. The method
is based on the competent-programmer
and coupling-effect hypotheses. The
principle of mutation-adequacy analysis
can be extended to specification-based-
adequacy analysis. Given a set of test
cases and the program under test, mu-
tation adequacy can be calculated auto-
matically except for detection of equiva-
lent mutants.

However, measuring the adequacy of
software testing by mutation analysis is
expensive. It may require large compu-
tation resources to store and execute a
large number of mutants. It also re-
quires huge human resources to deter-
mine if live mutants are equivalent to
the original program. Reduction of the
testing expense to a practically accept-
able level has been an active research
topic. Variants such as weak mutation
testing, firm mutation testing, and or-
dered mutation testing have been pro-
posed. Another approach not addressed
in this article is the execution of mu-
tants in parallel computers [Choi et al.
1989; Krauser et al. 1991]. This re-
quires the availability of massive paral-
lel computers and very high portability
of the software so that it can be exe-
cuted on the target machine as well as
the testing machine. In summary, al-
though progress has been made to re-
duce the expense of adequacy measure-
ment by mutation analysis, there
remain open problems.

Perturbation testing is concerned
with the possible functional differences

Test Coverage and Adequacy • 397

ACM Computing Surveys, Vol. 29, No. 4, December 1997

between the program under test and the
hypothetical correct program. The ade-
quacy of a test set is decided by its
ability to limit the error space defined
in terms of a set of functions.

A test case may not reveal a fault.
The RELAY model analyzed the condi-
tion under which a test case reveals a
fault. Therefore, given a fault, test cases
can be selected to satisfy the conditions,
and hence guarantee the detection of
the fault. This model can also be used as
a basis of test adequacy criteria.

4. ERROR-BASED ADEQUACY CRITERIA
AND DOMAIN ANALYSIS

Error-based testing methods require
test cases to check programs on certain
error-prone points [Foster 1980; Myers
1979]. The basic idea of domain analysis
and domain testing is to partition the
input-output behavior space into subdo-
mains so that the behavior of the soft-
ware on each subdomain is equivalent,
in the sense that if the software behaves
correctly for one test case within a sub-
domain, then we can reasonably assume
that the behavior of the software is cor-
rect for all data within that subdomain.
We may wish, however, to take more
than one test case within each subdo-
main in order to increase our confidence
in the conformance of the implementa-
tion upon this subdomain. Given a par-
tition into subdomains, the question is
how many test cases should be used for
each subdomain and where in the sub-
domain these test cases should be cho-
sen. The answers to these questions are
based on assumptions about the where-
abouts of errors. However, theoretical
studies have proved that testing on cer-
tain sets of error-prone points can de-
tect certain sets of faults in the program
[Afifi et al. 1992; Clarke et al. 1989;
Richardson and Clarke 1985; Zeil 1984;
1983; 1989a; 1989b; 1992].

Before considering these problems, let
us first look at how to partition the
behavior space.

4.1 Specification-Based Input Space
Partitioning

The software input space can be parti-
tioned either according to the program
or the specification. When partitioning
the input space according to the specifi-
cation, we consider a subset of data as a
subdomain if the specification requires
the same function on the data.

For example, consider the following
specification of a module DISCOUNT
INVOICE, from Hall and Hierons
[1991].

Example 4.1 (Informal Specification
of DISCOUNT INVOICE Module). A
company produces two goods, X and Y,
with prices £5 for each X purchased and
£10 for each Y purchased. An order
consists of a request for a certain num-
ber of Xs and a certain number of Ys.
The cost of the purchase is the sum of
the costs of the individual demands for
the two products discounted as ex-
plained in the following. If the total is
greater than £200, a discount of 5% is
given; if the total is greater than £1,000,
a discount of 20% is given; also, the
company wishes to encourage sales of X
and give a further discount of 10% if
more than thirty Xs are ordered. Nonin-
teger final costs are rounded down to
give an integer value.

When the input x and y to the module
DISCOUNT INVOICE has the property
that x # 30 and 5*x 1 10* y # 200, the
output should be 5*x 1 10*y. That is,
for all the data in the subset {(x, y) u
x # 30, 5*x 1 10*y # 200}, the re-
quired computation is the same function
sum 5 5*x 1 10*y. Therefore the sub-
set should be one subdomain. A careful
analysis of the required computation
will give the following partition of the
input space into six subdomains, as
shown in Figure 5.

It seems that there is no general me-
chanically applicable method to derive
partitions from specifications, even if
there is a formal functional specifica-
tion. However, systematic approaches to
analyzing formal functional specifica-
tions and deriving partitions have been

398 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

proposed by a number of researchers,
such as Stocks and Carrington [1993].
In particular, for formal specifications
in certain normal forms, the derivation
of partitions is possible. Hierons [1992]
developed a set of transformation rules
to transform formal functional specifica-
tions written in pre/postconditions into
the following normal form.

P1~ x1 , x2 , . . . , xn!

∧ Q1~ x1 , x2 , . . . , xn , y1 , y2 , . . . , ym! ∨

P2~ x1 , x2 , . . . , xn!

∧ Q2~ x1 , x2 , . . . , xn , y1 , y2 , . . . , ym! ∨

· · ·

PK~ x1 , x2 , . . . , xn!

∧ QK~ x1 , x2 , . . . , xn , y1 , y2 , . . . , ym! ∨

where Pi(x1, x2, . . . , xn), i 5 1, 2, . . . ,
K, are preconditions that give the condi-
tion on the valid input data and the
state before the operation. Qi(x1, x2,
. . . , xn, y1, y2, . . . , ym), i 5 1, 2, . . . ,
K, are postconditions that specify the
relationship between the input data,
output data, and the states before and
after the operation. The variables xi are
input variables and yi are output vari-
ables.

The input data that satisfy a precon-
dition predicate Pi should constitute a
subdomain. The corresponding compu-
tation on the subdomain must satisfy
the postcondition Qi. The precondition
predicate is called the subdomain’s do-
main condition. When the domain con-
dition can be written in the form of the
conjunction of atomic predicates of in-
equality, such as

exp1~ x1 , x2 , . . . , xn!

expr~ x1 , x2 , . . . , xn! (4.1)

exp1~ x1 , x2 , . . . , xn!

, expr~ x1 , x2 , . . . , xn!, (4.2)

then the equation

exp1~ x1 , x2 , . . . , xn!

5 expr~ x1 , x2 , . . . , xn! (4.3)

defines a border of the subdomain.

Example 4.2 (Formal specification of
the DISCOUNT INVOICE module).
For the DISCOUNT INVOICE module,
a formal specification can be written as
follows.

~ x $ 0 ∧ y $ 0! f ~sum 5 5x 1 10y!

~sum # 200! f ~discount1 5 100!

Figure 5. Partition of input space of DISCOUNT INVOICE module.

Test Coverage and Adequacy • 399

ACM Computing Surveys, Vol. 29, No. 4, December 1997

~sum . 200! ∧ ~sum # 1000!

f ~discount1 5 95!

~sum . 1000! f ~discount1 5 80!)

~ x # 30! f ~discount2 5 100!

~ x . 30! f ~discount2 5 90!

~total 5 round~sum z discount1

z discount2/10000!!,

where round is the function that rounds
down a real number to an integer value;
x is the number of product X that a
customer ordered; y is the number of
product Y that the customer ordered;
sum is the cost of the order before dis-
count; discount1, discount2 are the per-
centages of the first and second type of
discount, respectively; and total is the
grand total cost of the purchase.

When this specification is trans-
formed into the normal form, we have a
clause with the following predicate as
precondition.

~ x $ 0! & ~ y $ 0! & ~sum # 200!

& not~sum . 200 & sum # 1000!

& not~sum . 1000! & ~ x # 30!

& not ~ x . 30!

and the following predicate as the corre-
sponding postcondition,

~discount1 5 100! & ~discount2 5 100!

& ~total 5 round~sumpdiscount1

pdiscount2/10000!!.

The precondition defines the region A in
the partition shown in Figure 5. It is
equivalent to

~ x $ 0! & ~ y $ 0! & ~sum # 200!

& ~ x # 30!. (4.4)

Since sum 5 5*x 1 10*y, the borders of
the region are the lines defined by the
following four equations:

x 5 0, y 5 0, x 5 30,

5*x 1 10*y 5 200.

They are the x axis, the y axis, the
borders a and g in Figure 5, respec-
tively.

Notice that the DISCOUNT INVOICE
module has two input variables. Hence
the border equations should be under-
stood as lines in a two-dimensional
plane as in Figure 5. Generally speak-
ing, the number of input variables is the
dimension of the input space. A border
of a subdomain in a K-dimensional
space is a surface of K 2 1 dimension.

4.2 Program-Based Input-Space
Partitioning

The software input space can also be
partitioned according to the program. In
this case, two input data belong to the
same subdomain if they cause the same
“computation” of the program. Usually,
the same execution path of a program is
considered as the same computation.
Therefore, the subdomains correspond
to the paths in the program. When the
program contains loops, a particular
subset of the paths is selected according
to some criterion, such as those dis-
cussed in Section 2.1.

Example 4.3 Consider the following
program, which implements the DIS-
COUNT INVOICE.

Program DISCOUNT_INVOICE
(x, y: Int)

Var discount1, discount2:
Int;
input (x, y);
if x # 30
then discount2 : 5 100
else discount2 : 5 90
endif;
sum : 5 5*x 1 10*y;
if sum # 200
then discount1 : 5 100
elseif sum # 1000

400 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

then discount1 : 5 95
else discount1 : 5 80
endif;
output (round(sum*discount1
*discount2/10000))

end

There are six paths in the program; see
Figure 6 for its flow graph. For each
path there is a condition on the input
data such that an input causes the exe-
cution of the path if and only if the
condition is satisfied. Such a condition
is called the path condition, and can be
derived mechanically by, say, symbolic
execution [Girgis 1992; Howden 1977;
1978; Liu et al. 1989; Young and Taylor
1988]. Therefore, path conditions char-
acterize the subdomains (i.e., they are
domain conditions). Table II gives the
path conditions of the paths.

Notice that, for the DISCOUNT IN-
VOICE example, partitioning according
to program paths is different from the
partitioning according to specification.
The borders of the x axis and the y axis

are missing in the partitioning accord-
ing to the program.

Now let us return to the questions
about where and how many test cases
should be selected for each subdomain.
If only one test case is required and if
we do not care about the position of the
test case in the subdomain, then the
test adequacy is equivalent to path cov-
erage provided that the input space is
partitioned according to program paths.
But error-based testing requires test
cases selected not only within the sub-
domains, but also on the boundaries, at
vertices, and just off the vertices or the
boundaries in each of the adjacent sub-
domains, because these places are tradi-
tionally thought to be error-prone. A
test case in the subdomain is called an
on test point; a test case that lies out-
side the subdomain is called an off test
point.

This answer stems from the classifica-
tion of program errors into two main
types: domain error and computation

Figure 6. Flow graph of DISCOUNT INVOICE program.

Test Coverage and Adequacy • 401

ACM Computing Surveys, Vol. 29, No. 4, December 1997

error. Domain errors are those due to
the incorrectness in a program’s selec-
tion of boundaries for a subdomain.
Computation errors are those due to the
incorrectness of the implementation of
the computation on a given subdomain.
This classification results in two types
of domain testing. The first aims at the
correctness of the boundaries for each
subdomain. The second is concerned
with the computation on each subdo-
main. The following give two sets of
criteria for these two types of testing.

4.3 Boundary Analysis

White and Cohen [1980] proposed a test
method called N 3 1 domain-testing
strategy that requires N test cases to be
selected on the borders in an N-dimen-
sional space and one test case just off
the border. This can be defined as the
following adequacy criterion.

Definition 4.1 (N 3 1 Domain Ad-
equacy). Let {D1, D2, . . . , Dn} be the
set of subdomains of software S that
has N input variables. A set T of test
cases is said to be N 3 1 domain-test
adequate if, for each subdomain Di, i 5
1, 2, . . . , n, and each border B of Di,
there are at least N test cases on the
border B and at least one test case
which is just off the border B. If the
border is in the domain Di, the test case
off the border should be an off test
point, otherwise, the test case off the
border should be an on test point.

An adequacy criterion stricter than
N 3 1 adequacy is the N 3 N criterion,
which requires N test cases off the bor-
der rather than only one test case off
the border. Moreover, these N test cases
are required to be linearly independent
[Clarke et al. 1982].

Definition 4.2 (N 3 N Domain Ad-
equacy). Let {D1, D2, . . . , Dn} be the
set of subdomains of software S that
has N input variables. A set T of test
cases is said to be N 3 N domain-test
adequate if, for each subdomain Di, i 5
1, 2, . . . , n, and each border B of Di,
there are at least N test cases on the
border B and at least N linearly inde-
pendent test cases just off the border B.
If the border B is in the domain Di, the
N test cases off the border should be off
test points, otherwise they should be on
test points.

The focal point of boundary analysis
is to test if the borders of a subdomain
are correct. The N 3 1 domain-ade-
quacy criterion aims to detect if there is
an error of parallel shift of a linear
border, whereas the N 3 N domain-
adequacy is able to detect parallel shift
and rotation of linear borders. This is
why the criteria select the specific posi-
tion for the on and off test cases. Con-
sidering that the vertices of a subdo-
main are the points at the intersection
of several borders, Clark et al. [1982]
suggested the use of vertices as test
cases to improve the efficiency of bound-

Table II. Paths and Path Conditions

402 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

ary analysis. The criterion requires that
the vertices are chosen as test cases and
that for each vertex a point close to the
vertex is also chosen as a test case.

