
Chapter 12

Structural Testing

The structure of the software itself is a valuable source of information for selecting test
cases and determining whether a set of test cases has been sufficiently thorough. We
can ask whether a test suite has “covered” a control flow graph or other model of the
program.1 It is simplest to consider structural coverage criteria as addressing the test
adequacy question: “Have we tested enough.” In practice we will be interested not so
much in asking whether we are done, but in asking what the unmet obligations with
respect to the adequacy criteria suggest about additional test cases that may be needed,
i.e., we will often treat the adequacy criterion as a heuristic for test case selection or
generation. For example, if one statement remains unexecuted despite execution of
all the test cases in a test suite, we may devise additional test cases that exercise that
statement. Structural information should not be used as the primary answer to the
question, “How shall I choose tests,” but it is useful in combination with other test
selection criteria (particularly functional testing) to help answer the question “What
additional test cases are needed to reveal faults that may not become apparent through
black-box testing alone.”

Required Background

• Chapter 5

The material on control flow graphs and related models of program structure is
required to understand this chapter.

• Chapter 9

The introduction to test case adequacy and test case selection in general sets the
context for this chapter. It is not strictly required for understanding this chapter,
but is helpful for understanding how the techniques described in this chapter
should be applied.

1In this chapter we use the term “program” generically for the artifact under test, whether that artifact is
a complete application or an individual unit together with a test harness. This is consistent with usage in the
testing research literature.
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214 Structural Testing

12.1 Overview

Testing can reveal a fault only when execution of the faulty element causes a failure.
For example, if there were a fault in the statement at line 31 of the program in Figure
12.1, it could be revealed only with test cases in which the input string contains the
character % followed by two hexadecimal digits, since only these cases would cause
this statement to be executed. Based on this simple observation, a program has not been
adequately tested if some of its elements have not been executed.2 Control flow testing
criteria are defined for particular classes of elements by requiring the execution of all
such elements of the program. Control flow elements include statements, branches,
conditions, and paths.

Unfortunately, a set of correct program executions in which all control flow ele-
ments are exercised does not guarantee the absence of faults. Execution of a faulty
statement may not always result in a failure. The state may not be corrupted when
the statement is executed with some data values, or a corrupt state may not propagate
through execution to eventually lead to failure. Let us assume for example to have
erroneously typed 6 instead of 16 in the statement at line 31 of the program in Figure
12.1. Test cases that execute the faulty statement with value 0 for variable digit high
would not corrupt the state, thus leaving the fault unrevealed despite having executed
the faulty statement.

The statement at line 26 of the program in Figure 12.1 contains a fault, since vari-
able eptr used to index the input string is incremented twice without checking the size
of the string. If the input string contains a character % in one of the last two positions,
eptr* will point beyond the end of the string when it is later used to index the string.
Execution of the program with a test case where string encoded terminates with char-
acter % followed by at most one character causes the faulty statement to be executed.
However, due to the memory management of C programs, execution of this faulty state-
ment may not cause a failure, since the program will read the next character available
in memory ignoring the end of the string. Thus, this fault may remain hidden during
testing despite having produced an incorrect intermediate state. Such a fault could be
revealed using a dynamic memory checking tool that identifies memory violations.

Control flow testing complements functional testing by including cases that may
not be identified from specifications alone. A typical case is implementation of a single
item of the specification by multiple parts of the program. For example, a good speci-
fication of a table would leave data structure implementation decisions to the program-
mer. If the programmer chooses a hash table implementation, then different portions of
the insertion code will be executed depending on whether there is a hash collision. Se-
lection of test cases from the specification would not ensure that both the collision case
and the non-collision case are tested. Even the simplest control flow testing criterion
would require that both of these cases are tested.

On the other hand, test suites satisfying control flow adequacy criteria could fail in
revealing faults that can be caught with functional criteria. The most notable example
is the class of so called missing path faults. Such faults result from the missing im-

2This is an over-simplification, since some of the elements may not be executed by any possible input.
The issue of infeasible elements is discussed in Section 12.8
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1 #include "hex values.h"
2 /**
3 * @title cgi decode
4 * @desc
5 * Translate a string from the CGI encoding to plain ascii text
6 * ’+’ becomes space, %xx becomes byte with hex value xx,
7 * other alphanumeric characters map to themselves
8 *
9 * returns 0 for success, positive for erroneous input

10 * 1 = bad hexadecimal digit
11 */
12 int cgi decode(char *encoded, char *decoded) {
13 char *eptr = encoded;
14 char *dptr = decoded;

? 15 int ok=0;
? 16 while (*eptr) {

17 char c;
? 18 c = *eptr;

19 /* Case 1: ’+’ maps to blank */
? 20 if (c == ’+’) {
? 21 *dptr = ’ ’;
? 22 } else if (c == ’%’) {

23 /* Case 2: ’%xx’ is hex for character xx */
? 24 int digit high = Hex Values[*(++eptr)];
? 25 int digit low = Hex Values[*(++eptr)];

26 /* Hex Values maps illegal digits to -1 */
? 27 if ( digit high == -1 || digit low == -1 ) {

28 /* *dptr=’?’; */
? 29 ok=1; /* Bad return code */

30 } else {
? 31 *dptr = 16* digit high + digit low;

32 }
33 /* Case 3: All other characters map to themselves */

? 34 } else {
? 35 *dptr = *eptr;

36 }
? 37 ++dptr;
? 38 ++eptr;

39 }
? 40 *dptr = ’\0’; /* Null terminator for string */
? 41 return ok;

42 }

Figure 12.1: The C function cgi decode, which translates a cgi-encoded string to a
plain ASCII string (reversing the encoding applied by the common gateway interface
of most web servers).
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 {char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

char c;
c = *eptr;
if (c == '+') {  

*dptr = ' ';
} 

while (*eptr) {
True

*dptr = '\0';
return ok;
}

False

True

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True

else {
*dptr = 16 * digit_high + 
digit_low;
}

False

++dptr;
++eptr;
}

False

False

 elseif (c == '%') {

else
*dptr = *eptr;
}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

LM

Figure 12.2: Control flow graph of function cgi decode from Figure 12.1
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T0 = { “ ”, “test”, “test+case%1Dadequacy” }
T1 = { “adequate+test%0Dexecution%7U” }
T2 = { “%3D”, “%A”, “a+b”, “test” }
T3 = { “ ”, “+%0D+%4J” }
T4 = { “first+test%9Ktest%K9” }

Table 12.1: Sample test suites for C function cgi decode from Figure 12.1

plementation of some items in the specification. For example, the program in Figure
12.1 transforms all hexadecimal ASCII codes to the corresponding characters. Thus, it
is not a correct implementation of a specification that requires control characters to be
identified and skipped. A test suite designed only to adequately cover the control struc-
ture of the program will not explicitly include test cases to test for such faults, since no
elements of the structure of the program correspond to this feature of the specification.

In practice, control flow testing criteria are used to evaluate the thoroughness of test
suites derived from functional testing criteria, by identifying elements of the programs
not adequately exercised. Unexecuted elements may be due to natural differences be-
tween specification and implementation, or they may reveal flaws of the software or its
development process: inadequacy of the specifications that do not include cases present
in the implementation; coding practice that radically diverges from the specification;
or inadequate functional test suites.

Control flow adequacy can be easily measured with automatic tools. The degree of
control flow coverage achieved during testing is often used as an indicator of progress
and can be used as a criterion of completion of the testing activity3.

12.2 Statement Testing

The most intuitive control flow elements to be exercised are statements, i.e., nodes of
the control flow graph. The statement coverage criterion requires each statement to be
executed at least once, reflecting the idea that a fault in a statement cannot be revealed
without executing the faulty statement.

∆ statement
adequacy
criterion

Let T be a test suite for a program P. T satisfies the statement adequacy criterion
for P, iff, for each statement S of P, there exists at least one test case in T that causes
the execution of S.

