
Chapter 9

Test Case Selection and
Adequacy

A key problem in software testing is selecting and evaluating test cases. This chapter
introduces basic approaches to test case selection and corresponding adequacy criteria.
This chapter serves as a general introduction to the problem and provides a conceptual
framework for functional and structural approaches described in subsequent chapters.

Required Background

• Chapter 2
The fundamental problems and limitations of test case selection are a conse-
quence of the undecidability of program properties. A grasp of the basic problem
is useful in understanding Section 9.3.

9.1 Overview

Experience suggests that software that has passed a thorough set of systematic tests
is likely to be more dependable than software that has been only superficially or hap-
hazardly tested. Surely we should require that each software module or subsystem
undergo thorough, systematic testing before being incorporated into the main product.
But what do we mean by thorough testing? What is the criterion by which we can
judge the adequacy of a suite of tests that a software artifact has passed?

Ideally we should like an “adequate” test suite to be one that ensures correctness
of the product. Unfortunately, that goal is not attainable. The difficulty of proving that
some set of test cases is adequate in this sense is equivalent to the difficulty of proving
that the program is correct. In other words, we could have “adequate” testing in this
sense only if we could establish correctness without any testing at all.

In practice we settle for criteria that identify inadequacies in test suites. For ex-
ample, if the specification describes different treatment in two cases, but the test suite
does not check that the two cases are in fact treated differently, then we may conclude

153

Courtesy Pre-print for U. Toronto 2007/1

154 Test Case Selection and Adequacy

that the test suite is inadequate to guard against faults in the program logic. If no test
in the test suite executes a particular program statement, we might similarly conclude
that the test suite is inadequate to guard against faults in that statement. We may use a
whole set of (in)adequacy criteria, each of which draws on some source of information
about the program and imposes a set of obligations that an adequate set of test cases
ought to satisfy. If a test suite fails to satisfy some criterion, the obligation that has not
been satisfied may provide some useful information about improving the test suite. If
a set of test cases satisfies all the obligations by all the criteria, we still do not know
definitively that it is a well-designed and effective test suite, but we have at least some
evidence of its thoroughness.

9.2 Test Specifications and Cases

A test case includes not only input data but also any relevant execution conditions and
procedures, and a way of determining whether the program has passed or failed the
test on a particular execution. The term “input” is used in a very broad sense, which
may include all kinds of stimuli that contribute to determining program behavior. For
example, an interrupt is as much an input as is a file. The pass/fail criterion might be
given in the form of expected output, but could also be some other way of determining
whether a particular program execution is correct.

A test case specification is a requirement to be satisfied by one or more actual test
cases. The distinction between a test case specification and a test case is similar to the
distinction between a program specification and a program. A test case specification
might be met by several different test cases, and vice versa. Suppose, for example, we
are testing a program that sorts a sequence of words. “The input is two or more words”
would be a test case specification, while test cases with the input values “alpha beta”
and “Milano Paris London” would be two among many test cases satisfying the test
case specification. A test case with input “Milano Paris London” would satisfy both the
test case specification “the input is two or more words” and the test case specification
“the input contains a mix of lower- and upper-case alphabetic characters.”

Characteristics of the input are not the only thing that might be mentioned in a
test case specification. A complete test case specification includes pass/fail criteria
for judging test execution and may include requirements, drawn from any of several
sources of information, such as system, program, and module interface specifications;
source code or detailed design of the program itself; and records of faults encountered
in other software systems.

Test specifications drawn from system, program, and module interface specifica-
tions often describe program inputs, but they can just as well specify any observable be-
havior that could appear in specifications. For example, the specification of a database
system might require certain kinds of robust failure recovery in case of power loss, and
test specifications might therefore require removing system power at certain critical
points in processing. If a specification describes inputs and outputs, a test specification
could prescribe aspects of the input, the output, or both. If the specification is mod-
eled as an extended finite-state machine, it might require executions corresponding to
particular transitions or paths in the state-machine model. The general term for such

Courtesy Pre-print for U. Toronto 2007/1

Test Specifications and Cases 155

Testing Terms
While the informal meanings of words like “test” may be adequate for everyday

conversation, in this context we must try to use terms in a more precise and consistent
manner. Unfortunately, the terms we will need are not always used consistently in the
literature, despite the existence of an IEEE standard that defines several of them. The
terms we will use are defined below.

Test case: A test case is a set of inputs, execution conditions, and a pass/fail criterion.
(This usage follows the IEEE standard.)

Test case specification: A test case specification is a requirement to be satisfied by
one or more actual test cases. (This usage follows the IEEE standard.)

Test obligation: A test obligation is a partial test case specification, requiring some
property deemed important to thorough testing. We use the term “obligation”
to distinguish the requirements imposed by a test adequacy criterion from more
complete test case specifications.

Test suite: A test suite is a set of test cases. Typically, a method for functional testing
is concerned with creating a test suite. A test suite for a program, system, or
individual unit may be made up of several test suites for individual modules,
subsystems, or features. (This usage follows the IEEE standard.)

Test or test execution: We use the term test or test execution to refer to the activity of
executing test cases and evaluating their results. When we refer to “a test,” we
mean execution of a single test case, except where context makes it clear that the
reference is to execution of a whole test suite. (The IEEE standard allows this
and other definitions.)

Adequacy criterion: A test adequacy criterion is a predicate that is true (satisfied)
or false (not satisfied) of a 〈program, test suite〉 pair. Usually a test adequacy
criterion is expressed in the form of a rule for deriving a set of test obligations
from another artifact, such as a program or specification. The adequacy criterion
is then satisfied if every test obligation is satisfied by at least one test case in the
suite.

Courtesy Pre-print for U. Toronto 2007/1

156 Test Case Selection and Adequacy

test specifications is “functional testing,” although the term “black-box testing” and
more specific terms like “specification-based testing” and “model-based testing” are
also used.

Test specifications drawn from program source code require coverage of particular
elements in the source code or some model derived from it. For example, we might
require a test case that traverses a loop one or more times. The general term for test-
ing based on program structure is “structural testing,” although the term “white-box
testing” or “glass-box testing” is sometimes used.

Previously encountered faults can be an important source of information regard-
ing useful test cases. For example, if previous products have encountered failures or
security breaches due to buffer overflows, we may formulate test requirements specif-
ically to check handling of inputs that are too large to fit in provided buffers. These
fault-based test specifications usually draw also from interface specifications, design
models, or source code, but add test requirements that might not have been otherwise
considered. A common form of fault-based testing is fault-seeding, purposely inserting
faults in source code and then measuring the effectiveness of a test suite in finding the
seeded faults, on the theory that a test suite that finds seeded faults is likely also to find
other faults.

Test specifications need not fall cleanly into just one of the categories. For example,
test specifications drawn from a model of a program might be considered specification-
based if the model is produced during program design, or structural if it is derived from
the program source code.

Consider the Java method of Figure 9.1. We might apply a general rule that requires
using an empty sequence wherever a sequence appears as an input; we would thus
create a test case specification (a test obligation) that requires the empty string as input.1

If we are selecting test cases structurally, we might create a test obligation that requires
the first clause of the if statement on line 15 to evaluate to true and the second clause to
evaluate to false, and another test obligation on which it is the second clause that must
evaluate to true and the first that must evaluate to false.