Definition 4.3 (V 3 V Domain Ad-
equacy). Let {D1, D2, . . . , Dn} be the
set of subdomains of software S. A set T
of test cases is said to be V 3 V domain-
test adequate if, for each subdomain Di,
i 5 1, 2, . . . , n, T contains the vertices
of Di and for each vertex v of Di there is
a test case just off the vertex v. If a
vertex v of Di is in the subdomain Di,
then the test case just off v should be an
off test point; otherwise it should be an
on point.

The preceding criteria are effective
for detection of errors in linear domains,
where a domain is a linear domain if its
borders are linear functions. For nonlin-
ear domains, Afifi et al. [1992] proved
that the following criteria were effective
for detecting linear errors.

Definition 4.4 (N 1 2 Domain Ad-
equacy). Let {D1, D2, . . . , Dn} be the
set of subdomains of software S that
has N input variables. A set T of test
cases is said to be N 1 2 domain-test
adequate if, for each subdomain Di, i 5
1, 2, . . . , n, and each border B of Di,
there are at least N 1 2 test cases x1,
x2, . . . , xN12 in T such that

—each set of (N 1 1) test cases are in
general position, where a set {xW i} con-
taining N 1 1 vectors is in general
position if the N vectors xW i 2 xW1, i 5
2, 3, . . . , N 1 1, are linear-indepen-
dent;

—there is at least one on test point and
one off test point;

—for each pair of test cases, if the two
points are of the same type (in the
sense that both are on test points or
both are off test points), they should
lie on the opposite sides of the hyper-
plane formed by the other n test
points; otherwise they should lie on
the same side of the hyperplane
formed by the other n test points.

By applying Zeil’s [1984; 1983] work
on error spaces (see also the discussion
of perturbation testing in Section 3.4),
Afifi et al. [1992] proved that any test
set satisfying the N 1 2 domain-ade-
quacy criterion can detect all linear er-
rors of domain borders. They also pro-
vided a method of test-case selection to
satisfy the criterion consisting of the
following four steps.

(1) Choose (N 1 1) on test points in
general position; the selection of
these points should attempt to
spread them as far from one another
as possible and put them on or very
close to the border.

(2) Determine the open convex region of
these points.

(3) If this region contains off points,
then select one.

(4) If this region has no off points, then
change each on point to be an off
point by a slight perturbation; now
there are N 1 1 off points and there
is near certainty of finding an on
point in the new open convex region.

4.4 Functional Analysis

Although boundary analysis focuses on
border location errors, functional analy-
sis emphasizes the correctness of com-
putation on each subdomain. To see how
functional analysis works, let us take
the DISCOUNT INVOICE module as an
example again.

Example 4.4 Consider region A in
Figure 5. The function to be calculated
on this subdomain specified by the spec-
ification is

total 5 5*x 1 10*y. (4.5)

This can be written as f(x, y) 5 5x 1
10y, a linear function of two variables.
Mathematically speaking, two points
are sufficient to determine a linear
function, but one point is not. Therefore
at least two test cases must be chosen in
the subdomain. If the program also com-
putes a linear function on the subdo-
main and produces correct outputs on

Test Coverage and Adequacy • 403

ACM Computing Surveys, Vol. 29, No. 4, December 1997

the two test cases, then we can say that
the program computes the correct func-
tion on the subdomain.

Analyzing the argument given in the
preceding example, we can see that
functional analysis is based on the fol-
lowing assumptions. First, it assumes
that for each subdomain there is a set of
functions Ff associated with the do-
main. In the preceding example, Ff con-
sists of linear functions of two variables.
Second, the specified computation of the
software on this domain is considered as
a function f *, which is an element of Ff.
Third, it is assumed that the function f
computed by the software on the subdo-
main is also an element of Ff. Finally,
there is a method for selecting a finite
number of test cases for f * such that if f
and f * agree on the test cases, then
they are equivalent.

In Section 3.4, we saw the use of an
error space in defining the neighbor-
hood set Ff and the use of perturbation
testing in detecting computation errors
[Zeil 1984; 1983].

In Howden’s [1978; 1987] algebraic
testing, the set of functions associated
with the subdomain is taken as the
polynomials of degree less than or equal
to k, where k is chosen as the degree of
the required function, if it is a polyno-
mial. The following mathematical theo-
rem, then, provides a guideline for the
selection of test cases in each subdo-
main [Howden, 1987].

THEOREM 4.1 Suppose that F contains
all multinomials in n variables x1, x2,
. . . , xn of degree less than or equal to k,
and f, f * [F. Let f(x1, x2, . . . , xn) 5
(i51

(k11)n

aiti(x1, x2, . . . , xn), where ti(x1,
x2, . . . , xn) 5 x1

i1x2
i2, . . . , xn

in, 0 # i1,
i2, . . . , in # k. Then f and f * are
identical if they agree on any set of m 5
(k 1 1)n values {^ci,1, ci,2, . . . , ci,n& u
i 5 1, 2, . . . , m} such that the matrix
M 5 [bij] is nonsingular, where bij 5 ti
(cj,1, cj,2, . . . , cj,n).

Definition 4.5 (Functional Adequacy)
[Howden 1978; 1987]. Let {D1, D2,
. . . , Dn} be the set of subdomains of

software S. Suppose that the required
function on subdomain Di is a multino-
mial in m variables of degree ki, i 5 1,
2, . . . , n. A set T of test cases is said to
be functional-test adequate if, for each
subdomain Di, i 5 1, 2, . . . , n, T
contains at least (ki 1 1)m test cases
cj 5 ^cj,1, cj,2, . . . , cj,m& in the subdo-
main Di such that the matrix T 5 [bij]
is nonsingular, where bij 5 ti (cj,1, cj,2,
. . . , cj,m), and ti is the same as in the
preceding theorem.

4.5 Summary of Domain-Analysis and
Error-Based Test Adequacy Criteria

The basic idea behind domain analysis
is the classification of program errors
into two types: computation errors and
domain errors. A computation error is
reflected by an incorrect function com-
puted by the program. Such an error
may be caused, for example, by the exe-
cution of an inappropriate assignment
statement that affects the function com-
puted within a path in the program. A
domain error may occur, for instance,
when a branch predicate is expressed
incorrectly or an assignment statement
that affects a branch predicate is wrong,
thus affecting the conditions under
which the path is selected. A boundary-
analysis adequacy criterion focuses on
the correctness of the boundaries, which
are sensitive to domain errors. A func-
tional-analysis criterion focuses on the
correctness of the computation, which is
sensitive to computation errors. They
should be used in a complementary
fashion.

It is widely recognized that software
testing should take both specification
and program into account. A way to
combine program-based and specifica-
tion-based domain-testing techniques is
first to partition the input space using
the two methods separately and then
refine the partition by intersection of
the subdomains [Gourlay 1983;
Weyuker and Ostrand 1980; Richardson
and Clarke 1985]. Finally, for each sub-
domain in the refined partition, the re-
quired function and the computed func-

404 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

tion are checked to see if they belong to
the same set of functions, say, polyno-
mials of degree K, and the test cases are
selected according to the set of functions
to which they belong.

A limitation of domain-analysis tech-
niques is that they are too complicated
to be applicable to software that has a
complex input space. For example, pro-
cess control software may have se-
quences of interactions between the
software and the environment system.
It may be difficult to partition the input
space into subdomains.

Another shortcoming of boundary-
analysis techniques is that they were
proposed for numerical input space such
that the notions of the closeness of two
points in the V 3 V adequacy, and “just
off a border” in the N 3 N and N 3 1
adequacy can be formally defined. How-
ever, it is not so simple to extend these
notions to nonnumerical software such
as compilers.

5. COMPARISON OF TEST DATA
ADEQUACY CRITERIA

Comparison of testing methods has al-
ways been desirable. It is notoriously
difficult because testing methods are
defined using different models of soft-
ware and based on different theoretical
foundations. The results are often con-
troversial.

In comparing testing adequacy crite-
ria, it must be made very clear in what
sense one criterion is better than an-
other. There are three main types of
such measures in the software testing
literature: fault-detecting ability, soft-
ware reliability, and test cost. This sec-
tion reviews the methods and the main
results of the comparisons.

5.1 Fault-Detecting Ability

Fault-detecting ability is one of the
most direct measures of the effective-
ness of test adequacy criteria [Basili
and Selby 1987; Duran and Ntafos
1984; Frankl and Weiss 1993; Frankl
and Weyuker 1988; Ntafos 1984;

Weyuker and Jeng 1991; Woodward et
al. 1980]. The methods to compare test
adequacy criteria according to this mea-
sure can be classified into three types:
statistical experiment, simulation, and
formal analysis. The following summa-
rizes research in these three ap-
proaches.

5.1.1 Statistical Experiments. The
basic form of statistical experiments
with test adequacy criteria is as follows.

Let C1, C2, . . . , Cn be the test ade-
quacy criteria under comparison. The
experiment starts with the selection of
a set of sample programs, say, P1,
P2, . . . , Pm. Each program has a collec-
tion of faults that are known due to
previous experience with the software,
or planted artificially, say, by applying
mutation operations. For each program
Pi, i 5 1, 2, . . . , m, and adequacy
criterion Cj, j 5 1, 2, . . . , n, k test sets
Ti1

j , Ti2

j , . . . , Tik

j are generated in some
fashion so that Tiu

j is adequate to test
program Pi according to the criterion Cj.
The proportion of faults riu

j detected by
the test set Tiu

j over the known faults in
the program Pi is calculated for every i 5
1, 2, . . . , n, j 5 1, 2, . . . , m, and u 5
1, 2, . . . , k. Statistical inferences are
then made based on the data riu

j , i 5 1,
. . . , n, j 5 1, . . . , m, u 5 1, 2, . . . , k.

For example, Ntafos [1984] compared
branch coverage, random testing, and
required pair coverage. He used 14
small programs. Test cases for each pro-
gram were selected from a large set of
random test cases and modified as
needed to satisfy each of the three test-
ing strategies. The percentages of mu-
tants killed by the test sets were consid-
ered the fault-detection abilities.

Hamlet [1989] pointed out two poten-
tial invalidating factors in this method.
They are:

(1) A particular collection of programs
must be used—it may be too small
or too peculiar for the results to be
trusted.

(2) Particular test data must be created
for each method—the data may have

Test Coverage and Adequacy • 405

ACM Computing Surveys, Vol. 29, No. 4, December 1997

good or bad properties not related to
the testing method.

Hamlet [1989] was also critical: “It is
not unfair to say that a typical testing
experiment uses a small set of toy pro-
grams, with uncontrolled human gener-
ation of the test data. That is, neither
(1) nor (2) is addressed.”

In addition to these two problems,
there is, in fact, another potential inval-
idating factor in the method. That is:

(3) A particular collection of known
faults in each program must be
used—it may not be representative
of the faults in software. The faults
could be too easy or too difficult to
find, or there could be a different
distribution of the types of faults.
One particular test method or ade-
quacy criterion may have a better
ability to detect one type of fault
than other types.

To avoid the effects of the potential
invalidating factors related to the test
data, Basili and Selby [1987] used frac-
tional factorial design methodology of
statistical experiments and repeated ex-
perimentation. They compared two dy-
namic testing methods (functional test-
ing and statement coverage) and a
static testing method (code review) in
three iterative phases involving 74 sub-
jects (i.e., testers) of various back-
grounds. However, they only used four
sample programs. The faults contained
in the sample programs include those
made during the actual development of
the program as well as artificial faults.
Not only the fault-detection ability, but
also the fault-detection cost with re-
spect to various classes of faults were
compared. Since the test sets for dy-
namic testing are generated manually
and the static testing is performed man-
ually, they also made a careful compar-
ison of human factors in testing. Their
main results were:

—Human factors. With professional
programmers, code reading detected
more software faults and yielded a

higher fault-detection rate than func-
tional or structural testing did. Al-
though functional testing detected
more faults than structural testing
did, functional testing and structural
testing did not differ in fault-detec-
tion rate. In contrast, with advanced
students, the three techniques were
not different in fault-detection rate.

—Software type. The number of faults
observed, fault-detection rate, and to-
tal effort in software testing all
clearly depended on the type of soft-
ware under test.

—Fault type. Different testing tech-
niques have different fault-detection
abilities for different types of faults.
Code reading detected more interface
faults than the other methods did,
and functional testing detected more
control faults than the other methods
did.

Their experiment results indicated the
complexity of the task of comparing
software testing methods.

Recently, Frankl and Weiss [1993]
used another approach to addressing
the potential invalidating factor associ-
ated with the test data. They compared
branch adequacy and all-uses data-flow
adequacy criteria using nine small pro-
grams of different subjects. Instead of
using one adequate test set for each
criterion, they generated a large num-
ber of adequate test sets for each crite-
rion and calculated the proportion of the
test sets that detect errors as an esti-
mate of the probability of detecting er-
rors. Their main results were:

—for five of the nine subjects, the all-
uses criterion was more effective than
branch coverage at 99% confidence,
where the effectiveness of an ade-
quacy criterion is the probability that
an adequate test set exposes an error
when the test set is selected randomly
according to a given distribution on
the adequate test sets of the criterion.

—in four of the nine subjects, all-uses
adequate test sets were more effective

406 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

than branch-coverage adequate sets
of similar size.

—for the all-uses criterion, the probabil-
ity of detecting errors clearly depends
on the extent of the adequacy only
when the adequacy is very close to
100% (i.e., higher than 97%). In four
of the subjects, such a dependence
existed for the branch-coverage crite-
rion over all the adequacy range.

The advantage of the statistical experi-
ment approach is that it is not limited
to comparing adequacy criteria based on
a common model. However, given the
potential invalidating factors, it is
doubtful that it is capable of producing
trustworthy results on pairs of ade-
quacy criteria with subtle differences.