This is equivalent to stating that every node in the control flow graph model of
program P is visited by some execution path exercised by a test case in T .

∆ statement
coverageThe statement coverage CStatement of T for P is the fraction of statements of program

P executed by at least one test case in T .

CStatement =
number of executed statements

number of statements
3Application of test adequacy criteria within the testing process is discussed in Chapter 20.
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T satisfies the statement adequacy criterion if CStatement = 1. The ratio of visited
control flow graph nodes to total nodes may differ from the ratio of executed statements
to all statements, depending on the granularity of the control flow graph representation.
Nodes in a control flow graph often represent basic blocks rather than individual state-∆ basic block

coverage ments, and so some standards (notably DOD-178B) refer to basic block coverage, thus
indicating node coverage for a particular granularity of control flow graph. For the
standard control flow graph models discussed in Chapter 5, the relation between cov-
erage of statements and coverage of nodes is monotonic, i.e., if the statement coverage
achieved by test suite T1 is greater than the statement coverage achieved by test suite
T2, then the node coverage is also greater. In the limit, statement coverage is 1 exactly
when node coverage is 1.

Let us consider for example the program of Figure 12.1. The program contains 18
statements. A test suite T0

T0 = {“ ”, “test”, “test+case%1Dadequacy”}

does not satisfy the statement adequacy criterion, because it does not execute statement
ok = 1 at line 29. The test suite T0 results in statement coverage of .94 (17/18), or node
coverage of .91 (10/11) relative to the control flow graph of Figure 12.2. On the other
hand, a test suite with only test case

T1 = {“adequate+test%0Dexecution%7U”}

causes all statements to be executed, and thus satisfies the statement adequacy criterion,
reaching a coverage of 1.

Coverage is not monotone with respect to the size of test suites, i.e., test suites that
contain fewer test cases may achieve a higher coverage than test suites that contain
more test cases. T1 contains only one test case, while T0 contains three test cases, but
T1 achieves a higher coverage than T0. (Test suites used in this chapter are summarized
in Table 12.1.)

Criteria can be satisfied by many test suites of different sizes. A test suite Both T1
and Both T1 and

T2 = {“%3D”, “%A”, “a+b”, “test”}

cause all statements to be executed and thus satisfy the statement adequacy criterion for
program cgi decode, although one consists of a single test case and the other consists
of 4 test cases.

Notice that while we typically wish to limit the size of test suites, in some cases we
may prefer a larger test suite over a smaller suite that achieves the same coverage. A
test suite with fewer test cases may be more difficult to generate or may be less helpful
in debugging. Let us suppose, for example, we omitted the 1 in the statement at line
31 of the program in Figure 12.1. Both test suites T1 and T2 would reveal the fault,
resulting in a failure, but T2 would provide better information for localizing the fault,
since the program fails only for test case “%1D”, the only test case of T2 that exercises
the statement at line 31.
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On the other hand, a test suite obtained by adding test cases to T2 would satisfy the
statement adequacy criterion, but would not have any particular advantage over T2 with
respect to the total effort required to reveal and localize faults. Designing complex
test cases that exercise many different elements of a unit is seldom a good way to
optimize a test suite, although it may occasionally be justifiable when there is large
and unavoidable fixed cost (e.g., setting up equipment) for each test case regardless of
complexity.

Control flow coverage may be measured incrementally while executing a test suite.
In this case, the contribution of a single test case to the overall coverage that has been
achieved depends on the order of execution of test cases. For example, in test suite T2
introduced above, execution of test case “%1D” exercises 16 of the 18 statements of the
program cgi decode, but it exercises only 1 new statement if executed after “%A”. The
increment of coverage due to the execution of a specific test case does not measure the
absolute efficacy of the test case. Measures independent from the order of execution
may be obtained by identifying independent statements. However, in practice we are
only interested in the coverage of the whole test suite, and not in the contribution of
individual test cases.

12.3 Branch Testing

A test suite can achieve complete statement coverage without executing all the possible
branches in a program. Consider, for example, a faulty program cgi decode′ obtained
from program cgi decode by removing line 34. The control flow graph of program
cgi decode′ is shown in Figure 12.3. In the new program there are no statements fol-
lowing the false branch exiting node D. Thus, a test suite that tests only translation
of specially treated characters but not treatment of strings containing other characters
that are copied without change satisfies the statement adequacy criterion, but would not
reveal the missing code in program cgi decode′. For example, a test suite T3

T3 = {“ ”, “+%0D+%4J”}

satisfies the statement adequacy criterion for program cgi decode′ but does not exercise
the false branch from node D in the control flow graph model of the program.

The branch adequacy criterion requires each branch of the program to be executed
by at least one test case.

∆ branch
adequacy
criterion

Let T be a test suite for a program P. T satisfies the branch adequacy criterion
for P, iff, for each branch B of P, there exists at least one test case in T that causes
execution of B.

This is equivalent to stating that every edge in the control flow graph model of
program P belongs to some execution path exercised by a test case in T .

∆ branch
coverageThe branch coverage CBranch of T for P is the fraction of branches of program P

executed by at least one test case in T .

CBranch =
number of executed branches

number of branches
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 {char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

char c;
c = *eptr;
if (c == '+') {  

*dptr = ' ';
} 

while (*eptr) {

True

*dptr = '\0';
return ok;
}

False

True

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True

else {
*dptr = 16 * digit_high + 
digit_low;
}

False

++dptr;
++eptr;
}

False

False

 elseif (c == '%') {

else {
*dptr = *eptr;
}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

LM

Figure 12.3: The control flow graph of function cgi decode′ which is obtained from
the program of Figure 12.1 after removing node F.
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T satisfies the branch adequacy criterion if CBranch = 1.
Test suite T3 achieves branch coverage of .88 since it executes 7 of the 8 branches of

program cgi decode′. Test suite T2 satisfies the branch adequacy criterion, and would
reveal the fault. Intuitively, since traversing all edges of a graph causes all nodes to
be visited, test suites that satisfy the branch adequacy criterion for a program P also
satisfy the statement adequacy criterion for the same program.4 The contrary is not
true, as illustrated by test suite T3 for the program cgi decode′ presented above.

12.4 Condition Testing

Branch coverage is useful for exercising faults in the way a computation has been de-
composed into cases. Condition coverage considers this decomposition in more detail,
forcing exploration not only of both possible results of a boolean expression controlling
a branch, but also of different combinations of the individual conditions in a compound
boolean expression.

Assume, for example, that we have forgotten the first operator ’−’ in the conditional
statement at line 27 resulting in the faulty expression

(digit high == 1 || digit low == -1).

As trivial as this fault seems, it can easily be overlooked if only the outcomes of com-
plete boolean expressions are explored. The branch adequacy criterion can be satisfied,
and both branches exercised, with test suites in which the first comparison evaluates
always to False and only the second is varied. Such tests do not systematically ex-
ercise the first comparison, and will not reveal the fault in that comparison. Condi-
tion adequacy criteria overcome this problem by requiring different basic conditions
of the decisions to be separately exercised. The basic conditions, sometimes also
called elementary conditions, are comparisons, references to boolean variables, and
other boolean-valued expressions whose component sub-expressions are not boolean
values.

The simplest condition adequacy criterion, called basic condition coverage requires
each basic condition to be covered. Each basic condition must have a True and a False
outcome at least once during the execution of the test suite.

∆ basic condition
adequacy
criterion

A test suite T for a program P covers all basic conditions of P, i.e., it satisfies the
basic condition adequacy criterion, iff each basic condition in P has a true outcome in
at least one test case in T and a false outcome in at least one test case in T .

∆ basic condition
coverageThe basic condition coverage CBasic Condition of T for P is the fraction of the to-

tal number of truth values assumed by the basic conditions of program P during the
execution of all test cases in T .

