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Abstract
Recent years have witnessed a surge of interest in symbolic
execution for software testing, due to its ability to generate
high-coverage test suites and find deep errors in complex
software applications. In this article, we give an overview
of modern symbolic execution techniques, discuss their key
challenges in terms of path exploration, constraint solving,
and memory modeling, and discuss several solutions drawn
primarily from the authors’ own work.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Symbolic execution

General Terms Reliability

1. Introduction
Symbolic execution has gathered a lot of attention in re-
cent years as an effective technique for generating high-
coverage test suites and for finding deep errors in com-
plex software applications. While the key idea behind sym-
bolic execution was introduced more than three decades
ago [5, 12, 22, 25], it has only recently been made practi-
cal, as a result of significant advances in constraint satisfia-
bility [14], and of more scalable dynamic approaches which
combine concrete and symbolic execution [9, 20]. In this ar-
ticle, we give an overview of modern symbolic execution
techniques, and discuss their challenges in terms of path ex-
ploration, constraint solving, and memory modeling. Note
that we do not aim to provide here a comprehensive survey
of existing work in the area, but instead choose to illustrate
some of the key challenges and proposed solutions by using
examples drawn primarily from the authors’ own work. For
a detailed overview of symbolic execution techniques, we
refer the reader to previously published surveys in the area,
such as [11, 19, 32, 34].

[Copyright notice will appear here once ’preprint’ option is removed.]

A key goal of symbolic execution in the context of soft-
ware testing is to explore as many different program paths
as possible in a given amount of time, and for each path to
(1) generate a set of concrete input values exercising that
path, and (2) check for the presence of various kinds of errors
including assertion violations, uncaught exceptions, security
vulnerabilities, and memory corruption. The ability to gener-
ate concrete test inputs is one of the major strengths of sym-
bolic execution: from a test generation perspective, it allows
the creation of high-coverage test suites, while from a bug-
finding perspective, it provides developers with a concrete
input that triggers the bug, which can be used to confirm and
debug the error independently of the symbolic execution tool
that generated it.

Furthermore, note that in terms of finding errors on a
given program path, symbolic execution is more powerful
than traditional dynamic execution techniques such as those
implemented by popular tools like Valgrind or Purify, which
depend on the availability of concrete inputs triggering the
error. Finally, unlike certain other program analysis tech-
niques, symbolic execution is not limited to finding generic
errors such as buffer overflows, but can reason about higher-
level program properties, such as complex program asser-
tions.

2. Overview of Classical Symbolic Execution
The key idea behind symbolic execution [12, 25] is to use
symbolic values, instead of concrete data values as input
and to represent the values of program variables as symbolic
expressions over the symbolic input values. As a result, the
output values computed by a program are expressed as a
function of the symbolic input values. In software testing,
symbolic execution is used to generate a test input for each
execution path of a program. An execution path is a sequence
of true and false, where a value of true (respectively
false) at the ith position in the sequence denotes that the
ith conditional statement encountered along the execution
path took the “then” (respectively the “else”) branch. All
the execution paths of a program can be represented using
a tree, called the execution tree. For example, the function
testme() in Figure 1 has three execution paths, which form
the execution tree shown in Figure 2. These paths can be
executed, for instance, by running the program on the inputs
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1 int twice ( int v) {
2 return 2∗v;
3 }
4
5 void testme ( int x, int y) {
6 z = twice (y );
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /∗ simple driver exercising testme () with sym inputs ∗/
15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y );
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state σ, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, σ is initialized to an empty map and
PC is initialized to true. Both σ and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7→ s to σ, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in σ = {x 7→ x0, y 7→ y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates σ by mapping
v to σ(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, σ = {x 7→ x0, y 7→ y0, z 7→ 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ∧ σ(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse

x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC ′ is created and initialized to PC∧¬σ(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state σ and
symbolic path constraint PC. Similarly, if PC ′ is satisfiable,
then another instance of symbolic execution is created with
symbolic state σ and symbolic path constraint PC ′, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC ′ is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ∧ (x0 > y0 + 10)
and (x0 = 2y0) ∧ (x0 ≤ y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a
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1 void testme inf () {
2 int sum = 0;
3 int N = sym input();
4 while (N > 0) {
5 sum = sum + N;
6 N = sym input();
7 }
8 }

Figure 3. Simple example to illustrate infinite number of
execution paths.