5.1.2 Simulation. Both simulation
and formal analysis are based on a cer-
tain simplified model of software test-
ing. The most famous research that
uses simulation for comparing software
test adequacy criteria are Duran and
Ntafos’ [1984] comparison of partition
testing with random testing and Hamlet
and Taylor’s [1990] repetition of the
comparison.

Duran and Ntafos modeled partition
testing methods by a finite number of
disjoint subsets of software input
spaces. Suppose that the input space D
of a given software system is par-
titioned into k disjoint subsets D1,
D2, . . . , Dk and an input chosen at
random has probability pi of lying in Di.
Let ui be the failure rate for Di, then

u 5 O
i51

k

piui (5.1)

is the probability that the program will
fail to execute correctly on an input
chosen at random in accordance with
the input distribution. Duran and
Ntafos investigated the probability that
a test set will reveal one or more errors
and the expected number of errors that

a set of test cases will discover.6 For
random testing, the probability Pr of
finding at least one error in n tests is
1 2 (1 2 u)n. For a partition testing
method in which ni test cases are cho-
sen at random from subset Di, the prob-
ability Pp of finding at least one error is
given by

Pp 5 1 2 P
i51

k

~1 2 ui!
ni. (5.2)

With respect to the same partition,

Pr 5 1 2 ~1 2 u !n

5 1 2 S 1 2 O
i51

k

piuiDn

,

where n 5 O
i51

k

ni . (5.3)

The expected number Ep of errors dis-
covered by partition testing is given by

Ep~k! 5 O
i51

k

ui (5.4)

if one random test case is chosen from
each Di, where ui is the failure rate for
Di.

If in total n random test cases are
used in random testing, some set of
actual values n 5 {n1, n2, . . . , nk} will
occur, where ni is the number of test
cases that fall in Di. If n were known,
then the expected number of errors
found would be

E~n, k, n! 5 O
i51

k

~1 2 ~1 2 ui!
ni!. (5.5)

6 Note that an error means that the program’s
output on a specific input does not meet the
specification of the software.

Test Coverage and Adequacy • 407

ACM Computing Surveys, Vol. 29, No. 4, December 1997

Since n is not known, the expected
number Er of errors found by n random
tests is

Er~k, n! 5 O
n SE~n, k, n! z n!

z S P
i51

k

pi
niYP

i51

k

niDD 5 k 2 O
i51

k

~1 2 piui!
n.

(5.6)

They conducted simulations of vari-
ous program conditions in terms of ui
distributions and K, and calculated and
compared the values of Pp, Pr, Ep, and
Er. Two types of ui distributions were
investigated. The first type, called hypo-
thetical distributions, considered the
situation where a test case chosen from
a subset would have a high probability
of finding an error affecting that subset.
Therefore the uis were chosen from a
distribution such that 2 percent of the
time ui $ 0.98 and 98 percent of the
time, ui , 0.049. The second type of ui
distribution was uniform distributions;
that is, the uis were allowed to vary
uniformly from 0 to a value umax that
varies from 0.01 to 1.

The main result of their simulation
was that when the fault-detecting abil-
ity of 100 simulated random test cases
was compared to that of 50 simulated
partition test cases, random testing was
superior. This was considered as evi-
dence to support one of the main conclu-
sions of the paper, that random testing
would be more cost-effective than parti-
tion testing, because performing 100
random tests was considered less expen-
sive than 50 partition tests.

Considering Duran and Ntafos’ result
counterintuitive, Hamlet and Taylor
[1990] did more extensive simulation
and arrived at more precise statements
about the relationship between parti-
tion probabilities, failure rates, and ef-
fectiveness. But their results corrobo-
rated Duran and Ntafos’ results.

In contrast to statistical experiment,

imulation can be performed in an ideal
testing scenario to avoid some of the
complicated human factors. However,
because simulation is based on a certain
simplified model of software testing, the
realism of the simulation result could be
questionable. For example, in Duran
and Ntafos’ experiment, the choice of
the particular hypothetical distribution
(i.e., for 2 percent of the time ui $ 0.98
and for 98 percent of the time ui ,
0.049) seems rather arbitrary.

5.1.3 Formal Analysis of the Relation-
ships among Adequacy Criteria. One
of the basic approaches to comparing
adequacy criteria is to define some rela-
tion among adequacy criteria and to
prove that the relation holds or does not
hold for various pairs of criteria. The
majority of such comparisons in the lit-
erature use the subsume ordering,
which is defined as follows.

Definition 5.1 (Subsume Relation
among Adequacy Criteria). Let C1 and
C2 be two software test data adequacy
criteria. C1 is said to subsume C2 if for
all programs p under test, all specifica-
tions s and all test sets t, t is adequate
according to C1 for testing p with re-
spect to s implies that t is adequate
according to C2 for testing p with re-
spect to s.

Rapps and Weyuker [1985] studied
the subsume relation among their origi-
nal version of data-flow adequacy crite-
ria, which were not finitely applicable.
Frankl and Weyuker [1988] later used
this relation to compare their revised
feasible version of data-flow criteria.
They found that feasibility affects the
subsume relation among adequacy crite-
ria. In Figure 7, the subsume relation
that holds for the infeasible version of
criteria but does not hold for the feasi-
ble version of the criteria is denoted by
an arrow marked with the symbol “*”.
Ntafos [1988] also used this relation to
compare all the data-flow criteria and
several other structural coverage crite-
ria. Among many other works on com-
paring testing methods by subsume re-

408 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

lation are those by Weiser et al. [1985]
and Clark et al. [1989]. Since the ade-
quacy criteria based on flow analysis
have a common basis, most of them can
be compared; they fall into a fairly sim-
ple hierarchy, as shown in Figure 7. A
relatively complete picture of the rela-
tions among test adequacy criteria can
be built. However, many methods are
incomparable; that is, one does not sub-
sume the other.

The subsume relation is actually a
comparison of adequacy criteria accord-
ing to the severity of the testing meth-
ods. The subsume relation evaluates ad-
equacy criteria in their own terms,
without regard for what is really of in-
terest. The relation expresses nothing
about the ability to expose faults or to
assure software quality. Frankl and

Weyuker [1993a] proved that the fact
that C1 subsumes C2 does not always
guarantee that C1 is better at detecting
faults.

Frankl and Weyuker investigated
whether a relation on adequacy criteria
can guarantee better fault-detecting
ability for subdomain testing methods.
The testing methods they considered
are those by which the input space is
divided into a multiset of subspaces so
that in each subspace at least one test
case is required. Therefore a subdomain
test adequacy criterion is equivalent to
a function that takes a program p and a
specification s and gives a multiset7

{D1, D2, . . . , Dk} of subdomains. They

7 In a multiset an element may appear more than
once.

Figure 7. Subsume relation among adequacy criteria.

Test Coverage and Adequacy • 409

ACM Computing Surveys, Vol. 29, No. 4, December 1997

defined a number of partial orderings
on test adequacy criteria and studied
whether these relations are related to
the ability of fault detection. The follow-
ing are the relations they defined,
which can be regarded as extensions of
the subsume relation.

Definition 5.2 (Relations among Test
Adequacy Criteria). Let C1 and C2 be
two subdomain test adequacy criteria
and pc1(p, s) and pc2(p, s) be the multi-
set of the subsets of the input space for
a program p and a specification s ac-
cording to C1 and C2, respectively.

—C1 narrows C2 for (p, s) if for every
D [pC2(p, s), there is a subdomain
D9 [pC1(p, s) such that D9 # D.

—C1 covers C2 for (p, s) if for every D [
pC2(p, s), there is a nonempty collec-
tion of subdomains {D1, D2, . . . , Dn}
belonging to pC1(p, s) such that D1 ø
D2 ø . . . Dn 5 D.

—C1 partitions C2 for (p, s) if for every
D [pC2(p, s), there is a nonempty
collection of pairwise disjoint subdo-
mains {D1, D2, . . . , Dn} belonging to
pC1(p, s) such that D1 ø D2 ø . . . ø
Dn 5 D.

—Let pC1(p, s) 5 {D1, D2, . . . , Dm},
pC2(p, s) 5 {E1, E2, . . . , En}. C1

properly covers C2 for (p, s) if there is
a multiset M 5 {D1,1, D1,2, . . . ,
D1,k1, . . . , Dn,1, . . . , Dn,kn} # pC1(p,
s) such that Ei 5 Di,1 ø Di,2 ø . . . ø
Di,ki for all i 5 1, 2, . . . , n.

—Let pC1(p, s) 5 {D1, D2, . . . , Dm},
pC2(p, s) 5 {E1, E2, . . . , En}. C1
properly partitions C2 for (p, s) if
there is a multiset M 5 {D1,1, . . . ,
D1,k1, . . . , Dn,1, . . . , Dn,kn} # pC1(p,
s) such that Ei 5 Di,1 ø Di,2 ø . . . ø
Di,ki for all i 5 1, 2, . . . , n, and for
each i 5 1, 2, . . . , n, the collection
{Di,1, . . . , Di,ki} is pairwise disjoint.

For each relation R previously defined,
Frankl and Weyuker defined a stronger
relation, called universal R, which re-
quires R to hold for all specifications s
and all programs p. These relations
have the relationships shown in Figure
8.

To study fault-detecting ability,
Frankl and Weyuker considered two
idealized strategies for selecting the
test cases. The first requires the tester
to independently select test cases at
random from the whole input space ac-
cording to a uniform distribution until
the adequacy criterion is satisfied. The
second strategy assumes that the input
space has first been divided into subdo-

Figure 8. Relationships among partial orderings on adequacy criteria.

410 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

mains and then requires independent
random selection of a predetermined
number n of test cases from each subdo-
main. They used three different mea-
sures, M1, M2, and M3 in the following
definition of fault-detecting ability. In a
later paper Frankl and Weyuker
[1993b] also studied the expected num-
ber of errors detected by a test method.
This measure is E(C, p, s) in the follow-
ing definition. Notice that these mea-
sures are the same as those used by
Duran and Ntafos [1984] except ui is
replaced by mi/di; see also Section 5.1.2.

Definition 5.3 (Measures of Fault-De-
tection Ability). Let pc(p, s) 5 {D1, D2,
. . . , Dk} be the multiset of the subdo-
mains of the input space of (p, s) ac-
cording to the criterion C, di 5 uDiu, and
mi be the number of fault-causing in-
puts in Di, i 5 1, . . . , k. Define:

M1~C, p, s! 5 max
1#i#k

Smi

di
D (5.7)

M2~C, p, s! 5 1 2 P
i51

k S1 2
mi

di
D (5.8)

M3~C, p, s, n! 5 1 2 P
i51

k S1 2
mi

di
Dn

, (5.9)

where n $ 1 is the number of test cases
in each subdomain.

E~C, p, s! 5 O
i51

k mi

di

. (5.10)

According to Frankl and Weyuker, the
first measure M1(C, p, s) gives a crude
lower bound on the probability that an
adequate test set selected using either
of the two strategies will expose at least
one fault. The second measure M2(C, p,
s) gives the exact probability that a test
set chosen by using the first sampling
strategy will expose at least one fault.
M3(C, p, s, n) is a generalization of M2
by taking the number n of test cases
selected in each subdomain into ac-
count. It should be noted that M2 and
M3 are special cases of Equation (5.2)
for Pp in Duran and Ntafos’ work that
ni 5 1 and ni 5 n, respectively. It is
obvious that M2 and M3 are accurate
only for the first sampling strategy be-
cause for the second strategy it is un-
reasonable to assume that each subdo-
main has exactly n random test cases.

Frankl and Weyuker [1993a,b] proved
that different relations on the adequacy
criteria do relate to the fault-detecting
ability. Table III summarizes their re-
sults.

Given the fact that the universal nar-
rows relation is equivalent to the sub-
sume relation for subdomain testing
methods, Frankl and Weyuker con-
cluded that “C1 subsumes C2” does not
guarantee a better fault-detecting abil-
ity for C1. However, recently Zhu
[1996a] proved that in certain testing
scenarios the subsumes relation can im-
ply better fault-detecting ability. He
identified two software testing scenar-
ios. In the first scenario, a software
tester is asked to satisfy a particular
adequacy criterion and generates test

Table III. Relationships among Fault-Detecting Ability and Orderings on Adequacy Criteria (ki, i 5 1, 2,
is the number of subdomains in pCi(p, s))

Test Coverage and Adequacy • 411

ACM Computing Surveys, Vol. 29, No. 4, December 1997

cases specifically to meet the criterion.
This testing scenario is called the prior
testing scenario. Frankl and Weyuker’s
second sampling strategy belongs to
this scenario. In the second scenario,
the tester generates test cases without
any knowledge of test adequacy crite-
rion. The adequacy criterion is only
used as a stopping rule so that the
tester stops generating test cases only if
the criterion is satisfied. This scenario
is called posterior testing scenario.
Frankl and Weyuker’s first sampling
strategy belongs to the posterior sce-
nario. It was proved that in the poste-
rior testing scenario, the subsume rela-
tion does imply better fault-detecting
ability in all the probability measures
for error detection and for the expected
number of errors. In the posterior test-
ing scenario, the subsume relation also
implies more test cases [Zhu 1996a].

Frankl and Weyuker [1993b] also in-
vestigated how existing adequacy crite-
ria fit into the partial orderings. They
studied the properly cover relation on a
subset of data-flow adequacy criteria, a
limited mutation adequacy (which is ac-
tually branch coverage), and condition
coverage. The results are shown in Fig-
ure 9.

5.2 Software Reliability

The reliability of a software system that
has passed an adequate test is a direct
measure of the effectiveness of test ade-
quacy criteria. However, comparing test
adequacy criteria with respect to this
measure is difficult. There is little work
of this type in the literature. A recent
breakthrough is the work of Tsoukalas
et al. [1993] on estimation of software
reliability from random testing and par-
tition testing.

