
2.1 Propositional Logic

We assume that the reader is familiar with propositional logic, and with the
complexity classes NP and NP-complete.

The syntax of formulas in propositional logic is defined by the following
grammar:

formula : formula ∧ formula | ¬formula | (formula) | atom

atom : Boolean-identifier | true | false

Other Boolean operators such as OR (∨) and XOR (⊕) can be constructed
using AND (∧) and NOT (¬).

2.1.1 Motivation

Since SAT, the problem of deciding the satisfiability of propositional formulas,
is NP-complete, it can be used for solving any NP problem. Any other NP-
complete problem (e.g., k-coloring of a graph) can be used just as well, but
none of them has a natural input language such as propositional logic to model
the original problem. Indeed, propositional logic is widely used in diverse
areas such as database queries, planning problems in artificial intelligence,
automated reasoning, and circuit design. Let us consider two examples: a
layout problem and a program verification problem.

Example 2.1. Let S = {s1, . . . , sn} be a set of radio stations, each of which
has to be allocated one of k transmission frequencies, for some k < n. Two
stations that are too close to each other cannot have the same frequency. The
set of pairs having this constraint is denoted by E. To model this problem,
define a set of propositional variables {xij | i ∈ {1, . . . , n}, j ∈ {1, . . . , k}}.
Intuitively, variable xij is set to true if and only if station i is assigned the
frequency j. The constraints are:

2

Decision Procedures for Propositional Logic

© Springer-Verlag Berlin Heidelberg 2016
D. Kroening and O. Strichman, Decision Procedures,
Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-662-50497-0_2

27

28 2 Decision Procedures for Propositional Logic

• Every station is assigned at least one frequency:

n∧
i=1

k∨
j=1

xij . (2.1)

• Every station is assigned not more than one frequency:

n∧
i=1

k−1∧
j=1

(xij =⇒
∧

j<t≤k

¬xit) . (2.2)

• Close stations are not assigned the same frequency. For each (i, j) ∈ E,

k∧
t=1

(xit =⇒ ¬xjt) . (2.3)

Note that the input of this problem can be represented by a graph, where
the stations are the graph’s nodes and E corresponds to the graph’s edges.
Checking whether the allocation problem is solvable corresponds to solving
what is known in graph theory as the k-colorability problem: can all nodes be
assigned one of k colors such that two adjacent nodes are assigned different
colors? Indeed, one way to solve k-colorability is by reducing it to propositional
logic.

Example 2.2. Consider the two code fragments in Fig. 2.1. The fragment
on the right-hand side might have been generated from the fragment on the
left-hand side by an optimizing compiler.

if(!a && !b) h();
else

if(!a) g();
else f();

if(a) f();
else

if(b) g();
else h();

Fig. 2.1. Two code fragments—are they equivalent?

We would like to check if the two programs are equivalent. The first step
in building the verification condition is to model the variables a and b and
the procedures that are called using the Boolean variables a, b, f , g, and h,
as can be seen in Fig. 2.2.

The if-then-else construct can be replaced by an equivalent proposi-
tional logic expression as follows:

(if x then y else z) ≡ (x ∧ y) ∨ (¬x ∧ z) . (2.4)

Consequently, the problem of checking the equivalence of the two code frag-
ments is reduced to checking the validity of the following propositional for-
mula:

2.2 SAT Solvers 29

if ¬a ∧ ¬b then h
else

if ¬a then g
else f

if a then f
else

if b then g
else h

Fig. 2.2. In the process of building a formula—the verification condition—we re-
place the program variables and the function symbols with new Boolean variables

(¬a ∧ ¬b) ∧ h ∨ ¬(¬a ∧ ¬b) ∧ (¬a ∧ g ∨ a ∧ f)
⇐⇒ a ∧ f ∨ ¬a ∧ (b ∧ g ∨ ¬b ∧ h) .

(2.5)

2.2 SAT Solvers

2.2.1 The Progress of SAT Solving

Given a propositional formula B, a SAT solver decides whether B is satisfiable;
if it is, it also reports a satisfying assignment. In this chapter, we consider
only the problem of solving formulas in conjunctive normal form (CNF) (see
Definition 1.20). Since every formula can be converted to this form in linear
time (as explained right after Definition 1.20), this does not impose a real
restriction.1 Solving general propositional formulas can be somewhat more
efficient in some problem domains, but most of the solvers and most of the
research are still focused on CNF formulas.

The practical and theoretical importance of the satisfiability problem has
led to a vast amount of research in this area, which has resulted in excep-
tionally powerful SAT solvers. Modern SAT solvers can solve many real-life
CNF formulas with hundreds of thousands or even millions of variables in a
reasonable amount of time. Figures 2.3 and 2.4 illustrate the progress of these
tools through the years (see captions). Of course, there are also instances of
problems two orders of magnitude smaller that these tools still cannot solve.
In general, it is very hard to predict which instance is going to be hard to
solve, without actually attempting to solve it. Some tools, however, called
SAT portfolio solvers, use machine-learning techniques to extract features
of CNF formulas in order to select the most suitable SAT solver for the job.
More details on this approach are given in Sect. 2.4.

The success of SAT solvers can be largely attributed to their ability to
learn from wrong assignments, to prune large search spaces quickly, and to
focus first on the “important” variables, those variables that, once given the

1 Appendix B provides a library for performing this conversion and generating
CNF in the DIMACS format, which is used by virtually all publicly available
SAT solvers.

30 2 Decision Procedures for Propositional Logic

right value, simplify the problem immensely.2 All of these factors contribute
to the fast solving of both satisfiable and unsatisfiable instances. There is
empirical evidence in [213] that shows that solving satisfiable instances fast
requires a different set of heuristics than those that are necessary for solving
unsatisfiable instances.

1960 1970 1980 1990 2000 2010

1,000,000

100,000

10,000

1,000

100

10

Year

V
ar

ia
b

le
s

Fig. 2.3. The size of industrial CNF formulas (instances generated for solving var-
ious realistic problems such as verification of circuits and planning problems) that
are regularly solved by SAT solvers in a few hours, according to year. Most of the
progress in efficiency has been made in the last decade

The majority of modern SAT solvers can be classified into two main cat-
egories. The first category is based on the Conflict-Driven Clause Learning
(CDCL) framework: in this framework the tool can be thought of as travers-
ing and backtracking on a binary tree, in which internal nodes represent par-
tial assignments, and the leaves represent full assignments. Building a simple
CDCL solver is surprisingly easy: one can do so with fewer than 500 lines of
C++ and STL.

The second category is based on a stochastic search: the solver guesses
a full assignment, and then, if the formula is evaluated to false under this
assignment, starts to flip values of variables according to some (greedy) heuris-
tic. Typically it counts the number of unsatisfied clauses and chooses the flip
that minimizes this number. There are various strategies that help such solvers
avoid local minima and avoid repeating previous bad moves. CDCL solvers,
however, are considered better in most cases according to annual competitions
that measure their performance with numerous CNF instances. CDCL solvers
also have the advantage that, unlike most stochastic search methods, they are
complete (see Definition 1.6). Stochastic methods seem to have an average

2 Specifically, every formula has what is known as backdoor variables [284], which
are variables that, once given the right value, simplify the formula to the point
that it is polynomial to solve.

2.2 SAT Solvers 31

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180

CP
U
 T

im
e

(in
 s

ec
on

ds
)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013

Fig. 2.4. Annual competitions measure the success of SAT solvers when applied
to randomly selected benchmarks arriving from industry. The graph shows a com-
parison between the winners of these competitions as of 2002, when applied to a
common benchmark set and using the same single-core hardware. Such graphs are
nicknamed “cactus plots”. A point (x, y) means that x benchmarks are solved within
y amount of time each. Hence, the more the graph is to the right, the better it is.
One may observe that the number of solved instances within 20 minutes has more
than doubled within a decade, thanks to better algorithms. The instances in this set
are large, and solvers created before 2002 run out of memory when trying to solve
them. (Courtesy of Daniel Le-Berre)

advantage in solving randomly generated (satisfiable) CNF instances, which
is not surprising: in these instances there is no structure to exploit and learn
from, and no obvious choices of variables and values, which makes the heuris-
tics adopted by CDCL solvers ineffective. We shall focus on CDCL solvers
only.

A historical note: CDCL was developed over time as a series of improve-
ments to the Davis–Putnam–Loveland–Logemann (DPLL) framework. See
the bibliographic notes at the end of this chapter for further discussion.