1 int twice ( int v) {
2 return (v∗v) % 50;
3 }

Figure 4. Simple modification of the example in Figure 1.
The function twice now performs some non-linear computa-
tion.

sequence of infinite number of trues. The symbolic path
constraint of a path with a sequence of n trues followed by
a false is:  ∧

i∈[1,n]

Ni > 0

 ∧ (Nn+1 ≤ 0)

where each Ni is a fresh symbolic value, and the symbolic
state at the end of the execution is {N 7→ Nn+1, sum 7→∑

i∈[1,n]Ni}. In practice, one needs to put a limit on the
search, e.g., a timeout, or a limit on the number of paths,
loop iterations, or exploration depth.

A key disadvantage of classical symbolic execution is
that it cannot generate an input if the symbolic path con-
straint along an execution path contains formulas that can-
not be (efficiently) solved by a constraint solver. For exam-
ple, consider performing symbolic execution on two vari-
ants of the code in Figure 1: in one variant, we modify
the twice function as in Figure 4; in the other variant, we
assume that code of the function twice is not available.
Let us assume that our constraint solver cannot handle non-
linear arithmetic. For the first variant, symbolic execution
will generate the path constraints x0 6= (y0y0) mod 50 and
x0 = (y0y0) mod 50 after the execution of the first condi-
tional statement. For the second variant, symbolic execution
will generate the path constraints x0 6= twice(y0) and x0 =
twice(y0), where twice is an uninterpreted function. Since
the constraint solver cannot solve any of these constraints,
symbolic execution will fail to generate any input for the
modified programs. We next describe two modern symbolic
execution techniques which alleviate this problem and gen-
erate at least some inputs for the modified programs.

3. Modern Symbolic Execution Techniques
One of the key elements of modern symbolic execution
techniques is their ability to mix concrete and symbolic
execution. We present below two such extensions, and then
discuss the key advantages they provide.

Concolic Testing: Directed Automated Random Testing
(DART) [20], or Concolic testing [37] performs symbolic
execution dynamically, while the program is executed on
some concrete input values. Concolic testing maintains a
concrete state and a symbolic state: the concrete state maps
all variables to their concrete values; the symbolic state only
maps variables that have non-concrete values. Unlike classi-
cal symbolic execution, since concolic execution maintains
the entire concrete state of the program along an execution,
it needs initial concrete values for its inputs. Concolic test-
ing executes a program starting with some given or random
input, gathers symbolic constraints on inputs at conditional
statements along the execution, and then uses a constraint
solver to infer variants of the previous inputs in order to
steer the next execution of the program towards an alterna-
tive execution path. This process is repeated systematically
or heuristically until all execution paths are explored, a user-
defined coverage criteria is met, or the time budget expires.

