
Chapter 16

Fault-Based Testing

A model of potential program faults is a valuable source of information for evaluat-
ing and designing test suites. Some fault knowledge is commonly used in functional
and structural testing, for example when identifying singleton and error values for pa-
rameter characteristics in category partition testing, or when populating catalogs with
erroneous values, but a fault model can also be used more directly. Fault-based testing
uses a fault model directly to hypothesize potential faults in a program under test, and
to create or evaluate test suites based on its efficacy in detecting those hypothetical
faults.

Required Background

• Chapter 9:
The introduction to test case selection and adequacy sets the context for this
chapter. It is not strictly required, but is helpful in understanding how the tech-
niques described in this chapter should be applied.

• Chapter 12:
Some basic knowledge of structural testing criteria is required to understand the
comparison of fault-based with structural testing criteria.

16.1 Overview

Engineers study failures to understand how to prevent similar failures in the future. For
example, failure of the Tacoma Narrows Bridge led to new understanding of oscillation
in high wind, and the introduction of analyses to predict and prevent such destructive
oscillation in subsequent bridge design. The causes of an airline crash are likewise
extensively studied, and when traced to a structural failure they frequently result in a
directive to apply diagnostic tests to all aircraft considered potentially vulnerable to
similar failures.

315

Courtesy Pre-print for U. Toronto 2007/1

316 Fault-Based Testing

Experience with common software faults sometimes leads to improvements in de-
sign methods and programming languages. For example, the main purpose of auto-
matic memory management in Java is not to spare the programmer the trouble of
releasing unused memory, but to prevent the programmer from making the kind of
memory management errors (dangling pointers, redundant deallocations, and memory
leaks) that frequently occur in C and C++ programs. Automatic array bounds checking
cannot prevent a programmer from using an index expression outside array bounds,
but can make it much less likely that the fault escapes detection in testing, as well as
limiting the damage incurred if it does lead to operational failure (eliminating, in par-
ticular, the buffer overflow attack as a means of subverting privileged programs). Type
checking reliably detects many other faults during program translation.

Of course, not all programmer errors fall into classes that can be prevented or stat-
ically detected using better programming languages. Some faults must be detected
through testing, and there too we can use knowledge about common faults to be more
effective.

The basic concept of fault-based testing is to select test cases that would distinguish
the program under test from alternative programs that contain hypothetical faults. This
is usually approached by modifying the program under test to actually produce the
hypothetical faulty programs. Fault seeding can be used to evaluate the thoroughness
of a test suite (that is, as an element of a test adequacy criterion), or for selecting test
cases to augment a test suite, or to estimate the number of faults in a program.

16.2 Assumptions in Fault-Based Testing

The effectiveness of fault-based testing depends on the quality of the fault model, and
on some basic assumptions about the relation of the seeded faults to faults that might
actually be present. In practice the seeded faults are small syntactic changes, like
replacing one variable reference by another in an expression, or changing a comparison
from < to <=. We may hypothesize that these are representative of faults actually
present in the program.

Put another way, if the program under test has an actual fault, we may hypothe-
size that it differs from another, corrected program by only a small textual change. If
so, then we need merely distinguish the program from all such small variants (by se-
lecting test cases for which either the original or the variant program fails) to ensure∆ competent

programmer
hypothesis

detection of all such faults. This is known as the competent programmer hypothesis, an
assumption that the program under test is “close to” (in the sense of textual difference)
a correct program.

Some program faults are indeed simple typographical errors, and others that in-
volve deeper errors of logic may nonetheless be manifest in simple textual differences.
Sometimes, though, an error of logic will result in much more complex differences in
program text. This may not invalidate fault-based testing with a simpler fault model,
provided test cases sufficient for detecting the simpler faults are sufficient also for∆ coupling effect

hypothesis detecting the more complex fault. This is known as the coupling effect.
The coupling effect hypothesis may seem odd, but can be justified by appeal to a

more plausible hypothesis about interaction of faults. A complex change is equivalent

Courtesy Pre-print for U. Toronto 2007/1

Mutation Analysis 317

Fault Based Testing: Terminology
Original program: The program unit (e.g., C function or Java class) to be tested.