2.2.2 The CDCL Framework

In its simplest form, a CDCL solver progresses by making a decision about a
variable and its value, propagating implications of this decision that are easy
to detect, and backtracking in the case of a conflict. Viewing the process as
a search on a binary tree, each decision is associated with a decision level,
which is the depth in the binary decision tree at which it is made, starting

32 2 Decision Procedures for Propositional Logic

from 1. The assignments implied by a decision are associated with its decision
level. Assignments implied regardless of the current assignments (owing to
unary clauses, which are clauses with a single literal) are associated with
decision level 0, also called the ground level.

Definition 2.3 (state of a clause under an assignment). A clause is
satisfied if one or more of its literals are satisfied (see Definition 1.12), con-
flicting if all of its literals are assigned but not satisfied, unit if it is not
satisfied and all but one of its literals are assigned, and unresolved other-
wise.

Note that the definitions of a unit clause and an unresolved clause are only
relevant for partial assignments (see Definition 1.1).

Example 2.4. Given the partial assignment

{x1 7→ 1, x2 7→ 0, x4 7→ 1} , (2.6)

(x1 ∨ x3 ∨ ¬x4) is satisfied,
(¬x1 ∨ x2) is conflicting,
(¬x1 ∨ ¬x4 ∨ x3) is unit,
(¬x1 ∨ x3 ∨ x5) is unresolved.

Given a partial assignment under which a clause becomes unit, it must
be extended so that it satisfies the unassigned literal of this clause. This
observation is known as the unit clause rule. Following this requirement is
necessary but obviously not sufficient for satisfying the formula.

For a given unit clause C with an unassigned literal l, we say that l
is implied by C and that C is the antecedent clause of l, denoted by
Antecedent(l). If more than one unit clause implies l, the clause that the
SAT solver actually used in order to imply l is the one we refer to as l’s
antecedent.

Example 2.5. The clause C := (¬x1 ∨ ¬x4 ∨ x3) and the partial assignment
{x1 7→ 1, x4 7→ 1} imply the assignment x3 and Antecedent(x3) = C.

A framework followed by most modern CDCL solvers has been presented
by, for example, Zhang and Malik [299], and is shown in Algorithm 2.2.1. The
table in Fig. 2.6 includes a description of the main components used in this
algorithm, and Fig. 2.5 depicts the interaction between them. A description
of the Analyze-Conflict function is delayed to Sect. 2.2.6.

2.2.3 BCP and the Implication Graph

We now demonstrate Boolean constraint propagation (BCP), reaching a con-
flict, and backtracking. Each assignment is associated with the decision level

2.2 SAT Solvers 33

�

�

�

�

Algorithm 2.2.1: CDCL-SAT

Input: A propositional CNF formula B
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable”

otherwise

1. function CDCL
2. while (true) do
3. while (BCP() = “conflict”) do
4. backtrack-level := Analyze-Conflict();
5. if backtrack-level < 0 then return “Unsatisfiable”;
6. BackTrack(backtrack-level);
7. if ¬Decide() then return “Satisfiable”;

SAT

UNSAT

bl ≥ 0

BackTrack

Analyze-
Conflict

BCP
bl < 0

all assigned

α

α
Decide

conflict

Fig. 2.5. CDCL-SAT: high-level overview of the Conflict-Driven Clause-Learning
algorithm. The variable bl is the backtracking level, i.e., the decision level to which
the procedure backtracks. α is an assignment (either partial or full)

at which it occurred. If a variable xi is assigned 1 (true) (owing to either
a decision or an implication) at decision level dl, we write xi@dl. Similarly,

�� ��xi@dl
¬xi@dl reflects an assignment of 0 (false) to this variable at decision level
dl. Where appropriate, we refer only to the truth assignment, omitting the
decision level, in order to make the notation simpler.

The process of BCP is best illustrated with an implication graph. An
implication graph represents the current partial assignment and the reason
for each of the implications.

Definition 2.6 (implication graph). An implication graph is a labeled di-
rected acyclic graph G(V,E), where:

34 2 Decision Procedures for Propositional Logic

Name Decide()

Output false if and only if there are no more variables to assign.

Description Chooses an unassigned variable and a truth value for it.

Comments There are numerous heuristics for making these decisions, some
of which are described later in Sect. 2.2.5. Each such decision is
associated with a decision level, which can be thought of as the
depth in the search tree.

Name BCP()

Output “conflict” if and only if a conflict is encountered.

Description Repeated application of the unit clause rule until either a conflict
is encountered or there are no more implications.

Comments This repeated process is called Boolean Constraint Propagation
(BCP). BCP is applied even before the first decision because of
the possible existence of unary clauses.

Name Analyze-Conflict()

Output Minus 1 if a conflict at decision level 0 is detected (which implies
that the formula is unsatisfiable). Otherwise, a decision level
which the solver should backtrack to.

Description A detailed description of this function is delayed to Sect. 2.2.4.
Briefly, it is responsible for computing the backtracking level,
detecting global unsatisfiability, and adding new constraints on
the search in the form of new clauses.

Name BackTrack(dl)

Description Sets the current decision level to dl and erases assignments at
decision levels larger than dl.

Fig. 2.6. A description of the main components of Algorithm 2.2.1

• V represents the literals of the current partial assignment (we refer to a
node and the literal that it represents interchangeably). Each node is labeled
with the literal that it represents and the decision level at which it entered
the partial assignment.

• E with E = {(vi, vj) | vi, vj ∈ V,¬vi ∈ Antecedent(vj)} denotes the set of
directed edges where each edge (vi, vj) is labeled with Antecedent(vj).

• G can also contain a single conflict node labeled with κ and incoming
edges {(v, κ) | ¬v ∈ c} labeled with c for some conflicting clause c.

The root nodes of an implication graph correspond to decisions, and the inter-
nal nodes to implications through BCP. A conflict node with incoming edges
labeled with c represents the fact that the BCP process has reached a con-
flict, by assigning 0 to all the literals in the clause c (i.e., c is conflicting).

2.2 SAT Solvers 35

In such a case, we say that the graph is a conflict graph. The implication
graph corresponds to all the decision levels lower than or equal to the current
one, and is dynamic: backtracking removes nodes and their incoming edges,
whereas new decisions, implications, and conflict clauses increase the size of
the graph.

The implication graph is sensitive to the order in which the implications
are propagated in BCP, which means that the graph is not unique for a given
partial assignment. In most SAT solvers, this order is rather arbitrary (in
particular, BCP progresses along a list of clauses that contain a given literal,
and the order of clauses in this list can be sensitive to the order of clauses in
the input CNF formula). In some other SAT solvers—see for example [223]—
this order is not arbitrary; rather, it is biased towards reaching a conflict
faster.

A partial implication graph is a subgraph of an implication graph,
which illustrates the BCP at a specific decision level. Partial implication
graphs are sufficient for describing Analyze-Conflict. The roots in such
a partial graph represent assignments (not necessarily decisions) at decision
levels lower than dl, in addition to the decision at level dl, and internal nodes
correspond to implications at level dl. The description that follows uses mainly
this restricted version of the graph.

Consider, for example, a formula that contains the following set of clauses,
among others:

c1 = (¬x1 ∨ x2) ,
c2 = (¬x1 ∨ x3 ∨ x5) ,
c3 = (¬x2 ∨ x4) ,
c4 = (¬x3 ∨ ¬x4) ,
c5 = (x1 ∨ x5 ∨ ¬x2) ,
c6 = (x2 ∨ x3) ,
c7 = (x2 ∨ ¬x3) ,
c8 = (x6 ∨ ¬x5) .

(2.7)

Assume that at decision level 3 the decision was ¬x6@3, which implied ¬x5@3
owing to clause c8 (hence, Antecedent(¬x5) = c8). Assume further that the
solver is now at decision level 6 and assigns x1 7→ 1. At decision levels 4 and 5,
variables other than x1, . . . , x6 were assigned, and are not listed here as they
are not relevant to these clauses.

The implication graph on the left of Fig. 2.7 demonstrates the BCP process
at the current decision level 6 until, in this case, a conflict is detected. The
roots of this graph, namely ¬x5@3 and x1@6, constitute a sufficient condition
for creating this conflict. Therefore, we can safely add to our formula the
conflict clause

c9 = (x5 ∨ ¬x1) . (2.8)

While c9 is logically implied by the original formula and therefore does not
change the result, it prunes the search space. The process of adding conflict
clauses is generally referred to as learning, reflecting the fact that this is the

36 2 Decision Procedures for Propositional Logic

¬x5@3c4

κ

x1@6

c4

x4@6

x3@6

c3

c2

x2@6

Decision c1

c2

¬x5@3

¬x2@3
κ¬x6@3

Decision

¬x1@3 x3@3

c7

c5

c5 c6

c7

c9
c8

Fig. 2.7. A partial implication graph for decision level 6, corresponding to the
clauses in (2.7), after a decision x1 7→ 1 (left) and a similar graph after learning the
conflict clause c9 = (x5 ∨ ¬x1) and backtracking to decision level 3 (right)

solver’s way to learn from its past mistakes. As we progress in this chapter,
it will become clear that conflict clauses not only prune the search space, but
also have an impact on the decision heuristic, the backtracking level, and the
set of variables implied by each decision.