For the example in Figure 1, concolic execution will gen-
erate some random input, say {x = 22, y = 7} and execute
the program both concretely and symbolically. The concrete
execution will take the “else” branch at line 7 and the sym-
bolic execution will generate the path constraint x0 6= 2y0
along the concrete execution path. Concolic testing negates
a conjunct in the path constraint and solves x0 = 2y0 to
get the test input {x = 2, y = 1}; this new input will force
the program execution along a different execution path. Con-
colic testing repeats both concrete and symbolic execution
on this new test input. The execution takes a path different
from the previous one—the “then” branch at line 7 and the
“else” branch at line 8 are now taken in this execution. As in
the previous execution, concolic testing also performs sym-
bolic execution along this concrete execution and generates
the path constraint (x0 = 2y0) ∧ (x0 ≤ y0 + 10). Concolic
testing will generate a new test input that forces the program
along an execution path that has not been previously exe-
cuted. It does so by negating the conjunct (x0 ≤ y0 + 10)
and solving the constraint (x0 = 2y0) ∧ (x0 > y0 + 10) to
get the test input {x = 30, y = 15}. The program reaches
the ERROR statement with this new input. After this third ex-
ecution of the program, concolic testing reports that all ex-
ecution paths of the program have been explored and termi-
nates test input generation. Note that in this example, con-
colic testing explores all the execution paths using a depth-
first search strategy; however, one could employ other strate-
gies to explore paths in different orders, as discussed in Sec-
tion 4.1.
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Execution-Generated Testing (EGT): The EGT approach
[9], implemented and extended by the EXE [10] and KLEE [8]
tools, works by making a distinction between the concrete
and symbolic state of a program. To this end, EGT in-
termixes concrete and symbolic execution by dynamically
checking before every operation if the values involved are
all concrete. If so, the operation is executed just as in the
original program. Otherwise, if at least one value is sym-
bolic, the operation is performed symbolically, by updat-
ing the path condition for the current path. For example, if
line 17 in Figure 1 is changed to y = 10, then line 6 will
simply call function twice() with the concrete argument
20, call which will be executed as in the original program
(note that twice could perform an arbitrarily complex op-
eration on its input, but this would not place any strain on
symbolic execution, because the call will be executed con-
cretely). Then, the branch on line 7 will become if (20 ==

x), and symbolic execution will follow both the “then” side
of the branch (where it adds the constraint that x = 20),
as well as the “else” side (where it adds the constraint that
x 6= 20). Note that on the “then” path, the conditional at
line 8 becomes if (x > 20), and therefore its “then” side
is infeasible because x is constrained to have value 20 on
this path.

Concolic testing and EGT are two instances of modern
symbolic execution techniques whose main advantage lies
in their ability to mix concrete and symbolic execution. For
simplicity, in the rest of the article we will collectively refer
to these techniques as “dynamic symbolic execution.”

Imprecision vs. completeness in dynamic symbolic exe-
cution: One of the key advantages in mixing concrete and
symbolic execution is that imprecision caused by the inter-
action with external code or constraint solving timeouts can
be alleviated using concrete values.

For example, real applications almost always interact
with the outside world, e.g., by calling libraries that are
not instrumented for symbolic execution, or by issuing OS
system calls. If all the arguments passed to such a call are
concrete, the call can simply be performed concretely, as
in the original program. However, even if some operands
are symbolic, dynamic symbolic execution can use one of
the possible concrete values of these symbolic operands:
in EGT this is done by solving the current path constraint
for a satisfying assignment (which can be optimized via the
counter-example cache discussed in §4.2), while concolic
testing can immediately use the concrete run-time values of
those inputs from the current concolic execution.

Besides external code, imprecision in symbolic execution
creeps in many other places—such as unhandled operations
(e.g., floating-point) or complex functions which cause con-
straint solver timeouts—and the use of concrete values al-
lows dynamic symbolic execution to recover from that im-
precision, albeit at the cost of missing some execution paths,
and thus sacrificing completeness.