Program location: A region in the source code. The precise definition is defined rel-
ative to the syntax of a particular programming language. Typical locations are
statements, arithmetic and boolean expressions, and procedure calls.

Alternate expression: Source code text that can be legally substituted for the text at a
program location. A substitution is legal if the resulting program is syntactically
correct (i.e., it compiles without errors).

Alternate program: A program obtained from the original program by substituting
an alternate expression for the text at some program location.

Distinct behavior of an alternate program R for a test t: The behavior of an alter-
nate program R is distinct from the behavior of the original program P for a test
t, if R and P produce a different result for t, or if the output of R is not defined
for t.

Distinguished set of alternate programs for a test suite T : A set of alternate pro-
grams are distinct if each alternate program in the set can be distinguished from
the original program by at least one test in T .

to several smaller changes in program text. If the effect of one of these small changes
is not masked by the effect of others, then a test case that differentiates a variant based
on a single change may also serve to detect the more complex error.

Fault-based testing can guarantee fault detection only if the competent programmer
hypothesis and the coupling effect hypothesis hold. But guarantees are more than we
expect from other approaches to designing or evaluating test suites, including the struc-
tural and functional test adequacy criteria discussed in earlier chapters. Fault-based
testing techniques can be useful even if we decline to take the leap of faith required
to fully accept their underlying assumptions. What is essential is to recognize the
dependence of these techniques, and any inferences about software quality based on
fault-based testing, on the quality of the fault model. This also implies that developing
better fault models, based on hard data about real faults rather than guesses, is a good
investment of effort.

16.3 Mutation Analysis

Mutation analysis is the most common form of software fault-based testing. A fault
model is used to produce hypothetical faulty programs by creating variants of the pro-
gram under test. Variants are created by “seeding” faults, that is, by making a small
change to the program under test following a pattern in the fault model. The patterns ∆ mutation

operatorfor changing program text are called mutation operators, and each variant program is
∆ mutantcalled a mutant.

Courtesy Pre-print for U. Toronto 2007/1

318 Fault-Based Testing

Mutation Analysis: Terminology
Original program under test: The program or procedure (function) to be tested.

Mutant: A program that differs from the original program for one syntactic element,
e.g., a statement, a condition, a variable, a label, etc.

Distinguished mutant: A mutant that can be distinguished for the original program
by executing at least one test case.

Equivalent mutant: A mutant that cannot be distinguished from the original program.

Mutation operator: A rule for producing a mutant program by syntactically modify-
ing the original program.

Mutants should be plausible as faulty programs. Mutant programs that are rejected
by a compiler, or which fail almost all tests, are not good models of the faults we seek
to uncover with systematic testing. We say a mutant is valid if it is syntactically∆ valid mutant

correct. We say a mutant is useful if, in addition to being valid, its behavior differs∆ useful mutant

from the behavior of the original program for no more than a small subset of program
test cases.

A mutant obtained from the program of Figure 16.1 by substituting while for switch
in the statement at line 13 would not be valid, since it would result in a compile-time
error. A mutant obtained by substituting 1000 for 0 in the statement at line 4 would be
valid, but not useful, since the mutant would be distinguished from the program under
test by all inputs and thus would not give any useful information on the effectiveness
of a test suite. Defining mutation operators that produce valid and useful mutations is
a non-trivial task.

Since mutants must be valid, mutation operators are syntactic patterns defined rela-
tive to particular programming languages. Figure 16.2 shows some mutation operators
for the C language. Constraints are associated with mutation operators to guide selec-
tion of test cases likely to distinguish mutants from the original program. For example,
the mutation operator svr (scalar variable replacement) can be applied only to variables
of compatible type (to be valid), and a test case that distinguishes the mutant from the
original program must execute the modified statement in a state in which the original
variable and its substitute have different values.