Analyze-Conflict is the function responsible for deriving new conflict
clauses and computing the backtracking level. It traverses the implication
graph backwards, starting from the conflict node κ, and generates a conflict
clause through a series of steps that we describe later in Sect. 2.2.4. For now,
assume that c9 is indeed the clause generated.

After detecting the conflict and adding c9, the solver determines which
decision level to backtrack to according to the conflict-driven backtracking
strategy. According to this strategy, the backtracking level is set to the second
most recent decision level in the conflict clause, while erasing all decisions and
implications made after that level. There are two special cases: when learning
a unary clause, the solver backtracks to the ground level; when the conflict
is at the ground level, the backtracking level is set to –1 and the solver exits
and declares the formula to be unsatisfiable.

In the case of c9, the solver backtracks to decision level 3 (the decision level
of x5), and erases all assignments from decision level 4 onwards, including the
assignments to x1, x2, x3, and x4.

The newly added conflict clause c9 becomes a unit clause since x5 = 0,
and therefore the assignment ¬x1@3 is implied. This new implication restarts
the BCP process at level 3. Clause c9 is a special kind of conflict clause, called
an asserting clause: it forces an immediate implication after backtracking.
Analyze-Conflict can be designed to generate asserting clauses only, as
indeed most competitive solvers do.

After asserting x1 = 0 the solver again reaches a conflict, as can be seen in
the right drawing in Fig. 2.7. This time the conflict clause (x2) is added, and
the solver backtracks to decision level 0 and continues from there. Why (x2)?
The strategy of Analyze-Conflict in generating these clauses is explained
later in Sect. 2.2.4, but observe for the moment how indeed ¬x2 leads to a
conflict through clauses c6 and c7, as can also be inferred from Fig. 2.7 (right).

2.2 SAT Solvers 37

Aside: Multiple Conflict Clauses
More than one conflict clause can be derived from a conflict graph. In the
present example, the assignment {x2 7→ 1, x3 7→ 1} is also a sufficient con-
dition for the conflict, and hence (¬x2 ∨ ¬x3) is also a conflict clause. A
generalization of this observation requires the following definition.

Definition 2.7 (separating cut). A separating cut in a conflict graph is a
minimal set of edges whose removal breaks all paths from the root nodes to the
conflict node.

This definition is applicable to a full implication graph (see Definition 2.6), as
well as to a partial graph focused on the decision level of the conflict. The cut
bipartitions the nodes into the reason side (the side that includes all the roots)
and the conflict side. The set of nodes on the reason side that have at least
one edge to a node on the conflict side constitute a sufficient condition for the
conflict, and hence their negation is a legitimate conflict clause. Different SAT
solvers have different strategies for choosing the conflict clauses that they add:
some add as many as possible (corresponding to many different cuts), while
others try to find the most effective ones. Some, including most of the modern
SAT solvers, add a single clause, which is an asserting clause (see below), for
each conflict. Modern solvers also have a strategy for erasing conflict clauses:
without this feature the memory is quickly filled with millions of clauses. A
typical strategy is to measure the activity of each clause, and periodically erase
clauses with a low activity score. The activity score of a clause is increased
when it participates in inferring new clauses.

Conflict-driven backtracking raises several issues:

• It seems to waste work, because the partial assignments up to decision
level 5 can still be part of a satisfying assignment. However, empirical
evidence shows that conflict-driven backtracking, coupled with a conflict-
driven decision heuristic such as VSIDS (discussed later in Sect. 2.2.5),
performs very well. A possible explanation for the success of this heuristic
is that the conflict encountered can influence the decision heuristic to
decide values or variables different from those at deeper decision levels
(levels 4 and 5 in this case). Thus, keeping the decisions and implications
made before the new information (i.e., the new conflict clause) had arrived
may skew the search to areas not considered best anymore by the heuristic.
Some of the wasted work can be saved, however, by simply keeping the last
assignment, and reusing it whenever the variable’s value has to be decided
again [261]. An extensive analysis of this technique can be found in [222].

• Is this process guaranteed to terminate? In other words, how do we know
that a partial assignment cannot be repeated forever? The learned conflict
clauses cannot be the reason, because in fact most SAT solvers erase many

38 2 Decision Procedures for Propositional Logic

of them after a while to prevent the formula from growing too much. The
reason is the following:

Theorem 2.8. It is never the case that the solver enters decision level dl
again with the same partial assignment.

Proof. Consider a partial assignment up to decision level dl− 1 that does
not end with a conflict, and assume falsely that this state is repeated later,
after the solver backtracks to some lower decision level dl− (0 ≤ dl− < dl).
Any backtracking from a decision level dl+ (dl+ ≥ dl) to decision level
dl− adds an implication at level dl− of a variable that was assigned at
decision level dl+. Since this variable has not so far been part of the partial
assignment up to decision level dl, once the solver reaches dl again, it is
with a different partial assignment, which contradicts our assumption.

The (hypothetical) progress of a SAT solver based on this strategy is illus-
trated in Fig. 2.8. More details of this graph are explained in the caption.

Conflict

D
ec

is
io

n
L

ev
el

x = 1

Refutation of x = 1

c1

c3
BCP

c5

c4

c2

Time Decision

Fig. 2.8. Illustration of the progress of a SAT solver based on conflict-driven back-
tracking. Every conflict results in a conflict clause (denoted by c1, . . . , c5 in the
drawing). If the top left decision is x = 1, then this drawing illustrates the work
done by the SAT solver to refute this wrong decision. Only some of the work during
this time was necessary for creating c5, refuting this decision, and computing the
backtracking level. The “wasted work” (which might, after all, become useful later
on) is due to the imperfection of the decision heuristic

2.2.4 Conflict Clauses and Resolution

Now consider Analyze-Conflict (Algorithm 2.2.2). The description of the
algorithm so far has relied on the fact that the conflict clause generated is

2.2 SAT Solvers 39

an asserting clause, and we therefore continue with this assumption when
considering the termination criterion for line 3. The following definitions are
necessary for describing this criterion:

�

�

�

�

Algorithm 2.2.2: Analyze-Conflict

Input:
Output: Backtracking decision level + a new conflict clause

1. if current-decision-level = 0 then return -1;
2. cl := current-conflicting-clause;
3. while (¬Stop-criterion-met(cl)) do
4. lit := Last-assigned-literal(cl);
5. var := Variable-of-literal(lit);
6. ante := Antecedent(lit);
7. cl := Resolve(cl, ante, var);
8. add-clause-to-database(cl);
9. return clause-asserting-level(cl); . 2nd highest decision level in cl

Definition 2.9 (unique implication point (UIP)). Given a partial con-
flict graph corresponding to the decision level of the conflict, a unique impli-
cation point (UIP) is any node other than the conflict node that is on all paths
from the decision node to the conflict node.

The decision node itself is a UIP by definition, while other UIPs, if they exist,
are internal nodes corresponding to implications at the decision level of the
conflict. In graph-theoretical terms, UIPs dominate the conflict node.

Definition 2.10 (first UIP). A first UIP is a UIP that is closest to the
conflict node.

We leave the proof that the notion of a first UIP in a conflict graph is well
defined as an exercise (see Problem 2.14). Figure 2.9 demonstrates UIPs in a
conflict graph (see also the caption).

Empirical studies show that a good strategy for Stop-criterion-met(cl)
(line 3) is to return true if and only if cl contains the negation of the first UIP
as its single literal at the current decision level. This negated literal becomes
asserted immediately after backtracking. There are several advantages to this
strategy, which may explain the results of the empirical studies:

1. The strategy has a low computational cost, compared with strategies that
choose UIPs further away from the conflict.

2. It backtracks to the lowest decision level.

40 2 Decision Procedures for Propositional Logic

x2@2

x4@7

UIPUIP

κ

x1@4

Fig. 2.9. An implication graph (stripped of most of its labels) with two UIPs. The
left UIP is the decision node, and the right one is the first UIP, as it is the one
closest to the conflict node

The second fact can be demonstrated with the help of Fig. 2.9. Let l1
and l2 denote the literals at the first and the second UIP, respectively. The
asserting clauses generated with the first-UIP and second-UIP strategies are,
respectively, (¬l1∨¬x1∨¬x2) and (¬l2∨¬x1∨¬x2∨¬x4). It is not a coincidence
that the second clause subsumes the first, other than the asserting literals ¬l1
and ¬l2: it is always like this, by construction. Now recall how the backtracking
level is determined: it is equal to the decision level corresponding to the second
highest in the asserting clause. Clearly, this implies that the backtracking level
computed with regard to the first clause is lower than that computed with
regard to the second clause. In our example, these are decision levels 4 and 7,
respectively.