9.3 Adequacy Criteria

We have already noted that adequacy criteria are really imperfect but useful indicators
of inadequacies, so we may not always wish to use them directly to generate test speci-
fications from which actual test cases are drawn. We will use the term “test obligation”
for test specifications imposed by adequacy criteria, to distinguish them from test spec-
ifications that are actually used to derive test cases. Thus, the usual situation will be
that a set of test cases (a test suite) is created using a set of test specifications, but then
the adequacy of that test suite is measured using a different set of test obligations.

We say a test suite satisfies an adequacy criterion if all the tests succeed and if
every test obligation in the criterion is satisfied by at least one of the test cases in
the test suite. For example, the statement coverage adequacy criterion is satisfied by a
particular test suite for a particular program if each executable statement in the program

1Constructing and using catalogs of general rules like this is described in Chapter 10.

Courtesy Pre-print for U. Toronto 2007/1

Adequacy Criteria 157

1 /**
2 * Remove/collapse multiple spaces.
3 *
4 * @param String string to remove multiple spaces from.
5 * @return String
6 */
7 public static String collapseSpaces(String argStr)
8 {
9 char last = argStr.charAt(0);

10 StringBuffer argBuf = new StringBuffer();
11

12 for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)
13 {
14 char ch = argStr.charAt(cIdx);
15 if (ch != ’ ’ || last != ’ ’)
16 {
17 argBuf.append(ch);
18 last = ch;
19 }
20 }
21

22 return argBuf.toString();
23 }

Figure 9.1: A Java method for collapsing sequences of blanks, excerpted from the
StringUtils class of Velocity version 1.3.1, an Apache Jakarta project. (c) Apache
Group, used by permission.

Courtesy Pre-print for U. Toronto 2007/1

158 Test Case Selection and Adequacy

(i.e., excluding comments and declarations) is executed by at least one test case in the
test suite. A fault-based adequacy criterion that seeds a certain set of faults would be
satisfied if, for each of the seeded faults, there is a test case that passes for the original
program but fails for the program with (only) that seeded fault.

It is quite possible that no test suite will satisfy a particular test adequacy criterion
for a particular program. For example, if the program contains statements that can
never be executed (perhaps because it is part of a sanity check that can be executed
only if some other part of the program is faulty), then no test suite can satisfy the
statement coverage criterion. Analogous situations arise regardless of the sources of
information used in devising test adequacy criteria. For example, a specification-based
criterion may require combinations of conditions drawn from different parts of the
specification, but not all combinations may be possible.

One approach to overcoming the problem of unsatisfiable test obligations is to sim-
ply exclude any unsatisfiable obligation from a criterion. For example, the statement
coverage criterion can be modified to require execution only of statements that can
be executed. The question of whether a particular statement or program path is exe-
cutable, or whether a particular combination of clauses in a specification is satisfiable,
or whether a program with a seeded error actually behaves differently from the original
program, are all provably undecidable in the general case. Thus, while tools may be
some help in distinguishing feasible from infeasible test obligations, in at least some
cases the distinction will be left to fallible human judgment.

If the number of infeasible test obligations is modest, it can be practical to identify
each of them, and to ameliorate human fallibility through peer review. If the number
of infeasible test obligations is large, it becomes impractical to carefully reason about
each to avoid excusing an obligation that really is feasible, though difficult to satisfy.
A common practice is to measure the extent to which a test suite approaches an ad-
equacy criterion. For example, if an adequacy criterion based on control flow paths
in a program unit induced 100 distinct test obligations, and a test suite satisfied 85 of
those obligations, then we would say that we had reached 85% coverage of the test
obligations.

Quantitative measures of test coverage are widely used in industry. They are simple
and cheap to calculate, provide some indication of progress toward thorough testing,
and project an aura of objectivity. In managing software development, anything that
produces a number can be seductive. One must never forget that coverage is a rough
proxy measure for the thoroughness and effectiveness of test suites. The danger, as
with any proxy measure of some underlying goal, is the temptation to improve the
proxy measure in a way that does not actually contribute to the goal. If, for example,
80% coverage of some adequacy criterion is required to declare a work assignment
complete, developers under time pressure will almost certainly yield to the temptation
to design tests specifically to that criterion, choosing the simplest test cases that achieve
the required coverage level. One cannot entirely avoid such distortions, but to the
extent possible one should guard against them by ensuring that the ultimate measure
of performance is preventing faults from surviving to later stages of development or
deployment.

Courtesy Pre-print for U. Toronto 2007/1

Comparing Criteria 159

9.4 Comparing Criteria

It would be useful to know whether one test adequacy criterion was more effective
than another in helping find program faults, and whether its extra effectiveness was
worthwhile with respect to the extra effort expended to satisfy it. One can imagine
two kinds of answers to such a question, empirical and analytical. An empirical an-
swer would be based on extensive studies of the effectiveness of different approaches
to testing in industrial practice, including controlled studies to determine whether the
relative effectiveness of different testing methods depends on the kind of software be-
ing tested, the kind of organization in which the software is developed and tested, and
a myriad of other potential confounding factors. The empirical evidence available falls
short of providing such clear-cut answers. An analytical answer to questions of relative
effectiveness would describe conditions under which one adequacy criterion is guar-
anteed to be more effective than another, or describe in statistical terms their relative
effectiveness.

Analytic comparisons of the strength of test coverage depends on a precise defini-
tion of what it means for one criterion to be “stronger” or “more effective” than another.
Let us first consider single test suites. In absence of specific information, we cannot
exclude the possibility that any test case can reveal a failure. A test suite TA that does
not include all the test cases of another test suite TB may fail revealing the potential
failure exposed by the test cases that are in TB but not in TA. Thus, if we consider only
the guarantees that a test suite provides, the only way for one test suite TA to be stronger
than another suite TB is to include all test cases of TB plus additional ones.

Many different test suites might satisfy the same coverage criterion. To compare
criteria, then, we consider all the possible ways of satisfying the criteria. If every test
suite that satisfies some criterion A is a superset of some test suite that satisfies criterion
B, or equivalently, every suite that satisfies A also satisfies B, then we can say that A
“subsumes” B.

∆ subsumes

Test coverage criterion A subsumes test coverage criterion B iff, for every program
P, every test set satisfying A with respect to P also satisfies B with respect to P.

In this case, if we satisfy criterion C1, there is no point in measuring adequacy with
respect to C2. For example, a structural criterion that requires exploring all outcomes
of conditional branches subsumes statement coverage. Likewise, a specification-based
criterion that requires use of a set of possible values for attribute A and, independently,
for attribute B, will be subsumed by a criterion that requires all combinations of those
values.

Consider again the example of Figure 9.1. Suppose we apply an adequacy criterion
that imposes an obligation to execute each statement in the method. This criterion can
be met by a test suite containing a single test case, with the input value (value of argStr)
being “doesn’tEvenHaveSpaces.” Requiring both the true and false branches of each
test to be taken subsumes the previous criterion, and forces us to at least provide an
input with a space that is not copied to the output, but it can still be satisfied by a suite
with just one test case. We might add a requirement that the loop be iterated zero times,
once, and several times, thus requiring a test suite with at least three test cases. The
obligation to execute the loop body zero times would force us to add a test case with the

Courtesy Pre-print for U. Toronto 2007/1

160 Test Case Selection and Adequacy

empty string as input, and like the specification-based obligation to consider an empty
sequence, this would reveal a fault in the code.