Many of the mutants of Figure 16.2 can be applied equally well to other procedural
languages, but in general a mutation operator that produces valid and useful mutants
for a given language may not apply to a different language or may produce invalid or
useless mutants for another language. For example, a mutation operator that removes
the “friend” keyword from the declaration of a C++ class would not be applicable to
Java, which does not include friend classes.

Courtesy Pre-print for U. Toronto 2007/1

Mutation Analysis 319

1

2 /** Convert each line from standard input */
3 void transduce() {
4 #define BUFLEN 1000
5 char buf[BUFLEN]; /* Accumulate line into this buffer */
6 int pos = 0; /* Index for next character in buffer */
7

8 char inChar; /* Next character from input */
9

10 int atCR = 0; /* 0=”within line”, 1=”optional DOS LF” */
11

12 while ((inChar = getchar()) != EOF) {
13 switch (inChar) {
14 case LF:
15 if (atCR) { /* Optional DOS LF */
16 atCR = 0;
17 } else { /* Encountered CR within line */
18 emit(buf, pos);
19 pos = 0;
20 }
21 break;
22 case CR:
23 emit(buf, pos);
24 pos = 0;
25 atCR = 1;
26 break;
27 default:
28 if (pos >= BUFLEN-2) fail("Buffer overflow");
29 buf[pos++] = inChar;
30 } /* switch */
31 }
32 if (pos > 0) {
33 emit(buf, pos);
34 }
35 }

Figure 16.1: Program transduce converts line endings among Unix, DOS, and Macin-
tosh conventions. The main procedure, which selects the output line end convention,
and the output procedure emit are not shown.

Courtesy Pre-print for U. Toronto 2007/1

320 Fault-Based Testing

id operator description constraint

Operand Modifications
crp constant for constant replacement replace constant C1 with constant C2 C1 6= C2
scr scalar for constant replacement replace constant C with scalar variable X C 6= X
acr array for constant replacement replace constant C with array reference

A[I]
C 6= A[I]

scr struct for constant replacement replace constant C with struct field S C 6= S
svr scalar variable replacement replace scalar variable X with a scalar

variable Y
X 6= Y

csr constant for scalar variable replacement replace scalar variable X with a constant
C

X 6= C

asr array for scalar variable replacement replace scalar variable X with an array
reference A[I]

X 6= A[I]

ssr struct for scalar replacement replace scalar variable X with struct field
S

X 6= S

vie scalar variable initialization elimination remove initialization of a scalar variable
car constant for array replacement replace array reference A[I] with constant

C
A[I] 6= C

sar scalar for array replacement replace array reference A[I] with scalar
variable X

A[I] 6= X

cnr comparable array replacement replace array reference with a compara-
ble array reference

sar struct for array reference replacement replace array reference A[I] with a struct
field S

A[I] 6= S

Expression Modifications
abs absolute value insertion replace e by abs(e) e < 0
aor arithmetic operator replacement replace arithmetic operator ψ with arith-

metic operator φ

e1ψe2 6= e1φe2

lcr logical connector replacement replace logical connector ψ with logical
connector φ

e1ψe2 6= e1φe2

ror relational operator replacement replace relational operator ψ with rela-
tional operator φ

e1ψe2 6= e1φe2

uoi unary operator insertion insert unary operator
cpr constant for predicate replacement replace predicate with a constant value

Statement Modifications
sdl statement deletion delete a statement
sca switch case replacement replace the label of one case with another
ses end block shift move } one statement earlier and later

Figure 16.2: A sample set of mutation operators for the C language, with associated constraints to select
test cases that distinguish generated mutants from the original program.

Courtesy Pre-print for U. Toronto 2007/1

Fault-Based Adequacy Criteria 321

16.4 Fault-Based Adequacy Criteria

Given a program and a test suite T , mutation analysis consists of the following steps:

Select mutation operators: If we are interested in specific classes of faults, we may
select a set of mutation operators relevant to those faults.

Generate mutants: Mutants are generated mechanically by applying mutation opera-
tors to the original program.

Distinguish mutants: Execute the original program and each generated mutant with
the test cases in T . A mutant is killed when it can be distinguished from the
original program.