In order to explain lines 4–7 of Analyze-Conflict, we need the following
definition:

Definition 2.11 (binary resolution and related terms). Consider the
following inference rule:

(a1 ∨ . . . ∨ an ∨ β) (b1 ∨ . . . ∨ bm ∨ ¬β)

(a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm)
(Binary Resolution) , (2.9)

where a1, . . . , an, b1, . . . , bm are literals and β is a variable. The variable β is
called the resolution variable. The clauses (a1 ∨ . . .∨an ∨β) and (b1 ∨ . . .∨
bm ∨ (¬β)) are the resolving clauses, and (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm) is
the resolvent clause.

A well-known result obtained by Robinson [243] shows that a deductive system
based on the binary-resolution rule as its single inference rule is sound and
complete. In other words, a CNF formula is unsatisfiable if and only if there
exists a finite series of binary-resolution steps ending with the empty clause.

The function Resolve(c1, c2, v) used in line 7 of Analyze-Conflict re-
turns the resolvent of the clauses c1, c2, where the resolution variable is v. The

2.2 SAT Solvers 41

Aside: Hard Problems for Resolution-Based Procedures
Some propositional formulas can be decided with no less than an exponential
number of resolution steps in the size of the input. Haken [137] proved in 1985
that the pigeonhole problem is one such problem: given n > 1 pigeons and
n − 1 pigeonholes, can each of the pigeons be assigned a pigeonhole without
sharing? While a formulation of this problem in propositional logic is rather
trivial with n · (n − 1) variables, currently no SAT solver (which, recall, im-
plicitly perform resolution) can solve this problem in a reasonable amount of
time for n larger than several tens, although the size of the CNF itself is rela-
tively small. As an experiment, we tried to solve this problem for n = 20 with
four leading SAT solvers: Siege4 [248], zChaff-04 [202], HaifaSat [124], and
Glucose-2014 [8]. On a Pentium 4 with 1 GB of main memory, none of them
could solve this problem within three hours. Compare this result with the
fact that, bounded by the same timeout, these tools routinely solve problems
arising in industry with hundreds of thousands and even millions of variables.

The good news is that some SAT solvers now support a preprocessing step
with which cardinality constraints (constraints of the form Σixi ≤ k) are
identified in the CNF, and solved by a separate technique. The pigeonhole
problem implicitly uses a cardinality constraint of the form Σixi ≤ 1 for each
pigeonhole, to encode the fact that it can hold at most one pigeon, and indeed
a SAT solver such as SAT4J, which supports this technique, can solve this
problem even with n = 200 [32].

Antecedent function used in line 6 of this function returns Antecedent(lit).
The other functions and variables are self-explanatory.

Analyze-Conflict progresses from right to left on the conflict graph,
starting from the conflicting clause, while constructing the new conflict clause
through a series of resolution steps. It begins with the conflicting clause cl,
in which all literals are set to 0. The literal lit is the literal in cl assigned
last, and var denotes its associated variable. The antecedent clause of var,
denoted by ante, contains ¬lit as the only satisfied literal, and other literals,
all of which are currently unsatisfied. The clauses cl and ante thus contain
lit and ¬lit, respectively, and can therefore be resolved with the resolution
variable var. The resolvent clause is again a conflicting clause, which is the
basis for the next resolution step.

Example 2.12. Consider the partial implication graph and set of clauses in
Fig. 2.10, and assume that the implication order in the BCP was x4, x5, x6, x7.

The conflict clause c5 := (x10 ∨ x2 ∨ ¬x4) is computed through a series
of binary resolutions. Analyze-Conflict traverses backwards through the
implication graph starting from the conflicting clause c4, while following the
order of the implications in reverse, as can be seen in the table below. The

42 2 Decision Procedures for Propositional Logic

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

...

¬x2@3

c1

c2 c4c4

c3

c3

¬x7@5

x6@5

c1
x5@5

κ
c2

x4@5

¬x10@3

Fig. 2.10. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The nodes are depicted so that their horizontal position is consistent
with the order in which they were created. Algorithm 2.2.2 traverses the nodes in
reverse order, from right to left. The first UIP it finds is x4, and, correspondingly,
the asserted literal is ¬x4

intermediate clauses, in this case the second and third clauses in the resolution
sequence, are typically discarded.

Name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3
(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1
c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

2.2 SAT Solvers 43

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation at the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. The dynamic approach produces
better decisions, but also imposes large overhead at each decision point.

Dynamic Largest Individual Sum (DLIS)

At each decision level, choose the unassigned literal that satisfies the largest
number of currently unsatisfied clauses.

The common way to implement such a heuristic is to keep a pointer
from each literal to a list of clauses in which it appears. At each decision
level, the solver counts the number of clauses that include this literal and
are not yet satisfied, and assigns this number to the literal. Subsequently, the
literal with the largest count is chosen. DLIS imposes a large overhead, since
the complexity of making a decision is proportional to the number of clauses.
Another variation of this strategy, suggested by Copty et al. [79], is to count
the number of satisfied clauses resulting from each possible decision and its
implications through BCP. This variation indeed makes better decisions, but
also imposes more overhead.

Variable State Independent Decaying Sum (VSIDS) and Variants

This is a strategy that was introduced in the SAT solver Chaff [202], which
is reminiscent of DLIS but far more efficient. First, when counting the number
of clauses in which every literal appears, disregard the question of whether
that clause is already satisfied or not. This means that the estimation of the
quality of every decision is compromised, but the complexity of making a
decision is better: it takes a constant time to make a decision assuming we
keep the literals in a list sorted by their score. Second, periodically divide all
scores by 2.

The idea is to make the decision heuristic conflict-driven, which means
that it tries to solve recently discovered conflicts first. For this purpose, it
needs to give higher scores to variables that are involved in recent conflicts.
Recall that every conflict results in a conflict clause. A new conflict clause,
like any other clause, adds 1 to the score of each literal that appears in it.
The greater the amount of time that has passed since this clause was added,
the more often the score of these literals is divided by 2. Thus, variables in
new conflict clauses become more influential. The SAT solver Chaff, which
introduced VSIDS, allows one to tune this strategy by controlling the fre-
quency with which the scores are divided and the constant by which they are
divided. It turns out that different families of CNF formulas are best solved
with different parameters.

There are other conflict-driven heuristics. Consider, for example, the strat-
egy adopted by the award-winning SAT solver MiniSAT. MiniSAT maintains

44 2 Decision Procedures for Propositional Logic

an activity score for each variable (in the form of a floating-point number with
double precision), which measures the involvement of each variable in infer-
ring new clauses. If a clause c is inferred from clauses c1, . . . , cn, then each
instance of a variable v in c1, . . . , cn entails an increase in the score of v
by some constant inc. inc is initially set to 1, and then multiplied by 1.05
after each conflict, thus giving higher score to variables that participate in
recent conflicts. To prevent overflow, if the activity score of some variable is
higher than 10100, then all variable scores as well as inc are multiplied by
10−100. The variable that has the highest score is selected. The value chosen
for this variable is either false, random, or, when relevant, the previous value
that this variable was assigned. The fact that in such a successful solver as
MiniSAT there is no attempt to guess the right value of a variable indicates
that what matters is the locality of the search coupled with learning, rather
than a correct guess of the branch. This is not surprising: most branches, even
in satisfiable formulas, do not lead to a satisfying assignment.

Clause-Based Heuristics

In this family of heuristics, literals in recent conflict clauses are given absolute
priority. This effect is achieved by traversing backwards the list of learned
clauses each time a decision has to be made. We begin by describing in detail
a heuristic called Berkmin.

Maintain a score per variable, similar to the score VSIDS maintains for
each literal (i.e., increase the counter of a variable if one of its literals appears
in a clause, and periodically divide the counters by a constant). Maintain a
similar score for each literal, but do not divide it periodically. Push conflict
clauses into a stack. When a decision has to be made, search for the topmost
clause on this stack that is unresolved. From this clause, choose the unassigned
variable with the highest variable score. Determine the value of this variable
by choosing the literal corresponding to this variable with the highest literal
score. If the stack is empty, the same strategy is applied, except that the
variable is chosen from the set of all unassigned variables rather than from a
single clause.