To illustrate, we describe the behavior of concolic testing
on the version of our running example in which the func-
tion twice returns the non-linear value (v*v)%50 (see Fig-
ure 4). Let us assume that concolic testing starts with the
random input {x = 22, y = 7}, which generates the sym-
bolic path constraint x0 6= (y0y0) mod 50 along the con-
crete execution path on this input. If we assume that the con-
straint solver cannot solve non-linear constraints, then con-
colic testing will fail to generate an input for an alternate
execution path. We get a similar situation if the source code
for the function twice is not available (e.g. twice is some
third-party closed-source library function or a system call),
in which case the path constraint becomes x0 6= twice(y0),
where twice is an uninterpreted function. Concolic testing
handles this situation by replacing some of the symbolic val-
ues with their concrete values so that the resultant constraints
are simplified and can be solved by using existing constraint
solvers. For example, in the above example, concolic test-
ing replaces y0 by its concrete value 7. This simplifies the
path constraint in both programs to x0 6= 49. By solving the
path constraint x0 = 49, concolic testing generates the in-
put {x = 49, y = 7} for a previously unexplored execution
path. Note that classical symbolic execution cannot easily
perform this simplification because the concrete state is not
available during symbolic execution.

Dynamic symbolic execution’s ability to simplify con-
straints using concrete values helps it generate test inputs
for execution paths for which symbolic execution gets stuck,
but this comes with a caveat: due to simplification, it could
loose completeness, i.e. they may not be able to generate test
inputs for some execution paths. For instance, in our exam-
ple dynamic symbolic execution will fail to generate an input
for the path true, false. However, this is clearly preferable
to the alternative of simply aborting execution when unsup-
ported operations or external calls are encountered.

4. Key Challenges and Some Solutions
We next discuss the key challenges in symbolic execution,
and some interesting solutions developed in response to
them.

4.1 Path Explosion
One of the key challenges of symbolic execution is the huge
number of programs paths in all but the smallest programs,
which is usually exponential in the number of static branches
in the code. As a result, given a fixed time budget, it is critical
to explore the most relevant paths first.

First of all, note that symbolic execution implicitly filters
out all paths which (1) do not depend on the symbolic in-
put, and (2) are infeasible given the current path constraints.
Despite this filtering, path explosion represents one of the
biggest challenges facing symbolic execution. There are two
key approaches that have been used to address this problem:
heuristically prioritizing the exploration of the most promis-
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ing paths, and using sound program analysis techniques to
reduce the complexity of the path exploration. We discuss
each in turn.

Heuristic techniques. The key mechanism used by sym-
bolic execution tools to prioritize path exploration is the use
of search heuristics. Most heuristics focus on achieving high
statement and branch coverage, but they could also be em-
ployed to optimize other desired criteria.

One particularly effective approach is to use the static
control-flow graph (CFG) to guide the exploration toward
the path closest (as measured statically using the CFG) from
an uncovered instruction [7, 8]. A similar approach, de-
scribed in [10], is to favor previously visited statements that
were run the fewest number of times.

As another example, heuristics based on random explo-
ration have also proved successful [7, 8]. The key idea is to
start from the beginning of the program, and at each sym-
bolic branch for which both sides are feasible to randomly
choose which side to explore.

Another successful approach is to interleave symbolic ex-
ploration with random testing [29]. This approach combines
the ability of random testing to quickly reach deep execution
states, with the power of symbolic execution to thoroughly
explore states in a given neighborhood.

More recently, symbolic execution was combined with
evolutionary search, in which a fitness function is used to
drive the exploration of the input space [3, 23, 26, 39]. For
example, the Austin tool [26] combines search-based soft-
ware testing, which uses a suitable fitness function to drive
evolutionary search of the test input space, with dynamic
symbolic execution to exploit the best of both worlds. Ef-
fectiveness of search-based software testing depends on the
quality of its fitness function. Several recent promising ap-
proaches [3, 23, 39] have exploited concrete state informa-
tion or symbolic information from dynamic and static analy-
sis to improve fitness functions, which resulted in better test
generation. Mutation testing, where the adequacy of a test
suite is evaluated by checking its ability to identify various
mutations in the program, has also been combined success-
fully with dynamic symbolic execution [24].

Overall, these novel ways of combining symbolic execu-
tion with heuristic search techniques have already shown a
lot of promise, and we believe that further advances in this
area can play an important role in alleviating the path explo-
sion problem.