Figure 16.3 shows a sample of mutants for program Transduce, obtained by apply-
ing the mutant operators in Figure 16.2. Test suite T S

T S = {1U,1D,2U,2D,2M,End,Long}

kills M j, which can be distinguished from the original program by test cases 1D, 2U ,
2D, and 2M. Mutants Mi, Mk, and Ml are not distinguished from the original program
by any test in T S. We say that mutants not killed by a test suite are live. live mutants

A mutant can remain live for two reasons:

• The mutant can be distinguished from the original program, but the test suite
T does not contain a test case that distinguishes them, i.e., the test suite is not
adequate with respect to the mutant.

• The mutant cannot be distinguished from the original program by any test case,
i.e., the mutant is equivalent to the original program.

Given a set of mutants SM and a test suite T , the fraction of non-equivalent mutants
killed by T measures the adequacy of T with respect to SM. Unfortunately, the problem
of identifying equivalent mutants is undecidable in general, and we could err either by
claiming that a mutant is equivalent to the program under test when it is not, or by
counting some equivalent mutants among the remaining live mutants.

The adequacy of the test suite T S evaluated with respect to the four mutants of
Figure 16.3 is 25%. However, we can easily observe that mutant Mi is equivalent to
the original program, i.e., no input would distinguish it. Conversely, mutants Mk and
Ml seems to be non-equivalent to the original program, i.e., there should be at least one
test case that distinguishes each of them from the original program. Thus the adequacy
of T S, measured after eliminating the equivalent mutant Mi, is 33%.

Mutant Ml is killed by test case Mixed, which represents the unusual case of an
input file containing both DOS- and Unix-terminated lines. We would expect that
Mixed would kill also Mk, but this does not actually happen: both Mk and the original
program produce the same result for Mixed. This happens because both the mutant and
the original program fail in the same way.1 The use of a simple oracle for checking

1The program was in regular use by one of the authors and was believed to be correct. Discovery of the
fault came as a surprise while using it as an example for this chapter.

Courtesy Pre-print for U. Toronto 2007/1

322 Fault-Based Testing

Original/
ID Operator line Mutant 1U 1D 2U 2D 2M End Long Mixed
Mi ror 28 (pos >= BUFLEN-2)

(pos == BUFLEN-2)
- - - - - - - -

M j ror 32 (pos > 0)
(pos >= 0

- x x x x - - -

Mk sdl 16 atCR = 0
nothing

- - - - - - - -

Ml ssr 16 atCR = 0
pos = 0

- - - - - - - x

Test case Description
1U One line, Unix line-end
1D One line, DOS line-end
2U Two lines, Unix line-end
2D Two lines, DOS line-end

Test case Description
2M Two lines, Mac line-end
End Last line not terminated with line-end sequence
Long Very long line (greater than buffer length)
Mixed Mix of DOS and Unix line ends in the same file

Figure 16.3: A sample set of mutants for program Transduce generated with mutation operators from
Figure 16.2.

the correctness of the outputs (e.g., checking each output against an expected output)
would reveal the fault. The test suite T S2 obtained by adding test case Mixed to T S
would by 100% adequate (relative to this set of mutants) after removing the fault.

16.5 Variations on Mutation Analysis

The mutation analysis process described above, which kills mutants based on the out-
puts produced by execution of test cases, is known as strong mutation. It can generate a
number of mutants quadratic in the size of the program. Each mutant must be compiled
and executed with each test case until it is killed. The time and space required for com-
piling all mutants and for executing all test cases for each mutant may be impractical.