Motivated to explain the observations
made in Duran and Ntafos’ [1984] ex-
periment on random testing and parti-
tion testing, they extended the Thayer-
Lipow-Nelson reliability model [Thayer
et al. 1978] to take into account the cost
of errors, then compared random testing
with partition testing by looking at the
upper confidence bounds when estimat-
ing the cost-weighted failure rate.

Tsoukalas et al. [1993] considered the
situation where the input space D is
partitioned into k pairwise disjoint sub-
sets so that D 5 D1 ø D2 ø . . . ø Dk.
On each subdomain Di, there is a cost
penalty ci that would be incurred by the
program’s failure to execute properly on
an input from Di, and a probability pi

Figure 9. Universally properly cover relation among adequacy criteria.

412 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

that a randomly selected input will be-
long to Di. They defined the cost-
weighted failure rate for the program as
a whole as

C 5 O
i51

k

ci piui . (5.11)

Usually, the cost-weighted failure rate
is unknown in advance, but can be esti-
mated by

C < O
i51

k

ci pi~ fi/ni!, (5.12)

where fi is the number of failures ob-
served over Di and ni is the number of
random test cases within the subdo-
main Di. Given the total number n of
test cases, Equation (5.13) gives the
maximum likelihood estimate of the
cost-weighted failure rate C.

C < O
i51

k

cifi/n (5.13)

But Tsoukalas et al. [1993] pointed out
that the real issue is how confident one
can be in the estimate. To this end they
sought an upper confidence bound on C.
Therefore, considering finding the upper
bound as a linear programming problem
that maximizes (i51

k cipiui subject to cer-
tain conditions, they obtained expressions
for the upper bounds in the two cases of
random testing and partition testing and
calculated the upper bounds for various
special cases.

The conclusion was that confidence is
more difficult to achieve for random
testing than for partition testing. This
agrees with the intuition that it should
be easier to have a certain level of con-
fidence for the more systematic of the
two testing methods. That is, it is easier
to put one’s faith in partition testing.
But they also confirmed the result of
the empirical studies of the effective-
ness of random testing by Duran and
Ntafos [1984] and Hamlet and Taylor

[1990]. They showed that in some cases
random testing can perform much bet-
ter than partition testing, especially
when only one test case is selected in
each subdomain.

This work has a number of practical
implications, especially for safety-criti-
cal software where there is a significant
penalty for failures in some subdo-
mains. For example, it was proved that
when no failures are detected, the opti-
mum way to distribute the test cases
over the subdomains in partition testing
is to select ni proportional to ci pi, 0 #
i # k, rather than select one test case in
each subdomain.

5.3 Test Cost

As testing is an expensive software de-
velopment activity, the cost of testing to
achieve a certain adequacy according to
a given criterion is also of importance.
Comparison of testing costs involves
many factors. One of the simplified
measures of test cost is the size of an
adequate test set. Weyuker’s [1988c,
1993] work on the complexity of data-
flow adequacy criteria belongs to this
category.

In 1988, Weyuker [1988c] reported an
experiment with the complexity of data-
flow testing. Weyuker used the suite of
programs in Software Tools in Pascal by
Kernighan and Plauger [1981] to estab-
lish empirical complexity estimates for
Rapps and Weyuker’s family of data-
flow adequacy criteria. The suite con-
sists of over 100 subroutines. Test cases
were selected by testers who were in-
structed to select “natural” and “atomic”
test cases using the selection strategy of
their choice, and were not encouraged to
select test cases explicitly to satisfy the
selected data-flow criterion. Then seven
statistical estimates were computed for
each criterion from the data (di, ti)
where di denoted the number of deci-
sion statements in program i and ti
denoted the number of test cases used
to satisfy the given criterion for pro-
gram i. Among the seven measures, the
most interesting ones are the least

Test Coverage and Adequacy • 413

ACM Computing Surveys, Vol. 29, No. 4, December 1997

squares line t 5 ad 1 b (where t is the
number of test cases sufficient to satisfy
the given criteria for the subject pro-
gram and d is the number of decision
statements in that program), and the
weighted average of the ratios of the
number of decision statements in a sub-
ject program to the number of test cases
sufficient to satisfy the selected crite-
rion. Weyuker observed that (1) the co-
efficients of d in the least-square lines
were less than 1 for all the cases and (2)
the coefficients were very close to the
average number of test cases required
for each decision statement. Based on
these observations, Weyuker concluded
that the experiment results reinforced
our intuition that the relationship be-
tween the required number of test cases
and the program size was linear. A re-
sult similar to Weyuker’s is also ob-
served for the all du-paths criterion by
Bieman and Schultz [1992].

The programs in the Kernighan and
Plauger suite used in Weyuker’s experi-
ment were essentially the same type,
well designed and modularized, and
hence relatively small in size. Address-
ing the problem that whether substan-
tially larger, unstructured and modular-
ized programs would require larger
amounts of test data relative to their
size, Weyuker [1993] conducted another
experiment with data-flow test ade-
quacy criteria. She used a subset of
ACM algorithms in Collected Algo-
rithms from ACM (Vol. 1, ACM Press,
New York, 1980) as sample programs
that contained known faults and five or
more decision statements. In this study,
the same information was collected and
the same values were calculated. The
same conclusion was obtained. How-
ever, in this study, Weyuker observed a
large proportion of infeasible paths in
data-flow testing. The average rates of
infeasible paths for the all du-path cri-
terion were 49 and 56% for the two
groups of programs, respectively.
Weyuker pointed out that the large
number of infeasible paths implies that
assessing the cost of data-flow testing
only in terms of the number of test

cases needed to satisfy a criterion might
yield an optimistic picture of the real
effort needed to accomplish the testing.

Offutt et al. [1993] studied the cost of
mutation testing with a sample set of 10
programs. They used simple and multi-
ple linear regression models to establish
a relationship among the number of
generated mutants and the number of
lines of code, the number of variables,
the number of variable references, and
the number of branches. The linear re-
gression models provide a powerful ve-
hicle for finding functional relationships
among random variables. The coeffi-
cient of determination provides a sum-
mary statistic that measures how well
the regression equation fits the data,
and hence is used to decide whether a
relationship between some data exists.
Offutt et al. used a statistical package
to calculate the coefficient of determina-
tion of the following formulas.

Ymutant 5 b0 1 b1Xline 1 b2 Xline
2

Ymutant 5 b0 1 b1Xvar 1 b2 Xvar
2

Ymutant 5 b0 1 b1Xvar 1 b2Xvarref

1 b3Xvar Xvarref ,

where Xline is the number of lines in the
program, Xvar is the number of vari-
ables in the program, Xvarref is the num-
ber of variable references in the pro-
gram, and Ymutant is the number of
mutants. They found that for single
units, the coefficients of determination
of the formulas were 0.96, 0.96, and
0.95, respectively. For programs of mul-
tiple units, they established the follow-
ing formula with a coefficient of deter-
mination of 0.91.

Ymutant 5 b0 1 b1Xvar 1 b2Xvarref

1 b3Xunit 1 b4XvarXvarref ,

where Xunit is the number of units in
the program. Therefore their conclusion
was that the number of mutants is qua-
dratic. As mentioned in Section 3, Of-
futt et al. also studied the cost of selec-

414 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

tive mutation testing and showed that
even for 6-selective mutation testing,
the number of mutants is still qua-
dratic.

5.4 Summary of the Comparison of
Adequacy Criteria

Comparison of test data adequacy crite-
ria can be made with respect to various
measures, such as fault detection, confi-
dence in the reliability of the tested
software, and the cost of software test-
ing. Various abstract relations among
the criteria, such as the subsume rela-
tion, have also been proposed and rela-
tionships among adequacy criteria have
been investigated. The relationship be-
tween such relations and fault-detecting
ability has also been studied. Recent
research results have shown that parti-
tion testing more easily achieves high
confidence in software reliability than
random testing, though random testing
may be more cost-effective.

6. AXIOMATIC ASSESSMENT OF
ADEQUACY CRITERIA

In Section 5, we have seen two kinds of
rationale presented to support the use
of one criterion or another, yet there is
no clear consensus. The first kind of
rationale uses statistical or empirical
data to compare testing effectiveness,
whereas the second type analytically
compares test data adequacy criteria
based on certain mathematical models
of software testing.

In this section we present a third type
of rationale, the axiomatic study of the
properties of adequacy criteria. The ba-
sic idea is to seek the most fundamental
properties of software test adequacy
and then check if the properties are
satisfied for each particular criterion.
Although the idea of using abstract
properties as requirements of test ade-
quacy criteria can be found in the liter-
ature, such as Baker et al. [1986],
Weyuker [1986, 1988a] is perhaps the
first who explicitly and clearly em-
ployed axiom systems. Work following

this direction includes refinement and
improvement of the axioms [Parrish and
Zweben 1991; 1993; Zhu and Hall 1993;
Zhu et al. 1993; Zhu 1995a] as well as
analysis and criticism [Hamlet 1989;
Zweben and Gourlay 1989].

There are four clearcut roles that axi-
omatization can play in software testing
research, as already seen in physics and
mathematics. First, it makes explicit
the exact details of a concept or an
argument that, before the axiomatiza-
tion, was either incomplete or unclear.
Second, axiomatization helps to isolate,
abstract, and study more fully a class of
mathematical structures that have re-
curred in many important contexts, of-
ten with quite different surface forms,
so that a particular form can draw on
results discovered elsewhere. Third, it
can provide the scientist with a compact
way to conduct a systematic exploration
of the implications of the postulates.
Finally, the fourth role is the study of
what is needed to axiomatize a given
empirical phenomenon and what can be
axiomatized in a particular form. For
instance, a number of computer scien-
tists have questioned whether formal
properties can be defined to distinguish
one type of adequacy criteria from an-
other when criteria are expressed in a
particular form such as predicates
[Hamlet 1989; Zweben and Gourlay
1989].

Therefore we believe that axiomatiza-
tion will improve our understanding of
software testing and clarify our notion
of test adequacy. For example, as
pointed out by Parrish and Zweben
[1993], the investigation of the applica-
bility of test data adequacy criteria is
an excellent example of the role that
axiomatization has played. Applicability
was proposed as an axiom by Weyuker
in 1986, requiring a criterion to be ap-
plicable to any program in the sense of
the existence of test sets that satisfy the
criterion. In the assessment of test data
adequacy criteria against this axiom,
the data-flow adequacy criteria origi-
nally proposed by Rapps and Weyuker
in 1985 were found not applicable. This

Test Coverage and Adequacy • 415

ACM Computing Surveys, Vol. 29, No. 4, December 1997

leads to the redefinition of the criteria
and reexamination of the power of the
criteria [Frankl and Weyuker 1988].
Weyuker’s applicability requirements
were defined on the assumption that
the program has a finite representable
input data space. Therefore any ade-
quate test set is finite. When this as-
sumption is removed and adequacy cri-
teria were considered as measurements,
Zhu and Hall [1993] used the term fi-
nite applicability to denote the require-
ment that for any software and any
adequacy degree r less than 1 there is a
finite test set whose adequacy is greater
than r. They also found that finite ap-
plicability can be derived from other
more fundamental properties of test
data adequacy criteria.

6.1 Weyuker’s Axiomatization of Program-
Based Adequacy Criteria

Weyuker [1986] proposed an informal
axiom system of test adequacy criteria.
Her original purpose of the system was
to present a set of properties of ideal
program-based test adequacy criteria
and use these properties to assess exist-
ing criteria. Regarding test adequacy
criteria as stopping rules, Weyuker’s ax-
iom system consists of eleven axioms,
which were later examined, formalized,
and revised by Parrish and Zweben
[1991; 1993].

The most fundamental properties of
adequacy criteria proposed by Weyuker
were those concerning applicability. She
distinguished the following three appli-
cability properties of test adequacy cri-
teria.

AXIOM A1 (Applicability). For every
program, there exists an adequate test
set.

Assuming the finiteness of represent-
able points in the input data space,
Weyuker rephrased the axiom into the
following equivalent form.

AXIOM A1 For every program, there
exists a finite adequate test set.

Weyuker then analyzed exhaustive test-
ing and pointed out that, although ex-
haustive testing is adequate, an ade-
quacy criterion should not always ask
for exhaustive testing. Hence she de-
fined the following nonexhaustive appli-
cability.

AXIOM A2 (Nonexhaustive Applicabil-
ity). There is a program p and a test set
t such that p is adequately tested by t
and t is not an exhaustive test set.

Notice that by exhaustive testing
Weyuker meant the test set of all repre-
sentable points of the specification do-
main. The property of central impor-
tance in Weyuker’s system is
monotonicity.

AXIOM A3 (Monotonicity). If t is ade-
quate for p and t # t9, then t9 is ade-
quate for p.

AXIOM A4 (Inadequate Empty Set).
The empty set is not adequate for any
program.

Weyuker then studied the relation-
ships among test adequacy and program
syntactic structure and semantics. How-
ever, her axioms were rather negative.
They stated that neither semantic close-
ness nor syntactic structure closeness
are sufficient to ensure that two pro-
grams require the same test data. More-
over, an adequately tested program
does not imply that the components of
the program are adequately tested, nor
does adequate testing of components
imply adequate testing of the program.