Sound program analysis techniques. The other key way
in which the path explosion problem has been approached
was to use various ideas from program analysis and software
verification to reduce the complexity of the path exploration
in a sound way.

One simple approach that can be used to reduce the num-
ber of explored paths is to merge them statically, using select
expressions that are then passed directly to the constraint
solver [13]. While this approach can be effective in many

cases, it is unfortunately passing the complexity to the con-
straint solver, which as discussed in the next section repre-
sents another major challenge of symbolic execution.

Compositional techniques improve symbolic execution
by caching and reusing the analysis of lower-level func-
tions in subsequent computations [17, 18]. The key idea is
to compute function summaries for each tested function—
described in terms of pre- and post-conditions over the func-
tion’s inputs and outputs—and then reuse these summaries
in higher-level functions. Lazy test generation [30] is an
approach similar to the counterexample-guided refinement
paradigm from static software verification. The technique
first explores, using dynamic symbolic execution, an ab-
straction of the function under test by replacing each called
function with an unconstrained input.

A related approach to avoid repeatedly exploring the
same part of the code is to automatically prune redundant
paths during exploration. For example, the RWset tech-
nique [4] uses the key insight that if a program path reaches
the same program point with the same symbolic constraints
as a previously explored path, then this path will continue
to execute exactly the same from that point on and thus can
be discarded. A similar sound technique works by partition-
ing inputs into non-interfering blocks which can then be
explored separately [31].

4.2 Constraint Solving
Despite significant advances in constraint solving technol-
ogy during the last few years—which made symbolic exe-
cution practical in the first place—constraint solving con-
tinues to be one of the key bottlenecks in symbolic execu-
tion, where it often dominates runtime. In fact, one of the
key reasons for which symbolic execution fails to scale on
some programs is that their code is generating queries that
are blowing up the solver.

As a result, it is essential to implement constraint solv-
ing optimizations that exploit the type of constraints gen-
erated during the symbolic execution of real programs. We
present below two representative optimizations used by ex-
isting symbolic execution tools.

Irrelevant constraint elimination: The vast majority of
queries in symbolic execution are issued in order to deter-
mine the feasibility of taking a certain branch side. For ex-
ample, in the concolic variant of symbolic execution, one
branch predicate of an existing path constraint is negated
and then the resulting constraint set is checked for satis-
fiability in order to determine if the program can take the
other side of the branch, corresponding to the negated con-
straint. An important observation is that in general a pro-
gram branch depends only on a small number of program
variables, and therefore on a small number of constraints
from the path condition. Thus, one effective optimization
is to remove from the path condition those constraints that
are irrelevant in deciding the outcome of the current branch.
For example, let the path condition for the current execution
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be (x + y > 10) ∧ (z > 0) ∧ (y < 12) ∧ (z − x = 0)
and suppose we want to generate a new input by solving
(x + y > 10) ∧ (z > 0) ∧ ¬(y < 12), where ¬(y < 12)
is the negated branch condition whose feasibility we are try-
ing to establish. Then it is safe to eliminate the constraint
on z, because this constraint cannot influence the outcome
of the y < 12 branch. The solution of this reduced con-
straint set will give new values for x and y, and we use
the value of z from the current execution to generate the
new input. More formally, the algorithm computes the tran-
sitive closure of all the constraints on which the negated con-
straint depends, by looking whether they share any variables
between them. The extra complication is in dealing with
pointer dereferences and array indexing, which is discussed
in detail in [10, 15, 37].