The computational effort required for mutation analysis can be reduced by reducing
the number of mutants generated and the number of test cases to be executed. Weak
mutation analysis reduces the number of tests to be executed by killing mutants when
they produce a different intermediate state, rather than waiting for a difference in the
final result or observable program behavior.weak mutation

analysis With weak mutation, a single program can be seeded with many faults. A “meta-
mutant” program is divided into segments containing original and mutated source code,
with a mechanism to select which segments to execute. Two copies of the meta-mutant
are executed in tandem, one with only original program code selected, and the other
with a set of live mutants selected. Execution is paused after each segment to compare
the program state of the two versions. If the state is equivalent, execution resumes with
the next segment of original and mutated code. If the state differs, the mutant is marked
as dead, and execution of original and mutated code is restarted with a new selection

Courtesy Pre-print for U. Toronto 2007/1

Variations on Mutation Analysis 323

Mutation Analysis vs Structural Testing
For typical sets of syntactic mutants, a mutation-adequate test suite will also be

adequate with respect to simple structural criteria such as statement or branch coverage.
Mutation adequacy can simulate and subsume a structural coverage criterion if the set
of mutants can be killed only by satisfying the corresponding test coverage obligations.

Statement coverage can be simulated by applying the mutation operator sdl (state-
ment deletion) to each statement of a program. To kill a mutant whose only difference
from the program under test is the absence of statement S requires executing the mu-
tant and the program under test with a test case that executes S in the original program.
Thus to kill all mutants generated by applying the operator sdl to statements of the
program under test, we need a test suite that causes the execution of each statement in
the original program.

Branch coverage can be simulated by applying the operator cpr (constant for pred-
icate replacement) to all predicates of the program under test with constants True and
False . To kill a mutant that differs from the program under test for a predicate P set
to the constant value False , we need to execute the mutant and the program under test
with a test case that causes the execution of the True branch of P. To kill a mutant that
differs from the program under test for a predicate P set to the constant value True , we
need to execute the mutant and the program under test with a test case that causes the
execution of the False branch of P.

A test suite that satisfies a structural test adequacy criterion may or may not kill
all the corresponding mutants. For example, a test suite that satisfies the statement
coverage adequacy criterion might not kill an sdl mutant if the value computed at the
statement does not effect the behavior of the program on some possible executions.

Courtesy Pre-print for U. Toronto 2007/1

324 Fault-Based Testing

of live mutants.
Weak mutation testing does not decrease the number of program mutants that must

be considered, but it decreases the number of test executions and compilations. This
performance benefit has a cost in accuracy: weak mutation analysis may “kill” a mutant
even if the changed intermediate state would not have an effect on the final output or
observable behavior of the program.

Like structural test adequacy criteria, mutation analysis can be used either to judge
the thoroughness of a test suite or to guide selection of additional test cases. If one is
designing test cases to kill particular mutants, then it may be important to have a com-
plete set of mutants generated by a set of mutation operators. If, on the other hand, the
goal is a statistical estimate of the extent to which a test suite distinguishes programs
with seeded faults from the original program, then only a much smaller statistical sam-
ple of mutants is required. Aside from its limitation to assessment rather than creationstatistical mutation

analysis of test suites, the main limitation of statistical mutation analysis is that partial coverage
is meaningful only to the extent that the generated mutants are a valid statistical model
of occurrence frequencies of actual faults. To avoid reliance on this implausible as-
sumption, the target coverage should be 100% of the sample; statistical sampling may
keep the sample small enough to permit careful examination of equivalent mutants.

Fault seeding can be used statistically in another way: To estimate the number of
faults remaining in a program. Usually we know only the number of faults that have
been detected, and not the number that remains. However, again to the extent that the
fault model is a valid statistical model of actual fault occurrence, we can estimate that
the ratio of actual faults found to those still remaining should be similar to the ratio of
seeded faults found to those still remaining.

Once again, the necessary assumptions are troubling, and one would be unwise
to place too much confidence in an estimate of remaining faults. None the less, a
prediction with known weaknesses is better than a seat-of-the-pants guess, and a set of
estimates derived in different ways is probably the best that one can hope for.

While the focus of this chapter is on fault-based testing of software, related tech-
niques can be applied to whole systems (hardware and software together) to evaluate
fault tolerance. Some aspects of fault-based testing of hardware are discussed in the
sidebar on page 326.

Open research issues

Fault-based testing has yet to be widely applied in software development, although it
is an important research tool for evaluating other test selection techniques. Its limited
impact on software practice so far can be blamed perhaps partly on computational
expense, and partly on the lack of adequate support by industrial strength tools.

