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Abstract

There has been a growing interest in Al in the de-
sign of multiagent systems, especially in multiagent
cooperative planning. In this paper, we investigate
the extent to which methodsfrom single-agent plan-
ning and learning can be applied in multiagent set-
tings. We survey a number of different techniques
from decision-theoreti c planning and reinforcement
learning and describe a number of interestingissues
that arise with regard to coordinating the policies of
individua agents. To thisend, we describe multia-
gent Markov decision processes as a genera model
inwhich to frame thisdiscussion. These are special
n-person cooperative games in which agents share
the same utility function. We discuss coordination
mechanisms based on imposed conventions (or so-
cia laws) as well as learning methods for coordi-
nation. Our focus is on the decomposition of se-
guential decision processes so that coordinationcan
belearned (or imposed) locally, at thelevel of indi-
vidual states. We also discuss the use of structured
problem representations and their rolein the gener-
alization of learned conventionsand in approxima-
tion.

1 Introduction

There has been a growing interest in Al in the design of sys-
tems of multiple autonomous agents that interact in various
way's as they pursue their own ends, or perhaps seek compat-
ible goals. Of specia interest are systems in which individ-
ual agents share the same goals or utility function—in such
fully cooperative settings, the agents collectively act to com-
mon desired ends. While more genera problems involving
the interaction of potentialy self-interested agents have re-
ceived thebulk of attentionindistributed Al, fully cooperative
problems naturally arise in task distribution. For example, a
user might assign some number of autonomousmoabilerobots,
or perhaps software agents, to some task, all of which should
share the same utility function (namely, that of the user); for
certain purposes, it may make sense to model abusinessor or-
ganization in asimilar way.

One important class of multiagent problemsisthat of mul-
tiagent planning (or multiagent sequential decision making),
that is, the problem of devising effectve action policies or
strategiesfor aset of n agentswhom share common ends[23].
The key aspect of this problem is coordinating the actions of
theindividua agents so that the shared goal s are achieved ef-
ficiently. Of course, the problem of multiagent planning falls
squardly withinthe setting of n-person cooperative game the-
ory. From the perspective of game theory, we are interested
in n-person games in which the players have ashared or joint
utility function. In other words, any outcome of the game has
equal value for al players. Assuming the game is fully co-
operative in this sense, many of the interesting problems in
cooperative game theory (such as coalition formation and ne-
gotiation) disappear. Rather it becomes more like a standard
(one-player) decision problem, wherethe collection of » play-
erscan be viewed as a single player trying to optimize its be-
havior against nature.

Since planning and sequentia decision-making have been
studied extensively in Al in the context of single agent sys-
tems, and assuming fully cooperative games can be prof-
itably viewed as “collective single agent problems’, the ques-
tion naturally arises: to what extent can methods for single
agent decision making be extended to the cooperative mul-
tiagent setting? This paper makes a contribution to the an-
swer of this question by surveying some techniques used in
the single agent case, making some proposals for extending
certain of these techniques, and suggesting a number of di-
rections research in cooperative multiagent decision making
might take. Since we are interested in planning under un-
certainty, with competing objectives and (potentially) indef-
initeor infinite horizon, we adopt Markov decision processes
(MDPs) [26, 42] as our underlying (single agent) decision
model. MDPs have been used as the basis for much work in
decision-theoreticplanning (DTP) [20, 17, 7, 55, 9], and tech-
niques for computing optimal policies have been adapted to
Al planning tasks. Furthermore, MDPs form the foundation
of most work in reinforcement learning (RL), in which agents
learn optimal policies through experience with the environ-
ment [27, 28].

The extension of MDPsto the cooperative multiagent case
isstraightforward. Indeed, treating the collection of agentsas



a single agent with joint actions at its disposal allows one to
compute (or learn) optimal joint policies by standard meth-
ods, provided the agents are of “one mind.” Unfortunately,
thisis rarely the case; we generally expect agents to plan or
learn independently. However, choices made separately may
be jointly suboptimal. Thus the real problem in extending
single agent methods to cooperative settings is determining
methods of coordination. We must ensure that the individual
decisions made can be coordinated so that joint optimality is
achieved. We notethat all agents are interested in this coordi-
nation since jointly optimal action isindividually optimal for
each agent.

Solutions to the coordination problem can be divided into
three general classes, those based on communication, those
based on convention and those based on learning. For exam-
ple, agents might communicate in order to determine task al-
location [37, 57]; conventions (or social laws) might be im-
posed by the system designed so that optimal joint actionisas-
sured [31, 48]; or acoordinated policy (or conventions) might
belearned through repeated interaction[47, 46, 32]. Wefocus
here primarily on imposed conventionsand learned coordina-
tion of behavior, especialy in sequential decision processes.
Ultimately, we are interested in the extent to which models,
representations and computational schemes for DTP and RL
can be applied to solving cooperative problems requiring co-
ordination.