Should we consider a more demanding adequacy criterion, as indicated by the sub-
sumes relation among criteria, to be a better criterion? The answer would be “yes” if
we were comparing the guarantees provided by test adequacy criteria: If criterion A
subsumes criterion B, and if any test suite satisfying B in some program is guaranteed
to find a particular fault, then any test suite satisfying A is guaranteed to find the same
fault in the program. This is not as good as it sounds, though. Twice nothing is nothing.
Adequacy criteria do not provide useful guarantees for fault detection, so comparing
guarantees is not a useful way to compare criteria.

A better statistical measure of test effectiveness is whether the probability of find-
ing at least one program fault is greater when using one test coverage criterion than
another. Of course, such statistical measures can be misleading if some test coverage
criteria require much larger numbers of test cases than others. It is hardly surprising
if a criterion that requires at least 300 test cases for program P is more effective, on
average, than a criterion that requires at least 50 test cases for the same program. It
would be better to know, if we have 50 test cases that satisfy criterion B, is there any
value in finding 250 test cases to finish satisfying the “stronger” criterion A, or would
it be just as profitable to choose the additional 250 test cases at random?

Although theory does not provide much guidance, empirical studies of particular
test adequacy criteria do suggest that there is value in pursuing stronger criteria, par-
ticularly when the level of coverage attained is very high. Whether the extra value of
pursuing a stronger adequacy criterion is commensurate with the cost almost certainly
depends on a plethora of particulars, and can only be determined by monitoring results
in individual organizations.

Open research issues

There has been a good deal of theoretical research on what one can conclude about test
effectiveness from test adequacy criteria. Most of the results are negative: In general,
one cannot be certain that a test suite that meets any practical test adequacy criterion
ensures correctness, or even that it is more effective at finding faults than another test
suite that does not meet the criterion. While theoretical characterization of test ade-
quacy criteria and their properties was once an active research area, interest has waned,
and it is likely that future theoretical progress must begin with a quite different concep-
tion of the fundamental goals of a theory of test adequacy.

The trend in research is toward empirical, rather than theoretical, comparison of
the effectiveness of particular test selection techniques and test adequacy criteria. Em-
pirical approaches to measuring and comparing effectiveness are still at an early stage.
A major open problem is to determine when, and to what extent, the results of an em-
pirical assessment can be expected to generalize beyond the particular programs and
test suites used in the investigation. While empirical studies have to a large extent dis-
placed theoretical investigation of test effectiveness, in the longer term useful empirical
investigation will require its own theoretical framework.

Courtesy Pre-print for U. Toronto 2007/1

Comparing Criteria 161

Further Reading

Goodenough and Gerhart made the original attempt to formulate a theory of “ade-
quate” testing [GG75]; Weyuker and Ostrand extended this theory to consider when a
set of test obligations is adequate to ensure that a program fault is revealed [WO80].
Gourlay’s exposition of a mathematical framework for adequacy criteria is among the
most lucid developments of purely analytic characterizations [Gou83]. Hamlet and
Taylor show that, if one takes statistical confidence in (absolute) program correctness
as the goal, none of the standard coverage testing techniques improve on random testing
[HT90], from which an appropriate conclusion is that confidence in absolute correct-
ness is not a reasonable goal of systematic testing. Frankl and Iakounenko’s study of
test effectiveness [FI98] is a good example of the development of empirical methods
for assessing the practical effectiveness of test adequacy criteria.

Related Topics

Test adequacy criteria and test selection techniques can be categorized by the sources
of information they draw from. Functional testing draws from program and system
specifications, and is described in Chapters 10, 11, and 14. Structural testing draws
from the structure of the program or system, and is described in Chapters 12 and 13.
The techniques for testing object-oriented software described in Chapter 15 draw on
both functional and structural approaches. Selection and adequacy criteria based on
consideration of hypothetical program faults are described in Chapter 16.

Exercises

9.1. Deterministic finite state machines (FSMs), with states representing classes of
program states and transitions representing external inputs and observable pro-
gram actions or outputs, are sometimes used in modeling system requirements.
We can design test cases consisting of sequences of program inputs that trigger
FSM transitions and the predicted program actions expected in response. We can
also define test coverage criteria relative to such a model. Which of the following
coverage criteria subsume which others?

State coverage: For each state in the FSM model, there is a test case that visits
that state.

Transition coverage: For each transition in the FSM model, there is a test case
that traverses that transition.

Path coverage: For all finite-length subpaths from a distinguished start state in
the FSM model, there is at least one test case that includes a corresponding
subpath.

State-pair coverage: For each state r in the FSM model, for each state s reach-
able from r along some sequence of transitions, there is at least one test
case that passes through state r and then reaches state s.

Courtesy Pre-print for U. Toronto 2007/1

162 Test Case Selection and Adequacy

9.2. Adequacy criteria may be derived from specifications (functional criteria) or
code (structural criteria). The presence of infeasible elements in a program may
make it impossible to obtain 100% coverage. Since we cannot possibly cover in-
feasible elements, we might define a coverage criterion to require 100% coverage
of feasible elements (e.g., execution of all program statements that can actually
be reached in program execution). We have noted that feasibility of program
elements is undecidable in general. Suppose we instead are using a functional
test adequacy criterion, based on logical conditions describing inputs and out-
puts. It is still possible to have infeasible elements (logical condition A might be
inconsitent with logical condition B, making the conjunction A∧B infeasible).
Would you expect distinguishing feasible from infeasible elements to be easier
or harder for functional criteria, compared to structural criteria? Why?

9.3. Suppose test suite A satisfies adequacy criterion C1. Test suite B satisfies ade-
quacy criterion C2, and C2 subsumes C1. Can we be certain that faults revealed
by A will also be revealed by B?

Courtesy Pre-print for U. Toronto 2007/1

Chapter 10

Functional Testing

A functional specification is a description of intended program1 behavior, distinct from
the program itself. Whatever form the functional specification takes — whether formal
or informal — it is the most important source of information for designing tests.
Deriving test cases from program specifications is called functional testing.

Functional testing, or more precisely, functional test case design, attempts to an-
swer the question “What test cases shall I use to exercise my program?” considering
only the specification of a program and not its design or implementation structure. Be-
ing based on program specifications and not on the internals of the code, functional
testing is also called specification-based or black-box testing.

Functional testing is typically the base-line technique for designing test cases, for
a number of reasons. Functional test case design can (and should) begin as part of
the requirements specification process, and continue through each level of design and
interface specification; it is the only test design technique with such wide and early
applicability. Moreover, functional testing is effective in finding some classes of fault
that typically elude so-called “white-box” or “glass-box” techniques of structural or
fault-based testing. Functional testing techniques can be applied to any description of
program behavior, from an informal partial description to a formal specification, and
at any level of granularity from module to system testing. Finally, functional test cases
are typically less expensive to design and execute than white-box tests.