Weyuker assessed some test adequacy
criteria against the axioms. The main
discovery of the assessment is that the
mutation adequacy criterion defined in
its original form does not satisfy the
monotonicity and applicability axioms,
because it requires a correctness condi-
tion. The correctness condition requires
that the program under test produces
correct output on a test set if it is to be
considered adequate. For all the ade-
quacy criteria we have discussed, it is
possible for a program to fail on a test
case after producing correct outputs on

416 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

an adequate test set. Hence the correct-
ness condition causes a conflict with
monotonicity. The correctness condition
does not play any fundamental role in
mutation adequacy, so Weyuker sug-
gested removal of this condition from
the definition.8

Aware of the insufficiency of the ax-
iom system, Weyuker [1988a] later pro-
posed three additional axioms. The re-
naming property requires that a test set
be adequate for a program p if and only
if it is adequate for a program obtained
by systematic renaming variables in p.
The complexity property requires that
for every natural number n, there is a
program p, such that p is adequately
tested by a size-n test set but not by any
size (n 2 1) test set. The statement
coverage property requires that all ade-
quate test sets cover all feasible state-
ments of the program under test. These
axioms were intended to rule out some
“unsuitable notions of adequacy.”

Given the fact that Weyuker’s axioms
are unable to distinguish most ade-
quacy criteria, Hamlet [1989] and Zwe-
ben and Gourlay [1989] questioned if
the axiomatic approach could provide
useful comparison of adequacy criteria.
Recently, some of Weyuker’s axioms
were combined with Baker et al.’s
[1986] properties for assessing control-
flow adequacy criteria [Zhu 1995a].
Control-flow adequacy criteria of subtle
differences were distinguished. The as-
sessment suggested that the cycle com-
bination criterion was the most favor-
able.

6.2 Parrish and Zweben’s Formalization
and Analysis of Weyuker’s Axioms

Parrish and Zweben [1993; 1991] for-
malized Weyuker’s axioms, but put
them in a more general framework that
involved specifications as well. They de-
fined the notions of program-independent
criteria and specification-independent cri-
teria. A program-independent criterion

measures software test adequacy inde-
pendently of the program, whereas a
specification-independent criterion mea-
sures software test adequacy indepen-
dently of the specification. Parrish and
Zweben explored the interdependence re-
lations between the notions and the axi-
oms. Their work illustrated the complex
levels of analysis that an axiomatic the-
ory of software testing can make possible.
Formalization is not merely a mathemat-
ical exercise because the basic notions of
software testing have to be expressed pre-
cisely and clearly so that they can be
critically analyzed. For example, infor-
mally, a program-limited criterion only
requires test data selected in the domain
of the program, and a specification-lim-
ited criterion requires test data only se-
lected in the domain of the specification.
Parrish and Zweben formally defined the
notion to be that if a test case falls out-
side the domain, the test set is considered
inadequate. This definition is counterin-
tuitive and conflicts with the monotonic-
ity axiom. A more logical definition is that
the test cases outside the domain are not
taken into account in determining test
adequacy [Zhu and Hall 1993]. Parrish
and Zweben [1993] also formalized the
notion of the correctness condition such
that a test set is inadequate if it contains
a test case on which the program is incor-
rect. They tried to put it into the axiom
system by modifying the monotonicity ax-
iom to be applied only to test sets on
which the software is correct. However,
Weyuker [1986] argued that the correct-
ness condition plays no role in determin-
ing test adequacy. It should not be an
axiom.

6.3 Zhu and Hall’s Measurement Theory

Based on the mathematical theory of
measurement, Zhu and Hall [1993; Zhu
et al. 1993] proposed a set of axioms for
the measurement of software test ade-
quacy. The mathematical theory of mea-
surement is the study of the logical and
philosophical concepts underlying mea-
surement as it applies in all sciences. It
studies the conceptual structures of

8 The definition of mutation adequacy used in this
article does not use the correctness condition.

Test Coverage and Adequacy • 417

ACM Computing Surveys, Vol. 29, No. 4, December 1997

measurement systems and their proper-
ties related to the validation of the use
of measurements [Roberts 1979; Krantz
et al. 1971; Suppes et al. 1989; Luce et
al. 1990]. Therefore the measurement of
software test adequacy should conform
to the theory. In fact, recent years have
seen rapid growth of rigorous applica-
tions of the measurement theory to soft-
ware metrics [Fenton 1991].

According to the theory, measurement
is the assignment of numbers to proper-
ties of objects or events in the real world
by means of an objective empirical oper-
ation. The modern form of measurement
theory is representational; that is, num-
bers assigned to objects/events must
represent the perceived relation be-
tween the properties of those objects/
events. Readers are referred to Roberts’
[1979] book for various applications of
the theory and Krantz et al.’s trilogy
[1971; Suppes et al. 1989; Luce et al.
1990] for a systematic treatment of the
subject. Usually, such a theory com-
prises three main sections: the descrip-
tion of an empirical relational system, a
representation theorem, and a unique-
ness condition.

An empirical relational system Q 5
(Q, R) consists of a set Q of manifesta-
tions of the property or attribute and a
family of relations R 5 {R1, R2, . . . ,
Rn} on Q. The family R of relations
provides the basic properties of the
manifestations with respect to the prop-
erty to be measured. They are usually
expressed as axioms derived from the
empirical knowledge of the real world.
For software testing, the manifestations
are the software tests P 3 S 3 T, which
consist of a set of programs P, a set of
specifications S, and a set of test sets T.
Zhu et al. [1994] defined a relation # on
the space of software testing such that
t1 # t2 means that test t2 is at least as
adequate as t1. It was argued that the
relation has the properties of reflexiv-
ity, transitivity, comparability, bound-
edness, equal inadequacy for empty
tests, and equal adequacy for exhaus-
tive tests. Therefore this relation is a

total ordering with maximal and mini-
mal elements.

To assign numbers to the objects in
the empirical system, a numerical sys-
tem N 5 (N, G) must be defined so that
the measurement mapping is a homo-
morphism from the empirical system to
the numerical system. It has been
proved that for any numerical system
(N, #N) and measurement g of test
adequacy on N, there is a measurement
m on the unit interval of real numbers
([0,1], #) such that g 5 t ° m, where t is
an isomorphism between (N, #N) and
([0,1], #) [Zhu and Hall 1993; Zhu et al.
1994; Zhu 1995b]. Therefore properties
of test adequacy measurements can be
obtained by studying adequacy mea-
surements on the real unit interval.

Zhu and Hall’s axiom system for ade-
quacy measurements on the real unit
interval consists of the following axi-
oms.

AXIOM B1 (Inadequacy of Empty Test
Set). For all programs p and specifica-
tions s, the adequacy of the empty test
set is 0.

AXIOM B2 (Adequacy of Exhaustive
Testing). For all programs p and speci-
fications s, the adequacy of the exhaus-
tive test set D is 1.

AXIOM B3 (Monotonicity). For all pro-
grams p and specifications s, if test set
t1 is a subset of test set t2 , then the
adequacy of t1 is less than or equal to
the adequacy of t2.

AXIOM B4 (Convergence). Let t1,
t2, . . . , tn, . . . [T be test sets such that
t1 # t2 # . . . # tn # Then, for all
programs p and specifications s,

lim
n3`

Cp
s ~tn! 5 Cp

sSø
n51

`

tnD ,

where Cp
s (t) is the adequacy of test set t

for testing program p with respect to
specification s.

AXIOM B5 (Law of Diminishing Re-
turns). The more a program has been
tested, the less a given test set can fur-

418 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

ther contribute to the test adequacy. For-
mally, for all programs p, specifications
s, and test sets t,

@c, d [T.~c # d f Cp
s ~tuc!

$ Cp
s ~tud!!,

where Cp
s ~tuc! 5 Cp

s ~t ø c! 2 Cp
s ~c!.

This axiom system has been proved to
be consistent [Zhu and Hall 1993; Zhu
et al. 1994]. From these axioms, a num-
ber of properties of test data adequacy
criteria can be proved. For example, if a
test data adequacy criterion satisfies
Axiom B2 and Axiom B4, then it is
finitely applicable, which means that
for any real number r less than 1, there
is a finite test set whose adequacy is
greater than or equal to r. Therefore an
adequacy criterion can fail to be finitely
applicable because of two reasons: not
satisfying the adequacy of exhaustive
test, such as requiring coverage of infea-
sible elements, or not satisfying the con-
vergence property such as the path-cov-
erage criterion. Another example of
derivable property is subadditivity,
which can be derived from the law of
diminishing returns. Here an adequacy
measurement is subadditive if the ade-
quacy of the union of two test sets t1
and t2 is less than or equal to the sum of
the adequacy of t1 and the adequacy of
t2.

The measurement theory of software
test adequacy was concerned not only
with the properties derivable from the
axioms, but also with measurement-the-
oretical properties of the axiom systems.
Zhu et al. [1994] proved a uniqueness
theorem that characterizes the admissi-
ble transformations between any two
adequacy measurements that satisfy
the axioms. However, the irregularity of
adequacy measurements was also for-
mally proved. That is, not all adequacy
measurements can be transformed from
one to another. In fact, few existing
adequacy criteria are convertible from
one to another. According to measure-
ment theory, these two theorems lay the

foundation for the investigation of the
meaningfulness of statements and sta-
tistical operations that involve test ade-
quacy measurements [Krantz et al.
1971; Suppes et al. 1989; Luce et al.
1990].

The irregularity theorem confirms our
intuition that the criteria are actually
different approximations to the ideal
measure of test adequacy. Therefore it
is necessary to find the “errors” for each
criterion. In an attempt to do so, Zhu et
al. [1994] also investigated the proper-
ties that distinguish different classes of
test adequacy criteria.

6.4 Semantics of Software Test Adequacy

The axioms of software test adequacy
criteria characterize the notion of soft-
ware test adequacy by a set of proper-
ties for adequacy. These axioms do not
directly answer what test adequacy
means. The model theory [Chang and
Keisler 1973] of mathematical logic pro-
vides a way of assigning meanings to
formal axioms. Recently, the model the-
ory was applied to assigning meanings
to the axioms of test adequacy criteria
[Zhu 1996b, 1995b]. Software testing
was interpreted as inductive inference
such that a finite number of observa-
tions made on the behavior of the soft-
ware under test are used to inductively
derive general properties of the soft-
ware. In particular, Gold’s [1967] induc-
tive inference model of identification in
the limit was used to interpret Weyuk-
er’s axioms and a relationship between
adequate testing and software correct-
ness was obtained in the model [Zhu
1996b]. Valiant’s [1984] PAC inductive
inference model was used to interpret
Zhu and Hall’s axioms of adequacy mea-
surements. Relationships between soft-
ware reliability and test adequacy were
obtained [Zhu 1995b].

7. CONCLUSION

Since Goodenough and Gerhart [1975,
1977] pointed out that test criteria are a
central problem of software testing, test

Test Coverage and Adequacy • 419

ACM Computing Surveys, Vol. 29, No. 4, December 1997

criteria have been a major focus of the
research on software testing. A large
number of test data adequacy criteria
have been proposed and various ration-
ales have been presented for the sup-
port of one or another criterion. In this
article, various types of software test
adequacy criteria proposed in the litera-
ture are reviewed. The research on com-
parison and evaluation of criteria is also
surveyed. The notion of test adequacy is
examined and its roles in software test-
ing practice and theoretical research are
discussed. Although whether an adequacy
criterion captures the true notion of test
adequacy is still a matter of controversy,
it appears that software test adequacy
criteria as a whole are clearly linked to
the fault-detecting ability of software
testing as well as to the dependability of
the software that has passed an adequate
test. It was predicted that with the ad-
vent of a quality assurance framework
based upon ISO 9001, which calls for spe-
cific mechanisms for defect removal, the
acceptance of more formal measurement
of the testing process can now be antici-
pated [Wichmann 1993]. There is a ten-
dency towards systematic approaches to
software testing through using test ade-
quacy criteria.

ACKNOWLEDGMENT

The authors would like to thank the anonymous
referees for their valuable comments.

APPENDIX

Glossary of Graph-Theory-Related
Terminology

Complete computation path: A com-
plete computation path is a path that
starts with the begin node and ends at
the end node of the flow graph. It is also
called a computation path or execution
path.

Concatenation of paths: If p 5 (n1,
n2, . . . , ns), q 5 (ns11, . . . , nt) are two
paths, and r 5 (n1, n2, . . . , ns, ns11,
. . . , nt) is also a path, we say that r is

the concatenation of p to q and write
r 5 p ∧ q.

Cycle: A path p 5 (n1, n2, . . . , nt,
n1) is called a cycle.

Cycle-free path: A path is said to be
cycle-free if it does not contain cycles as
subpaths.

Directed graph, node, and edge: A
directed graph consists of a set N of
nodes and a set E # N 3 N of directed
edges between nodes.

Elementary cycle and simple cycle: If
the nodes n1, n2, . . . , nt in the cycle
(n1, n2, . . . , nt, n1) are all different,
then the cycle is called an elementary
cycle. If the edges in the cycle are all
different, then it is called a simple cycle.

Elementary path and simple path: A
path is called an elementary path if the
nodes in the path are all different. It is
called a simple path if the edges in the
path are all different.

Empty path: A path is called an
empty path if its length is 1. In this
case, the path contains no edge but only
a node, and hence is written as (n1).

Feasible and infeasible paths: Not
all complete computation paths neces-
sarily correspond to an execution of the
program. A feasible path is a complete
computation path such that there exist
input data that can cause the execution
of the path. Otherwise, it is an infeasi-
ble path.

Flow graph: A flow graph is a di-
rected graph that satisfies the following
conditions: (1) it has a unique begin
node which has no inward edge; (2) it
has a unique end node which has no
outward edge; and (3) every node in a
flow graph must be on a path from the
begin node to the end node.

Flow graph model of program struc-
ture: The nodes in a flow graph repre-
sent linear sequences of computations.
The edges in the flow graph represent
control transfers. Each edge is associ-
ated with a predicate that represents

420 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

the condition of control transfer from
the computation on the start node of the
edge to that on the end node of the edge.
The begin node and the end node in the
flow graph are where the computation
starts and finishes.

