
Introduction SER Minimum Concurrency Musical Application Conclusion

Minimum Concurrency for Assembling
Computer Music

Carlos E. Marciano
Presenter

Abilio Lucena

Felipe M. G. França

Luidi G. Simonetti

Systems and Computing Engineering Program
Federal University of Rio de Janeiro (UFRJ)

INOC 2019

cemarciano@poli.ufrj.br

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 1 / 23

cemarciano@poli.ufrj.br

Introduction SER Minimum Concurrency Musical Application Conclusion

Roadmap

1 Introduction

2 SER

3 Minimum Concurrency

4 Musical Application

5 Conclusion

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 2 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Motivation

The Dining Philosophers:
proposed by Edsger Dijkstra
in 1965 to illustrate
deadlocks, starvation and
race condition.

Variant with two states:
“eating” (consuming
resources) or “hungry”
(ready to eat).

Figure 1:
The Dining Philosophers [1].

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 3 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Resource Graph

Nodes represent processes to
be scheduled.

Edges represent shared
resources between two
nodes.

How to schedule nodes in
order to attain justice and
prevent classic scheduling
problems?

A

B

CD

E

Figure 2: Resource Graph
for the Dining Philosophers.

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 4 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Scheduling by Edge Reversal (SER)

Distributed solution for
heavily loaded
neighborhood-constrained
systems.

Acyclic orientation: sinks
operate simultaneously and
revert their edges, forming
new sinks.

Justice: all nodes operate
the same number of times
within a period.

A

B

CD

E

Figure 3: DAG representing
the Dining Philosophers.

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 5 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

SER Example

A

DC

E

B

R1, R2
R2, R3

R3

R2 R3

R4 R5

A

DC

E

B

A

DC

E

B

A

DC

E

B

A

DC

E

B

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 6 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Applications

R1

R2

R3

R4

R5

A

B

C
D

E

G F

(d) Road junctions [2].

R1

R2

R3

R4R5

AGV1

AGV2

(e) AGV Routing [3].

(f) Firefighting by autonomous robots [4].

Figure 4: SER applications.

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 7 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Definitions

Simple

Cycle

K

κ1 = {i0, ..., i|κ1−1|, i0}

κ2 = {i0, ..., i|κ2−1|, i0}

κ3 = {i0, ..., i|κ3−1|, i0}

...

...

Acyclic

Orientation

Ω

ω1 : E → V

ω2 : E → V

ω3 : E → V

...

...

Direction of

Orientation

D

A

C

B

ncw(κ, ω) = 3

nccw(κ, ω) = 1

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 8 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Definitions

Simple

Cycle

K

κ1 = {i0, ..., i|κ1−1|, i0}

κ2 = {i0, ..., i|κ2−1|, i0}

κ3 = {i0, ..., i|κ3−1|, i0}

...

...

Acyclic

Orientation

Ω

ω1 : E → V

ω2 : E → V

ω3 : E → V

...

...

Direction of

Orientation

D

A

C

B

ncw(κ, ω) = 3

nccw(κ, ω) = 1

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 8 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Definitions

Simple

Cycle

K

κ1 = {i0, ..., i|κ1−1|, i0}

κ2 = {i0, ..., i|κ2−1|, i0}

κ3 = {i0, ..., i|κ3−1|, i0}

...

...

Acyclic

Orientation

Ω

ω1 : E → V

ω2 : E → V

ω3 : E → V

...

...

Direction of

Orientation

D

A

C

B

ncw(κ, ω) = 3

nccw(κ, ω) = 1

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 8 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Definitions

Simple

Cycle

K

κ1 = {i0, ..., i|κ1−1|, i0}

κ2 = {i0, ..., i|κ2−1|, i0}

κ3 = {i0, ..., i|κ3−1|, i0}

...

...

Acyclic

Orientation

Ω

ω1 : E → V

ω2 : E → V

ω3 : E → V

...

...