10.1 Overview

In testing and analysis aimed at verification2 — that is, at finding any discrepancies
between what a program does and what it is intended to do — one must obviously
refer to requirements as expressed by users and specified by software engineers. A

1We use the term “program” generically for the artifact under test, whether that artifact is a complete
application or an individual unit together with a test harness. This is consistent with usage in the testing
research literature.

2Here we focus on software verification as opposed to validation (see Chapter 2). The problems of
validating the software and its specifications, i.e., checking the program behavior and its specifications with
respect to the users’ expectations, is treated in Chapter 22.

163

Courtesy Pre-print for U. Toronto 2007/1

164 Functional Testing

functional specification, i.e., a description of the expected behavior of the program, is
the primary source of information for test case specification.

Functional testing, also known as black-box or specification-based testing, denotes∆ black-box testing

techniques that derive test cases from functional specifications. Usually functional
testing techniques produce test case specifications that identify classes of test cases
and are instantiated to produce individual test cases.

The core of functional test case design is partitioning3 the possible behaviors of
the program into a finite number of homogeneous classes, where each such class rea-
sonably be expected consistently to be correct or incorrect. In practice, the test case
designer often must also complete the job of formalizing the specification far enough
to serve as the basis for identifying classes of behaviors. An important side benefit of
test design is highlighting weaknesses and incompleteness of program specifications.

Deriving functional test cases is an analytical process which decomposes speci-
fications into test cases. The myriad aspects that must be taken into account during
functional test case specification makes the process error prone. Even expert test de-
signers can miss important test cases. A methodology for functional test design helps
by decomposing the functional test design process into elementary steps. In this way,
it is possible to control the complexity of the process and separate human intensive
activities from activities that can be automated.

Sometimes, functional testing can be fully automated. This is possible for example
when specifications are given in terms of some formal model, e.g., a grammar or an
extended state machine specification. In these (exceptional) cases, the creative work is
performed during specification and design of the software. The test designer’s job is
then limited to the choice of the test selection criteria, which defines the strategy for
generating test case specifications. In most cases, however, functional test design is
a human intensive activity. For example, when test designers must work from infor-
mal specifications written in natural language, much of the work is in structuring the
specification adequately for identifying test cases.

10.2 Random versus Partition Testing Strategies

With few exceptions, the number of potential test cases for a given program is unimag-
inably huge — so large that for all practical purposes it can be considered infinite. For
example, even a simple function whose input arguments are two 32-bit integers has
264 ≈ 1054 legal inputs. In contrast to input spaces, budgets and schedules are finite,
so any practical method for testing must select an infinitesimally small portion of the
complete input space.

Some test cases are better than others, in the sense that some reveal faults and others
do not.4 Of course, we cannot know in advance which test cases reveal faults. At a
minimum, though, we can observe that running the same test case again is less likely

3We are using the term “partition” in a common but rather sloppy sense. A true partition would form
disjoint classes, the union of which is the entire space. Partition testing separates the behaviors or input
space into classes whose union is the entire space, but the classes may not be disjoint.

4Note that the relative value of different test cases would be quite different if our goal were to measure
dependability, rather than finding faults so that they can be repaired.

Courtesy Pre-print for U. Toronto 2007/1

Random versus Partition Testing Strategies 165

Functional vs. Structural Testing
Test cases and test suites can be derived from several sources of information, in-

cluding specifications (functional and model-based testing), detailed design and source
code (structural testing), and hypothesized defects (fault-based testing). Functional test
case design is an indispensable base of a good test suite, complemented but never re-
placed by structural and fault-based testing, because there are classes of faults that only
functional testing effectively detects. Omission of a feature, for example, is unlikely to
be revealed by techniques which refer only to the code structure.

Consider a program that is supposed to accept files in either plain ASCII text, or
HTML, or PDF formats and generate standard Postscript. Suppose the programmer
overlooks the PDF functionality, so the program accepts only plain text and HTML
files. Intuitively, a functional testing criterion would require at least one test case for
each item in the specification, regardless of the implementation, i.e., it would require
the program to be exercised with at least one ASCII, one HTML, and one PDF file, thus
easily revealing the failure due to the missing code. In contrast, criteria based solely on
the code would not require the program to be exercised with a PDF file, since each part
of the code can be exercised without attempting to use that feature. Similarly, fault-
based techniques, based on potential faults in design or coding, would not have any
reason to indicate a PDF file as a potential input even if “missing case” were included
in the catalog of potential faults.

Functional specifications often address semantically rich domains, and we can use
domain information in addition to the cases explicitly enumerated in the program spec-
ification. For example, while a program may manipulate a string of up to nine alphanu-
meric characters, the program specification may reveal that these characters represent
a postal code, which immediately suggests test cases based on postal codes of vari-
ous localities. Suppose the program logic distinguishes only two cases, depending on
whether they are found in a table of U.S. zip codes. A structural testing criterion would
require testing of valid and invalid U.S. zip codes, but only consideration of the specifi-
cation and richer knowledge of the domain would suggest test cases that reveal missing
logic for distinguishing between U.S.-bound mail with invalid U.S. zip codes and mail
bound for other countries.

Functional testing can be applied at any level of granularity where some form of
specification is available, from overall system testing to individual units, although the
level of granularity and the type of software influence the choice of the specification
styles and notations, and consequently the functional testing techniques that can be
used.

In contrast, structural and fault-based testing techniques are invariably tied to pro-
gram structures at some particular level of granularity, and do not scale much beyond
that level. The most common structural testing techniques are tied to fine-grain pro-
gram structures (statements, classes, etc.) and are applicable only at the level of mod-
ules or small collections of modules (small subsystems, components, or libraries).

Courtesy Pre-print for U. Toronto 2007/1

166 Functional Testing

to reveal a fault than running a different test case, and we may reasonably hypothesize
that a test case that is very different from the test cases that precede it is more valuable
than a test case that is very similar (in some sense yet to be defined) to others.

As an extreme example, suppose we are allowed to select only three test cases for
a program that breaks a text buffer into lines of 60 characters each. Suppose the first
test case is a buffer containing 40 characters, and the second is a buffer containing 30
characters. As a final test case, we can choose a buffer containing 16 characters or
a buffer containing 100 characters. Although we cannot prove that the 100 character
buffer is the better test case (and it might not be; the fact that 16 is a power of 2 might
have some unforeseen significance), we are naturally suspicious of a set of tests which
is strongly biased toward lengths less than 60.

Accidental bias may be avoided by choosing test cases from a random distribution.
Random sampling is often an inexpensive way to produce a large number of test cases.
If we assume absolutely no knowledge on which to place a higher value on one test case
than another, then random sampling maximizes value by maximizing the number of test
cases that can be created (without bias) for a given budget. Even if we do possess some
knowledge suggesting that some cases are more valuable than others, the efficiency of
random sampling may in some cases outweigh its inability to use any knowledge we
may have.