Inward edges and outward edges of a
node: The edge ^n1, n2& is an inward
edge of the node n2. It is an outward
edge of the node n1.

Length of a path: The length of a
path (n1, n2, . . . , nt) is t.

Path: A path p in a graph is a se-
quence (n1, n2, . . . , nt) of nodes such
that ^ni, ni11& is an edge in the graph,
for all i 5 1, 2, . . . , t 2 1, t . 0.

Start node and end node of an edge:
The node n1 is the start node of the edge
^n1, n2& and n2 is the end node of the
edge.

Start node and end node of a path:
The start node of a path (n1, n2, . . . ,
nt) is n1, and nt is the end node of the
path.

Strongly connected graph: A graph
is strongly connected if for any two
nodes a and b, there exists a path from
a to b and a path from b to a.

Subpath: A subsequence nu, nu11,
. . . , nv of the path p 5 (n1, n2, . . . , nt)
is called a subpath of p, where 1 # u #
v # t.

REFERENCES

ADRION, W. R., BRANSTAD, M. A., AND CHERNI-
AVSKY, J. C. 1982. Validation, verification,
and testing of computer software. Comput.
Surv. 14, 2 (June), 159–192.

AFIFI, F. H., WHITE, L. J., AND ZEIL, S. J. 1992.
Testing for linear errors in nonlinear com-
puter programs. In Proceedings of the 14th
IEEE International Conference on Software
Engineering (May), 81–91.

AMLA, N. AND AMMANN, P. 1992. Using Z speci-
fications in category partition testing. In Pro-
ceedings of the Seventh Annual Conference on
Computer Assurance (June), IEEE, 3–10.

AMMANN, P. AND OFFUTT, J. 1994. Using formal
methods to derive test frames in category-
partition testing. In Proceedings of the Ninth
Annual Conference on Computer Assurance
(Gaithersburg, MD, June), IEEE, 69–79.

BACHE, R. AND MULLERBURG, M. 1990. Meas-
ures of testability as a basis for quality assur-
ance. Softw. Eng. J. (March), 86–92.

BAKER, A. L., HOWATT, J. W., AND BIEMAN, J. M.
1986. Criteria for finite sets of paths that
characterize control flow. In Proceedings of
the 19th Annual Hawaii International Confer-
ence on System Sciences, 158–163.

BASILI, V. R. AND RAMSEY, J. 1984. Structural
coverage of functional testing. Tech. Rep. TR-
1442, Department of Computer Science, Uni-
versity of Maryland at College Park, Sept.

BASILI, V. R. AND SELBY, R. W. 1987. Com-
paring the effectiveness of software testing.
IEEE Trans. Softw. Eng. SE-13, 12 (Dec.),
1278–1296.

BAZZICHI, F. AND SPADAFORA, I. 1982. An auto-
matic generator for compiler testing. IEEE
Trans. Softw. Eng. SE-8, 4 (July), 343–353.

BEIZER, B. 1983. Software Testing Techniques.
Van Nostrand Reinhold, New York.

BEIZER, B. 1984. Software System Testing and
Quality Assurance. Van Nostrand Reinhold,
New York.

BENGTSON, N. M. 1987. Measuring errors in op-
erational analysis assumptions, IEEE Trans.
Softw. Eng. SE-13, 7 (July), 767–776.

BENTLY, W. G. AND MILLER, E. F. 1993. CT cov-
erage—initial results. Softw. Quality J. 2, 1,
29–47.

BERNOT, G., GAUDEL, M. C., AND MARRE, B. 1991.
Software testing based on formal specifica-
tions: A theory and a tool. Softw. Eng. J.
(Nov.), 387–405.

BIEMAN, J. M. AND SCHULTZ, J. L. 1992. An em-
pirical evaluation (and specification) of the all
du-paths testing criterion. Softw. Eng. J.
(Jan.), 43–51.

BIRD, D. L. AND MUNOZ, C. U. 1983. Automatic
generation of random self-checking test cases.
IBM Syst. J. 22, 3.

BOUGE, L., CHOQUET, N., FRIBOURG, L., AND GAU-
DEL, M.-C. 1986. Test set generation from
algebraic specifications using logic program-
ming. J. Syst. Softw. 6, 343–360.

BUDD, T. A. 1981. Mutation analysis: Ideas, ex-
amples, problems and prospects. In Computer
Program Testing, Chandrasekaran and Radic-
chi, Eds., North Holland, 129–148.

BUDD, T. A. AND ANGLUIN, D. 1982. Two notions
of correctness and their relation to testing.
Acta Inf. 18, 31–45.

BUDD, T. A., LIPTON, R. J., SAYWARD, F. G., AND

DEMILLO, R. A. 1978. The design of a pro-
totype mutation system for program testing.
In Proceedings of National Computer Confer-
ence, 623–627.

CARVER, R. AND KUO-CHUNG, T. 1991. Replay
and testing for concurrent programs. IEEE
Softw. (March), 66–74.

Test Coverage and Adequacy • 421

ACM Computing Surveys, Vol. 29, No. 4, December 1997

CHAAR, J. K., HALLIDAY, M. J., BHANDARI, I. S., AND
CHILLAREGE, R. 1993. In-process evaluation
for software inspection and test. IEEE Trans.
Softw. Eng. 19, 11, 1055–1070.

CHANDRASEKARAN, B. AND RADICCHI, S. (EDS.)
1981. Computer Program Testing, North-
Holland.

CHANG, C. C. AND KEISLER, H. J. 1973. Model
Theory. North-Holland, Amsterdam.

CHANG, Y.-F. AND AOYAMA, M. 1991. Testing the
limits of test technology. IEEE Softw.
(March), 9–11.

CHERNIAVSKY, J. C. AND SMITH, C. H. 1987. A
recursion theoretic approach to program test-
ing. IEEE Trans. Softw. Eng. SE-13, 7 (July),
777–784.

CHERNIAVSKY, J. C. AND SMITH, C. H. 1991. On
Weyuker’s axioms for software complexity
measures. IEEE Trans. Softw. Eng. SE-17, 6
(June), 636–638.

CHOI, B., MATHUR, A., AND PATTISON, B. 1989.
PMothra: Scheduling mutants for execution
on a hypercube. In Proceedings of SIGSOFT
Symposium on Software Testing, Analysis and
Verification 3 (Dec.) 58–65.

CHUSHO, T. 1987. Test data selection and qual-
ity estimation based on the concept of essen-
tial branches for path testing. IEEE Trans.
Softw. Eng. SE-13, 5 (May), 509–517.

CLARKE, L. A., HASSELL, J., AND RICHARDSON, D. J.
1982. A close look at domain testing. IEEE
Trans. Softw. Eng. SE-8, 4 (July), 380–390.

CLARKE, L. A., PODGURSKI, A., RICHARDSON, D. J.,
AND ZEIL, S. J. 1989. A formal evaluation of
data flow path selection criteria. IEEE Trans.
Softw. Eng. 15, 11 (Nov.), 1318–1332.

CURRIT, P. A., DYER, M., AND MILLS, H. D. 1986.
Certifying the reliability of software. IEEE
Trans. Softw. Eng. SE-6, 1 (Jan.) 2–13.

DAVIS, M. AND WEYUKER, E. 1988. Metric space-
based test-data adequacy criteria. Comput. J.
13, 1 (Feb.), 17–24.

DEMILLO, R. A. AND MATHUR, A. P. 1990. On
the use of software artifacts to evaluate the
effectiveness of mutation analysis for detect-
ing errors in production software. In Proceed-
ings of 13th Minnowbrook Workshop on Soft-
ware Engineering (July 24–27, Blue
Mountain Lake, NY), 75–77.

DEMILLO, R. A. AND OFFUTT, A. J. 1991. Con-
straint-based automatic test data generation.
IEEE Trans. Softw. Eng. 17, 9 (Sept.), 900–
910.

DEMILLO, R. A. AND OFFUTT, A. J. 1993. Experi
mental results from an automatic test case
generator. ACM Trans. Softw. Eng. Methodol.
2, 2 (April), 109–127.

DEMILLO, R. A., GUINDI, D. S., MCCRACKEN, W. M.,
OFFUTT, A. J., AND KING, K. N. 1988. An
extended overview of the Mothra software
testing environment. In Proceedings of SIG-

SOFT Symposium on Software Testing, Anal-
ysis and Verification 2, (July), 142–151.

DEMILLO, R. A., LIPTON, R. J., AND SAYWARD,
F. G. 1978. Hints on test data selection:
Help for the practising programmer. Com-
puter 11, (April), 34–41.

DEMILLO, R. A., MCCRACKEN, W. M., MATIN, R. J.,
AND PASSUFIUME, J. F. 1987. Software Test-
ing and Evaluation, Benjamin-Cummings,
Redwood City, CA.

DENNEY, R. 1991. Test-case generation from
Prolog-based specifications. IEEE Softw.
(March), 49–57.

DIJKSTRA, E. W. 1972. Notes on structured pro-
gramming. In Structured Programming, by
O.-J. Dahl, E. W. Dijkstra, and C. A. R.
Hoare, Academic Press.

DOWNS, T. 1985. An approach to the modelling
of software testing with some applications.
IEEE Trans. Softw. Eng. SE-11, 4 (April),
375–386.

DOWNS, T. 1986. Extensions to an approach to
the modelling of software testing with some
performance comparisons. IEEE Trans.
Softw. Eng. SE-12, 9 (Sept.), 979–987.

DOWNS, T. AND GARRONE, P. 1991. Some new
models of software testing with performance
comparisons. IEEE Trans. Rel. 40, 3 (Aug.),
322–328.

DUNCAN, I. M. M. AND ROBSON, D. J. 1990. Or-
dered mutation testing. ACM SIGSOFT
Softw. Eng. Notes 15, 2 (April), 29–30.

DURAN, J. W. AND NTAFOS, S. 1984. An evalua-
tion of random testing. IEEE Trans. Softw.
Eng. SE-10, 4 (July), 438–444.

FENTON, N. 1992. When a software measure is
not a measure. Softw. Eng. J. (Sept.), 357–
362.

FENTON, N. E. 1991. Software metrics—a rigor-
ous approach. Chapman & Hall, London.

FENTON, N. E., WHITTY, R. W., AND KAPOSI,
A. A. 1985. A generalised mathematical
theory of structured programming. Theor.
Comput. Sci. 36, 145–171.

FORMAN, I. R. 1984. An algebra for data flow
anomaly detection. In Proceedings of the Sev-
enth International Conference on Software En-
gineering (Orlando, FL), 250–256.

FOSTER, K. A. 1980. Error sensitive test case
analysis (ESTCA). IEEE Trans. Softw. Eng.
SE-6, 3 (May), 258–264.

FRANKL, P. G. AND WEISS, S. N. 1993. An exper-
imental comparison of the effectiveness of
branch testing and data flow testing. IEEE
Trans. Softw. Eng. 19, 8 (Aug.), 774–787.

FRANKL, P. G. AND WEYUKER, J. E. 1988. An
applicable family of data flow testing criteria.
IEEE Trans. Softw. Eng. SE-14, 10 (Oct.),
1483–1498.

FRANKL, P. G. AND WEYUKER, J. E. 1993a. A

422 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

formal analysis of the fault-detecting ability
of testing methods. IEEE Trans. Softw. Eng.
19, 3 (March), 202–213.

FRANKL, P. G. AND WEYUKER, E. J. 1993b. Prov-
able improvements on branch testing. IEEE
Trans. Softw. Eng. 19, 10, 962–975.

FREEDMAN, R. S. 1991. Testability of software
components. IEEE Trans. Softw. Eng. SE-17,
6 (June), 553–564.

FRITZSON, P., GYIMOTHY, T., KAMKAR, M., AND

SHAHMEHRI, N. 1991. Generalized algorith-
mic debugging and testing. In Proceedings of
ACM SIGPLAN Conference on Programming
Language Design and Implementation (To-
ronto, June 26–28).

FUJIWARA, S., V. BOCHMANN, G., KHENDEK, F.,
AMALOU, M., AND GHEDAMSI, A. 1991. Test
selection based on finite state models. IEEE
Trans. Softw. Eng. SE-17, 6 (June), 591–603.

GAUDEL, M.-C. AND MARRE, B. 1988. Algebraic
specifications and software testing: Theory
and application. In Rapport LRI 407.

GELPERIN, D. AND HETZEL, B. 1988. The growth
of software testing. Commun. ACM 31, 6
(June), 687–695.

GIRGIS, M. R. 1992. An experimental evalua-
tion of a symbolic execution system. Softw.
Eng. J. (July), 285–290.

GOLD, E. M. 1967. Language identification in
the limit. Inf. Cont. 10, 447–474.

GOODENOUGH, J. B. AND GERHART, S. L. 1975.
Toward a theory of test data selection. IEEE
Trans. Softw. Eng. SE-3 (June).

GOODENOUGH, J. B. AND GERHART, S. L. 1977.
Toward a theory of testing: Data selection
criteria. In Current Trends in Programming
Methodology, Vol. 2, R. T. Yeh, Ed., Prentice-
Hall, Englewood Cliffs, NJ, 44–79.

GOPAL, A. AND BUDD, T. 1983. Program testing
by specification mutation. Tech. Rep. TR 83-
17, University of Arizona, Nov.

GOURLAY, J. 1983. A mathematical framework
for the investigation of testing. IEEE Trans.
Softw. Eng. SE-9, 6 (Nov.), 686–709.

HALL, P. A. V. 1991. Relationship between
specifications and testing. Inf. Softw. Technol.
33, 1 (Jan./Feb.), 47–52.

HALL, P. A. V. AND HIERONS, R. 1991. Formal
methods and testing. Tech. Rep. 91/16, Dept.
of Computing, The Open University.