Incremental solving: One important characteristic of the
constraint sets generated during symbolic execution is that
they are expressed in terms of a fixed set of static branches
from the program source code. For this reason, many paths
have similar constraint sets, and thus allow for similar so-
lutions; this fact can be exploited to improve the speed of
constraint solving by reusing the results of previous simi-
lar queries, as done in several systems such as CUTE and
KLEE [8, 37]. To illustrate this point, we present one such al-
gorithm, namely the counter-example caching scheme used
by KLEE [8]. In KLEE, all query results are stored in a cache
that maps constraint sets to concrete variable assignments
(or a special No solution flag if the constraint set is unsat-
isfiable). For example, one mapping in this cache could be
(x + y < 10) ∧ (x > 5) ⇒ {x = 6, y = 3}. Using these
mappings, KLEE can quickly answer several types of simi-
lar queries, involving subsets and supersets of the constraint
sets already cached. For example, if a subset of a cached
constraint set is encountered, KLEE can simply return the
cached solution, because removing constraints from a con-
straint set does not invalidate an existing solution. Moreover,
if a superset of a cached constraint set is encountered, KLEE
can quickly check if the cached solution still works, by plug-
ging in those values into the superset. For example, KLEE
can quickly check that {x = 6, y = 3} is still a valid so-
lution for the query (x + y < 10) ∧ (x > 5) ∧ (y ≥ 0),
which is a superset of (x + y < 10) ∧ (x > 5). This lat-
ter technique exploits the fact that in practice, adding extra
constraints often does not invalidate an existing solution.

4.3 Memory Modeling
The precision with which program statements are translated
into symbolic constraints can have a significant influence on
the coverage achieved by symbolic execution, as well as on
the scalability of constraint solving. For example, using a
memory model that approximates fixed-width integer vari-
ables with actual mathematical integers may be more effi-
cient, but on the other hand may result in imprecision in the
analysis of code depending on corner cases such as arith-

metic overflow—which may cause symbolic execution to
miss paths, or explore infeasible ones.

Another example are pointers. On the one end of the
spectrum is a system like DART that only reasons about
concrete pointers, or systems like CUTE and CREST that
support only equality and inequality constraints for pointers,
which can be efficiently solved [37]. At the other end are
systems like EXE [10], and more recently KLEE [8] and
SAGE [15] that model pointers using the theory of arrays
with selections and updates implemented by solvers like
STP [16] or Z3 [14].

The trade-off between precision and scalability should be
determined in light of the code being analyzed (e.g., low-
level systems code vs. high-level applications code), and the
exact performance difference between different constraint
solving theories. In addition, note that in dynamic symbolic
execution, one can tune both scalability and precision by
customizing the use of concrete values in symbolic formulas.

4.4 Handling Concurrency
Large real-world programs are often concurrent. Because of
the inherent non-determinism of such programs, testing is
notoriously hard. Despite these challenges, dynamic sym-
bolic execution has been effectively used to test concur-
rent programs, including applications with complex data in-
puts [35, 36], distributed systems [6, 33], and GPGPU pro-
grams [13, 28].

5. Tools
Dynamic symbolic execution has been implemented by sev-
eral tools from both academia and research labs (e.g., [1, 7–
10, 20, 21, 37, 38]). These tools support a variety of lan-
guages, including C/C++, Java and the x86 instruction set,
implement several different memory models, target different
types of applications, and make use of several different con-
straint solvers and theories. We discuss below five of these
tools, with whom the authors of this article were involved.

5.1 DART, CUTE and CREST
DART [20] is the first concolic testing tool that combines dy-
namic test generation with random testing and model check-
ing techniques with the goal of systematically executing all
(or as many as possible) execution paths of a program, while
checking each execution for various types of errors. DART
was first implemented at Bell Labs for testing C programs,
and has inspired many other extensions and tools since.

CUTE (A Concolic Unit Testing Engine) and jCUTE
(CUTE for Java) [36, 37] extend DART to handle multi-
threaded programs that manipulate dynamic data structures
using pointer operations. In multi-threaded programs, CUTE
combines concolic execution with dynamic partial order re-
duction to systematically generate both test inputs and thread
schedules. CUTE and jCUTE were developed at University
of Illinois at Urbana-Champaign for C and Java programs,
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respectively. Both tools have been applied to several popu-
lar open-source software including the java.util library
of Sun JDK 1.4.