This heuristic was first implemented in a SAT solver called Berkmin. The
idea is to give variables that appear in recent conflicts absolute priority, which
seems empirically to be more effective. It also concentrates only on unresolved
conflicts, in contrast to VSIDS.

A different clause-based strategy is called Clause-Move-To-Front (CMTF).
It is similar to Berkmin, with the difference that, at the time of learning a
new clause, k clauses (k being a constant that can be tuned) that participated
in resolving the new clause are pushed to the end of the list, just before the
new clause. The justification for this strategy is that it keeps the search more
focused. Suppose, for example, that a clause c is resolved from c1, c2, and c3.
We can write this as c1 ∧ c2 ∧ c3 =⇒ c, which makes it clear that satisfying
c is easier than satisfying c1 ∧ c2 ∧ c3. Hence the current partial assignment

2.2 SAT Solvers 45

contradicted c1 ∧ c2 ∧ c3, the solver backtracked, and now tries to satisfy an
easier formula, namely c, before returning to those three clauses. CMTF is
implemented in a SAT solver called HaifaSat [124], and a variation of it
called Clause-Based Heuristic (CBH) is implemented in Eureka [99].

2.2.6 The Resolution Graph and the Unsatisfiable Core

Since each conflict clause is derived from a set of other clauses, we can keep
track of this process with a resolution graph.

Definition 2.13 (binary resolution graph). A binary resolution graph is
a directed acyclic graph where each node is labeled with a clause, each root
corresponds to an original clause, and each nonroot node has exactly two in-
coming edges and corresponds to a clause derived by binary resolution from
its parents in the graph.

Typically, SAT solvers do not retain all the intermediate clauses that are
created during the resolution process of the conflict clause. They store enough
clauses, however, for building a graph that describes the relation between the
conflict clauses.

Definition 2.14 (hyper-resolution graph). A hyper-resolution graph is
a directed acyclic graph where each node is labeled with a clause, each root
corresponds to an original clause, and each nonroot node has two or more
incoming edges and corresponds to a clause derived by binary resolution from
its parents in the graph, possibly through other clauses that are not represented
in the graph.

Example 2.15. Consider once again the implication graph in Fig. 2.10. The
clauses c1, . . . , c4 participate in the resolution of c5. The corresponding reso-
lution graph appears in Fig. 2.11.

c5

c3

c2

c1

c4

Fig. 2.11. A hyper-resolution graph corresponding to the implication graph in
Fig. 2.10

46 2 Decision Procedures for Propositional Logic

In the case of an unsatisfiable formula, the resolution graph has a sink
node (i.e., a node with incoming edges only), which corresponds to an empty
clause.3

The resolution graph can be used for various purposes, some of which we
mention here. The most common use of this graph is for deriving an unsatis-
fiable core of unsatisfiable formulas.

Definition 2.16 (unsatisfiable core). An unsatisfiable core of a CNF un-
satisfiable formula is any unsatisfiable subset of the original set of clauses.

Unsatisfiable cores which are relatively small subsets of the original set of
clauses are useful in various contexts, because they help us to focus on a cause
of unsatisfiability (there can be multiple unsatisfiable cores not contained in
each other, and not even intersecting each other). We leave it to the reader
in Problem 2.17 to find an algorithm that computes a core given a resolution
graph.

Another common use of a resolution graph is for certifying a SAT solver’s
conclusion that a formula is unsatisfiable. Unlike the case of satisfiable in-
stances, for which the satisfying assignment is an easy-to-check piece of evi-
dence, checking an unsatisfiability result is harder. Using the resolution graph,
however, an independent checker can replay the resolution steps starting from
the original clauses until it derives the empty clause. This verification requires
time that is linear in the size of the resolution proof.

2.2.7 Incremental Satisfiability

In numerous industrial applications the SAT solver is a component in a bigger
system that sends it satisfiability queries. For example, a program that plans
a path for a robot may use a SAT solver to find out if there exists a path
within k steps from the current state. If the answer is negative, it increases
k and tries again. The important point here is that the sequence of formulas
that the SAT solver is asked to solve is not arbitrary: these formulas have a
lot in common. Can we use this fact to make the SAT solver run faster? We
should somehow reuse information that was gathered in previous instances to
expedite the solution of the current one. To make things simpler, consider two
CNF formulas, C1 and C2, which are solved consecutively, and assume that
C2 is known at the time of solving C1. Here are two kinds of information that
can be reused when solving C2:

• Reuse clauses. We should answer the following question: if c is a conflict
clause learned while solving C1, under what conditions are C2 and C2 ∧ c
equisatisfiable? It is easier to answer this question if we view C1 and C2

3 In practice, SAT solvers terminate before they actually derive the empty clause, as
can be seen in Algorithms 2.2.1 and 2.2.2, but it is possible to continue developing
the resolution graph after the run is over and derive a full resolution proof ending
with the empty clause.

2.2 SAT Solvers 47

as sets of clauses. Let C denote the clauses in the intersection C1 ∩ C2.
Any clause learnt solely from C clauses can be reused when solving C2. In
practice, as in the path planning problem mentioned above, consecutive
formulas in the sequence are very similar, and hence C1 and C2 share the
vast majority of their clauses, which means that most of what was learnt
can be reused. We leave it as an exercise (Problem 2.16) to design an
algorithm that discovers the clauses that can be reused.

• Reuse heuristic parameters. Various weights are updated during the solving
process, and used to heuristically guide the search, e.g., variable score is
used in decision making (Sect. 2.2.5), weights expressing the activity of
clauses in deriving new clauses are used for determining which learned
clauses should be maintained and which should be deleted, etc. If C1 and
C2 are sufficiently similar, starting to solve C2 with the weights at the end
of the solving process of C1 can expedite the solving of C2.

To understand how modern SAT solvers support incremental solving, one
should first understand a mechanism called assumptions, which was intro-
duced with the SAT solver MiniSAT [110]. Assumptions are literals that are
known to hold when solving C1, but may be removed or negated when solv-
ing C2. The list of assumption literals is passed to the solver as a parameter.
The solver treats assumptions as special literals that dictate the initial set
of decisions. If the solver backtracks beyond the decision level of the last
assumption, it declares the formula to be unsatisfiable, since there is no so-
lution without changing the assumptions. For example, suppose a1, . . . , an
are the assumption literals. Then the solver begins by making the decisions
a1 = true, . . . , an = true, while applying BCP as usual. If at any point the
solver backtracks to level n or less, it declares the formula to be unsatisfiable.

The key point here is that all clauses that are learnt are independent of the
assumptions and can therefore be reused when these assumptions no longer
hold. This is the nature of learning: it learns clauses that are independent
of specific decisions, and assumptions are just decisions. Hence, we can start
solving C2 while maintaining all the clauses that were learnt during the solv-
ing process of C1. Note that in this way we reuse both types of information
mentioned above, and save the time of reparsing the formula.

We now describe how assumptions are used for solving the general incre-
mental SAT problem, which requires both addition and deletion of clauses
between instances. As for adding clauses, the solver receives the set of clauses
that should be added (C2 \C1 in our case) as part of its interface. Removing
clauses is done by adding a new assumption literal (corresponding to a new
variable) to every clause c ∈ (C1 \C2), negated. For example, if c = (x1 ∨x2),
then it is replaced with c′ = (¬a ∨ x1 ∨ x2), where a is a new variable. Note
that under the assumption a = true, c = c′, and hence the added assump-
tion literal does not change the satisfiability of the formula. When solving C2,
however, we replace that assumption with the assumption a = false, which

48 2 Decision Procedures for Propositional Logic

is equivalent to erasing the clause c. Assumption literals used in this way are
called clause selectors.

2.2.8 From SAT to the Constraint Satisfaction Problem

In parallel to the research on the SAT problem, there has been a lot of
research on the Constraint Satisfaction Problem (CSP) [98], with a lot of
cross-fertilization between these two fields. CSP allows arbitrary constraints
over variables with finite discrete domains. For example, a CSP instance
can be defined by variable domains x1 ∈ {1 . . . 10}, x2 ∈ {2, 4, 6, . . . , 30},
x3 ∈ {−5,−4, . . . , 5} and a Boolean combination of constraints over these
variables

AllDifferent(x1, x2, x3) ∧ x1 < x3 . (2.11)

The AllDifferent constraint means that its arguments must be assigned
different values. Modern CSP solvers support dozens of such constraints. A
propositional formula can be seen as a special case of a CSP model, which
does not use constraints, other than the Boolean connectives, and the domains
of the variables are limited to {0, 1}.