CBasic Condition =
total number of truth values assumed by all basic conditions

2 × number of basic conditions
4We can consider entry and exit from the control flow graph as branches, so that branch adequacy will

imply statement adequacy even for units with no other control flow.
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T satisfies the basic condition adequacy criterion if CBasic Conditions = 1. Notice that
the total number of truth values that the basic conditions can take is twice the number
of basic conditions, since each basic condition can assume value true or false. For
example, the program in Figure 12.1 contains five basic conditions, which in sum may
take ten possible truth values. Three basic conditions correspond to the simple deci-
sions at lines 18, 22, and 24, i.e., decisions that each contain only one basic condition.
Thus they are covered by any test suite that covers all branches. The remaining two
conditions occur in the compound decision at line 27. In this case, test suites T1 and
T3 cover the decisions without covering the basic conditions. Test suite T1 covers the
decision since it has an outcome True for the substring %0D and an outcome False for
the substring %7U of test case “adequate+test%0Dexecution%7U”. However test suite
T1 does not cover the first condition, since it has only outcome True . To satisfy the ba-
sic condition adequacy criterion, we need to add an additional test case that produces
outcome false for the first condition, e.g., test case “basic%K7”.

The basic condition adequacy criterion can be satisfied without satisfying branch
coverage. For example, the test suite

T4 = {“first+test%9Ktest%K9”}

satisfies the basic condition adequacy criterion, but not the branch condition adequacy
criterion, since the outcome of the decision at line 27 is always False . Thus branch and
basic condition adequacy criteria are not directly comparable.

An obvious extension that includes both the basic condition and the branch ad-
equacy criteria is called branch and condition adequacy criterion, with the obvious
definition: A test suite satisfies the branch and condition adequacy criterion if it∆ branch and

condition adequacy satisfies both the branch adequacy criterion and the condition adequacy criterion.
A more complete extension that includes both the basic condition and the branch

adequacy criteria is the compound condition adequacy criterion,5 which requires a∆ compound
condition adequacy test for each possible evaluation of compound conditions. It is most natural to visualize

compound condition adequacy as covering paths to leaves of the evaluation tree for the
expression. For example, the compound condition at line 27 would require covering
the three paths in the following tree:

digit_high == -1

digit_low == 1

true false

FALSE

TRUE

true false

FALSE

Notice that due to the left-to-right evaluation order and short-circuit evaluation of
logical OR expressions in the C language, the value True for the first condition does

5Compound condition adequacy is also know as multiple condition coverage
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not need to be combined with both values False and True for the second condition. The
number of test cases required for compound condition adequacy can, in principle, grow
exponentially with the number of basic conditions in a decision (all 2N combinations
of N basic conditions), which would make compound condition coverage impractical
for programs with very complex conditions. Short circuit evaluation is often effective
in reducing this to a more manageable number, but not in every case. The number of
test cases required to achieve compound condition coverage even for expressions built
from N basic conditions combined only with short-circuit boolean operators like the
&& and || of C and Java can still be exponential in the worst case.

Consider the number of cases required for compound condition coverage of the
following two boolean expressions, each with five basic conditions. For the expression
a && b && c && d && e, compound condition coverage requires:

Test Case a b c d e
(1) True True True True True
(2) True True True True False
(3) True True True False –
(4) True True False – –
(5) True False – – –
(6) False – – – –

For the expression (((a || b) && c) || d) && e, however, compound
condition adequacy requires many more combinations:

Test Case a b c d e
(1) True – True – True
(2) False True True – True
(3) True – False True True
(4) False True False True True
(5) False False – True True
(6) True – True – False
(7) False True True – False
(8) True – False True False
(9) False True False True False

(10) False False – True False
(11) True – False False –
(12) False True False False –
(13) False False – False –

An alternative approach that can be satisfied with the same number of test cases
for boolean expressions of a given length regardless of short-circuit evaluation is the
modified condition/decision coverage or MCDC, also known as the modified condition
adequacy criterion. The modified condition/decision criterion requires that each ∆ modified condi-

tion/decision
coverage
(MCDC)

basic condition be shown to independently affect the outcome of each decision. That
is, for each basic condition C, there are two test cases in which the truth values of all
evaluated conditions except C are the same, and the compound condition as a whole
evaluates to True for one of those test cases and False for the other. The modified
condition adequacy criterion can be satisfied with N +1 test cases, making it an attrac-
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tive compromise between number of required test cases and thoroughness of the test.
It is required by important quality standards in aviation, including RTCA/DO-178B,
“Software Considerations in Airborne Systems and Equipment Certification,” and its
European equivalent EUROCAE ED-12B.

Recall the expression (((a || b) && c) || d) && e, which required 13
different combinations of condition values for compound condition adequacy. For
modified condition/decision adequacy, only 6 combinations are required. Here they
have been numbered for easy comparison with the previous table:

a b c d e Decision
(1) True – True – True True
(2) False True True – True True
(3) True – False True True True
(6) True – True – False False

(11) True – False False – False
(13) False False – False – False

The values underlined in the table independently affect the outcome of the decision.
Note that the same test case can cover the values of several basic conditions. For
example, test case (1) covers value True for the basic conditions a, c and e. Note also
that this is not the only possible set of test cases to satisfy the criterion; a different
selection of boolean combinations could be equally effective.

12.5 Path Testing

Decision and condition adequacy criteria force consideration of individual program de-
cisions. Sometimes, though, a fault is revealed only through exercise of some sequence
of decisions, i.e., a particular path through the program. It is simple (but impractical,
as we will see) to define a coverage criterion based on complete paths rather than indi-
vidual program decisions

∆ path adequacy
criterion A test suite T for a program P satisfies the path adequacy criterion iff, for each path

p of P, there exists at least one test case in T that causes the execution of p.

This is equivalent to stating that every path in the control flow graph model of
program P is exercised by a test case in T .

∆ path coverage
The path coverage CPath of T for P is the fraction of paths of program P executed

by at least one test case in T .

CPath =
number of executed paths

number of paths

Unfortunately, the number of paths in a program with loops is unbounded, so this
criterion cannot be satisfied for any but the most trivial programs. For program with
loops, the denominator in the computation of the path coverage becomes infinite, and
thus path coverage is zero no matter how many test cases are executed.
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Figure 12.4: Deriving a tree from a control flow graph to derive sub-paths for bound-
ary/interior testing. Part (i) is the control flow graph of the C function cgi decode,
identical to Figure 12.1 but showing only node identifiers without source code. Part
(ii) is a tree derived from part (i) by following each path in the control flow graph up
to the first repeated node. The set of paths from the root of the tree to each leaf is the
required set of sub-paths for boundary/interior coverage.

To obtain a practical criterion, it is necessary to partition the infinite set of paths
into a finite number of classes, and require only that representatives from each class be
explored. Useful criteria can be obtained by limiting the number of paths to be covered.
Relevant subsets of paths to be covered can be identified by limiting the number of
traversals of loops, the length of the paths to be traversed, or the dependencies among
selected paths.

The boundary interior criterion groups together paths that differ only in the sub-
path they follow when repeating the body of a loop. ∆ boundary

interior criterionFigure 12.4 illustrates how the classes of sub-paths distinguished by the boundary
interior coverage criterion can be represented as paths in a tree derived by “unfolding”
the control flow graph of function cgi decode.

Figure 12.5 illustrates a fault that may not be uncovered using statement or decision
testing, but will assuredly be detected if the boundary interior path criterion is satisfied.
The program fails if the loop body is executed exactly once, i.e., if the search key occurs
in the second position in the list.