CREST [7] is an open-source tool for concolic testing of
C programs. CREST is an extensible platform for building
and experimenting with heuristics for selecting which paths
to explore (see §4.1). Since being released as open source in
May 20081, CREST has been downloaded 1500+ times and
has been used by several research groups.

5.2 EXE and KLEE
EXE [10] is a symbolic execution tool for C designed for
comprehensively testing complex software, with an empha-
sis on systems code. To deal with the complexities of sys-
tems code, EXE models memory with bit-level accuracy.
This is needed because systems code often treats memory
as untyped bytes, and observes a single memory location in
multiple ways: e.g., by casting signed variables to unsigned,
or treating an array of bytes as a network packet, inode, or
packet filter through pointer casting. As importantly, EXE
provides the speed necessary to quickly solve the constraints
generated by real code, through a combination of low-level
optimizations implemented in its purposely designed con-
straint solver STP [10, 16], and a series of higher-level ones
such as caching and irrelevant constraint elimination.

KLEE [8] is a redesign of EXE, built on top of the LLVM-
compiler infrastructure. Like EXE, it performs mixed con-
crete/symbolic execution, models memory with bit-level ac-
curacy, employs a variety of constraint solving optimiza-
tions, and uses search heuristics to get high code coverage.
One of the key improvements of KLEE over EXE is its abil-
ity to store a much larger number of concurrent states, by
exploiting sharing among states at the object-, rather than at
the page-level as in EXE. Another important improvement
is its enhanced ability to handle interactions with the outside
environment—e.g., with data read from the file system or
over the network—by providing models designed to explore
all possible legal interactions with the outside world. As a
result of these features, EXE and KLEE have been success-
fully used to check a large number of different software sys-
tems, including network servers, file systems, device drivers
and library code.

KLEE was open-sourced in June 20092. The tool has an
active user community—with around 200 members on the
mailing list and growing—and has been extended by several
research groups in a variety of areas.

Several dynamic symbolic execution tools, including
KLEE and CREST discussed above, are now available as
open-source. These tools have been applied to a variety of
applications, including network servers and tools (Berke-
ley Packet Filter, Avahi, Bonjour); file systems (ext2, ext3,
JFS); editors (vi); UNIX utilities (Coreutils, MINIX, Busy-

1 Available at http://code.google.com/p/crest
2 Available at http://klee.llvm.org

box suites); computer vision code (OpenCV), and library
code (java.util, Perl Compatible Regular Expressions, libd-
warf, libelf). Furthermore, several research teams have built
up on top of these tools, and extended them to new prob-
lems such as detecting SQL injection vulnerabilities, con-
structing automatic exploits, testing flash storage platforms,
finding errors in wireless sensor networks code, reverse en-
gineering binary device drivers, constructing deterministic
multithreaded systems, and testing online games [11].

5.3 Other Symbolic Execution Tools in Practice
The industry has also started to adopt symbolic execution.
For example, Microsoft has developed SAGE, a dynamic
symbolic execution tool for x86 binaries that has discovered
several critical bugs in large Windows applications such as
image processors and file decoders [21], and also PEX [38],
a tool for .NET code, which is now available as a Visual
Studio add-in. In addition to Microsoft, several other com-
panies, such as NASA [1], IBM [2], and Fujitsu [27] are de-
veloping and using such techniques to test their code.

While the impact of symbolic execution is still limited,
the continued stream of innovations in this area will likely
increase its applicability and adoption in practice.

6. Conclusion
Symbolic execution has become an effective program test-
ing technique, providing a way to automatically generate
inputs that trigger software errors ranging from low-level
program crashes to higher-level semantic properties; gener-
ate test suite that achieve high program coverage; and pro-
vide per-path correctness guarantees. While more research
is needed in this area, existing tools have already proved ef-
fective in testing and finding errors in a variety of software,
varying from low-level network and operating systems code
to higher-level applications code.
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