One promising direction in fault-based testing is development of fault models for
particular classes of faults. These could result in more sharply focused fault-based
techniques, and also partly address concerns about the extent to which the fault models
conventionally used in mutation testing are representative of real faults. Two areas

Courtesy Pre-print for U. Toronto 2007/1

Variations on Mutation Analysis 325

Estimating population sizes
Counting fish Lake Winnemunchie is inhabited by two kinds of fish, a native brown
trout and an introduced species of chub. The Fish and Wildlife Service wish to esti-
mate the populations to evaluate their efforts to eradicate the chub without harming the
population of native trout.

The population of chub can be estimated statistically as follows. 1000 chub are
netted, their dorsal fins are marked by attaching a tag, then they are released back into
the lake. Over the next weeks, fishermen are asked to report the number of tagged and
untagged chub caught. If 50 tagged chub and 300 untagged chub are caught, we can
calculate

1000
untagged chub population

=
50

300

and thus there are about 6000 untagged chub remaining in the lake.
It may be tempting to also ask fishermen to report the number of trout caught, and

to perform a similar calculation to estimate the ratio between chub and trout. However,
this would only be valid if trout and chub are equally easy to catch, or if one can adjust
the ratio using a known model of trout and chub vulnerability to fishing.
Counting residual faults A similar procedure can be used to estimate the number of
faults in a program: Seed a given number S of faults in the program. Test the program
with some test suite and count the number of revealed faults. Measure the number of
seeded faults detected, DS, and also the number of natural faults DN detected. Esti-
mate the total number of faults remaining in the program, assuming the test suite is as
effective at finding natural faults as it is at finding seeded faults, using the formula

S
total natural faults

=
DS

DN

If we estimate the number of faults remaining in a program by determining the
proportion of seeded faults detected, we must be wary of the pitfall of estimating trout
population by counting chub. The seeded faults are chub, the real faults are trout,
and we must either have good reason for believing the seeded faults are no easier to
detect than real remaining faults, or else make adequate allowances for uncertainty.
The difference is that we cannot avoid the problem by repeating the process with trout
— once a fault has been detected, our knowledge of its presence cannot be erased. We
depend, therefore, on a very good fault model, so that the chub are as representative
as possible of trout. Of course, if we use special bait for chub, or design test cases to
detect particular seeded faults, then statistical estimation of the the total population of
fish or errors cannot be justified.

Courtesy Pre-print for U. Toronto 2007/1

326 Fault-Based Testing

Hardware fault-based testing
Fault based testing is widely used for semiconductor and hardware system valida-

tion and evaluation, both for evaluating the quality of test suites and for evaluating fault
tolerance.

Semiconductor testing has conventionally been aimed at detecting random errors in
fabrication, rather than design faults. Relatively simple fault models have been devel-
oped for testing semiconductor memory devices, the prototypical faults being “stuck-
at-0” and “stuck-at-1” (a gate, cell, or pin that produces the same logical value re-
gardless of inputs). A number of more complex fault models have been developed for
particular kinds of semiconductor devices, e.g., failures of simultaneous access in dual-
port memories. A test vector (analogous to a test suite for software) can be judged by
the number of hypothetical faults it can detect, as a fraction of all possible faults under
the model.

Fabrication of a semiconductor device, or assembly of a hardware system, is more
analogous to copying disk images than to programming. The closest analogue of soft-
ware is not the hardware device itself, but its design — in fact a high-level design of
a semiconductor device is essentially a program in a language that is compiled into
silicon. Test and analysis of logic device designs faces the same problems as test and
analysis of software, including the challenge of devising fault models. Hardware de-
sign verification also faces the added problem that it is much more expensive to replace
faulty devices that have been delivered to customers than to deliver software patches.