Although the boundary/interior coverage criterion bounds the number of paths that
must be explored, that number can grow quickly enough to be impractical. The number
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1 typedef struct cell {
2 itemtype itemval;
3 struct cell *link;
4 } *list;
5 #define NIL ((struct cell *) 0)
6

7 itemtype search( list *l, keytype k)
8 {
9 struct cell *p = *l;

10 struct cell *back = NIL;
11

12 /* Case 1: List is empty */
13 if (p == NIL) {
14 return NULLVALUE;
15 }
16

17 /* Case 2: Key is at front of list */
18 if (k == p->itemval) {
19 return p->itemval;
20 }
21

22 /* Default: Simple (but buggy) sequential search */
23 p=p->link;
24 while (1) {
25 if (p == NIL) {
26 return NULLVALUE;
27 }
28 if (k==p->itemval) { /* Move to front */
29 back->link = p->link;
30 p->link = *l;
31 *l = p;
32 return p->itemval;
33 }
34 back=p; p=p->link;
35 }
36 }

Figure 12.5: A C function for searching and dynamically rearranging a linked list,
excerpted from a symbol table package. Initialization of the back pointer is missing,
causing a failure only if the search key is found in the second position in the list.
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itemtype search( list *l, keytype k)

 { struct cell *p = *l;
  struct cell *back = NIL;
  if (p == NIL) {

A
True

   return NULLVALUE;
}

B

  if (k == p->itemval) { C

False

True

  return p->itemval;
} 

D
  back = p;
  p = p->link;

E

False

  while (1) { F

{ struct cell *p = *l;
  struct cell *back = NIL;
  if (p == NIL) {

G
True

   return NULLVALUE;
}

H

  if (k == p->itemval) { I
False

True

  back->link = p->link;
  p->link = *l;
  *l = p;
  return p->itemval;

J
  back = p;  
  p = p->link;

K

False

Figure 12.6: The control flow graph of C function search with move-to-front feature.
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Figure 12.7: The boundary/interior sub-paths for C function search.

of sub-paths that must be covered can grow exponentially in the number of statements
and control flow graph nodes, even without any loops at all. Consider for example the
following pseudocode:

if (a) {
S1;

}
if (b) {

S2;
}
if (c) {

S3;
}

...
if (x) {

Sn;
}

The sub-paths through this control flow can include or exclude each of the state-
ments Si, so that in total N branches result in 2N paths that must be traversed. Moreover,
choosing input data to force execution of one particular path may be very difficult, or
even impossible if the conditions are not independent.6

Since coverage of non-looping paths is expensive, we can consider a variant of

6Section 12.8 below discusses infeasible paths.
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the boundary/interior criterion that treats loop boundaries similarly but is less stringent
with respect to other differences among paths.

∆ loop boundary
adequacy
criterion

A test suite T for a program P satisfies the loop boundary adequacy criterion iff,
for each loop l in P,

• In at least one execution, control reaches the loop and then the loop control
condition evaluates to False the first time it is evaluated.7

• In at least one execution, control reaches the loop and then the body of the loop
is executed exactly once before control leaves the loop.

• In at least one execution, the body of the loop is repeated more than once.

One can define several small variations on the loop boundary criterion. For ex-
ample, we might excuse from consideration loops that are always executed a definite
number of times (e.g., multiplication of fixed-size transformation matrices in a graphics
application). In practice we would like the last part of the criterion to be “many times
through the loop” or “as many times as possible,” but it is hard to make that precise
(how many is “many?”).

It is easy enough to define such a coverage criterion for loops, but how can we
justify it? Why should we believe that these three cases — zero times through, once
through, and several times through — will be more effective in revealing faults than,
say, requiring an even and an odd number of iterations? The intuition is that the loop
boundary coverage criteria reflect a deeper structure in the design of a program. This
can be seen by their relation to the reasoning we would apply if we were trying to
formally verify the correctness of the loop. The basis case of the proof would show
that the loop is executed zero times only when its postcondition (what should be true
immediately following the loop) is already true. We would also show that an invariant
condition is established on entry to the loop, that each iteration of the loop maintains
this invariant condition, and that the invariant together with the negation of the loop
test (i.e., the condition on exit) implies the postcondition. The loop boundary criterion
does not require us to explicitly state the precondition, invariant, and postcondition, but
it forces us to exercise essentially the same cases that we would analyze in a proof.

There are additional path-oriented coverage criteria that do not explicitly consider
loops. Among these are criteria that consider paths up to a fixed length. The most
common such criteria are based on Linear Code Sequence and Jump (LCSAJ). An ∆ linear code

sequence and
jump (LCSAJ)

LCSAJ is defined as a body of code through which the flow of control may proceed
sequentially, terminated by a jump in the control flow. Coverage of LCSAJ sequences
of length 1 is almost, but not quite, equivalent to branch coverage. Stronger criteria can
be defined by requiring N consecutive LCSAJs to be covered. The resulting criteria
are also referred to as T ERN+2, where N is the number of consecutive LCSAJs to be
covered. Conventionally, T ER1 and T ER2 refer to statement and branch coverage,
respectively.

The number of paths to be exercised can also be limited by identifying a subset
that can be combined (in a manner to be described shortly) to form all the others.

7For a while or for loop, this is equivalent to saying that the loop body is executed zero times.
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Such a set of paths is called a “basis set,” and from graph theory we know that every
connected graph with n nodes, e edges, and c connected components has a basis set of
only e−n+c independent sub-paths. Producing a single connected component from a
program flow graph by adding a “virtual edge” from the exit to the entry, the formula
becomes e−n+2 which is called the cyclomatic complexity of the control flow graph.
Cyclomatic testing consists of attempting to exercise any set of execution paths that is
a basis set for the control flow graph.∆ cyclomatic testing

To be more precise, the sense in which a basis set of paths can be combined to form
other paths is to consider each path as a vector of counts indicating how many times
each edge in the control flow graph was traversed, e.g., the third element of the vector
might be the number of times a particular branch is taken. The basis set is combined
by adding or subtracting these vectors (and not, as one might intuitively expect, by
concatenating paths). Consider again the pseudocode

if (a) {
S1;

}
if (b) {

S2;
}
if (c) {

S3;
}

...
if (x) {

Sn;
}

While the number of distinct paths through this code is exponential in the number
of if statements, the number of basis paths is small: Only n + 1 if there are n if state-
ments. We can represent one basis set (of many possible) for a sequence of four such if
statements by indicating whether each predicate evaluates to True or False:

1 False False False False
2 True False False False
3 False True False False
4 False False True False
5 False False False True

The path represented as 〈True,False,True,False〉 is formed from these by adding
paths 2 and 4 and then subtracting path 1.

Cyclomatic testing does not require that any particular basis set is covered. Rather,
it counts the number of independent paths that have actually been covered (i.e., count-
ing a new execution path as progress toward the coverage goal only if it is independent
of all the paths previously exercised), and the coverage criterion is satisfied when this
count reaches the cyclomatic complexity of the code under test.
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12.6 Procedure Call Testing

The criteria considered to this point measure coverage of control flow within individual
procedures. They are not well suited to integration testing or system testing. It is
difficult to steer fine-grained control flow decisions of a unit when it is one small part
of a larger system, and the cost of achieving fine-grained coverage for a system or
major component is seldom justifiable. Usually it is more appropriate to choose a
coverage granularity commensurate with the granularity of testing. Moreover, if unit
testing has been effective, then faults that remain to be found in integration testing will
be primarily interface faults, and testing effort should focus on interfaces between units
rather than their internal details.

In some programming languages (FORTRAN, for example), a single procedure
may have multiple entry points, and one would want to test invocation through each of
the entry points. More common are procedures with multiple exit points. For example,
the code of Figure 12.5 has four different return statements. One might want to check ∆ procedure

entry and exit
testing

that each of the four returns is exercised in the actual context in which the procedure is
used. Each of these would have been exercised already if even the simplest statement
coverage criterion were satisfied during unit testing, but perhaps only in the context of
a simple test driver; testing in the real context could reveal interface faults that were
previously undetected.