In the following section, we survey a number of methods
used in the solution of (single-agent) MDPs, including those
used in both DTP and RL. In Section 3, we define multiagent
Markov decision processes, discussthecoordination problem,
and describe how an MMDP can be decomposed into local
state games. In Section 4, we discuss possible solutionsto the
coordination problem. We first describe the use of imposed
conventions (for example, alexicographic convention can be
used in MMDPs). We then discuss possible learning meth-
ods for coordination, with special attention given to learning
of “localy coordinated” policies at the level of state games.
We discussissues of convergence and describe several experi-
mentsinthisregard. Wealso briefly look at possibleRL meth-
odsand coordination. In Section 5, we briefly describetheuse
of factored representations of states and actions for the natu-
ral specification of MDPs problems and how they can be ex-
ploited computationally. Of specia interest istheir potential
to alow generalization of learned conventions. We conclude
with a discussion of possible extensions of this model. To a
large extent, this paper describes a starting point for the in-
vestigation of fully cooperative, multistage, stochastic games
asafoundationfor multiagent planningin stochastic domains.
Our ultimate goal isto explore successively weaker versions
of the model that make fewer assumptions about the capabil-
ities and shared utilities of agents, along with approximation
methods for solving such problems.

We note that thereis a considerable amount of work in co-
operative (and noncooperative) gametheory that isrelevant to
the problems we address here. Many of these techniques can
be applied more or less directly. While we focus on the “Al

perspective’ and the extension of models used in Al, we will
point out some relevant connectionsto the game theory liter-
ature. However, there are surely a number of game-theoretic
methods that are even more suited to the issue of multiagent
planning and coordination that remain unmentioned. This pa
per should beviewed merely as astart toward bridgingthegap
between planning, machine learning and game theoretic ap-
proaches to coordination, a start from the Al side of the gap.
A successful bridge will require additional work from both
sides.

2 Single Agent Decision Processes

Increasingly, research in planning has been directed towards
problemsin which theinitial conditionsand the effects of ac-
tionsare not known with certainty, and in which multiple, po-
tentially conflicting objectives must be traded against one an-
other to determine optimal courses of action. Decision the-
oretic planning generalizes classica Al planning by address-
ingtheseissues[20]. In particul ar, thetheory of Markov deci-
sion processes (MDPs) has found considerable popularity re-
cently both as a conceptual and computational model for DTP
[17,7,55,9,49]. Inaddition, reinforcement learning [28] can
be viewed as a means of learning to act optimally, or incre-
mentally constructing an optimal plan through repeated inter-
action with the environment. Again, MDPsform the underly-
ing model for much of thiswork. We review MDPs and asso-
ciated decision methods in this section, a ong with the appli-
cation of MDPsto RL.

2.1 Markov Decision Processes

We consider DTP problemsthat can bemodel ed as completely
observable MDPs [26, 42]. We assume a finite set of states
S of the system of interest, afinite set of actions .4 available
to the agent, and a reward function R. While an action takes
an agent from one state to another, the effects of actions can-
not be predicted with certainty; hence we write Pr(s;, a, s2)
to denote the probability that s- isreached given that action «
is performed in state s;. Complete observability entails that
the agent always knows what state it isin.! We assume a
bounded, real-valued reward function R, with R(s) denoting
the (immediate) utility of being in state s. These rewards re-
flect the relative importance of various objectives. For our
purposesan MDP consistsof S, .4, R and the set of transition
distributions{Pr (-, a, ) : a € A}. Typical classical planning
problems can be viewed as MDPs in which actions are deter-
ministic and there are no competing objectives only a single
goa (e.g., thereward is0-1) [6].

A planor policyisamapping « : S — A, wheren(s) de-
notes the action an agent will perform whenever itisin state
5.2 Given an MDP, an agent ought to adopt an optimal pol-
icy that maximizes the expected rewards accumulated as it

! Partially observable processes are much more realistic in many
cases[13], but are much less tractable computationally [51]. We do
not consider these here (but see the concluding section).

2Thus we restrict attention to stationary policies. For the prob-
lemswe consider, optimal stationary policies always exist.



performs the specified actions. We concentrate here on dis-
counted infinite horizon problems: the current value of future
rewards is discounted by some factor 5 (0 < 8 < 1); and
we want to maximize the expected accumulated discounted
rewards over an infinite time period. The expected value of
afixed policy 7 at any given state s can be shown to satisfy
[26]:

Va(s) = R(s) + B> _ Pr(s,m(s),t)

tes

Thevaueof = a any initial state s can be computed by solv-
ing this system of linear equations. A policy = is optimal if
Vr(s) > Vai(s) fordl s € S and policies 7. The optimal
value function 1V for the MDP is the value function for any
optimal policy.?

Techniquesfor constructing optimal policiesfor discounted
problems have been well-studied. While algorithms such as
modified policy iteration [43] are often used in practice, an
especialy simple algorithmis value iteration, based on Bell-
man’s [4] “principle of optimality.” We discuss value itera-
tion because of itssimplicity, aswell as the close relationship
it bears to the RL techniques we describe bel ow.