HAMLET, D. AND TAYLOR, R. 1990. Partition
testing does not inspire confidence. IEEE
Trans. Softw. Eng. 16 (Dec.), 206–215.

HAMLET, D., GIFFORD, B., AND NIKOLIK, B. 1993.
Exploring dataflow testing of arrays. In Pro-
ceedings of 15th ICSE (May), 118–129.

HAMLET, R. 1989. Theoretical comparison of
testing methods. In Proceedings of SIGSOFT
Symposium on Software Testing, Analysis,
and Verification 3 (Dec.), 28–37.

HAMLET, R. G. 1977. Testing programs with the
aid of a compiler. IEEE Trans. Softw. Eng. 3,
4 (July), 279–290.

HARROLD, M. J., MCGREGOR, J. D., AND FITZ-
PATRICK, K. J. 1992. Incremental testing of
object-oriented class structures. In Proceed-
ings of 14th ICSE (May) 68–80.

HARROLD, M. J. AND SOFFA, M. L. 1990. Inter-
procedural data flow testing. In Proceedings
of SIGSOFT Symposium on Software Testing,
Analysis, and Verification 3 (Dec.), 158–167.

HARROLD, M. J. AND SOFFA, M. L. 1991. Select-
ing and using data for integration testing.
IEEE Softw. (March), 58–65.

HARTWICK, D. 1977. Test planning. In Proceed-
ings of National Computer Conference, 285–
294.

HAYES, I. J. 1986. Specification directed mod-
ule testing. IEEE Trans. Softw. Eng. SE-12, 1
(Jan.), 124–133.

HENNELL, M. A., HEDLEY, D., AND RIDDELL, I. J.
1984. Assessing a class of software tools. In
Proceedings of the Seventh ICSE, 266–277.

HERMAN, P. 1976. A data flow analysis ap-
proach to program testing. Aust. Comput. J. 8,
3 (Nov.), 92–96.

HETZEL, W. 1984. The Complete Guide to Soft-
ware Testing, Collins.

HIERONS, R. 1992. Software testing from formal
specification. Ph.D. Thesis, Brunel Univer-
sity, UK.

HOFFMAN, D. M. AND STROOPER, P. 1991. Auto-
mated module testing in Prolog. IEEE Trans.
Softw. Eng. 17, 9 (Sept.), 934–943.

HORGAN, J. R. AND LONDON, S. 1991. Data flow
coverage and the C language. In Proceedings
of TAV4 (Oct.), 87–97.

HORGAN, J. R. AND MATHUR, A. P. 1992. Assess-
ing testing tools in research and education.
IEEE Softw. (May), 61–69.

HOWDEN, W. E. 1975. Methodology for the gen-
eration of program test data. IEEE Trans.
Comput. 24, 5 (May), 554–560.

HOWDEN, W. E. 1976. Reliability of the path
analysis testing strategy. IEEE Trans. Softw.
Eng. SE-2, (Sept.), 208–215.

HOWDEN, W. E. 1977. Symbolic testing and the
DISSECT symbolic evaluation system. IEEE
Trans. Softw. Eng. SE-3 (July), 266–278.

HOWDEN, W. E. 1978a. Algebraic program test-
ing. ACTA Inf. 10, 53–66.

HOWDEN, W. E. 1978b. Theoretical and empiri-
cal studies of program testing. IEEE Trans.
Softw. Eng. SE-4, 4 (July), 293–298.

HOWDEN, W. E. 1978c. An evaluation of the ef-
fectiveness of symbolic testing. Softw. Pract.
Exper. 8, 381–397.

HOWDEN, W. E. 1980a. Functional program
testing. IEEE Trans. Softw. Eng. SE-6, 2
(March), 162–169.

Test Coverage and Adequacy • 423

ACM Computing Surveys, Vol. 29, No. 4, December 1997

HOWDEN, W. E. 1980b. Functional testing and
design abstractions. J. Syst. Softw. 1, 307–313.

HOWDEN, W. E. 1981. Completeness criteria for
testing elementary program functions. In Pro-
ceedings of Fifth International Conference on
Software Engineering (March), 235–243.

HOWDEN, W. E. 1982a. Validation of scientific
programs. Comput. Surv. 14, 2 (June), 193–227.

HOWDEN, W. E. 1982b. Weak mutation testing
and completeness of test sets. IEEE Trans.
Softw. Eng. SE-8, 4 (July), 371–379.

HOWDEN, W. E. 1985. The theory and practice of
functional testing. IEEE Softw. (Sept.), 6–17.

HOWDEN, W. E. 1986. A functional approach to
program testing and analysis. IEEE Trans.
Softw. Eng. SE-12, 10 (Oct.), 997–1005.

HOWDEN, W. E. 1987. Functional program test-
ing and analysis. McGraw-Hill, New York.

HUTCHINS, M., FOSTER, H., GORADIA, T., AND OS-
TRAND, T. 1994. Experiments on the effec-
tiveness of dataflow- and controlflow-based
test adequacy criteria. In Proceedings of 16th
IEEE International Conference on Software
Engineering (May).

INCE, D. C. 1987. The automatic generation of
test data. Comput. J. 30, 1, 63–69.

INCE, D. C. 1991. Software testing. In Software
Engineer’s Reference Book, J. A. McDermid,
Ed., Butterworth-Heinemann (Chapter 19).

KARASIK, M. S. 1985. Environmental testing
techniques for software certification. IEEE
Trans. Softw. Eng. SE-11, 9 (Sept.), 934–938.

KEMMERER, R. A. 1985. Testing formal specifi-
cations to detect design errors. IEEE Trans.
Softw. Eng. SE-11, 1 (Jan.), 32–43.

KERNIGHAN, B. W. AND PLAUGER, P. J. 1981.
Software Tools in Pascal, Addison-Wesley,
Reading, MA.

KING, K. N. AND OFFUTT, A. J. 1991. A FOR-
TRAN language system for mutation-based
software testing. Softw. Pract. Exper. 21, 7
(July), 685–718.

KOREL, B., WEDDE, H., AND FERGUSON, R. 1992.
Dynamic method of test data generation for
distributed software. Inf. Softw. Tech. 34, 8
(Aug.), 523–532.

KOSARAJU, S. 1974. Analysis of structured pro-
grams. J. Comput. Syst. Sci. 9, 232–255.

KRANTZ, D. H., LUCE, R. D., SUPPES, P., AND TVER-
SKY, A. 1971. Foundations of Measurement,
Vol. 1: Additive and Polynomial Representa-
tions. Academic Press, New York.

KRAUSER, E. W., MATHUR, A. P., AND REGO, V. J.
1991. High performance software testing on
SIMD machines. IEEE Trans. Softw. Eng.
SE-17, 5 (May), 403–423.

LASKI, J. 1989. Testing in the program develop-
ment cycle. Softw. Eng. J. (March), 95–106.

LASKI, J. AND KOREL, B. 1983. A data flow ori-

ented program testing strategy. IEEE Trans.
Softw. Eng. SE-9, (May), 33–43.

LASKI, J., SZERMER, W., AND LUCZYCKI, P.
1993. Dynamic mutation testing in inte-
grated regression analysis. In Proceedings of
15th International Conference on Software
Engineering (May), 108–117.

LAUTERBACH, L. AND RANDALL, W. 1989. Ex-
perimental evaluation of six test techniques.
In Proceedings of COMPASS 89 (Washington,
DC, June), 36–41.

LEVENDEL, Y. 1991. Improving quality with a
manufacturing process. IEEE Softw. (March),
13–25.

LINDQUIST, T. E. AND JENKINS, J. R. 1987. Test
case generation with IOGEN. In Proceedings
of the 20th Annual Hawaii International Con-
ference on System Sciences, 478–487.

LITTLEWOOD, B. AND STRIGINI, L. 1993. Valida-
tion of ultra-high dependability for software-
based systems. C ACM 36, 11 (Nov.), 69–80.

LIU, L.-L. AND ROBSON, D. J. 1989. Symbolic
evaluation in software testing, the final re-
port. Computer Science Tech. Rep. 10/89,
School of Engineering and Applied Science,
University of Durham, June.

LUCE, R. D., KRANTZ, D. H., SUPPES, P., AND TVER-
SKY, A. 1990. Foundations of Measurement,
Vol. 3: Representation, Axiomatization, and
Invariance. Academic Press, San Diego.

MALAIYA, Y. K., VONMAYRHAUSER, A., AND SRIMANI,
P. K. 1993. An examination of fault expo-
sure ratio. IEEE Trans. Softw. Eng. 19, 11,
1087–1094.

MARICK, B. 1991. The weak mutation hypothe-
sis. In Proceedings of SIGSOFT Symposium
on Software Testing, Analysis, and Verifica-
tion 4 (Oct.), 190–199.

MATHUR, A. P. 1991. Performance, effective-
ness, and reliability issues in software test-
ing. In Proceedings of the 15th Annual Inter-
national Computer Software and Applications
Conference (Tokyo, Sept.), 604–605.

MARSHALL, A. C. 1991. A Conceptual model of
software testing. J. Softw. Test. Ver. Rel. 1, 3
(Dec.), 5–16.

MCCABE, T. J. 1976. A complexity measure.
IEEE Trans. Softw. Eng. SE-2, 4, 308–320.

MCCABE, T. J. (ED.) 1983. Structured Testing.
IEEE Computer Society Press, Los Alamitos,
CA.

MCCABE, T. J. AND SCHULMEYER, G. G. 1985.
System testing aided by structured analysis:
A practical experience. IEEE Trans. Softw.
Eng. SE-11, 9 (Sept.), 917–921.

MCMULLIN, P. R. AND GANNON, J. D. 1983. Com-
bining testing with specifications: A case
study. IEEE Trans. Softw. Eng. SE-9, 3
(May), 328–334.

MEEK, B. AND SIU, K. K. 1988. The effectiveness
of error seeding. Alvey Project SE/064: Qual-

424 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

ity evaluation of programming language pro-
cessors, Report No. 2, Computing Centre,
King’s College London, Oct.

MILLER, E. AND HOWDEN, W. E. 1981. Tutorial:
Software Testing and Validation Techniques,
(2nd ed.). IEEE Computer Society Press, Los
Alamitos, CA.

MILLER, K. W., MORELL, L. J., NOONAN, R. E.,
PARK, S. K., NICOL, D. M., MURRILL, B. W., AND

VOAS, J. M. 1992. Estimating the probabil-
ity of failure when testing reveals no failures.
IEEE Trans. Softw. Eng. 18, 1 (Jan.), 33–43.

MORELL, L. J. 1990. A theory of fault-based
testing. IEEE Trans. Softw. Eng. 16, 8 (Aug.),
844–857.

MYERS, G. J. 1977. An extension to the cyclo-
matic measure of program complexity. SIG-
PLAN No. 12, 10, 61–64.

MYERS, G. J. 1979. The Art of Software Testing.
John Wiley and Sons, New York.

MYERS, J. P., JR. 1992. The complexity of soft-
ware testing. Softw. Eng. J. (Jan.), 13–24.

NTAFOS, S. C. 1984. An evaluation of required
element testing strategies. In Proceedings of
the Seventh International Conference on Soft-
ware Engineering, 250–256.

NTAFOS, S. C. 1984. On required element test-
ing. IEEE Trans. Softw. Eng. SE-10, 6 (Nov.),
795–803.

NTAFOS, S. C. 1988. A comparison of some
structural testing strategies. IEEE Trans.
Softw. Eng. SE-14 (June), 868–874.

OFFUTT, A. J. 1989. The coupling effect: Fact or
fiction. In Proceedings of SIGSOFT Sympo-
sium on Software Testing, Analysis, and Veri-
fication 3 (Dec. 13–15), 131–140.

OFFUTT, A. J. 1992. Investigations of the soft-
ware testing coupling effect. ACM Trans.
Softw. Eng. Methodol. 1, 1 (Jan.), 5–20.

OFFUTT, A. J. AND LEE, S. D. 1991. How strong
is weak mutation? In Proceedings of SIG-
SOFT Symposium on Software Testing, Anal-
ysis, and Verification 4 (Oct.), 200–213.

OFFUTT, A. J., ROTHERMEL, G., AND ZAPF, C.
1993. An experimental evaluation of selec-
tive mutation. In Proceedings of 15th ICSE
(May), 100–107.

OSTERWEIL, L. AND CLARKE, L. A. 1992. A pro-
posed testing and analysis research initiative.
IEEE Softw. (Sept.), 89–96.

OSTRAND, T. J. AND BALCER, M. J. 1988. The
category-partition method for specifying and
generating functional tests. Commun. ACM
31, 6 (June), 676–686.

OSTRAND, T. J. AND WEYUKER, E. J. 1991. Data-
flow-based test adequacy analysis for lan-
guages with pointers. In Proceedings of SIG-
SOFT Symposium on Software Testing, Anal-
ysis, and Verification 4, (Oct.), 74–86.

OULD, M. A. AND UNWIN, C., EDS. 1986. Testing
in Software Development. Cambridge Univer-
sity Press, New York.

PAIGE, M. R. 1975. Program graphs, an alge-
bra, and their implication for programming.
IEEE Trans. Softw. Eng. SE-1, 3, (Sept.),
286–291.

PAIGE, M. R. 1978. An analytical approach to
software testing. In Proceedings COMP-
SAC’78, 527–532.

PANDI, H. D., RYDER, B. G., AND LANDI, W.
1991. Interprocedural Def-Use associations
in C programs. In Proceedings of SIGSOFT
Symposium on Software Testing, Analysis,
and Verification 4, (Oct.), 139–153.

PARRISH, A. AND ZWEBEN, S. H. 1991. Analysis
and refinement of software test data ade-
quacy properties. IEEE Trans. Softw. Eng.
SE-17, 6 (June), 565–581.

