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Motivation

The Dining Philosophers:
proposed by Edsger Dijkstra
in 1965 to illustrate
deadlocks, starvation and
race condition.

Variant with two states:
“eating” (consuming
resources) or “hungry”
(ready to eat).

Figure 1:
The Dining Philosophers [1].
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Resource Graph

Nodes represent processes to
be scheduled.

Edges represent shared
resources between two
nodes.

How to schedule nodes in
order to attain justice and
prevent classic scheduling
problems?
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Figure 2: Resource Graph
for the Dining Philosophers.
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Scheduling by Edge Reversal (SER)

Distributed solution for
heavily loaded
neighborhood-constrained
systems.

Acyclic orientation: sinks
operate simultaneously and
revert their edges, forming
new sinks.

Justice: all nodes operate
the same number of times
within a period.
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Figure 3: DAG representing
the Dining Philosophers.
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SER Example
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Applications
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(d) Road junctions [2].
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(e) AGV Routing [3].

(f) Firefighting by autonomous robots [4].

Figure 4: SER applications.
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Definitions

Simple

Cycle

K

κ1 = {i0, ..., i|κ1−1|, i0}

κ2 = {i0, ..., i|κ2−1|, i0}

κ3 = {i0, ..., i|κ3−1|, i0}

...

...

Acyclic

Orientation

Ω

ω1 : E → V

ω2 : E → V

ω3 : E → V

...

...

Direction of

Orientation

D

A

C

B

ncw(κ, ω) = 3

nccw(κ, ω) = 1
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SER Concurrency (γ : Ω→ IR), dynamic definition

γ(ω) =
# of times each node operates

period length

γ(ω) = min
κ∈K

{
min {ncw(κ, ω), nccw(κ, ω)}

|κ|

}
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Minimum Concurrency via Maximum Cycles

NP-Complete [5]: Minimize γ(ω) over all ω ∈ Ω:

γ∗ = min
ω∈Ω

{

min
κ∈K

{
min {ncw (κ, ω), nccw (κ, ω)}

|κ|

}

}

Lemma 1

γ∗ = min
κ∈K

{
1

|κ|

}

γ(ω) =
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Concorrência Ḿınima via Ciclos Máximos (2)

We still need to find ω∗ such that γ(ω∗) = γ∗:

Algorithm 1: Obtaining an orientation in linear time that
leads to minimum concurrency.

Input : Undirected graph G = (V,E) and longest
cycle κ∗ ⊆ V

- Assign increasing ids to each vertex of κ∗

- Assign increasing ids (strictly greater than the ones in κ∗)
to remaining vertices

- Create an “empty" orientation ω∗

- Orient edges towards the smaller (or larger) ids
return ω∗
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Experimental Results

Simple Cycle Problem model (Lucena 2013 [6]) with G (n, p) graphs:

Nodes p Avg. Edges Solved Avg. Min. Conc. CPU Time (s)

200 0.01 391 10 1/178 0.6 (± 0.9)
200 0.1 3 780 10 1/200 6.5 (± 7.3)

1000 0.002 2 062 10 1/905 73.2 (± 51.4)
1000 0.02 19 695 10 1/1000 797.0 (± 547.3)
1000 0.2 179 806 3 1/1000 2 619.9 (± 1 015.0)
2000 0.001 4 091 10 1/1805 425.9 (± 371.3)
2000 0.01 39 807 3 1/2000 2 107.9 (± 1 561.5)
2000 0.1 380 199 0 – –

Using the XPRESS Mixed Integer Programming package v8.5.3 with all other
features off (pre-processing, primal heuristics, etc). Intel Core i9-8950HK, 16

Gbytes of RAM, Linux Ubuntu 18.04.1, one thread.
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Musical Context

(j) Buddy Rich, jazz.

(k) Joe Bonamassa, blues.

Figure 5: Virtuosos (Creative Commons).

Computer generation of
melody has been studied since
the early 1950’s [7].

Two approaches: explicit (in
which composition rules are
specified by humans) and
implicit [8].

Western music: features
counterpoint (or polyphony),
with multiple melodic voices [9].
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Musical Phrases

In blues, jazz and rock music, it’s common to exist a
“question/answer” dynamic with musical phrases:

(a) Antecedent phrase.

(b) Consequent phrase.

Figure 6: Examples of music tablature [10].
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Assembling Maximum-length Tracks

We’d like our model to capture the following restrictions:

A consequent phrase may only
be played after an antecedent
phrase, forming a lick;

Only phrases of the same type
(antecedent or consequent)
may be played simultaneously;

Phrases of different intensities
(e.g. note counts) may not go
well together;

The final composition must be a
loop, include all phrases and be
of maximum length.

Blues Transit.
Jazz
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Figure 7: Modelling example.
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Conclusion

Contributions: computational
strategy for obtaining minimum
concurrency and new approach for
creating musical tracks.

The MIDI standard: hour-long
tracks and potential source of
inspiration for artists.

Future work: computational model
for maximum concurrency under
SER; investigate octave information
for better-quality polyphony.
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(a) Maximum concurrency.
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(b) Minimum concurrency.

Figure 8: Extreme concurrencies.
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Closure

Thank you!
Questions & Answers

This presentation is available in PDF format at:
https://tinyurl.com/inoc2019-32
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Appendix A: Simple Cycle Problem model [6]

max {
∑

e∈E

(xe + ze) : (x, y, z) ∈ R ∩ (B|E |,B|V |,R|E |
+ )} (1)

∑

e∈E(S)

xe ≤
∑

i∈S\{j}

yi , ∀j ∈ S , S ⊂ V (2)

∑

e∈E

xe ≥ 2 (3)

∑

e∈E

ze = 1 (4)

xe + ze ≤ yk , ∀e = {i , j} ∈ E , k = i ∨ k = j (5)∑

e∈δ(i)

(xe + ze) = 2yi , ∀i ∈ V (6)

xe , ze ≥ 0, ∀e ∈ E (7)

0 ≤ yi ≤ 1,∀i ∈ V . (8)
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