Westart with arandomvaluefunction V° that assigns some
vauetoeach s € S. Givenvaue estimate V*, for each state
s we define Vitl(s) as:

VH'l()—maX{R +52Prsat )} %)

tes

The sequence of functions V' converges linearly to the opti-
mum value in the limit. After some finite number » of itera
tions, the choi ce of maximizing action for each s formsan op-
timal policy = and V" approximatesitsvalue.* The step em-
bodied by Equation (2) is often dubbed a“Bellman backup.”
Much work in DTP has focused on developing represen-
tations and computational techniques for solving MDPs—
optimally or approximately—that are more suited to Al prob-
lems. We will discuss the representation problem in detail
in Section 5. The computational problem isin fact quite se-
vere for large state spaces. While standard MDP agorithms
tendto convergeinrelatively few iterations, each iterationre-
quires computation time at least linear in the size of the state
space (for value iteration, more for other algorithms). This
isgenerally impractical since state spaces grow exponentially
withthenumber of problem featuresof interest—theso-called
curse of dimensionality. Much emphasisin DTP research has
been placed on the issue of speeding up computation, and
severa solutions proposed, including restricting search to lo-
cal regions of the state space [17, 21, 3, 55] or reducing the
state space via abstraction or clustering of states[7]. Both ap-
proaches reduce the state spacein away that allows MDP so-
[ution techniques to be used, and generate approximately op-
timal solutions(whose accuracy can sometimes be bounded a

?It isimportant to notethat VV* dependscritically on the discount
factor. We assumethat 3 isfixed in this discussion.

 Appropriate stopping criteria are discussed in detail by Puter-
man [42].

priori[7]). Certain computational techniquesexpl oit compact
representations of MDPs (we explore these in Section 5).

2.2 Reinforcement Learning

Onedifficulty withthe application of DTP methodsand MDPs
istheavailability of an agent/system model. For instance, one
might have a planning agent available, with certain actions at
its disposal, but not have a good model of the effects of the
agent’s actions, the exogenous changes in the system, or the
relative desirability of particular system states. Furthermore,
even if amodd isavailable, agents may haveto adapt to small
changes in environmental dynamics.

Reinforcement learning is a popular way of addressing
these challenges, alowing policies to be learned on the ba-
sisof experience. Once again we assume that afully observ-
able MDP models the system dynamics, but now the agent
only knows the possible states and actions of the MDP, not
thetransition probabilitiesor thereward structure. It acts con-
tinuously, receiving training samples of the form (s, a,t, r):
action a was taken at state s, the resulting state was ¢ and re-
ward r was received at state s. Given any sequence (or sub-
sequence) of such samples, an agent must decide which ac-
tionto perform inthe current state. Roughly, RL schemes can
be divided into model-free approaches and model-based ap-
proaches.

In model-free RL, an agent makes no attempt to directly
learn Pr or R, the partsof theMDPthat are unknown. Instead
the agent learns the optimal val ue function and optimal policy
(moreor less) directly. Two popular (and related) methodsare
temporal difference (TD) learning [53] and Q-learning [56].
It isbest to think of TD-methods as learning the value func-
tionfor afixed policy; thusit must be combined with another
RL method that can use the value function to do policy im-
provement.

Let V(s) denotethe current estimated value of state s un-
der (fixed) policy =. When an sample (s, a,t, r) is received
by performing action a in state s, the simplest TD-method
(known as TD(0)), will update the estimated valueto be

(1= a)Va(s) + a(r+ fVa (1)) 3)

Herea isthelearningrate (0 < « < 1), governingtowhat ex-
tent the new sampl e replaces the current estimate (recal 5 is
the discount factor). If « is decreased slowly during learning,
TD(0) will convergetothetruevalueof V. shouldall statesbe
sufficiently sampled. More generaly, the sample (s, a, ¢, r)
can be used to update the values of states that were visited
prior to s, not just s, if an eligibility trace (essentialy, an en-
coding of history) is recorded. This is the basis of TD(}),
where a parameter A captures the degree to which past states
are influenced by the current sample [15]. In addition, there
are variantsin which truncated digibility traces are used.
Q-learning [56] isastraightforward and e egant method for
combining value function learning (as in TD-methods) with
policy learning. For each state-action pair (s, ), we assume
aQ-value, Q(s, a), that provides an estimate of the value of



performing action a at state s, assuming that the currently “ op-
timal” action for all subsequently reached statesis performed.
More generaly, let

Qx (s, (s)+ B> _Pr(s,a,t) Vi) (4)

tes

Then Vi (s) = max,{Q=~(s,a)}. We will define the opti-
mal Q-function @* to be the Q-function determined by Equa
tion (4) with VV* used asthetarget valuefunction. Givenan es-
timate of al such optimal Q-values, an agent updates its esti-
mate Q) (s, a) based onsample (s, a, ¢, r) usingaformulasim-
ilar to Equation (3):

(1 - 2)Q(s,a) + a(r + B(max{Q(t,a)}) ()