CSP solving is an NP problem, and hence can be reduced to SAT in poly-
nomial time.4 Since the domains are restricted to finite discrete domains,
“flattening” them to propositional logic requires some work. For example,
a variable with a domain {1, . . . , n} can be encoded with dlog(n)e propo-
sitional variables. If there are “holes” in the domain, then additional con-
straints are needed on the values that these variables can be assigned. Simi-
larly, the constraints should be translated to propositional formulas. For ex-
ample, if x1 is encoded with propositional variables b1, . . . , b5 and x2 with
c1, . . . c5, then the constraint x1 6= x2 can be cast in propositional logic
as ∨5i=1(bi ∨ ci) ∧ (¬bi ∨ ¬ci), effectively forcing at least one of the bits to
be different. AllDifferent is then just a pairwise disequality of all its
arguments. Additional bitwise (logarithmic) translation methods appear in
Chap. 6, whereas a simpler linear-size translation is the subject of Prob-
lem 2.11. Indeed, some of the competitive CSP solvers are just front-end util-
ities that translate the CSP to SAT, either up-front, or lazily. Other solvers
handle the constraints directly.

A description of how CSP solvers work is beyond the scope of this book.
We will only say that they can be built with a core similar to that of SAT,
including decision making, constraint propagation, and learning. Each type
of constraint has to be handled separately, however. CSP solvers are typically
modular, and hence adding one’s favorite constraint to an existing CSP solver
is not difficult. Most of the work is in defining a propagator for the constraint.
A propagator of a constraint c is a function that, given c and the current

4 This complexity result is based on the set of constraints that is typically supported
by CSP solvers. Obviously it is possible to find constraints that will push CSP
away from NP.

2.2 SAT Solvers 49

domains of the variables, can (a) infer reductions in domains that are implied
by c, and (b) detect that c is conflicting, i.e., it cannot be satisfied in the
current domains. In the example above, a propagator for the < constraint
should conclude from x1 < x3 that the domain of x1 should be reduced to
{1, . . . , 4}, because higher values are not supported by the current domain
of x3. In other words, for an assignment such as x1 = 5, no value in the
current domain of x3, namely {−5, . . . , 5}, can satisfy x1 < x3. As another
example, suppose we have the CSP

x1 ∈ {0, 1}, x2 ∈ {0, 1}, x3 ∈ {0, 1}
AllDifferent(x1, x2, x3) .

The propagator of AllDifferent should detect that the constraint cannot
be satisfied under these domains. The equivalent of a propagator in SAT is
BCP—see Sect. 2.2.3. Propagators must be sound, but for some constraints it
is too computationally expensive to make them complete (see Definition 1.6).
In other words, it may not find all possible domain reductions, and may not
always detect a conflict under a partial assignment. This does not change the
fact that the overall solver is complete, because it does detect a conflict with
a full assignment.

Given a constraints problem, there are two potential advantages to mod-
eling it as a CSP, rather than in propositional logic:

• CSP as a modeling language is far more readable and succinct, and
• When using a CSP solver that is not based on reduction to SAT, one

may benefit from the fact that some constraints, such as AllDifferent,
have polynomial-time precise propagators, whereas solving the same con-
straint with SAT after it is reduced to propositional logic is worst-case
exponential.5

Typically these two potential advantages do not play a major role, however,
because (a) most problems that are solved in industry are generated auto-
matically, and hence readability is immaterial, and (b) realistic constraints
problems mix many types of constraints, and hence solving them remains ex-
ponential. The current view is that neither CSP nor SAT dominate the other
in terms of run time, and it is more a question of careful engineering than
something substantial.

2.2.9 SAT Solvers: Summary

In this section we have covered the basic elements of modern CDCL solvers,
including decision heuristics, learning with conflict clauses, and conflict-driven
backtracking. There are various other mechanisms for gaining efficiency that

5 Certain constraints that have a polynomial propagator can be translated to a
specific form of propositional formula that, with the right strategy of the SAT
solver, can be solved in polynomial time as well—see [220].

50 2 Decision Procedures for Propositional Logic

we do not cover in this book, such as efficient implementation of BCP, de-
tection of subsumed clauses, preprocessing and simplification of the formula,
deletion of conflict clauses, and restarts (i.e., restarting the solver when it
seems to be in a hopeless branch of the search tree). The interested reader is
referred to the references given in Sect. 2.4.

Let us now reflect on the two approaches to formal reasoning that we
described in Sect. 1.1—deduction and enumeration. Can we say that SAT
solvers, as described in this section, follow either one of them? On the one
hand, SAT solvers can be thought of as searching a binary tree with 2n leaves,
where n is the number of Boolean variables in the input formula. Every leaf is a
full assignment, and, hence, traversing all leaves corresponds to enumeration.
From this point of view, conflict clauses are generated in order to prune the
search space. On the other hand, conflict clauses are deduced via the resolution
rule from other clauses. If the formula is unsatisfiable, then the sequence of
applications of this rule, as listed in the SAT solver’s log, is a deductive proof of
unsatisfiability. The search heuristic can therefore be understood as a strategy
of applying an inference rule—searching for a proof. Thus, the two points of
view are equally legitimate.

2.3 Problems

2.3.1 Warm-up Exercises

Problem 2.1 (propositional logic: practice). For each of the following
formulas, determine if it is satisfiable, unsatisfiable or valid:

1. (p =⇒ (q =⇒ p))
2. (p ∧ q) ∧ (a =⇒ q) ∧ (b =⇒ ¬p) ∧ (a ∨ b)
3. (p ∨ q) ∧ (¬p ∨ ¬q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q)
4. (a =⇒ ¬a) =⇒ ¬a
5. (((a =⇒ p) ∧ (b =⇒ q)) ∧ (¬a ∨ ¬b)) =⇒ ¬(p ∧ q)
6. (a ∧ b ∧ c) ∧ (a⊕ b⊕ c) ∧ (a ∨ b ∨ c)
7. (a ∧ b ∧ c ∧ d) ∧ (a⊕ b⊕ c⊕ d) ∧ (a ∨ b ∨ c ∨ d)

where ⊕ denotes the XOR operator.

Problem 2.2 (modeling: simple). Consider three persons A, B, and C who
need to be seated in a row, but:

• A does not want to sit next to C.
• A does not want to sit in the left chair.
• B does not want to sit to the right of C.

Write a propositional formula that is satisfiable if and only if there is a seat
assignment for the three persons that satisfies all constraints. Is the formula
satisfiable? If so, give an assignment.

2.3 Problems 51

Problem 2.3 (modeling: program equivalence). Show that the two
if-then-else expressions below are equivalent:

!(a ‖ b) ? h : !(a == b) ? f : g !(!a ‖ !b) ? g : (!a && !b) ? h : f

You can assume that the variables have only one bit.

Problem 2.4 (SAT solving). Consider the following set of clauses:

(x5 ∨ ¬x1 ∨ x3) , (¬x1 ∨ x2) ,
(¬x2 ∨ x4) , (¬x3 ∨ ¬x4) ,
(¬x5 ∨ x1) , (¬x5 ∨ ¬x6) ,
(x6 ∨ x1) .

(2.12)

Apply the VSIDS decision heuristic and Analyze-Conflict with conflict-
driven backtracking. In the case of a tie (during the application of VSIDS),
make a decision that eventually leads to a conflict. Show the implication graph
at each decision level.

2.3.2 Propositional Logic

Problem 2.5 (propositional logic: NAND and NOR). Prove that any
propositional formula can be equivalently written with

• only a NAND gate,
• only a NOR gate.

2.3.3 Modeling

Problem 2.6 (a reduction from your favorite NP-C problem). Show
a reduction to propositional logic from your favorite NP-complete problem
(not including SAT itself and problems that appear below). A list of famous
NP-complete problems can be found online (some examples are: vertex-cover,
hitting-set, set-cover, knapsack, feedback vertex set, bin-packing...). Note that
many of those are better known as optimization problems, so begin by for-
mulating a corresponding decision problem. For example, the optimization
variant of vertex-cover is: find the minimal number of vertices that together
touch all edges; the corresponding decision problem is: given a natural number
k, is it possible to touch all edges with k vertices?

Problem 2.7 (unwinding a finite automaton). A nondeterministic finite
automaton is a 5-tuple 〈Q,Σ, δ, I, F 〉, where

• Q is a finite set of states,
• Σ is the alphabet (a finite set of letters),
• δ : Q×Σ 7→ 2Q is the transition function (2Q is the power set of Q),
• I ⊆ Q is the set of initial states, and

52 2 Decision Procedures for Propositional Logic

• F ⊆ Q is the set of accepting states.

The transition function determines to which states we can move given the
current state and input. The automaton is said to accept a finite input string
s1, . . . , sn with si ∈ Σ if and only if there is a sequence of states q0, . . . , qn
with qi ∈ Q such that

• q0 ∈ I ,
• ∀i ∈ {1, . . . , n}. qi ∈ δ(qi−1, si), and
• qn ∈ F .