Consider again the line-break program, and suppose that our budget is one day of
testing effort rather than some arbitrary number of test cases. If the cost of random
selection and actual execution of test cases is small enough, then we may prefer to run
a large number of random test cases rather than expending more effort on each of a
smaller number of test cases. We may in a few hours construct programs that generate
buffers with various contents and lengths up to a few thousand characters, as well as
an automated procedure for checking the program output. Letting it run unattended
overnight, we may execute a few million test cases. If the program does not correctly
handle a buffer containing a sequence of more than 60 non-blank characters (a single
“word” that does not fit on a line), we are likely to encounter this case by sheer luck if
we execute enough random tests, even without having explicitly considered this case.

Even a few million test cases is an infinitesimal fraction of the complete input space
of most programs. Large numbers of random tests are unlikely to find failures at single
points (singularities) in the input space. Consider, for example, a simple procedure for
returning the two roots of a quadratic equation ax2 +bx+c = 0 and suppose we choose
test inputs (values of the coefficients a, b, and c) from a uniform distribution ranging
from −10.0 to 10.0. While uniform random sampling would certainly cover cases in
which b2 − 4ac > 0 (where the equation has no real roots), it would be very unlikely
to test the case in which a = 0 and b = 0, in which case a naive implementation of the
quadratic formula

x =
−b±

√
b2−4ac

2a

will divide by zero (see Figure 10.1).
Of course, it is unlikely that anyone would test only with random values. Regard-

less of the overall testing strategy, most test designers will also try some “special”
values. The test designer’s intuition comports with the observation that random sam-

Courtesy Pre-print for U. Toronto 2007/1

Random versus Partition Testing Strategies 167

1 /** Find the two roots of axˆ2 + bx + c,
2 * that is, the values of x for which the result is 0.
3 */
4 class Roots {
5 double root one, root two;
6 int num roots;
7 public roots(double a, double b, double c) {
8 double q;
9 double r;

10 // Apply the textbook quadratic formula:
11 // Roots = -b +- sqrt(bˆ2 - 4ac) / 2a
12 q = b*b - 4*a*c;
13 if (q > 0 && a != 0) {
14 // If bˆ2 > 4ac, there are two distinct roots
15 num roots = 2;
16 r = (double) Math.sqrt(q) ;
17 root one = ((0-b) + r)/(2*a);
18 root two = ((0-b) - r)/(2*a);
19 } else if (q==0) { // (BUG HERE)
20 // The equation has exactly one root
21 num roots = 1;
22 root one = (0-b)/(2*a);
23 root two = root one;
24 } else {
25 // The equation has no roots if bˆ2 < 4ac
26 num roots = 0;
27 root one = -1;
28 root two = -1;
29 }
30 }
31 public int num roots() { return num roots; }
32 public double first root() { return root one; }
33 public double second root() { return root two; }
34 }

Figure 10.1: The Java class “roots,” which finds roots of a quadratic equation. The
case analysis in the implementation is incomplete: It does not properly handle the case
in which b2−4ac = 0 and a = 0. We cannot anticipate all such faults, but experience
teaches that boundary values identifiable in a specification are disproportionately valu-
able. Uniform random generation of even large numbers of test cases is ineffective at
finding the fault in this program, but selection of a few “special values” based on the
specification quickly uncovers it.

Courtesy Pre-print for U. Toronto 2007/1

168 Functional Testing

pling is an ineffective way to find singularities in a large input space. The observation
about singularities can be generalized to any characteristic of input data that defines an
infinitesimally small portion of the complete input data space. If again we have just
three real-valued inputs a, b, and c, there is an infinite number of choices for which
b = c, but random sampling is unlikely to generate any of them because they are an
infinitesimal part of the complete input data space.

The observation about special values and random samples is by no means limited
to numbers. Consider again, for example, breaking a text buffer into lines. Since line
breaks are permitted at blanks, we would consider blanks a “special” value for this
problem. While random sampling from the character set is likely to produce a buffer
containing a sequence of at least 60 non-blank characters, it is much less likely to
produce a sequence of 60 blanks.

The reader may justifiably object that a reasonable test designer would not create
text buffer test cases by sampling uniformly from the set of all characters, but would
instead classify characters depending on their treatment, lumping alphabetic characters
into one class and white space characters into another. In other words, a test designer
will partition the input space into classes, and will then generate test data in a manner
that is likely to choose data from each partition. Test designers seldom use pure random
sampling; usually they exploit some knowledge of application semantics to choose
samples that are more likely to include “special” or trouble-prone regions of the input
space.

Partition testing separates the input space into classes whose union is the entire
space, but the classes may not be disjoint (and thus the term “partition” is not mathe-
matically accurate, although it has become established in testing terminology). Figure
10.2 illustrates a desirable case: All inputs that lead to a failure belong to at least one
class that contains only inputs that lead to failures. In this case, sampling each class in
the quasi-partition selects at least one input that leads to a failure, revealing the fault.
We could easily turn the quasi-partition of Figure 10.2 into a true partition, by consider-
ing intersections among the classes, but sampling in a true partition would not improve
the efficiency or effectiveness of testing.

A testing method that divides the infinite set of possible test cases into a finite set
of classes, with the purpose of drawing one or more test cases from each class, is called
a partition testing method. When partitions are chosen according to information in∆ partition testing

the specification, rather than the design or implementation, it is called specification-
based partition testing, or more briefly, functional testing. Note that not all testing of
product functionality is “functional testing.” Rather, the term is used specifically to∆

specification-based
testing

refer to systematic testing based on a functional specification. It excludes ad hoc and
random testing, as well as testing based on the structure of a design or implementation.

∆ functional testing Partition testing typically increases the cost of each test case, since in addition
to generation of a set of classes, creation of test cases from each class may be more
expensive than generating random test data. In consequence, partition testing usually
produces fewer test cases than random testing for the same expenditure of time and
money. Partitioning can therefore be advantageous only if the average value (fault-
detection effectiveness) is greater.

If we were able to group together test cases with such perfect knowledge that the
outcome of test cases in each class were uniform (either all successes, or all failures),

Courtesy Pre-print for U. Toronto 2007/1

A Systematic Approach 169

Figure 10.2: A quasi-partition of a program’s input space. Black circles represent
inputs that lead to failures. All elements of the input domain belong to at least one
class, but classes are not disjoint.

then partition testing would be at its theoretical best. In general we cannot do that, nor
even quantify the uniformity of classes of test cases. Partitioning by any means, includ-
ing specification-based partition testing, is always based on experience and judgment
that leads one to believe that certain classes of test case are “more alike” than others,
in the sense that failure-prone test cases are likely to be concentrated in some classes.
When we appealed above to the test designer’s intuition that one should try boundary
cases and special values, we were actually appealing to a combination of experience
(many failures occur at boundary and special cases) and knowledge that identifiable
cases in the specification often correspond to classes of input that require different
treatment by an implementation.

Given a fixed budget, the optimum may not lie in only partition testing or only
random testing, but in some mix that makes use of available knowledge. For example,
consider again the simple numeric problem with three inputs, a, b, and c. We might
consider a few special cases of each input, individually and in combination, and we
might consider also a few potentially-significant relationships (e.g., a = b). If no faults
are revealed by these few test cases, there is little point in producing further arbitrary
partitions — one might then turn to random generation of a large number of test cases.