Since one of the goals of RL isto combine appropriate ac-
tionwith learning, one can use the current estimated Q-values
at any state s to determine the best estimated choice of ac-
tion a s and perform that action. This permits the agent to
adopt the best policy given its current knowledge of the sys-
tem, while at the same time updating this knowledge. Unfor-
tunately, we would not expect convergence to an optimal pol-
icy should such a greedy approach be adopted: Q-learningis
only guaranteed to converge to the optimal Q-function (and
implicitly an optimal policy) should each state be sampled suf-
ficiently [56]. Thus an exploration strategy must be adopted
to ensure that states with low value estimates are also vis-
ited. In much Q-learning research, ad hoc exploration strate-
giesareadopted (e.g., choosing theestimated best action some
fixed fraction of the time and the other actions uniformly the
remainder, or using a Boltzmann distribution with the esti-
mated Q-values of actions determining their likelihood of be-
ing selected). However, considerationsof optimal exploration
strategiesand optimal |earning have been explored, especially
in relation to k-armed bandit problems[27, 28].

M odel-based approaches to RL use the samples to gener-
ae both amodel of the MDP (i.e,, estimated transition prob-
abilities Pr and rewards R) and a value function or policy.
One possible manner in which to incorporatemodelsinRL is
called the certainty equival ence approach: one treatsthe cur-
rent estimated model asif it were accurate, and constructs an
optimal policy based on the current estimate [28]. It is clear
that thisapproach will generally bewildly infeasible, for it re-
quires recomputation of an optimal policy after each sample
(nor does it address the issue of exploration). Sutton’s Dyna
technique [54] adopts a less extreme approach. After a sam-
ple (s,a,t,r) is obtained, the estimated model Pr Rissta
tigtically updated and some number of ()-values are revised
using the new model. In particular, some number & of state-
action pairs (s, o’y are chosen randomly and their values are
updated using the current model :°

Q(s',a') = R(s') + 8> _ Pr(s'’,d,t') - (max{Q(t',a)})
t'esS
(6)

®It is assumed that the experienced state-action pair s, a is up-
dated as well.

Thisisana ogousto performing & asynchronousdynamic pro-
gramming steps using the current model, as opposed to com-
puting the optimal policy for this model.

A very interesting refinement of this model is prioritized
sweeping [37]. Instead of updating random Q-values, the
dtates that are updated are those that are likely to have the
largest changes in value given the effect of the sample on the
estimated model. Let A be the (absolute) difference between
the previous estimated val ue of s and the new value computed
using the updated mode!. The potential priority of any direct
predecessor p of s isgivenby max, Pr(p, a, s)A (thetruepri-
ority of p may be higher if it had ahigher priority beforethis).
Then backups are performed on the k£ highest priority states
(updating prioritiesas we proceed). While prioritized sweep-
ing requires additional computational effort and bookkeeping,
it generaly results in considerably faster convergence (see
[37] for details). Intuitively, thisis so because the backups
are focused on states that, under the current model, will have
their values changed the most given the change in the model
induced by the sample.

One of the more pressing issuesin RL is that of general-
ization and value function approximation. As with the solu-
tion of MDPs, the standard models are usually given an ex-
plicit state space formulation. Computing backups over each
stateisinfeasiblefor large problems; inRL, the problemisex-
acerbated by the need to sample each state alarge number of
times to obtain accurate models or value estimates. General-
ization provides a means to apply the state value, Q-value or
other model parameters that have been learned at one state to
anumber of other states, based on known or inferred problem
characteristics. This reduces the need to visit each state. We
discuss generalization further in Section 5. The reader inter-
ested in additional detailson RL isreferred to [28] for anice
survey of the area.

3 Multiagent MDPs and the Coordination
Problem

Multiagent planning typically assumes that there are some
number of (often heterogeneous) agents, each with their own
set of actions, and a given task to be solved. While gener-
ally each agent might have its own goals, we assume that our
problemisfully cooperative. Thus, the utility of any particu-
lar system state is the same for al agents. In the presense of
uncertainty and general utility models, we can model such a
problem as a multiagent Markov decision process (MMDP),
an MDPinwhich the action chosen at any state consistsof in-
dividua action components performed by the agents. We be-
gin by defining MM DPs, and proposethem as auseful frame-
work in which to study coordination mechanisms.

We think of MMDPs as decision processes rather than
games because of the existence of a joint utility function.
But, in fact, they are nothing more than »-person stochastic
games iswhich the payoff function isthe same for all agents.
MMDPs are a form of stochastic game [41]; but it is most
closely related to the genera framework for repeated games
discussed by Myerson [39] (which themselves are generdliza-



tionsof partially observable MDPs[52, 1]). We will have oc-
casion to exploit both perspectives: MMDPs as a generdiza-
tion of (single-agent) MDPs; and MMDPs as a specidization
of n-person stochastic games.

Definition A multiagent Markov decision process is atuple
(S, {Ai};cq,Pr, R) where: S and o arefinite sets of
states and agents, respectively; A; is afinite set of ac-
tionsavailabletoagent i; Pr : S x A; x --- A, x S —
[0,1] isatransitionfunction; and R : S — R isared-
valued reward function.