PARRISH, A. S. AND ZWEBEN, S. H. 1993. Clarify-
ing some fundamental concepts in software
testing. IEEE Trans. Softw. Eng. 19, 7 (July),
742–746.

PETSCHENIK, N. H. 1985. Practical priorities in
system testing. IEEE Softw. (Sept.), 18–23.

PIWOWARSKI, P., OHBA, M., AND CARUSO, J. 1993.
Coverage measurement experience during
function testing. In Proceedings of the 15th
ICSE (May), 287–301.

PODGURSKI, A. AND CLARKE, L. 1989. The impli-
cations of program dependences for software
testing, debugging and maintenance. In Pro-
ceedings of SIGSOFT Symposium on Software
Testing, Analysis, and Verification 3, (Dec.),
168–178.

PODGURSKI, A. AND CLARKE, L. A. 1990. A for-
mal model of program dependences and its
implications for software testing, debugging
and maintenance. IEEE Trans. Softw. Eng.
16, 9 (Sept.), 965–979.

PRATHER, R. E. AND MYERS, J. P. 1987. The path
prefix software testing strategy. IEEE Trans.
Softw. Eng. SE-13, 7 (July).

PROGRAM ANALYSIS LTD., UK. 1992. Testbed
technical description. May.

RAPPS, S. AND WEYUKER, E. J. 1985. Selecting
software test data using data flow informa-
tion. IEEE Trans. Softw. Eng. SE-11, 4
(April), 367–375.

RICHARDSON, D. J. AND CLARKE, L. A. 1985.
Partition analysis: A method combining test-
ing and verification. IEEE Trans. Softw. Eng.
SE-11, 12 (Dec.), 1477–1490.

RICHARDSON, D. J., AHA, S. L., AND O’MALLEY, T. O.
1992. Specification-based test oracles for re-
active systems. In Proceedings of 14th Inter-
national Conference on Software Engineering
(May), 105–118.

RICHARDSON, D. J. AND THOMPSON, M. C.
1988. The RELAY model of error detection

Test Coverage and Adequacy • 425

ACM Computing Surveys, Vol. 29, No. 4, December 1997

and its application. In Proceedings of SIG-
SOFT Symposium on Software Testing, Anal-
ysis, and Verification 2 (July).

RICHARDSON, D. J. AND THOMPSON, M. C. 1993.
An analysis of test data selection criteria us-
ing the relay model of fault detection. IEEE
Trans. Softw. Eng. 19, 6, 533–553.

RIDDELL, I. J., HENNELL, M. A., WOODWARD, M. R.,
AND HEDLEY, D. 1982. Practical aspects of
program mutation. Tech. Rep., Dept. of Compu-
tational Science, University of Liverpool, UK.

ROBERTS, F. S. 1979. Measurement Theory, En-
cyclopedia of Mathematics and Its Applica-
tions, Vol. 7. Addison-Wesley, Reading, MA.

ROE, R. P. AND ROWLAND, J. H. 1987. Some the-
ory concerning certification of mathematical
subroutines by black box testing. IEEE Trans.
Softw. Eng. SE-13, 6 (June), 677–682.

ROUSSOPOULOS, N. AND YEH, R. T. 1985. SEES:
A software testing environment support system.
IEEE Trans. Softw. Eng. SE-11, 4, (April), 355–
366.

RUDNER, B. 1977. Seeding/tagging estimation
of software errors: Models and estimates.
Rome Air Development Centre, Rome, NY,
RADC-TR-77-15, also AD-A036 655.

SARIKAYA, B., BOCHMANN, G. V., AND CERNY,
E. 1987. A test design methodology for pro-
tocol testing. IEEE Trans. Softw. Eng. SE-13,
5 (May), 518–531.

SHERER, S. A. 1991. A cost-effective approach to
testing. IEEE Softw. (March), 34–40.

SOFTWARE RESEARCH. 1992. Software Test-
Works—Software Testers Workbench System.
Software Research, Inc.

SOLHEIM, J. A. AND ROWLAND, J. H. 1993. An
empirical-study of testing and integration
strategies using artificial software systems.
IEEE Trans. Softw. Eng. 19, 10, 941–949.

STOCKS, P. A. AND CARRINGTON, D. A. 1993. Test
templates: A specification-based testing
framework. In Proceedings of 15th Interna-
tional Conference on Software Engineering
(May), 405–414.

SU, J. AND RITTER, P. R. 1991. Experience in
testing the Motif interface. IEEE Softw.
(March), 26–33.

SUPPES, P., KRANTZ, D. H., LUCE, R. D., AND TVER-
SKY, A. 1989. Foundations of Measurement,
Vol. 2: Geometrical, Threshold, and Probabi-
listic Representations. Academic Press, San
Diego.

TAI, K.-C. 1993. Predicate-based test genera-
tion for computer programs. In Proceedings of
15th International Conference on Software
Engineering (May), 267–276.

TAKAHASHI, M. AND KAMAYACHI, Y. 1985. An
empirical study of a model for program error
prediction. IEEE, 330–336.

THAYER, R., LIPOW, M., AND NELSON, E. 1978.
Software Reliability. North-Holland.

TSAI, W. T., VOLOVIK, D., AND KEEFE, T. F.
1990. Automated test case generation for
programs specified by relational algebra que-
ries. IEEE Trans. Softw. Eng. 16, 3 (March),
316–324.

TSOUKALAS, M. Z., DURAN, J. W., AND NTAFOS,
S. C. 1993. On some reliability estimation
problems in random and partition testing.
IEEE Trans. Softw. Eng. 19, 7 (July), 687–697.

URAL, H. AND YANG, B. 1988. A structural test
selection criterion. Inf. Process. Lett. 28, 3
(July), 157–163.

URAL, H. AND YANG, B. 1993. Modeling software
for accurate data flow representation. In Pro-
ceedings of 15th International Conference on
Software Engineering (May), 277–286.

VALIANT, L. C. 1984. A theory of the learnable.
Commun. ACM 27, 11, 1134–1142.

VOAS, J., MORRELL, L., AND MILLER, K. 1991.
Predicting where faults can hide from testing.
IEEE Softw. (March), 41–48.

WEISER, M. D., GANNON, J. D., AND MCMULLIN,
P. R. 1985. Comparison of structural test
coverage metrics. IEEE Softw. (March), 80–85.

WEISS, S. N. AND WEYUKER, E. J. 1988. An ex-
tended domain-based model of software reli-
ability. IEEE Trans. Softw. Eng. SE-14, 10
(Oct.), 1512–1524.

WEYUKER, E. J. 1979a. The applicability of pro-
gram schema results to programs. Int.
J. Comput. Inf. Sci. 8, 5, 387–403.

WEYUKER, E. J. 1979b. Translatability and de-
cidability questions for restricted classes of
program schema. SIAM J. Comput. 8, 5, 587–
598.

WEYUKER, E. J. 1982. On testing non-testable
programs. Comput. J. 25, 4, 465–470.

WEYUKER, E. J. 1983. Assessing test data ade-
quacy through program inference. ACM Trans.
Program. Lang. Syst. 5, 4, (Oct.), 641–655.

WEYUKER, E. J. 1986. Axiomatizing software
test data adequacy. IEEE Trans. Softw. Eng.
SE-12, 12, (Dec.), 1128–1138.

WEYUKER, E. J. 1988a. The evaluation of pro-
gram-based software test data adequacy crite-
ria. Commun. ACM 31, 6, (June), 668–675.

WEYUKER, E. J. 1988b. Evaluating software
complexity measures. IEEE Trans. Softw.
Eng. SE-14, 9, (Sept.), 1357–1365.

WEYUKER, E. J. 1988c. An empirical study of
the complexity of data flow testing. In Pro-
ceedings of SIGSOFT Symposium on Software
Testing, Analysis, and Verification 2 (July),
188–195.

WEYUKER, E. J. 1993. More experience with
data-flow testing. IEEE Trans. Softw. Eng.
19, 9, 912–919.

WEYUKER, E. J. AND DAVIS, M. 1983. A formal

426 • Zhu et al.

ACM Computing Surveys, Vol. 29, No. 4, December 1997

notion of program-based test data adequacy.
Inf. Cont. 56, 52–71.

WEYUKER, E. J. AND JENG, B. 1991. Analyzing
partition testing strategies. IEEE Trans.
Softw. Eng. 17, 7 (July), 703–711.

WEYUKER, E. J. AND OSTRAND, T. J. 1980. Theo-
ries of program testing and the application of
revealing sub-domains. IEEE Trans. Softw.
Eng. SE-6, 3 (May), 236–246.

WHITE, L. J. 1981. Basic mathematical defini-
tions and results in testing. In Computer Pro-
gram Testing, B. Chandrasekaran and S.
Radicchi, Eds., North-Holland, 13–24.

WHITE, L. J. AND COHEN, E. I. 1980. A domain
strategy for computer program testing. IEEE
Trans. Softw. Eng. SE-6, 3 (May), 247–257.

WHITE, L. J. AND WISZNIEWSKI, B. 1991. Path
testing of computer programs with loops us-
ing a tool for simple loop patterns. Softw.
Pract. Exper. 21, 10 (Oct.).

WICHMANN, B. A. 1993. Why are there no mea-
surement standards for software testing?
Comput. Stand. Interfaces 15, 4, 361–364.

WICHMANN, B. A. AND COX, M. G. 1992. Prob-
lems and strategies for software component
testing standards. J. Softw. Test. Ver. Rel. 2,
167–185.

WILD, C., ZEIL, S., CHEN, J., AND FENG, G. 1992.
Employing accumulated knowledge to refine
test cases. J. Softw. Test. Ver. Rel. 2, 2 (July),
53–68.

WISZNIEWSKI, B. W. 1985. Can domain testing
overcome loop analysis? IEEE, 304–309.

WOODWARD, M. R. 1991. Concerning ordered
mutation testing of relational operators. J.
Softw. Test. Ver. Rel. 1, 3 (Dec.), 35–40.

WOODWARD, M. R. 1993. Errors in algebraic
specifications and an experimental mutation
testing tool. Softw. Eng. J. (July), 211–224.

WOODWARD, M. R. AND HALEWOOD, K. 1988.
From weak to strong—dead or alive? An anal-
ysis of some mutation testing issues. In Pro-
ceedings of Second Workshop on Software
Testing, Verification and Analysis (July) 152–
158.

WOODWARD, M. R., HEDLEY, D., AND HENNEL,
M. A. 1980. Experience with path analysis
and testing of programs. IEEE Trans. Softw.
Eng. SE-6, 5 (May), 278–286.

WOODWARD, M. R., HENNEL, M. A., AND HEDLEY,
D. 1980. A limited mutation approach to
program testing. Tech. Rep. Dept. of Compu-
tational Science, University of Liverpool.

YOUNG, M. AND TAYLOR, R. N. 1988. Combining
static concurrency analysis with symbolic ex-

ecution. IEEE Trans. Softw. Eng. SE-14, 10
(Oct.), 1499–1511.

ZEIL, S. J. 1983. Testing for perturbations of
program statements. IEEE Trans. Softw. Eng.
SE-9, 3, (May), 335–346.

ZEIL, S. J. 1984. Perturbation testing for com-
putation errors. In Proceedings of Seventh
International Conference on Software Engi-
neering (Orlando, FL), 257–265.

ZEIL, S. J. 1989. Perturbation techniques for
detecting domain errors. IEEE Trans. Softw.
Eng. 15, 6 (June), 737–746.

ZEIL, S. J., AFIFI, F. H., AND WHITE, L. J.
1992. Detection of linear errors via domain
testing. ACM Trans. Softw. Eng. Methodol. 1,
4, (Oct.), 422–451.

ZHU, H. 1995a. Axiomatic assessment of con-
trol flow based software test adequacy crite-
ria. Softw. Eng. J. (Sept.), 194–204.

ZHU, H. 1995b. An induction theory of software
testing. Sci. China 38 (Supp.) (Sept.), 58–72.

ZHU, H. 1996a. A formal analysis of the sub-
sume relation between software test adequacy
criteria. IEEE Trans. Softw. Eng. 22, 4
(April), 248–255.

ZHU, H. 1996b. A formal interpretation of soft-
ware testing as inductive inference. J. Softw.
Test. Ver. Rel. 6 (July), 3–31.

ZHU, H. AND HALL, P. A. V. 1992a. Test data
adequacy with respect to specifications and
related properties. Tech. Rep. 92/06, Depart-
ment of Computing, The Open University,
UK, Jan.

ZHU, H. AND HALL, P. A. V. 1992b. Testability of
programs: Properties of programs related to
test data adequacy criteria. Tech. Rep. 92/05,
Department of Computing, The Open Univer-
sity, UK, Jan.

ZHU, H. AND HALL, P. A. V. 1993. Test data
adequacy measurements. Softw. Eng. J. 8, 1
(Jan.), 21–30.

ZHU, H., HALL, P. A. V., AND MAY, J. 1992.
Inductive inference and software testing. J.
Softw. Test. Ver. Rel. 2, 2 (July), 69–82.

ZHU, H., HALL, P. A. V., AND MAY, J. 1994. Un-
derstanding software test adequacy—an axi-
omatic and measurement approach. In Math-
ematics of Dependable Systems, Proceedings of
IMA First Conference (Sept., London), Oxford
University Press, Oxford.

ZWEBEN, S. H. AND GOURLAY, J. S. 1989. On the
adequacy of Weyuker’s test data adequacy
axioms. IEEE Trans. Softw. Eng. SE-15, 4,
(April), 496–501.

Received November 1994; revised March 1996; accepted October 1996

Test Coverage and Adequacy • 427

ACM Computing Surveys, Vol. 29, No. 4, December 1997