10.3 A Systematic Approach

Deriving test cases from functional specifications is a complex analytical process that
partitions the input space described by the program specification. Brute force gen-
eration of test cases, i.e., direct generation of test cases from program specifications,
seldom produces acceptable results: Test cases are generated without particular criteria

Courtesy Pre-print for U. Toronto 2007/1

170 Functional Testing

and determining the adequacy of the generated test cases is almost impossible. Brute
force generation of test cases relies on test designers’ expertise and is a process that
is difficult to monitor and repeat. A systematic approach simplifies the overall process
by dividing it into elementary steps, thus decoupling different activities, dividing brain
intensive from automatable steps, suggesting criteria to identify adequate sets of test
cases, and providing an effective means of monitoring the testing activity.

Although suitable functional testing techniques can be found for any granularity
level, a particular functional testing technique may be effective only for some kinds
of software or may require a given specification style. For example, a combinatorial
approach may work well for functional units characterized by a large number of rela-
tively independent inputs, but may be less effective for functional units characterized
by complex interrelations among inputs. Functional testing techniques designed for a
given specification notation, e.g., finite state machines or grammars, are not easily ap-
plicable to other specification styles. Nonetheless we can identify a general pattern of
activities that captures the essential steps in a variety of different functional test design
techniques. By describing particular functional testing techniques as instantiations of
this general pattern, relations among the techniques may become clearer, and the test
designer may gain some insight into adapting and extending these techniques to the
characteristics of other applications and situations.

Figure 10.3 identifies the general steps of systematic approaches. The steps may
be difficult or trivial depending on the application domain and the available program
specifications. Some steps may be omitted depending on the application domain, the
available specifications and the test designers’ expertise. Instances of the process can
be obtained by suitably instantiating different steps. Although most techniques are
presented and applied as stand-alone methods, it is also possible to mix and match
steps from different techniques, or to apply different methods for different parts of the
system to be tested.

Identify Independently Testable Features Functional specifications can be large
and complex. Usually, complex specifications describe systems that can be decom-
posed into distinct features. For example, the specification of a web site may include
features for searching the site database, registering users’ profiles, getting and storing
information provided by the users in different forms, etc. The specification of each of
these features may comprise several functionalities. For example, the search feature
may include functionalities for editing a search pattern, searching the data base with a
given pattern, and so on. Although it is possible to design test cases that exercise sev-
eral functionalities at once, designing different test cases for different functionalities
can simplify the test generation problem, allowing each functionality to be examined
separately. Moreover, it eases locating faults that cause the revealed failures. It is
thus recommended to devise separate test cases for each functionality of the system,
whenever possible.

The preliminary step of functional testing consists in partitioning the specifications
into features that can be tested separately. This can be an easy step for well designed,
modular specifications, but informal specifications of large systems may be difficult to
decompose into independently testable features. Some degree of formality, at least to

Courtesy Pre-print for U. Toronto 2007/1

A Systematic Approach 171

Functional Specifications

Independently Testable Feature

ModelRepresentative Values

Test Case Specifications

Test Cases

Identify

Representative

Values
 Id

en
tif

y
In

de
pe

nd
en

tly

Te
st

ab
le

Fe

at
ur

es

Derivea Model

Generate Test-Case

Specifications Generate Test-
Case

Specifi
cations

G
en

er
at

e
Te

st
 C

as
es

Scaffolding

In
st

an
tia

te
Te

st
s

Brute
Force

Testing

Finite State Machine
Grammar
Algebraic Specification
Logic Specification
Control/Data Flow Graph

Semantic Constraints
Combinatorial Selection
Exaustive Enumeration
Random Selection

Test Selection Criteria

Manual Mapping
Symbolic Execution
A-posteriori
Satisfaction

Figure 10.3: The main steps of a systematic approach to functional program testing.

Courtesy Pre-print for U. Toronto 2007/1

172 Functional Testing

Units and Features
Programs and software systems can be decomposed in different ways. For test-

ing, we may consider externally observable behavior (features), or the structure of the
software system (units, subsystems, and components).

Independently testable feature: An independently testable feature (ITF) is a func-
tionality that can be tested independently of other functionalities of the software
under test. It need not correspond to a unit or subsystem of the software. For
example, a file sorting utility may be capable of merging two sorted files, and it
may be possible to test the sorting and merging functionalities separately, even
though both features are implemented by much of the same source code. (The
nearest IEEE standard term is “test item.”)

As functional testing can be applied at many different granularity levels, from
unit testing through integration and system testing, so ITFs may range from the
functionality of an individual Java class or C function up to features of an inte-
grated system composed of many complete programs. The granularity of an ITF
depends on the exposed interface at whichever granularity is being tested. For
example, individual methods of a class are part of the interface of the class, and a
set of related methods (or even a single method) might be an ITF for unit testing,
but for system testing the ITFs would be features visible through a user interface
or application programming interface.

Unit: We reserve the term “unit,” not for any fixed syntactic construct in a particular
programming language, but for the smallest unit of work assignment in a soft-
ware project. Defining “unit” in this manner, rather than (for example) equating
units with individual Java classes or packages, or C files or functions, reflects
a philosophy about test and analysis. A work unit is the smallest increment by
which a software system grows or changes, the smallest unit that appears in a
project schedule and budget, and the smallest unit that may reasonably be asso-
ciated with a suite of test cases.

It follows from our definition of “unit” that, when we speak of unit testing, we
mean the testing associated with an individual work unit.

We reserve the term function for the mathematical concept, i.e., a set of ordered
pairs having distinct first elements. When we refer to “functions” as syntactic elements
in some programming language, we will qualify it to distinguish that usage from the
mathematical concept, e.g., a “function” is a set of ordered pairs but a “C function” is
syntactic element in the C programming language.

Courtesy Pre-print for U. Toronto 2007/1

A Systematic Approach 173

the point of careful definition and use of terms, is usually required.
Identification of functional features that can be tested separately is different from

module decomposition. In both cases we apply the divide and conquer principle, but
in the former case, we partition specifications according to the functional behavior as
perceived by the users of the software under test,5 while in the latter, we identify logical
units that can be implemented separately. For example, a web site may require a sort
function, as a service routine, that does not correspond to an external functionality.
The sort function may be a functional feature at module testing, when the program
under test is the sort function itself, but is not a functional feature at system test, while
deriving test cases from the specifications of the whole web site. On the other hand, the
registration of a new user profile can be identified as one of the functional features at
system level testing, even if such functionality is spread across several modules. Thus,
identifying functional features does not correspond to identifying single modules at the
design level, but rather to suitably slicing the specifications to attack their complexity
incrementally.

Independently testable features are described by identifying all the inputs that form
their execution environments. Inputs may be given in different forms depending on the
notation used to express the specifications. In some cases they may be easily identifi-
able. For example, they can be the input alphabet of a finite state machine specifying
the behavior of the system. In other cases, they may be hidden in the specification.
This is often the case for informal specifications, where some inputs may be given ex-
plicitly as parameters of the functional unit, but other inputs may be left implicit in the
description. For example, a description of how a new user registers at a web site may
explicitly indicate the data that constitutes the user profile to be inserted as parameters
of the functional unit, but may leave implicit the collection of elements (e.g., database)
in which the new profile must be inserted.