For any MMDP, we dub A = x;c,A; the set of joint ac-
tions. Intuitively, at any stage of the process the agents will
each select anindividual action to performand executeit. The
resulting joint action influences the evolution of the system.
The transition function describes the probability of atransi-
tion from state s to state ¢ given the occurrence of a joint ac-
tion a. We usualy write Pr(s, a, t) to denote this quantity.®
Agent i's “component” of ajoint action a iswritten a[i]. We
also write a;—; to denote the joint action formed by replac-
ing a[i] in action a by the individual action b € A;. Finaly,
the reward function determines the reward E(s) received by
the entire collection of agents (or aternatively, by each agent)
when the system isin state s.

Given an MMDP, we want to produce behavior in the in-
dividua agents that maximizes the expected reward they will
receive as the system progresses through time. A stationary
individual policy for agent i isamapping 7; : S — A(A;)
that chooses, for any state s, a probability distribution over
the agent’s actions. An individual policy is deterministic if
some actionisgiven probability 1 at each state, otherwiseitis
randomized.” Thejoint policy = induced by theset of individ-
ua polices {;},.,, isthe obvious mapping from states into
joint actions (or distributionsover joint actions). The value of
ajoint policy m isgiven by Equation (1) asin the single agent
case, with the obvious modification for randomized policies.

Because of the joint utility function, it isuseful to think of
the collection of agents as asingle agent whose goal isto pro-
duce an optimal policy for the joint MDP. Since optimal de-
terministic policiesexit, restricting attentionto joint policies
in which the agents choose randomized individual policiesin-
dependently does not rule out optimal joint action.® Clearly,
the best thing the agents can do, either individualy and col-
lectively, isadopt an optimal joint policy. Wetake the optimal
valuefunction V> for thejoint MDPto bethe*“gold standard”
of performance for the multiagent system.

5 An interesting problem is that of letting the effects of each in-
dividual’s actions a; be stated and providing mechanisms to deter-
mine the joint effect of a set of individual actions “automatically”
(see[11]), sincethisis often the most natural way to specify a prob-
lem. We do not address this issue here and assume the joint effects
are given (but see Section 5).

Policies correspond to behavioral strategies [30] that are re-
stricted to be stationary.

#Not all randomized policies for the joint MDP can be modeled
asacollection of randomizedindividual policies, since correlated ac-
tion choice between two agents cannot be captured this way.

e
BT

Figure 1: A Two-Agent Coordination Problem

The difficulty with treating an MMDP as a standard MDP
inwhich the actions are “implemented” in a distributed fash-
ionliesin coordination. In genera, there are a number of dis-
tinct optimal policies for an MDP. While the agents can each
choose the individual policy induced by some optimal joint
policy, there is no guarantee that the agents select the same
joint policy, and thus that the actua joint policy selected is
infact optimal. To illustrate with an extremely simple exam-
ple, consider an MM DP designed for two agents, A and B, in
whichtherearetwo optimal policies. Thepoliciesagreeinthe
choice of joint action at all states except for s: at s they can
each perform action ! or action » (move left or right, see Fig-
urel). Assumethat shouldthey adopt optimal joint actions at
all other states, the value of the joint policy in which the four
possible actions are taken at state s isgiven by the table:

Il r
11 O
r{o 1

(These are the optimal Q-values at state s for the given joint
actions.) Should agent A choose (!, {) and agent B choose
(r,r), the joint policy induced by the individual policies,
which chooses (I, r) at state s, isnot optimal. In other words,
agents A and B must coordinatetheir policiesat state s.

There are a number of simple ways in which one ensure
coordination. The first is to have a central controller com-
pute an optimal joint policy = and communicate the individ-
ual policiesinduced by 7 to the corresponding agents. A sec-
ond method isto have each agent (or one agent in this case)
communicate its choice of action to the others. However, we
assume that a central controller is not feasible and that com-
municationisnot possible.® Thus, individual agents must de-
termine their own policies.

Treating the MMDP as an n-person game, it is easy to see
that determining an optimal joint policy isaproblem of equi-
librium selection [39, 25]. In particular, each optima joint
policy is aNash equilibrium of the stochastic game: oncethe
agents adopt the individual components of an optimal policy,
thereis no incentive to deviate from this choice. While equi-
libriaare usually taken to form the basi ¢ solution concept for
games, a classic problem in game theory is that of selecting

°Thisis the usual assumption in many multiagent settings, and,
in fact, offers many advantagesin caseswhere the utility function or
system dynamics might change, or where new agents are added to
the system; in these casesit will often be desirable to have individ-
ual agentsadjust their policieson-line andincrementally. Inaddition,
adding means of communication to agents might provetoo costly, or
thetimeliness of action might be adversely affected by communica-
tion delays.



a particular equilibrium from the set of equilibria. Thus, our
coordination problem is simply that of equilibrium selection.