For example, the automaton in Fig. 2.12 is defined by Q = {s1, s2},Σ = {a, b},
δ(s1, a) = {s1}, δ(s1, b) = {s1, s2}, I = {s1}, F = {s2}, and accepts strings
that end with b. Given a nondeterministic finite automaton 〈Q,Σ, δ, I, F 〉 and
a fixed input string s1, . . . , sn, si ∈ Σ, construct a propositional formula that
is satisfiable if and only if the automaton accepts the string.

b

s1 s2

a, b

Fig. 2.12. A nondeterministic finite automaton accepting all strings ending with
the letter b

Problem 2.8 (assigning teachers to subjects). A problem of covering m
subjects with k teachers may be defined as follows. Let T : {T1, . . . , Tn} be a
set of teachers. Let S : {S1, . . . , Sm} be a set of subjects. Each teacher t ∈ T
can teach some subset S(t) of the subjects S (i.e., S(t) ⊆ S). Given a natural
number k ≤ n, is there a subset of size k of the teachers that together covers
all m subjects, i.e., a subset C ⊆ T such that |C| = k and (

⋃
t∈C S(t)) = S?

Problem 2.9 (Hamiltonian cycle). Show a formulation in propositional
logic of the following problem: given a directed graph, does it contain a Hamil-
tonian cycle (a closed path that visits each node, other than the first, exactly
once)?

2.3.4 Complexity

Problem 2.10 (space complexity of CDCL with learning). What is the
worst-case space complexity of a CDCL SAT solver as described in Sect. 2.2,
in the following cases:

(a) Without learning
(b) With learning, i.e., by recording conflict clauses
(c) With learning in which the length of the recorded conflict clauses is

bounded by a natural number k

2.3 Problems 53

Problem 2.11 (from CSP to SAT). Suppose we are given a CSP over
some unified domain D : [min..max] where all constraints are of the form
vi ≤ vj , vi − vj ≤ c or vi = vj + c for some constant c. For example

((v2 ≤ v3) ∨ (v4 ≤ v1)) ∧ v2 = v1 + 4 ∧ v4 = v3 + 3

for v1, v2, v3, v4 ∈ [0..7] is a formula belonging to this fragment. This formula
is satisfied by one of two solutions: (v1 7→ 0, v2 7→ 4, v3 7→ 4, v4 7→ 7), or
(v3 7→ 0, v1 7→ 3, v4 7→ 3, v2 7→ 7).

Show a reduction of such formulas to propositional logic. Hint: an encod-
ing which requires |V | · |D| propositional variables, where |V | is the number of
variables and |D| is the size of the domain, is given by introducing a propo-
sitional variable bij for each variable vi ∈ V and j ∈ D, which indicates that
vi ≤ j is true.

For the advanced reader: try to find a logarithmic encoding.

Problem 2.12 (polynomial-time (restricted) SAT). Consider the fol-
lowing two restrictions of CNF:

• A CNF in which there is not more than one positive literal in each clause.
• A CNF formula in which no clause has more than two literals.

1. Show a polynomial-time algorithm that solves each of the problems above.
2. Show that every CNF can be converted to another CNF which is a con-

junction of the two types of formula above. In other words, in the resulting
formula all the clauses are either unary, binary, or have not more than one
positive literal. How many additional variables are necessary for the con-
version?

2.3.5 CDCL SAT Solving

Problem 2.13 (backtracking level). We saw that SAT solvers working with
conflict-driven backtracking backtrack to the second highest decision level dl
in the asserting conflict clause. This wastes all of the work done from decision
level dl + 1 to the current one, say dl′ (although, as we mentioned, this has
other advantages that outweigh this drawback). Suppose we try to avoid this
waste by performing conflict-driven backtracking as usual, but then repeat the
assignments from levels dl + 1 to dl′ − 1 (i.e., override the standard decision
heuristic for these decisions). Can it be guaranteed that this reassignment will
progress without a conflict?

Problem 2.14 (is the first UIP well defined?). Prove that, in a conflict
graph, the notion of a first UIP is well defined, i.e., there is always a single
UIP closest to the conflict node. Hint: you may use the notion of dominators
from graph theory.

54 2 Decision Procedures for Propositional Logic

2.3.6 Related Problems

Problem 2.15 (blocked clauses). Let ϕ be a CNF formula, let c ∈ ϕ be
a clause such that l ∈ c where l is a literal, and let ϕ¬l ⊆ ϕ be the subset of
ϕ′s clauses that contain ¬l. We say that c is blocked by l if the resolution of c
with any clause in ϕ¬l using var(l) as the pivot is a tautology. For example,
if c = (l ∨ x∨ y) and ϕ¬l has a single clause c′ = (¬l ∨¬x∨ z), then resolving
c and c′ on l results in (x ∨ ¬x ∨ y ∨ z), which is a tautology, and hence c is
blocked by l. Prove that ϕ is equisatisfiable to ϕ \ c, i.e., blocked clauses can
be removed from ϕ without affecting its satisfiability.

Problem 2.16 (incremental satisfiability). In Sect. 2.2.7 we saw a condi-
tion for sharing clauses between similar instances. Suggest a way to implement
this check, i.e., how can a SAT solver detect those clauses that were inferred
from clauses that are common to both instances? The solution cannot use the
mechanism of assumptions.

Problem 2.17 (unsatisfiable cores).

(a) Suggest an algorithm that, given a resolution graph (see Definition 2.14),
finds an unsatisfiable core of the original formula that is as small as pos-
sible (by this we do not mean that it has to be minimal).

(b) Given an unsatisfiable core, suggest a method that attempts to minimize
it further.

Problem 2.18 (unsatisfiable cores and transition clauses). Let B be
an unsatisfiable CNF formula, and let c be a clause of B. If removing c from
B makes B satisfiable, we say that c is a transition clause. Prove the fol-
lowing claim: all transition clauses of a formula are contained in each of its
unsatisfiable cores.

2.4 Bibliographic Notes

The very existence of the 980-pages Handbook of Satisfiability [35] from 2009,
which covers all the topics mentioned in this chapter and much more, indicates
what a small fraction of SAT can be covered here. More recently Donald
Knuth dedicated almost 300 pages to this topic in his book series The Art of
Computer Programming [168]. Some highlights from the history of SAT are
in order nevertheless.

The Davis–Putnam–Loveland–Logemann (DPLL) framework was a two-
stage invention. In 1960, Davis and Putnam considered CNF formulas and
offered a procedure to solve them based on an iterative application of three
rules [88]: the pure literal rule, the unit clause rule (what we now call BCP),
and what they called “the elimination rule”, which is a rule for eliminating a
variable by invoking resolution (e.g., to eliminate x from a given CNF, apply

2.4 Bibliographic Notes 55

resolution to each pair of clauses of the form (x∨A)∧(¬x∨B), erase the resolv-
ing clauses, and maintain the resolvent). Their motivation was to optimize a
previously known incomplete technique for deciding first-order formulas. Note
that, at the time, “optimizing” also meant a procedure that was easier to con-
duct by hand. In 1962, Loveland and Logemann, two programmers hired by
Davis and Putnam to implement their idea, concluded that it was more ef-
ficient to split and backtrack rather than to apply resolution, and together
with Davis published what we know today as the basic DPLL framework [87].
The SAT community tends to distinguish modern solvers from those based
on DPLL by referring to them as Conflict-Driven Clause Learning (CDCL)
solvers, which emphasizes their learning capability combined with nonchrono-
logical backtracking, and the fact that their search is strongly tied to the
learning scheme, via a heuristic such as VSIDS. The fact that modern solvers
restart the search very frequently adds another major distinction from the
earlier DPLL solvers. The main alternative to DPLL/CDCL are the stochas-
tic solvers, also called local-search SAT solvers, which were not discussed
at length in this chapter. For many years they were led by the GSAT and
WalkSat solvers [254]. There are various solvers that combine local search
with learning and propagation, such as UnitWalk [143].

The development of SAT solvers has always been influenced by devel-
opments in the world of Constraint Satisfaction Problem (CSP), a problem
which generalizes SAT to arbitrary finite discrete domains and arbitrary con-
straints. The definition of CSP by Montanari [201] (and even before that by
Waltz in 1975), and the development of efficient CSP solvers, led to cross-
fertilization between the two fields: nonchronological backtracking, for exam-
ple, was first used in CSP, and then adopted by Marques-Silva and Sakallah
for their GRASP SAT solver [262], which was the fastest from 1996 to 2000.
In addition, learning via conflict clauses in GRASP was inspired by CSP’s no-
good recording. Bayardo and Schrag [21] also published a method for adapting
conflict-driven learning to SAT. CSP solvers have an annual competition,
called the MiniZinc challenge. The winner of the 2016 competition in the free
(unrestricted) search category is Michael Veksler’s solver HaifaCSP [279].