Exercising all the entry points of a procedure is not the same as exercising all the
calls. For example, procedure A may call procedure C from two distinct points, and
procedure B may also call procedure C. In this case, coverage of calls of C means
exercising calls at all three points. If the component under test has been constructed ∆ call coverage

in a bottom-up manner, as is common, then unit testing of A and B may already have
exercised calls of C. In that case, even statement coverage of A and B would ensure
coverage of the calls relation (although not in the context of the entire component).

The search function in Figure 12.5 was originally part of a symbol table package in
a small compiler. It was called at only one point, from one other C function in the same
unit.8 That C function, in turn, was called from tens of different points in a scanner and
a parser. Coverage of calls requires exercising each statement in which the parser and
scanner access the symbol table, but this would almost certainly be satisfied by a set of
test cases exercising each production in the grammar accepted by the parser.

When procedures maintain internal state (local variables that persist from call to
call), or when they modify global state, then properties of interfaces may only be re-
vealed by sequences of several calls. In object-oriented programming, local state is
manipulated by procedures called methods, and systematic testing necessarily concerns
sequences of method calls on the same object. Even simple coverage of the “calls” re-
lation becomes more challenging in this environment, since a single call point may be
dynamically bound to more than one possible procedure (method). While these com-
plications may arise even in conventional procedural programs (e.g., using function
pointers in C), they are most prevalent in object-oriented programming. Not surpris-
ingly, then, approaches to systematically exercising sequences of procedure calls are

8The “unit” in this case is the C source file, which provided a single data abstraction through several
related C functions, much as a C++ or Java class would provide a single abstraction through several methods.
The search function was analogous in this case to a private (internal) method of a class.
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beginning to emerge mainly in the field of object-oriented testing, and we therefore
cover them in Chapter 15.

12.7 Comparing Structural Testing Criteria

The power and cost of the structural test adequacy criteria described in this chapter can
be formally compared using the subsumes relation introduced in Chapter 9. The rela-
tions among these criteria are illustrated in Figure 12.8. They are divided into practical
criteria that can always be satisfied by test sets whose size is at most a linear function of
program size, and techniques which are of mainly theoretical interest because they may
require impractically large numbers of test cases or even (in the case of path coverage)
an infinite number of test cases.

The hierarchy can be roughly divided into a part that relates requirements for cov-
ering program paths, and another part that relates requirements for covering combina-
tions of conditions in branch decisions. The two parts come together at branch cov-
erage. Above branch coverage, path-oriented criteria and condition-oriented criteria
are generally separate, because there is considerable cost and little apparent benefit in
combining them. Statement coverage is at the bottom of the subsumes hierarchy for
systematic coverage of control flow. Applying any of the structural coverage criteria,
therefore, implies at least executing all the program statements.

Procedure call coverage criteria are not included in the figure, since they do not
concern internal control flow of procedures and are thus incomparable with the control
flow coverage criteria.

12.8 The Infeasibility Problem

Sometimes no set of test cases is capable of satisfying some test coverage criterion for
a particular program, because the criterion requires execution of a program element
that can never be executed. This is true even for the statement coverage criterion, weak
as it is. Unreachable statements can occur as a result of defensive programming (e.g.,
checking for error conditions that never occur) and code reuse (reusing code that is
more general than strictly required for the application). Large amounts of “fossil” code
may accumulate when a legacy application becomes unmanageable, and may in that
case indicate serious maintainability problems, but some unreachable code is common
even in well-designed, well-maintained systems, and must be accommodated in testing
processes that otherwise require satisfaction of coverage criteria.

Stronger coverage criteria tend to call for coverage of more elements that may be
infeasible. For example, in discussing multiple condition coverage, we implicitly as-
sumed that basic conditions were independent and could therefore occur in any combi-
nation. In reality, basic conditions may be comparisons or other relational expressions
and may be interdependent in ways that make certain combinations infeasible. For
example, in the expression (a > 0 && a < 10), it is not possible for both basic condi-
tions to be False . Fortunately, short-circuit evaluation rules ensure that the combination
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Figure 12.8: The subsumption relation among structural test adequacy criteria de-
scribed in this chapter.
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〈False,False〉 is not required for multiple condition coverage of this particular expres-
sion in a C or Java program.

The infeasibility problem is most acute for path-based structural coverage criteria,
such as the boundary/interior coverage criterion. Consider, for example, the following
simple code sequence:

if (a < 0) {
a = 0;

}
if (a > 10) {

a = 10;
}

It is not possible to traverse the sub-path on which the True branch is taken for both if
statements. In the trivial case where these if statements occur together, the problem is
both easy to understand and to avoid (by placing the second if within an else clause),
but essentially the same interdependence can occur when the decisions are separated
by other code.

An easy but rather unsatisfactory solution to the infeasibility problem is to make
allowances for it by setting a coverage goal less than 100%. For example, we could
require 90% coverage of basic blocks, on the grounds that no more than 10% of the
blocks in a program should be infeasible. A 10% allowance for infeasible blocks may
be insufficient for some units and too generous for others.

The other main option is requiring justification of each element left uncovered.
This is the approach taken in some quality standards, notably RTCA/DO-178B and
EUROCAE ED-12B for modified condition/decision coverage (MCDC). Explaining
why each element is uncovered has the salutary effect of distinguishing between defen-
sive coding and sloppy coding or maintenance, and may also motivate simpler coding
styles. However, it is more expensive (because it requires manual inspection and under-
standing of each element left uncovered) and is unlikely to be cost-effective for criteria
that impose test obligations for large numbers of infeasible paths. This problem, even
more than the large number of test cases that may be required, leads us to conclude that
stringent path-oriented coverage criteria are seldom cost-effective.

Open Research Issues

Devising and comparing structural criteria was a hot topic in the 1980s. It is no longer
an active research area for imperative programming, but new programming paradigms
or design techniques present new challenges. Polymorphism, dynamic binding, ob-
ject oriented and distributed code open new problems and require new techniques, as
discussed in other chapters. Applicability of structural criteria to architectural design
descriptions is still under investigation. Usefulness of structural criteria for implicit
control flow has been addressed only recently.

Early testing research, including research on structural coverage criteria, was con-
cerned largely with improving the fault-detection effectiveness of testing. Today, the
most pressing issues are cost and schedule. Better automated techniques for identifying
infeasible paths will be necessary before more stringent structural coverage criteria can
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be seriously considered in any but the most critical of domains. Alternatively, for many
applications it may be more appropriate to gather evidence of feasibility from actual
product use; this is called residual test coverage monitoring and is a topic of current
research.

Further Reading

The main structural adequacy criteria are presented in Myers’ The Art of Software Test-
ing [Mye79], which has been a preeminent source of information for more than two
decades. It is a classic despite its age, which is evident from the limited set of tech-
niques addressed and the programming language used in the examples. The excellent
survey by Adrion et al. [ABC82] remains the best overall survey of testing techniques,
despite similar age. Frankl and Weyuker [FW93] provide a modern treatment of the
subsumption hierarchy among structural coverage criteria.

Boundary/interior testing is presented by Howden [How75]. Woodward et al. [WHH80]
present LCSAJ testing. Cyclomatic testing is described by McCabe [McC83]. Residual
test coverage measurement is described by Pavlopoulou and Young [PY99].

Related Topics

Readers with a strong interest in coverage criteria should continue with the next chap-
ter, which presents data flow testing criteria. Others may wish to proceed to Chapter 15,
which addresses testing object-oriented programs. Readers wishing a more compre-
hensive view of unit testing may continue with Chapters 17 on test scaffolding and test
data generation. Tool support for structural testing is discussed in Chapter 23.