Determining possi ble equilibriain multistagegamesis gen-
eraly adifficult problem. However, the special structure of
our cooperative setting makes this (relatively) easy, since op-
timal joint policiescan be computed using the strai ghtforward
dynamic programming techniques described in the last sec-
tion. One additional assumption can make the coordination
problem even more tractable. We assume that every agent
knows the structure of the game and therefore can compute
the optimal value function V* for the joint MDP!° This al-
lows us to decompose the coordination problem as follows.

Since an agent knows V/*, it can readily determine the set
of optimal joint actions at any state s; thisissimply

{a€ A:R(s)+ 8> Pr(s,a,t) - V(1) = V*(s)}

tes

The set of potentially individually optimal (P10) actions for
agent ; at state s are those actionsin A; that belong to at least
one of the optimal joint actionsfor s. Weassume (for thetime
being) that agentswill select actionsfromthisPIO set. Wede-
notethisset PIO(:, s). We say state s isweakly dependent for
agent i if there ismore than one PIO choicefor i at s. Inthis
case, the agent’s choice may require coordination with those
of other agents at state s.

We define the state game G for state s to be the simple
matrix game consisting of those agents for which s isweakly
dependent, the set of PIO actions a; for each agent i at state
s, and the payoff function for any combination of choices by
these agents. The payoff is given by the expectation of the
value of the resulting state, E(V*(t)|a,s) = Q*(a,s), for
the joint action a induced by this choice, under the assump-
tionthat all agents not included in the game adopt the (unique)
PIO action a s. For instance, the state game in our example
isgiven by the matrix of Q-vaues abovethat assigns 1 to co-
ordinated choice and 0 to uncoordinated choice. It is often
profitableto view the coordination problem asthat of finding
coordinated joint action (or equilibrium selection) at the state
games that arise in the MMDP rather than finding a coordi-
nated global policy. The local nature of the state game prob-
lems makes this perspective much more feasible. However,
we must emphasi ze that, while potentially useful, this decom-
position into state games ignores certain dependencies in the
“true’ solution of state games. We elaborate on thisisthe next
section.

4 Conventionsand L earned Coordination

In this section, we address the coordination problem in
MMDPs. In particular, we focus on conventions as a means
to coordinate the choices of agents. We adopt the view of
[31, 47, 48] that conventionsor social lawsare restrictionson
the possi bl e action choices of agentsin vari ouscircumstances.
For example, one might think of thetraffic rulethat states one

10The important issue of distributed computation is not addressed
here.

should drive on the righthand side of the road as a useful con-
vention that prevents accidents.

In the setting of MMDPs, the coordination problem is that
of designinguseful conventionsto restrict theagentsto choose
PIO actions that together congtitute an optimal joint action at
each state. We consider two general means of applying con-
ventionsto the coordination problem: the imposition of con-
ventions by the system designer, and the learning of coordi-
nated policiesby the agents through repeated interaction with
one another. In addition, we briefly discuss the application of
RL techniques to MM DPs when the agents do not know the
system model.

4.1 Designed Conventionsand Social Laws

Conventions are examined in detail by Lewis [31]. Shoham
and Tennenholtz [48] address the issue from a computational
perspective. For themasocial law isarestriction on the set of
possible actions an agent can adopt at a given state—a “ use-
ful” socia law is one that ensures each agent can construct
successful planswithout regard to theactionsadopted by other
agents. That is, an agent can use its knowledge of the re-
strictions placed on other agents to ensure that its chosen ac-
tionswill not be “interfered with” by the actions of others (of
course, the laws must permit the planning agent enough lati-
tudeto achieve its goas). While thisgenera problem can be
quite difficult even in more restrictive settings than MMDPs
[48], we will make three assumptionsthat permit a very gen-
eral convention to be imposed on the agentsin an MMDP.

In the setting of MMDPs, there is a simple convention that
can beapplied quitegenerally should wetaketheliberty of re-
quiringthat the system designer give agentstheability toiden-
tify one another.!! Three assumptions allow this convention
to be imposed:

1. Theset of agentsis ordered.
2. Theset of actions available to each agent ¢ is ordered.
3. These orderings are known by all agents.

We can make use of thisinformation by adopting the lexico-
graphic convention for coordinating PIO action choices. In-
tuitively, at any state s, the set of agentsfor which s isweakly
dependent will coordinate as follows: thefirst agent (accord-
ing to the agent ordering) in this set will adopt the first (in
itsaction ordering) PIO action availableto it. The next agent
will adopt itsfirst PIO action consistent with the first agent’s
choice, and so on.'? Another point of view: each agent sorts
the set of joint optimal actions for s lexicographically and
adopts its component of the first joint action as its policy at
state s. Agentsnot involvedin this state game will adopt their
single PIO action for state s. It isarather trivial observation
that:

1 \We might take thisto be part of the assumption of complete state
observability, since different agents may have different policies or
even action sets, and being ableto distinguish oneagent from another
becomes an important part of predicting the effects of joint actions.

12The actions can be selected simultaneously; no turn-taking is
implied.