In evaluation of fault tolerance in hardware, the usual approach is to modify the
state or behavior rather than the system under test. Due to a difference in terminol-
ogy between hardware and software testing, the corruption of state or modification
of behavior is called a “fault,” and artificially introducing it is called “fault injection.”
Pin-level fault injection consists of forcing a stuck-at-0, a stuck-at-1, or an intermediate
voltage level (a level that is neither a logical 0 nor a logical 1) on a pin of a semicon-
ductor device. Heavy ion radiation is also used to inject random faults in a running
system. A third approach, growing in importance as hardware complexity increases,
uses software to modify the state of a running system, or to simulate faults in a running
simulation of hardware logic design.

Courtesy Pre-print for U. Toronto 2007/1

Variations on Mutation Analysis 327

in which researchers have attempted to develop focused models, expressed as sets of
mutation operators, are component interfaces and concurrency constructs.

Particularly important is development of fault models based on actual, observed
faults in software. These are almost certainly dependent on application domain and
perhaps to some extent vary also across software development organizations, but there
is too little empirical evidence available now on the degree of variability.

Further Reading

Software testing using fault seeding was developed by Hamlet [Ham77] and indepen-
dently by DeMillo, Lipton, and Sayward [DLS78]. Underlying theory for fault-based
testing, and in particular on the conditions under which a test case can distinguish faulty
and correct versions of a program, were developed by Morell [Mor90] and extended
by Thompson, Richardson, and Clarke [TRC93]. Statistical mutation using a Bayesian
approach to grow the sample until sufficient evidence has been collected has been de-
scribed by Sahinoglu and Spafford [SS90]. Weak mutation was proposed by Howden
[How82]. The sample mutation operators used in this chapter are adapted from the
Mothra software testing environment [DKMO88].

Exercises

16.1. Consider the following C function, used to determine whether a misspelled word
differs from a dictionary word by at most one character, which may be a deletion,
an insertion, or a substitution (e.g., “text” is edit distance 1 from “test” by a
substitution, and edit distance 1 from “tests” by deletion of “s”).

1

2 /* edit1(s1, s2) returns TRUE iff s1 can be transformed to s2
3 * by inserting, deleting, or substituting a single character, or
4 * by a no-op (i.e., if they are already equal).
5 */
6 int edit1(char *s1, char *s2) {
7 if (*s1 == 0) {
8 if (*s2 == 0) return TRUE;
9 /* Try inserting a character in s1 or deleting in s2 */

10 if (*(s2 + 1) == 0) return TRUE;
11 return FALSE;
12 }
13 if (*s2 == 0) { /* Only match is by deleting last char from s1 */
14 if (*(s1 + 1) == 0) return TRUE;
15 return FALSE;
16 }
17 /* Now we know that neither string is empty */
18 if (*s1 == *s2) {
19 return edit1(s1 +1, s2 +1);

Courtesy Pre-print for U. Toronto 2007/1

328 Fault-Based Testing

20 }
21

22 /* Mismatch; only dist 1 possibilities are identical strings after
23 * inserting, deleting, or substituting character
24 */
25

26 /* Substitution: We ”look past” the mismatched character */
27 if (strcmp(s1+1, s2+1) == 0) return TRUE;
28 /* Deletion: look past character in s1 */
29 if (strcmp(s1+1, s2) == 0) return TRUE;
30 /* Insertion: look past character in s2 */
31 if (strcmp(s1, s2+1) == 0) return TRUE;
32 return FALSE;
33 }

Suppose we seed a fault in line 27, replacing s1 +1 by s1 + 0. Is there a test case
that will kill this mutant using weak mutation, but not using strong mutation?
Display such a test case if there is one, or explain why there is none.

16.2. We have described weak mutation as continuing execution up to the point that a
mutant is killed, then re-starting execution of the original and mutated program
from the beginning. Why doesn’t execution just continue after killing a mutant?
What would be necessary to make continued execution possible?

16.3. Motivate the need for the competent programmer and the coupling effect hy-
potheses. Would mutation analysis still make sense if these hypotheses did not
hold? Why?

16.4. Generate some invalid, valid-but-not-useful, useful, equivalent and non-equivalent
mutants for the program in Figure 16.1 using mutant operators from Figure 16.2.

Courtesy Pre-print for U. Toronto 2007/1