Direction of

Orientation

D

A

C

B

ncw(κ, ω) = 3

nccw(κ, ω) = 1

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 8 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

SER Concurrency (γ : Ω→ IR), dynamic definition

γ(ω) =
of times each node operates

period length

γ(ω) = min
κ∈K

{
min {ncw(κ, ω), nccw(κ, ω)}

|κ|

}

1

A

DC

E

B

A

DC

E

B

A

DC

E

B

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 9 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

SER Concurrency (γ : Ω→ IR), static definition

γ(ω) =
of times each node operates

period length

γ(ω) = min
κ∈K

{
min {ncw(κ, ω), nccw(κ, ω)}

|κ|

}

1

A

DC

E

B

A

DC

E

B

A

DC

E

B

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 10 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Roadmap

1 Introduction

2 SER

3 Minimum Concurrency

4 Musical Application

5 Conclusion

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 11 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Minimum Concurrency via Maximum Cycles

NP-Complete [5]: Minimize γ(ω) over all ω ∈ Ω:

γ∗ = min
ω∈Ω

{

min
κ∈K

{
min {ncw (κ, ω), nccw (κ, ω)}

|κ|

}

}

Lemma 1

γ∗ = min
κ∈K

{
1

|κ|

}

γ(ω) =

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 12 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Minimum Concurrency via Maximum Cycles

NP-Complete [5]: Minimize γ(ω) over all ω ∈ Ω:

γ∗ = min
ω∈Ω

{
min
κ∈K

{
min {ncw (κ, ω), nccw (κ, ω)}

|κ|

}}

Lemma 1

γ∗ = min
κ∈K

{
1

|κ|

}

γ(ω) =

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 12 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Minimum Concurrency via Maximum Cycles

NP-Complete [5]: Minimize γ(ω) over all ω ∈ Ω:

γ∗ = min
ω∈Ω

{
min
κ∈K

{
min {ncw (κ, ω), nccw (κ, ω)}

|κ|

}}

Lemma 1

γ∗ = min
κ∈K

{
1

|κ|

}

γ(ω) =

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 12 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Minimum Concurrency via Maximum Cycles

NP-Complete [5]: Minimize γ(ω) over all ω ∈ Ω:

γ∗ = min
ω∈Ω

{
min
κ∈K

{
min {ncw (κ, ω), nccw (κ, ω)}

|κ|

}}

Lemma 1

γ∗ = min
κ∈K

{
1

|κ|

}

γ(ω) =

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 12 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Minimum Concurrency via Maximum Cycles

NP-Complete [5]: Minimize γ(ω) over all ω ∈ Ω:

γ∗ = min
ω∈Ω

{
min
κ∈K

{
min {ncw (κ, ω), nccw (κ, ω)}

|κ|

}}

Lemma 1

γ∗ = min
κ∈K

{
1

|κ|

}

γ(ω) =

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 12 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Concorrência Ḿınima via Ciclos Máximos (2)

We still need to find ω∗ such that γ(ω∗) = γ∗:

Algorithm 1: Obtaining an orientation in linear time that
leads to minimum concurrency.

Input : Undirected graph G = (V,E) and longest
cycle κ∗ ⊆ V

- Assign increasing ids to each vertex of κ∗

- Assign increasing ids (strictly greater than the ones in κ∗)
to remaining vertices

- Create an “empty" orientation ω∗

- Orient edges towards the smaller (or larger) ids
return ω∗

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 13 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Experimental Results

Simple Cycle Problem model (Lucena 2013 [6]) with G (n, p) graphs:

Nodes p Avg. Edges Solved Avg. Min. Conc. CPU Time (s)

200 0.01 391 10 1/178 0.6 (± 0.9)
200 0.1 3 780 10 1/200 6.5 (± 7.3)

1000 0.002 2 062 10 1/905 73.2 (± 51.4)
1000 0.02 19 695 10 1/1000 797.0 (± 547.3)
1000 0.2 179 806 3 1/1000 2 619.9 (± 1 015.0)
2000 0.001 4 091 10 1/1805 425.9 (± 371.3)
2000 0.01 39 807 3 1/2000 2 107.9 (± 1 561.5)
2000 0.1 380 199 0 – –

Using the XPRESS Mixed Integer Programming package v8.5.3 with all other
features off (pre-processing, primal heuristics, etc). Intel Core i9-8950HK, 16

Gbytes of RAM, Linux Ubuntu 18.04.1, one thread.

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 14 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Roadmap

1 Introduction

2 SER

3 Minimum Concurrency

4 Musical Application

5 Conclusion

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 15 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Musical Context

(j) Buddy Rich, jazz.

(k) Joe Bonamassa, blues.

Figure 5: Virtuosos (Creative Commons).

Computer generation of
melody has been studied since
the early 1950’s [7].

Two approaches: explicit (in
which composition rules are
specified by humans) and
implicit [8].

Western music: features
counterpoint (or polyphony),
with multiple melodic voices [9].

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 16 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Musical Phrases

In blues, jazz and rock music, it’s common to exist a
“question/answer” dynamic with musical phrases:

(a) Antecedent phrase.