Proposition 1 If each agent « adoptstheindividual policy 7,
specified by the lexicographic convention, the induced joint
policy = is optimal for the joint MDP.

In our example, we supposethat A < B and! < r for both A
and B. The convention states that A and B will both choose
[ at state s.'?

This convention does not rely on the values attached to
the state game G, for the convention ensures that an opti-
mal equilibriumwill be achieved without consideration of the
values of suboptimal (joint) moves. Furthermore, the lexico-
graphic convention allows one to further reduce the number
of agents and moves that must be coordinated. We say an ac-
tionb € A; isindividually optimal for agent : at state s, if
for any optimal joint action a a s, action a;—; is aso opti-
mal at s. (Thisimpliesb isinthe PIO set for i.) Assuming
other agents can coordinate among themsel ves, an agent ¢ for
which an individually optimal choice exists need not bother
coordinating its choice with the other agents. We say a state
is strongly dependent for ¢ if thereis no optimal choice for ¢
among its PIO choices. The reduced lexicographic conven-
tion isidentical to the above except that coordination is re-
stricted to agentsfor which s isstrongly dependent; agentsfor
which s ismerely weakly dependent can choosefreely among
their optimal action choices. The proposition above holdsfor
the reduced convention as well.

Lexicographic conventions are general,
domain-independent mechanisms for coordinating agents in
MMDPs. Furthermore, they are implementable in the sense
that they can be adopted by an agent in the offline construc-
tion of the policy. No choices need be made online when
implementing the policy: coordination is assured and auto-
matic. This stands in sharp contrast with mechanisms such
as communi cation/negotiation or appeal to an arbiter/central
controller, which necessarily delay execution of the concrete
actions and thus could effect the optimality of the choice that
is(say) negotiated. We do however assume consi stent know!-
edge of therequired orderingsamong all agents. Thisassump-
tion is especialy plausiblein, though certainly not restricted
to, systems of homogeneous agents with similar capabilities.
For instance, we can imagine a user deploying a set of like
agents that must come up with (say) a division of labor and
coordinationstrategy to solveanumber of ongoingtasks. Fur-
thermore, “metaconventions’ to deal withthelossor introduc-
tion of additional agents can easily be envisaged (e.g., putting
new agents last in the ordering).

4.2 Learned Coordination and Conventions

Therewill be many settingswhere adesigner isunable or un-
willing to impose orderings, or where knowledge of another
agent’s capabilitiesis not accompanied by the knowledge of
itsordering. In such cases, agents may often learn to coordi-
nate through repeated experience and learning the individual
policies adopted by other agents.

13The agent ordering doesnot imply the existenceof ahierarchical
or master-slave relationship among agents.

Research in learned coordination and emergent conven-
tions has been studied quite extensively in both Al and game
theory. Two rather distinct classes of models have been stud-
ied: those in which agents from a large population are ran-
domly matched and evolve their strategies in response to the
expected play within the population; and those in which a
fixed set of agents repeatedly interact with one another. In
Al, Shoham and Tennenholtz [47] have explored emergent
conventionsin the setting of a large population of randomly
matched individuals. They experiment with a simple coordi-
nation game and investigate a large number of learning con-
ventionsbased on both the“internal” success of a strategy and
the predicted best response to the population at large, as well
l[imited memory models.

Such models have been studied quite extensively in game
theory as well, including experimental work and formal anal-
ysis of convergence [2, 35, 59, 24]. The notion of fictitious
play [41] offersavery simplelearning model inwhich agents
keep track of thefrequency withwhich opponentsuse particu-
lar strategies, and at any point in time adopt a best responseto
therandomized strategy profil e correspondingto the observed
frequencies. Two models in particular seem especidly rele-
vant to our enterprise. Young [59] uses a matching model,
but the ideas there clearly apply to our setting. In this model,
agents can sample a fixed amount of past history (using in-
complete sampling) in order to determine the frequency with
which other agents play various strategies, and adopt appro-
priate best responses. He shows conditionsunder which such
amethod will convergeto a pure strategy equilibrium (which
include coordination games). The work of Kalai and Lehrer
[29] is dso of considerable importance here. They model a
“repeated game’ asatruestochastic game so that performance
during learning can be accounted for when determining a best
response. They assume agents have a prior distribution over
the strategies of their opponents and update these beliefs as
warranted by their experience, adopting best responses based
ontheir beliefs.