The introduction of Chaff in 2001 [202] by Moskewicz, Madigan, Zhao,
Zhang, and Malik marked a breakthrough in performance that led to renewed
interest in the field. Chaff introduced the idea of conflict-driven nonchrono-
logical backtracking coupled with VSIDS, the first conflict-driven decision
heuristic. It also included a new mechanism for performing fast BCP based
on a data structure called two-watched literals, which is now standard in all
competitive solvers. The description of the main SAT procedure in this chapter
was inspired mainly by works related to Chaff [298, 299]. Berkmin, a SAT
solver developed by Goldberg and Novikov, introduced what we have named
“the Berkmin decision heuristic” [133]. The solver Siege introduced Variable-
Move-To-Front (VMTF), a decision heuristic that moves a constant number
of variables from the conflict clause to the top of the list, which performs very
well in practice [248]. MiniSAT [110], a minimalistic open-source solver by

56 2 Decision Procedures for Propositional Logic

Niklas Eén and Niklas Sörensson, has not only won several competitions in
the last decade, but also became a standard platform for SAT research. In the
last few competitions there was even a special track for variants of MiniSAT.
Starting from 2009, Glucose [8] seems to be one of the leading solvers. It
introduced a technique for predicting the quality of a learned clause, based on
the number of decision levels that it contains. When the solver erases some of
the conflict clauses as most solvers do periodically, this measure improves its
chances of keeping those that have a better chance of participating in further
learning. The series of solvers by Armin Biere, PicoSAT [30], PrecoSAT,
and Lingeling [31] have also been very dominant in the last few years and
include dozens of new optimizations. We will only mention here that they are
designed for very large CNF instances, and contain accordingly inprocessing,
i.e., linear-time simplifications of the formula that are done periodically during
the search. The simplifications are a selected subset of those that are typically
done only as a preprocessing phase. Another very successful technique called
cube-and-conquer [140] partitions the SAT problem into possibly millions
of much easier ones. The challenge is of course to know how to perform this
partitioning such that the total run time is reduced. In the first phase, it finds
consistent cubes, which are simply partial assignments (typically giving values
to not more than 10% of the variables); heuristics that are relatively compu-
tationally expensive are used in this phase, e.g., checking the impact of each
possible assignment on the size of the remaining formula before making the
decision. Such an expensive procedure is not competitive if applied through-
out the solving process, but here it is used only for identifying relatively short
cubes. In the second phase it uses a standard SAT solver to solve the formula
after being simplified by the cube. This type of strategy is very suitable for
parallelization, and indeed the solver Treengeling, also by Biere, is a highly
efficient cube-and-conquer parallel solver. New SAT solvers are introduced ev-
ery year; readers interested in the latest tools should check the results of the
annual SAT competitions.

The realization that different classes of problems are best solved with
different solvers led to a strategy of invoking an algorithm portfolio. This
means that one out of n predefined solvers is chosen automatically for a given
problem instance, based on a prediction of which solver is likely to perform
best. First, a large “training set” is used for building empirical hardness
models [212] based on various features of the instances in this set. Then,
given a problem instance, the run time of each of the n solvers is predicted,
and accordingly the solver is chosen for the task. SATzilla [289] is a successful
algorithm portfolio based on these ideas that won several categories in the 2007
competition. Even without the learning phase and the automatic selection of
solvers, running different solvers in parallel and reporting the result of the
first one to find a solution is a very powerful technique. A parallel version of
Lingeling, for example, called Plingeling [31], won the SAT competition in
2010 for parallel solvers, and was much better than any of the single-core ones.
It simply runs Lingeling on several cores but each with a different random

2.4 Bibliographic Notes 57

seed, and with slightly different parameters that affect its preprocessing and
tie-breaking strategies. The various threads only share learned unit clauses.

The connection between the process of deriving conflict clauses and reso-
lution was discussed in, for example, [22, 122, 180, 295, 298]. Zhang and Malik
described a procedure for efficient extraction of unsatisfiable cores and unsat-
isfiability proofs from a SAT solver [298, 299]. There are many algorithms for
minimizing such cores—see, for example, [123, 150, 184, 214]. A variant of the
minimal unsatisfiable core (MUC) problem is called the high-level minimal
unsatisfiable core (HLMUC) problem [203, 249]. The input to the problem,
in addition to the CNF B, is a set of sets of clauses from B. Rather than
minimizing the core, here the problem is to minimize the number of such sets
that have a nonempty intersection with the core. This problem has various
applications in formal verification as described in the above references.

Incremental satisfiability in its modern version, i.e., the problem of which
conflict clauses can be reused when solving a related problem (see Prob-
lem 2.16), was introduced by Strichman in [260, 261] and independently by
Whittemore, Kim, and Sakallah in [281]. Earlier versions of this problem were
more restricted, for example, the work of Hooker [148] and of Kim, Whitte-
more, Marques-Silva, and Sakallah [164].

There is a very large body of theoretical work on SAT as well. Some exam-
ples are: in complexity, SAT was the problem that was used for establishing
the NP-complete complexity class by Cook in 1971 [77]; in proof complexity,
there is a large body of work on various characteristics of resolution proofs [23]
and various restrictions and extensions thereof. In statistical mechanics, physi-
cists study the nature of random formulas [67, 197, 48]: for a given number
of variables n, and a given fixed clause size k, a clause is randomly generated
by choosing, at uniform, from the

(
n
k

)
· 2k options. A formula ϕ is a conjunc-

tion of α · n random clauses. It is clear that when α→∞, ϕ is unsatisfiable,
and when α = 0, it is satisfiable. At what value of α is the probability of
ϕ being satisfiable 0.5? The answer is α = 4.267. It turns out that formu-
las constructed with this ratio tend to be the hardest to solve empirically.
Furthermore, the larger n is, the sharper the phase transition between SAT
and UNSAT, asymptotically reaching a step function, i.e., all formulas with
α > 4.267 are unsatisfiable, whereas all formulas with α < 4.267 are satis-
fiable. This shift from SAT to UNSAT is called a phase transition. There
have been several articles about this topic in Science [166, 196], Nature [200],
and even The New York Times [157].

Let us conclude these notes by mentioning that, in the first edition of this
book, this chapter included about 10 pages on Ordered Binary Decision Dia-
grams (OBDDs) (frequently called BDDs for short). BDDs were invented by
Randal Bryant [55] and were extremely influential in various fields in com-
puter science, most notably in automated theorem proving, symbolic model
checking, and other subfields of formal verification. With BDDs one can rep-
resent and manipulate propositional formulas. A key benefit of BDDs is the
fact that they are canonical as long as the BDDs are built following the

58 2 Decision Procedures for Propositional Logic

same variable order, which means that logically equivalent propositional for-
mulas have identical BDDs. If the BDD is not empty, then the formula is
trivially satisfiable, which means that once the BDD is built the satisfiability
problem can be solved in constant time. The catch is that the construction
itself can take exponential space and time, and indeed in practice nowadays
CDCL-based SAT is generally better at solving satisfiability problems. Various
SAT-based techniques such as Craig interpolants [193] and Property-Directed
Reachability [42] mostly replaced BDDs in verification, although BDD-based
engines are still used in commercial model checkers. BDDs also find uses in
solving other problems, such as precise existential quantification of proposi-
tional formulas, counting the number of solutions a propositional formula has
(an operation that can be done in linear time in the size of the BDD), and
more. Knuth dedicated a large chapter to this topic in The Art of Computer
Programming [167].

2.5 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

xi@d (SAT) xi is assigned true at decision level d 33

http://www.springer.com/978-3-662-50496-3

	2Decision Procedures for Propositional Logic
	2.1 Propositional Logic
	2.1.1 Motivation

	2.2 SAT Solvers
	2.2.1 The Progress of SAT Solving
	2.2.2 The CDCL Framework
	2.2.3 BCP and the Implication Graph
	2.2.4 Conict Clauses and Resolution
	2.2.5 Decision Heuristics
	2.2.6 The Resolution Graph and the Unsatis�able Core
	2.2.7 Incremental Satis�ability
	2.2.8 From SAT to the Constraint Satisfaction Problem

	2.3 Problems
	2.3.1 Warm-up Exercises
	2.3.2 Propositional Logic
	2.3.3 Modeling
	2.3.4 Complexity
	2.3.5 CDCL SAT Solving
	2.3.6 Related Problems

	2.4 Bibliographic Notes
	2.5 Glossary