(b) Consequent phrase.

Figure 6: Examples of music tablature [10].

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 17 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Assembling Maximum-length Tracks

We’d like our model to capture the following restrictions:

A consequent phrase may only
be played after an antecedent
phrase, forming a lick;

Only phrases of the same type
(antecedent or consequent)
may be played simultaneously;

Phrases of different intensities
(e.g. note counts) may not go
well together;

The final composition must be a
loop, include all phrases and be
of maximum length.

Blues Transit.
Jazz

A

A

C

C

A

C

A

A

C

C

A

C

C

Figure 7: Modelling example.

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 18 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Conclusion

Contributions: computational
strategy for obtaining minimum
concurrency and new approach for
creating musical tracks.

The MIDI standard: hour-long
tracks and potential source of
inspiration for artists.

Future work: computational model
for maximum concurrency under
SER; investigate octave information
for better-quality polyphony.

A

B

CD

E

(a) Maximum concurrency.

A

B

CD

E

(b) Minimum concurrency.

Figure 8: Extreme concurrencies.

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 19 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Closure

Thank you!
Questions & Answers

This presentation is available in PDF format at:
https://tinyurl.com/inoc2019-32

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 20 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Bibliography I

[1] TANENBAUM, A. S., Modern Operating Systems.
3rd ed., pp. 143–165.
Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2007.

[2] CARVALHO, D., PROTTI, F., DE GREGORIO, M., et al., “A Novel Distributed Scheduling
Algorithm for Resource Sharing Under Near-Heavy Load”, Lecture Notes in Computer
Science, v. 3544, pp. 431–442, 2004.

[3] LENGERKE, O., ACUÑA, H. G., DUTRA, M. S., et al., “Distributed control of job-shop
systems via edge reversal dynamics for automated guided vehicles”, 1st International
Conference on Intelligent Systems and Applications, pp. 25–30, 2012.

[4] ALVES, D. S. F., SOARES, E. E., STRACHAN, G. C., et al., A Swarm Robotics Approach
to Decontamination. In: Mobile Ad Hoc Robots and Wireless Robotic Systems: Design and
Implementation.
1st ed., pp. 107–122.
Hershey, PA, USA: IGI Publishing Hershey, 2012.

[5] ARANTES JR, G. M., Trilhas, Otimização de Concorrência e Inicialização Probabiĺıstica em
Sistemas sob Reversão de Arestas, Ph.D. Thesis, Prog. de Eng. de Sist. e Comp., Univ. Fed.
do Rio de Janeiro, 2006.

[6] LUCENA, A., DA CUNHA, A. S., SIMONETTI, L., “A New Formulation and Computational
Results for the Simple Cycle Problem”, Electronic Notes in Discrete Mathematics, v. 44, no.
5, pp. 83–88, 2013.

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 21 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Bibliography II

[7] NIERHAUS, G., Algorithmic Composition: Paradigms of Automated Music Generation.
Springer-Verlag: Vienna, Austria, 2009.

[8] SHAN, M.-K., CHIU, S.-C., “Algorithmic compositions based on discovered musical
patterns”, Multimedia Tools and Applications, v. 46, n. 1, pp. 1–23, Jan. 2010.

[9] SCHMIDT-JONES, C., Understanding Basic Music Theory .
OpenStax CNX: Houston, TX, USA, 2007.

[10] BELL, J., 144 Blues Guitar Licks.
JamString: East Midlands, UK, 2015, mobile application. Version 15.41942290.

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 22 / 23

Introduction SER Minimum Concurrency Musical Application Conclusion

Appendix A: Simple Cycle Problem model [6]

max {
∑

e∈E

(xe + ze) : (x, y, z) ∈ R ∩ (B|E |,B|V |,R|E |
+)} (1)

∑

e∈E(S)

xe ≤
∑

i∈S\{j}

yi , ∀j ∈ S , S ⊂ V (2)

∑

e∈E

xe ≥ 2 (3)

∑

e∈E

ze = 1 (4)

xe + ze ≤ yk , ∀e = {i , j} ∈ E , k = i ∨ k = j (5)∑

e∈δ(i)

(xe + ze) = 2yi , ∀i ∈ V (6)

xe , ze ≥ 0, ∀e ∈ E (7)

0 ≤ yi ≤ 1,∀i ∈ V . (8)

MARCIANO et al. (UFRJ) Minimum Concurrency for Computer Music INOC 2019 – 12–14 June 23 / 23

	Introduction
	SER
	Minimum Concurrency
	Musical Application
	Conclusion