Trying to identify inputs may help in distinguishing different functions. For exam-
ple, trying to identify the inputs of a graphical tool may lead to a clearer distinction
between the graphical interface per se and the associated callbacks to the application.
With respect to the web-based user registration function, the data to be inserted in the
database are part of the execution environment of the functional unit that performs the
insertion of the user profile, while the combination of fields that can be use to construct
such data is part of the execution environment of the functional unit that takes care of
the management of the specific graphical interface.

Identify Representative Classes of Values or Derive a Model The execution envi-
ronment of the feature under test determines the form of the final test cases, which are
given as combinations of values for the inputs to the unit. The next step of a testing
process consists of identifying which values of each input should be selected to form
test cases. Representative values can be identified directly from informal specifications
expressed in natural language. Alternatively, representative values may be selected in-
directly through a model, which can either be produced only for the sake of testing

5Here the word “user” designates the individual using the specified service. It can be the user of the
system, when dealing with a system specification, but it can be another module of the system, when dealing
with detailed design specifications.

Courtesy Pre-print for U. Toronto 2007/1

174 Functional Testing

or be available as part of the specification. In both cases, the aim of this step is to
identify the values for each input in isolation, either explicitly through enumeration,
or implicitly trough a suitable model, but not to select suitable combinations of such
values, i.e., test case specifications. In this way, we separate the problem of identifying
the representative values for each input, from the problem of combining them to obtain
meaningful test cases, thus splitting a complex step into two simpler steps.

Most methods that can be applied to informal specifications rely on explicit enu-
meration of representative values by the test designer. In this case, it is very impor-
tant to consider all possible cases and take advantage of the information provided by
the specification. We may identify different categories of expected values, as well as
boundary and exceptional or erroneous values. For example, when considering opera-
tions on a non-empty lists of elements, we may distinguish the cases of the empty list
(an error value) and a singleton element (a boundary value) as special cases. Usually
this step determines characteristics of values (e.g., any list with a single element) rather
than actual values.

Implicit enumeration requires the construction of a (partial) model of the specifi-
cations. Such a model may be already available as part of a specification or design
model, but more often it must be constructed by the test designer, in consultation with
other designers. For example, a specification given as a finite state machine implicitly
identifies different values for the inputs by means of the transitions triggered by the
different values. In some cases, we can construct a partial model as a means for iden-
tifying different values for the inputs. For example, we may derive a grammar from
a specification and thus identify different values according to the legal sequences of
productions of the given grammar.

Directly enumerating representative values may appear simpler and less expensive
than producing a suitable model from which values may be derived. However, a formal
model may also be valuable in subsequent steps of test case design, including selection
of combinations of values. Also, a formal model may make it easier to select a larger
or smaller number of test cases, balancing cost and thoroughness, and may be less
costly to modify and reuse as the system under test evolves. Whether to invest effort in
producing a model is ultimately a management decision that depends on the application
domain, the skills of test designers, and the availability of suitable tools.

Generate Test Case Specifications Test specifications are obtained by suitably com-
bining values for all inputs of the functional unit under test. If representative values
were explicitly enumerated in the previous step, then test case specifications will be
elements of the Cartesian product of values selected for each input. If a formal model
was produced, then test case specifications will be specific behaviors or combinations
of parameters of the model, and a single test case specification could be satisfied by
many different concrete inputs. Either way, brute force enumeration of all combina-
tions is unlikely to be satisfactory.

The number of combinations in the Cartesian product of independently selected
values grows as the product of the sizes of the individual sets. For a simple functional
unit with 5 inputs each characterized by 6 values, the size of the Cartesian product
is 65 = 7,776 test case specifications, which may be an impractical number for test

Courtesy Pre-print for U. Toronto 2007/1

Choosing a Suitable Approach 175

cases for a simple functional unit. Moreover, if (as is usual) the characteristics are not
completely orthogonal, many of these combinations may not even be feasible.

Consider the input of a procedure that searches for occurrences of a complex pattern
in a web database. Its input may be characterized by the length of the pattern and the
presence of special characters in the pattern, among other aspects. Interesting values
for the length of the pattern may be zero, one, or many. Interesting values for the
presence of special characters may be zero, one, or many. However, the combination
of value “zero” for the length of the pattern and value “many” for the number of special
characters in the pattern is clearly impossible.

The test case specifications represented by the Cartesian product of all possible
inputs must be restricted by ruling out illegal combinations and selecting a practical
subset of the legal combinations. Illegal combinations are usually eliminated by con-
straining the set of combinations. For example, in the case of the complex pattern
presented above, we can constrain the choice of one or more special characters to a
positive length of the pattern, thus ruling out the illegal cases of patterns of length zero
containing special characters.

Selection of a practical subset of legal combination can be done by adding infor-
mation that reflects the hazard of the different combinations as perceived by the test
designer or by following combinatorial considerations. In the former case, for exam-
ple, we can identify exceptional values and limit the combinations that contain such
values. In the pattern example, we may consider only one test for patterns of length
zero, thus eliminating many combinations that would otherwise be derived for patterns
of length zero. Combinatorial considerations reduce the set of test cases by limiting
the number of combinations of values of different inputs to a subset of the inputs. For
example, we can generate only tests that exhaustively cover all combinations of values
for inputs considered pair by pair.

Depending on the technique used to reduce the space represented by the Cartesian
product, we may be able to estimate the number of generated test cases generated and
modify the selected subset of test cases according to budget considerations. Subsets of
combinations of values, i.e., potential special cases, can often be derived from models
of behavior by applying suitable test selection criteria that identify subsets of interest-
ing behaviors among all behaviors represented by a model, for example by constraining
the iterations on simple elements of the model itself. In many cases, test selection cri-
teria can be applied automatically.

Generate Test Cases and Instantiate Tests The test generation process is com-
pleted by turning test case specifications into test cases and instantiating them. Test
case specifications can be turned into test cases by selecting one or more test cases for
each test case specification. Test cases are implemented by creating the scaffolding
required for their execution.

10.4 Choosing a Suitable Approach

In the next chapters we will see several approaches to functional testing, each applying
to different kinds of specifications. Given a specification, there may be one or more

Courtesy Pre-print for U. Toronto 2007/1

176 Functional Testing

techniques well suited for deriving functional test cases, while some other techniques
may be hard or even impossible to apply, or may lead to unsatisfactory results. Some
techniques can be interchanged, i.e., they can be applied to the same specification and
lead to similar results. Other techniques are complementary, i.e., they apply to different
aspects of the same specification or at different stages of test case generation.

The choice of approach for deriving functional test cases depends on several fac-
tors: the nature of the specification, the form of the specification, expertise and expe-
rience of test designers, the structure of the organization, availability of tools, budget
and quality constraints, and the costs of designing and implementing scaffolding.

Nature and form of the specification Different approaches exploit different charac-
teristics of the specification. For example, the presence of several constraints on the
input domain may suggest using a partitioning method with constraints, such as the
category-partition method described in Chapter 11, while unconstrained combinations
of values may suggest a pairwise combinatorial approach. If transitions among a finite
set of system states are identifiable in the specification, a finite state machine approach
may be indicated, while inputs of varying and unbounded size may be tackled with
grammar based approaches. Specifications given in a specific format, e.g., as deci-
sion structures, suggest corresponding techniques. For example, functional test cases
for SDL6 specifications of protocols are often derived with finite state machine based
criteria.