Exercises

12.1. Let us consider the following loop, which appears in C lexical analyzers gener-
ated by the tool flex:9

1 for ( n = 0;
2 n < max size && (c = getc( yyin )) != EOF && c != ’\n’;
3 ++n )
4 buf[n] = (char) c;

Devise a set of test cases that satisfy the compound condition adequacy criterion
and a set of test cases that satisfy the modified condition adequacy criterion with
respect to this loop.

9Flex is a widely used generator of lexical analyzers. Flex was written by Vern Paxson, and is compatible
with the original AT&T lex written by M.E. Lesk. This excerpt is from version 2.5.4 of flex, distributed with
the Linux operating system.
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12.2. The following if statement appears in the Java source code of Grappa,10 a graph
layout engine distributed by AT&T Laboratories:

1 if(pos < parseArray.length
2 && (parseArray[pos] == ’{’
3 || parseArray[pos] == ’}’
4 || parseArray[pos] == ’|’)) {
5 continue;
6 }

(a) Derive a set of test case specifications and show that it satisfies the MCDC
criterion for this statement. For brevity, abbreviate each of the basic condi-
tions as follows:

Room for pos < parseArray.length

Open for parseArray[pos] == ’{’
Close for parseArray[pos] == ’}’
Bar for parseArray[pos] == ’|’)

(b) Do the requirements for compound condition coverage and modified condi-
tion/decision coverage differ in this case? Aside from increasing the num-
ber of test cases, what difference would it make if we attempted to exhaus-
tively cover all combinations of truth values for the basic conditions?

12.3. Prove that the number of test cases required to satisfy the modified condition
adequacy criterion for a predicate with N basic conditions is N +1.

12.4. The number of basis paths (cyclomatic complexity) does not depend on whether
nodes of the control flow graph are individual statements or basic blocks which
may contain several statements. Why?

12.5. Derive the subsumption hierarchy for the call graph coverage criteria described
in this chapter, and justify each of the relationships.

12.6. If the modified condition/decision adequacy criterion requires a test case that is
not feasible because of interdependent basic conditions, should this always be
taken as an indication of a defect in design or coding? Why or why not?

10The statement appears in file Table.java. This source code is copyright 1996, 1997, 1998 by AT&T
Corporation. Grappa is distributed as open source software, available at the time of this writing from
http://www.research.att.com/sw/tools/graphviz/. Formatting of the line has been al-
tered for readability in this printed form.
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Chapter 13

Data Flow Testing

Exercising every statement or branch with test cases is a practical goal, but exercising
every path is impossible, and even the number of simple (that is, loop-free) paths can
be exponential in the size of the program. Path-oriented selection and adequacy criteria
must therefore select a tiny fraction of control flow paths. Some control flow adequacy
criteria, notably the loop boundary interior condition, do so heuristically. Data flow
test adequacy criteria improve over pure control flow criteria by selecting paths based
on how one syntactic element can affect the computation of another.

Required Background

• Chapter 6

At least the basic data flow models presented in Chapter 6 section 6.1 are required
to understand this chapter, although algorithmic details of data flow analysis can
be deferred. Section 6.5 of that chapter is important background for section 13.4
of the current chapter. The remainder of Chapter 6 is useful background but not
strictly necessary to understand and apply data flow testing.

• Chapter 9

The introduction to test case adequacy and test case selection in general sets the
context for this chapter. It is not strictly required for understanding this chapter,
but is helpful for understanding how the techniques described in this chapter
should be applied.

• Chapter 12

The data flow adequacy criteria presented in this chapter complement control
flow adequacy criteria. Knowledge about control flow adequacy criteria is desir-
able but not strictly required for understanding this chapter.

237
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13.1 Overview

We have seen in Chapter 12 that structural testing criteria are practical for single ele-
ments of the program, from simple statements to complex combinations of conditions,
but become impractical when extended to paths. Even the simplest path testing criteria
require covering large numbers of paths that tend to quickly grow far beyond test suites
of acceptable size for non-trivial programs.

Close examination of paths that need to be traversed to satisfy a path selection
criterion often reveals that, among a large set of paths, only a few are likely to uncover
faults that could have escaped discovery using condition testing coverage. Criteria that
select paths based on control structure alone (e.g., boundary interior testing) may not be
effective in identifying these few significant paths, because their significance depends
not only on control flow but on data interactions.

Data flow testing is based on the observation that computing the wrong value leads
to a failure only when that value is subsequently used. Focus is therefore moved from
control flow to data flow. Data flow testing criteria pair variable definitions with uses,
ensuring that each computed value is actually used, and thus selecting from among
many execution paths a set that is more likely to propagate the result of erroneous
computation to the point of an observable failure.

Consider for example the C function cgi decode of Figure 13.1, which decodes a
string that has been transmitted through the web’s Common Gateway Interface. Data
flow testing criteria would require one to execute paths that first define (change the
value of) variable eptr, e.g., by incrementing it at line 37 and then use the new value
of variable eptr, e.g., using variable eptr to update the array indexed by dptr at line 34.
Since a value defined in one iteration of the loop is used on a subsequent iteration, we
are obliged to execute more than one iteration of the loop to observe the propagation
of information from one iteration to the next.

13.2 Definition Use Associations

Data flow testing criteria are based on data flow information, i.e., variable definitions
and uses. Table 13.1 shows definitions and uses for the program cgi decode of Fig-
ure 13.1. Recall that when a variable occurs on both sides of an assignment, it is first
used and then defined, since the value of the variable before the assignment is used
for computing the value of the variable after the assignment. For example, the ++eptr
increment operation in C is equivalent to the assignment eptr = eptr + 1, and thus first
uses and then defines variable eptr.

We will initially consider treatment of arrays and pointers in the current example
in a somewhat ad hoc fashion and defer discussion of the general problem to Sec-
tion 13.4. Variables eptr and dptr are used for indexing the input and output strings.
In program cgi decode, we consider the variables as both indexes (eptr and dptr) and
strings (*eptr and *dptr). The assignment *dptr = *eptr is treated as a definition of the
string *dptr as well as a use of the index dptr, the index eptr, and the string *eptr, since
the result depends on both indexes as well as the contents of the source string. A
change to an index is treated as a definition of both the index and the string, since a
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1

2 /* External file hex values.h defines Hex Values[128]
3 * with value 0 to 15 for the legal hex digits (case-insensitive)
4 * and value -1 for each illegal digit including special characters
5 */
6

7 #include "hex values.h"

8 /** Translate a string from the CGI encoding to plain ascii text.
9 * ’+’ becomes space, %xx becomes byte with hex value xx,

10 * other alphanumeric characters map to themselves.
11 * Returns 0 for success, positive for erroneous input
12 * 1 = bad hexadecimal digit
13 */
14 int cgi decode(char *encoded, char *decoded) {
15 char *eptr = encoded;
16 char *dptr = decoded;
17 int ok=0;
18 while (*eptr) {
19 char c;
20 c = *eptr;
21

22 if (c == ’+’) { /* Case 1: ’+’ maps to blank */
23 *dptr = ’ ’;
24 } else if (c == ’%’) { /* Case 2: ’%xx’ is hex for character xx */
25 int digit high = Hex Values[*(++eptr)];
26 int digit low = Hex Values[*(++eptr)];
27 if ( digit high == -1 || digit low == -1 ) {
28 /* *dptr=’?’; */
29 ok=1; /* Bad return code */
30 } else {
31 *dptr = 16* digit high + digit low;
32 }
33 } else { /* Case 3: All other characters map to themselves */
34 *dptr = *eptr;
35 }
36 ++dptr;
37 ++eptr;
38 }
39 *dptr = ’\0’; /* Null terminator for string */
40 return ok;
41 }

Figure 13.1: The C function cgi decode, which translates a cgi-encoded string to a
plain ASCII string (reversing the encoding applied by the common gateway interface
of most web servers). This program is used also in Chapter 12 and is presented also in
Figure 12.1 of Chapter 12.
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Variable Definitions Uses
encoded 14 15
decoded 14 16
*eptr 15, 25, 26, 37 18, 20, 25, 26, 34
eptr 15, 25, 26, 37 15, 18, 20, 25, 26, 34, 37
*dptr 16, 23, 31, 34, 36, 39 40
dptr 16 36 16, 23, 31, 34, 36, 39
ok 17, 29 40
c 20 22, 24
digit high 25 27, 31
digit low 26 27, 31
Hex Values – 25, 26

Table 13.1: Definitions and uses for function cgi decode. *eptr and *dptr indicate the
strings, while eptr and dptr indicate the indexes.

change of the index changes the value accessed by it. For example in the statement at
line 36 (++dptr), we have a use of variable dptr followed by a definition of variables dptr
and *dptr.

It is somewhat counter-intuitive that we have definitions of the string *eptr, since
it is easy to see that the program is scanning the encoded string without changing
it. For the purposes of data flow testing, though, we are interested in interactions
between computation at different points in the program. Incrementing the index eptr is
a “definition” of *eptr in the sense that it can affect the value that is next observed by a
use of *eptr.

Pairing definitions and uses of the same variable v identifies data interactions through
v, i.e., definition-use pairs (DU pairs). Table 13.2 shows the DU pairs in program∆ DU pair

cgi decode of Figure 13.1. Some pairs of definitions and uses from Table 13.1 do not
occur in Table 13.2, since there is no definition-clear path between the two statements.
For example, the use of variable eptr at line 15 cannot be reached from the increment
at line 37, so there is no DU pair 〈37,15〉. The definitions of variables *eptr and eptr at
line 25, are paired only with the respective uses at line 26, since successive definitions
of the two variables at line 26 kill the definition at line 25 and eliminate definition-clear
paths to any other use.

A DU pair requires the existence of at least one definition-clear path from definition
to use, but there may be several. Additional uses on a path do not interfere with the
pair. We sometimes use the term DU path to indicate a particular definition-clear∆ DU path

path between a definition and a use. For example, let us consider the definition of *eptr
at line 37 and the use at line 34. There are infinitely many paths that go from line 37
to the use at line 34. There is one DU path that does not traverse the loop while going
from 37 to 34. There are infinitely many paths from 37 back to 37, but only two DU
paths, because the definition at 37 kills the previous definition at the same point.

Data flow testing, like other structural criteria, is based on information obtained
through static analysis of the program. We discard definitions and uses that cannot
be statically paired, but we may select pairs even if none of the statically identifiable
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Variable DU Pairs
*eptr 〈 15, 18 〉, 〈 15, 20 〉, 〈 15, 25 〉, 〈 15, 34 〉 〈 25, 26 〉, 〈 26, 37 〉

〈 37, 18 〉, 〈 37, 20 〉, 〈 37, 25 〉, 〈 37, 34 〉
eptr 〈 15, 15 〉, 〈 15, 18 〉, 〈 15, 20 〉, 〈 15, 25 〉, 〈 15, 34 〉, 〈 15, 37 〉,

〈 25, 26 〉, 〈 26, 37 〉 〈 37, 18 〉, 〈 37, 20 〉, 〈 37, 25 〉, 〈 37, 34 〉, 〈 37, 37 〉
*dptr 〈 39, 40 〉
dptr 〈 16, 16 〉, 〈 16, 23 〉, 〈 16, 31 〉, 〈 16, 34 〉, 〈 16, 36 〉, 〈 16, 39 〉,

〈 36, 23 〉, 〈 36, 31 〉, 〈 36, 34 〉, 〈 36, 36 〉, 〈 36, 39 〉
ok 〈 17, 40 〉, 〈 29, 40 〉
c 〈 20, 22 〉, 〈 20 24 〉
digit high 〈 25, 27 〉, 〈 25, 31 〉
digit low 〈 26, 27 〉, 〈 26, 31 〉
encoded 〈 14, 15〉
decoded 〈 14, 16〉

Table 13.2: DU pairs for function cgi decode. Variable Hex Values does not appear
because it is not defined (modified) within the procedure.

definition-clear paths is actually executable. In the current example, we have made
use of information that would require a quite sophisticated static data flow analyzer, as
discussed below in Section 13.4.

13.3 Data Flow Testing Criteria

Various data flow testing criteria can be defined by requiring coverage of DU pairs in
various ways.

The All DU pairs adequacy criterion requires each DU pair to be exercised in at
least one program execution, following the idea that an erroneous value produced by
one statement (the definition) might be revealed only by its use in another statement.

∆ all DU pairs
adequacy
criterion

A test suite T for a program P satisfies the all DU pairs adequacy criterion iff, for
each DU pair du of P, at least one test case in T exercises du.

The corresponding coverage measure is the proportion of covered DU pairs:
∆ all DU pairs
coverageThe all DU pair coverage CDU pairs of T for P is the fraction of DU pairs of program

P exercised by at least one test case in T .

CDU pairs =
number of exercised DU pairs

number of DU pairs

The All DU pairs adequacy criterion assures a finer grain coverage than statement
and branch adequacy criteria. If we consider for example function cgi decode, we can
easily see that statement and branch coverage can be obtained by traversing the while
loop no more than once, e.g., with the test suite Tbranch = {“+”, “%3D”, “%FG”, “t”} while
several DU pairs cannot be covered without executing the while loop at least twice. The
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pairs that may remain uncovered after statement and branch coverage correspond to oc-
currences of different characters within the source string, and not only at the beginning
of the string. For example, the DU pair 〈37, 25〉, for variable *eptr can be covered with
a test case TCDU pairs“test%3D” where the hexadecimal escape sequence occurs inside
the input string, but not with “%3D”. The test suite TDU pairs obtained by adding the
test case TCDU pairs to the test suite Tbranch satisfies the all DU pairs adequacy criterion,
since it adds both the cases of a hexadecimal escape sequence and an ASCII character
occurring inside the input string.

One DU pair might belong to many different execution paths. The All DU paths
adequacy criterion extends the all DU pairs criterion by requiring each simple (non-
looping) DU path to be traversed at least once, thus including the different ways of
pairing definitions and uses. This can reveal a fault by exercising a path on which a
definition of a variable should have appeared but was omitted.

∆ all DU paths
adequacy criterion A test suite T for a program P satisfies the all DU paths adequacy criterion iff, for

each simple DU path d p of P, there exists at least one test case in T that exercises a
path that includes d p.

The corresponding coverage measure is the fraction of covered simple DU paths:
∆ all DU paths
coverage The all DU pair coverage CDU paths of T for P is the fraction of simple DU paths of

program P executed by at least one test case in T .

CDU paths =
number of exercised simple DU paths

number of simple DU paths

The test suite TDU pairs does not satisfy the all DU paths adequacy criterion, since
both DU pairs 〈37,37〉 for variable eptr and 〈36,23〉 for variable dptr correspond each
to two simple DU paths, and in both cases one of the two paths is not covered by test
cases in TDU pairs. The uncovered paths correspond to a test case that includes character
’+’ occurring within the input string, e.g., test case TCDU paths = “test+case”.

While the number of simple DU paths is often quite reasonable, in the worst case
it can be exponential in the size of the program unit. This can occur when the code
between the definition and use of a particular variable is essentially irrelevant to that
variable, but contains many control paths. The procedure in Figure 13.2 illustrates.
The code between the definition of ch in line 2 and its use in line 12 does not modify
ch, but the all DU paths coverage criterion would require that each of the 256 paths be
exercised.

We normally consider both All DU paths and All DU pairs adequacy criteria as
relatively powerful and yet practical test adequacy criteria, as depicted in Figure 12.8
of page 233. However, in some cases, even the all DU pairs criterion may be too costly.
In these cases, we can refer to a coarser grain data flow criterion, the All definitions
adequacy criterion, which requires pairing each definition with at least one use.