Experience of test designers and organization Experience of testers and company
procedures may drive the choice of the testing technique. For example, test designers
expert in category partition may prefer that technique over a catalog based approach
when both are applicable, while a company that works in a specific application area
may require the use of domain-specific catalogs.

Tools Some techniques may require the use of tools, whose availability and cost
should be taken into account when choosing a testing technique. For example, several
tools are available for deriving test cases from SDL specifications. The availability of
one of these tools may suggest the use of SDL for capturing a subset of the requirements
expressed in the specification.

Budget and quality constraints Different quality and budget constraints may lead
to different choices. For example, if the primary constraint is rapid, automated testing,
and reliability requirements are not stringent, random test case generation may be ap-
propriate. In contrast, thorough testing of a safety critical application may require the
use of sophisticated methods for functional test case generation. When choosing an
approach, it is important to evaluate all relevant costs. For example, generating a large
number of random test cases may necessitate design and construction of sophisticated

6SDL (Specification Description Language) is a formal specification notation based on extended finite-
state machines, widely used in telecommunication systems and standardized by the International Telecom-
munication Union.

Courtesy Pre-print for U. Toronto 2007/1

Choosing a Suitable Approach 177

test oracles, or the cost of training to use a new tool may exceed the advantages of
adopting a new approach.

Many engineering activities require careful analysis of trade-offs. Functional test-
ing is no exception: Successfully balancing the many aspects is a difficult and often
underestimated problem that requires skilled designers. Functional testing is not an
exercise of choosing the optimal approach, but a complex set of activities for finding a
suitable combination of models and techniques that yield a set of test cases to satisfy
cost and quality constraints. This balancing extends beyond test design to software de-
sign for test. Appropriate design not only improves the software development process,
but can greatly facilitate the job of test designers, and lead to substantial savings.

Open research issues

Functional testing is by far the most common way of deriving test cases in industry,
but neither industrial practice nor research have established general and satisfactory
methodologies. Research in functional testing is increasingly active and progresses in
many directions.

Deriving test cases from formal models is an active research area. In the past three
decades, formal methods have been mainly studied as a means for proving software
properties. Recently, attention has moved towards the use of formal methods for deriv-
ing test cases. There are three main open research topics in this area:

• Definition of techniques for automatically deriving test cases from particular for-
mal models. Formal methods present new challenges and opportunities for de-
riving test cases. We can both adapt existing techniques borrowed from other
disciplines or research areas and define new techniques for test case generation.
Formal notations can support automatic generation of test cases, thus opening
additional problems and research challenges.

• Adaptation of formal methods to be more suitable for test case generation. As
illustrated in this chapter, test cases can be derived in two broad ways, either by
identifying representative values or by deriving a model of the unit under test. A
variety of formal models could be used in testing. The research challenge lies in
identifying a trade-off between costs of creating formal models and savings in
automatically generating test cases.

• Development of a general framework for deriving test cases from a range of
formal specifications. Currently research addresses techniques for generating
test cases from individual formal methods. Generalization of techniques will
allow more combinations of formal methods and testing.

Another important research area is fed by interest in different specification and de-
sign paradigms, e.g., software architectures, software design patterns, service-oriented
applications, etc. Often these approaches employ new graphical or textual notations.
Research is active in investigating different approaches to fully or semi-automatically
deriving test cases from these artifacts and studying the effectiveness of existing test
case generation techniques.

Courtesy Pre-print for U. Toronto 2007/1

178 Functional Testing

Increasing size and complexity of software systems is a challenge to testing. Exist-
ing functional testing techniques do not take advantages of test cases available for parts
of the artifact under test. Compositional approaches for deriving test cases for a given
system taking advantage of test cases available for its subsystems is an important open
research problem.

Further Reading

Functional testing techniques, sometimes called “black-box testing” or “specification-
based testing,” are presented and discussed by several authors. Ntafos [DN81] makes
the case for random, rather than systematic testing; Frankl, Hamlet, Littlewood and
Strigini [FHLS98] is a good starting point to the more recent literature considering the
relative merits of systematic and statistical approaches.

Related topics

Readers interested in practical technique for deriving functional test specifications from
informal specifications and models may continue with the next two chapters, which de-
scribe several functional testing techniques. Reader interested in the complementarities
between functional and structural testing may continue with Chapters 12 and 13 which
describe structural and data flow testing.

Exercises

10.1. In the “Extreme Programming” (XP) methodology (see the sidebar on page 383),
a written description of a desired feature may be a single sentence, and the first
step to designing the implementation of that feature is designing and implement-
ing a set of test cases. Does this aspect of the XP methodology contradict our
assertion that test cases are a formalization of specifications?

10.2. (a) Compute the probability of selecting a test case that reveals the fault in line
19 of program Root of Figure 10.1 by randomly sampling the input domain,
assuming that type double has range −231 . . .231−1.

(b) Compute the probability of randomly selecting a test case that reveals a
fault if line 13 and line 19 were both missing the condition a 6= 0.

10.3. Identify independently testable units in the following specification.

Desk calculator Desk calculator performs the following algebraic operations:
sum, subtraction, product, division, and percentage on integers and real num-
bers. Operands must be of the same type, except for percentage, which allows
the first operator to be either integer or real, but requires the second to be an

Courtesy Pre-print for U. Toronto 2007/1

Choosing a Suitable Approach 179

integer that indicates the percentage to be computed. Operations on integers pro-
duce integer results. Program Calculator can be used with a textual interface
that provides the following commands:

Mx=N where Mx is a memory location,i.e., M0,.. M9 and N is a number. Inte-
gers are given as non-empty sequences of digits, with or without sign. Real
numbers are given as non-empty sequences of digits that include a dot “.”,
with or without sign. Real numbers can be terminated with an optional ex-
ponent, i.e., character “E” followed by an integer. The command displays
the stored number.

Mx=display , where Mx is a memory location and display indicates the value
shown on the last line.

operand1 operation operand2 , where operand1 and operand2 are numbers or
memory locations or display and operation is one of the following symbols:
“+”, “-”, “*”, “/”, “%”, where each symbol indicates a particular operation.
Operands must follow the type conventions. The command displays the
result or the string Error.

or with a graphical interface that provides a display with 12 characters and the
following keys:

0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , the 10 digits

+ , - , * , / , % , the operations

= to display the result of a sequence of operations

C , to clear display

M , M+ , MS , MR , MC , where M is pressed before a digit to indicate
the target memory, 0. . . 9, keys M+ , MS , MR , MC pressed after
M and a digit indicate the operation to be performed on the target memory:

add display to memory, store display in memory, restore memory, i.e.,
move the value in memory to the display and clear memory.
Example: 5 + 1 0 M 3 MS 8 0 - M 3 MR = prints 65
(the value 15 is stored in memory cell 3 and then retrieved to compute 80 -
15).

Courtesy Pre-print for U. Toronto 2007/1