∆ all definitions
adequacy criterion A test suite T for a program P satisfies the all definitions adequacy criterion for P

iff, for each definition de f of P, there exists at least one test case in T that exercises a
DU pair that includes de f .
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1

2 void countBits(char ch) {
3 int count = 0;
4 if (ch & 1) ++count;
5 if (ch & 2) ++count;
6 if (ch & 4) ++count;
7 if (ch & 8) ++count;
8 if (ch & 16) ++count;
9 if (ch & 32) ++count;

10 if (ch & 64) ++count;
11 if (ch & 128) ++count;
12 printf("’%c’ (0X%02x) has %d bits set to 1\n",
13 ch, ch, count);
14 }

Figure 13.2: A C procedure with a large number of DU paths. The number of DU
paths for variable ch is exponential in the number of if statements, because the use in
each increment and in the final print statement can be paired with any of the preceding
definitions. The number of DU paths for variable count is the same as the number of
DU pairs. For variable ch, there is only one DU pair, matching the procedure header
with the final print statement, but there are 256 definition-clear paths between those
statements — exponential in the number of intervening if statements.

The corresponding coverage measure is the proportion of covered definitions, where
we say a definition is covered only if the value is used before being killed:

∆ all definitions
coverageThe all definitions coverage CDe f of T for P is the fraction of definitions of program

P covered by at least one test case in T .

Cde f s =
number of covered definitions

number of definitions

13.4 Data Flow Coverage with Complex Structures

Like all static analysis techniques, data flow analysis approximates the effects of pro-
gram executions. It suffers imprecision in modeling dynamic constructs, in particular
dynamic access to storage, such as indexed access to array elements or pointer ac-
cess to dynamically allocated storage. We have seen in Chapter 6, (page 94) that the
proper treatment of potential aliases involving indexes and pointers depends on the use
to which analysis results will be put. For the purpose of choosing test cases, some
risk of under-estimating alias sets may be preferable to gross over-estimation or very
expensive analysis.

The precision of data flow analysis depends on the precision of alias information
used in the analysis. Alias analysis requires a trade-off between precision and compu-
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1 void pointer abuse() {
2 int i=5, j=10, k=20;
3 int *p, *q;
4 p = &j + 1;
5 q = &k;
6 *p = 30;
7 *q = *q + 55;
8 printf("p=%d, q=%d\n", *p, *q);
9 }

Figure 13.3: Pointers to objects in the program stack can create essentially arbitrary
definition-use associations, particularly when combined with pointer arithmetic as in
this example.

tational expense, with significant over-estimation of alias sets for approaches that can
be practically applied to real programs. In the case of data flow testing, imprecision can
be mitigated by specializing the alias analysis to identification of definition-clear paths
between a potentially matched definition and use. We do not need to compute aliases
for all possible behaviors, but only along particular control flow paths. The risk of
under-estimating alias sets in a local analysis is acceptable considering the application
in choosing good test cases rather than offering hard guarantees of a property.

In the cgi decode example we have made use of information that would require
either extra guidance from the test designer or a sophisticated tool for data flow and
alias analysis. We may know, from a global analysis, that the parameters encoded and
decoded never refer to the same or overlapping memory regions, and we may infer that
initially eptr and dptr likewise refer to disjoint regions of memory, over the whole range
of values that the two pointers take. Lacking this information, a simple static data flow
analysis might consider *dptr a potential alias of *eptr, and might therefore consider the
assignment *dptr = *eptr a potential definition of both *dptr and *eptr. These spurious
definitions would give rise to infeasible DU pairs, which produce test obligations that
can never be satisfied. A local analysis that instead assumes (without verification) that
*eptr and *dptr are distinct could fail to require an important test case if they can be
aliases. Such under-estimation may be preferable to creating too many infeasible test
obligations.

A good alias analysis can greatly improve the applicability of data flow testing,
but cannot eliminate all problems. Undisciplined use of dynamic access to storage
can make precise alias analysis extremely hard or impossible. For example, the use of
pointer arithmetic in the program fragment of Figure 13.3 results in aliases that depend
on the way the compiler arranges variables in memory.

13.5 The Infeasibility Problem

Not all elements of a program are executable, as discussed in Section 12.8 of Chap-
ter 12. The path oriented nature of data flow testing criteria aggravates the problem
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since infeasibility creates test obligations not only for isolated unexecutable elements,
but also for infeasible combinations of feasible elements.

Complex data structures may amplify the infeasibility problem by adding infeasible
paths as a result of alias computation. For example, while we can determine that x[i]
is an alias of x[j] exactly when i = j, we may not be able to determine whether i can be
equal to j in any possible program execution.

Fortunately the problem of infeasible paths is usually modest for the all definitions
and all DU pairs adequacy criteria, and one can typically achieve levels of coverage
comparable to those achievable with simpler criteria like statement and branch ade-
quacy during unit testing. The all DU paths adequacy criterion, on the other hand,
often requires much larger numbers of control flow paths. It presents a greater prob-
lem in distinguishing feasible from infeasible paths, and should therefore be used with
discretion.

Open research issues

Data flow test adequacy criteria are close to the border between techniques that can be
applied at low cost with simple tools, and techniques that offer more power but at much
higher cost. While in principle data flow test coverage can be applied at modest cost (at
least up to the all DU adequacy criterion), it demands more sophisticated tool support
than test coverage monitoring tools based on control flow alone.

Fortunately data flow analysis and alias analysis have other important applications.
Improved support for data flow testing may come at least partly as a side benefit of re-
search in the programming languages and compilers community. In particular, finding
a good balance of cost and precision in data flow and alias analysis across procedure
boundaries (inter-procedural or “whole program” analysis) is an active area of research.

The problems presented by pointers and complex data structures cannot be ignored.
In particular, modern object-oriented languages like Java use reference semantics —
an object reference is essentially a pointer — and so alias analysis (preferably inter-
procedural) is a prerequisite for applying data flow analysis to object oriented pro-
grams.

Further Reading

The concept of test case selection using data flow information was apparently first sug-
gested in 1976 by Herman [Her76], but that original paper is not widely accessible. The
version of data flow test adequacy criteria more widely known was developed indepen-
dently by Rapps and Weyuker [RW85] and by Laski and Korel [LK83]. The variety of
data flow testing criteria is much broader than the handful of criteria described in this
chapter; Clarke et al. present a formal comparison of several criteria [CPRZ89]. Frankl
and Weyuker consider the problem of infeasible paths and how they affect the relative
power of data flow and other structural test adequacy criteria [FW93].

Marx and Frankl consider the problem of aliases and application of alias analysis
on individual program paths [MF96]. A good example of modern empirical research on
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costs and effectiveness of structural test adequacy criteria, and data flow test coverage
in particular, is Frankl and Iakounenko [FI98].

Related Topics

The next chapter discusses model-based testing. Section 14.4 shows how control and
data flow models can be used to derive test cases from specifications. Chapter 15 illus-
trates the use of data flow analysis for structural testing of object oriented programs.

Readers interested in the use of data flow for program analysis can proceed with
Chapter 19.

Exercises

13.1. Sometimes a distinction is made between uses of values in predicates (p-uses)
and other “computational” uses in statements (c-uses). New criteria can be de-
fined using that distinction, for example:

all p-use some c-use: for all definitions and uses, exercise all (def, p-use) pairs
and at least one (def, c-use) pair

all c-use some p-use: for all definitions and uses, exercise all (def, c-use) pairs
and at least one (def, p-use) pair

(a) provide a precise definition of these criteria.

(b) describe the differences in the test suites derived applying the different cri-
teria to function cgi-decode in Figure 13.1.

13.2. Demonstrate the subsume relation between all p-use some c-use, all c-use some
p-use, all DU pairs, all DU paths and all definitions.

13.3. How would you treat the buf array in the transduce procedure shown in Fig-
ure 16.1?
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