We now consider ways in which these and similar ideas
can be applied to the setting of MM DPs, with an eye towards
computational issues. We assume each agent has prior beliefs
about the policies of other agents (we must ensure that these
priorsare obvious and readily computabl€) and that these be-
liefsare updated asthe agents act and interact. Whilewe want
our agents to converge to an optimal joint policy, which in
many cases will be deterministic, the agents will be forced
to adopt randomized policieswhilelearning, for obviousrea
sons. For instance, in our initial example, until agents A and
B have some confidence in the other’s choice of action, ran-
domized choice of the actions and » at state s will prevent
“deadlock.” As proposed by Kalai and Lehrer [29], at each
stage of the game we would like agents to update their beliefs
about other agents's policies, and then adopt a best response
to the set of updated policies. Such a strategy will eventually
lead to aNash equilibriumfor the general repeated game; fur-
thermore, in thiscase, we hope for convergence to an optimal



equilibrium.'*

An important aspect of the model of Kalai and Lehrer is
the fact that the repeated interactions of agents at any point
intime are “strung together” to form a stochastic game. Any
given agent’s decision at some point in the game are influ-
enced not only by the immediate outcome of the local game,
but by itsimpact on future choices. Thusissues such as sacri-
ficing (local) optimality for the sake of exploration does not
arise; agents aim for globally optima moves over the hori-
zon of interest (which may well include exploration in cer-
tain situations). However, this idealized perspective leads to
a number of practical difficultiesin MMDPs. Among these
are representing strategies over an infinite time horizon, and
the requirement that an agent compute a new best response
at each step given itsupdated beliefs about the other agents's
strategies.!®

Asabove, thefact that the agents have access tothe MMDP
and the optima value function—and can therefore break the
MMDP into state games that require coordination—can pro-
videuswith ameansto“cheat” in thelearning of global equi-
libria. We propose that agents learn coordination of policies
by learning coordinated action choice for the individual state
games independently. Since state gamesincorporate the opti-
mal valuefunction, long range conseguences of action choices
are not ignored as they might be in myopic learning in re-
peated games. This also obviates any need for exploration of
the environment.

Theuse of state gamesin thisfashion merely approximates
thetrueuncoordinated decision process. Theagentsarelearn-
ing coordination for a state game whose val ues reflect the op-
timal (therefore coordinated) joint policy, rather than the cur-
rent policy. However, these values do represent the desired
“target” values aswell as, presuming other action choices are
eventually coordinated, true limiting values. Furthermore,
there are severa computational advantages associated with
thismethod. Even when beliefs are updated, there is no need
to recompute a new policy as a best response—each agent
needs only compute a new best response for the state game.
Finally, as with conventions, learning need only take place
for the state games for which coordination is necessary (at
strongly dependent states), and only among agents on whom
this coordination depends.

We now describe a method of thistypein more detail. We
assume each agent knows the optimal value function, the PIO
choices availableto all agents at any state s and therefore the
state game (&, We restrict agents to choose from among their
PIO choices at each state.'® Any agent for whomthestate s is

HWe do not want the agents in our exampleto adopt the random-
ized policy which includes choosing actions! and r each with proba-
bility 0.5; this constitutesan equilibrium, but certainly not an optimal
policy.

5In many stylized settings, such as the repeated prisoner’s
dilemma, many interesting strategies (such as tit-for-tat) do have
compact representation. But the computational difficulty isvery sim-
ilar to that for the “ certainty equivalence approach” to model-based
RL described in Section 2.2.

1|n general, there may be reasonsto do otherwise; see below.

not strongly dependent isnot part of (5. We al so assume each
agent involved in the state game (/s has an prior distribution
over the set of randomized strategiesthat could be adopted by
other agentsinvolvedin G;. Thebeliefsof agent ¢ about agent
J (wrt. Gy) isaprobability distribution over the set of ran-
domized strategies agent j might adopt for & (i.e., random-
ized over PIO(j, s)). We denote by Bel;(j, a;, s) the degree
of belief agent ¢ hasthat j will perform action «; at state s.
Asagenera rule, any reasonable prior could be used (pro-
vided it does not rule out the choice of some action in the
state game). However, we will consider only the case where
each agent usesasimpleprior, theDirichlet distribution. This
can be represented with asmall number of parameters and can
be updated and used quite easily. Let n be the cardinality of
J'sPIO set. Agent ¢'s beliefs about j are represented by the
Dirichlet parameters N7, - - - N, capturing adensity function
(see [40]) over such dtrategies. The expectation of kth ac-

tion being adopted by j is Intuitively, each Ng can

N7
be viewed as the number of times outcome k (inthis case ac-
tion k) has been observed. The initia parameters adopted by
agent ¢ represent its prior beliefs about agent j's strategy. For
simplicity, we assume that prior parameters are set uniformly
(eqg., a 1), reflecting auniform expectation for each of j'sac-
tions (thisis not a uniform prior over strategies, of course).

Once an agent finds itself in a state s for which coordina-
tionisrequired, it will compute the set of pure best responses
based on its beliefs about the other agents' s strategies for Gs.
Thatis, itwill determinewhich of itsactionsin (¢, have max-
imum expected utility given the expected actions of the other
agents.'” The agent must then choose one of these pure best
responses randomly (and we assume uniformly) and execute
it.

When all agents have executed the selected individua ac-
tions at state s, the induced joint action causes a state transi-
tion, and every agent observestheresultingstatet. Thisobser-
vation provides it with information regarding the actions se-
lected by the other agents at s. Since actions have stochastic
outcomes, we do not presupposethat i can directly observethe
actionperformed by j.'® (Wewill consider thesimpler case of
direct action observation below.) Agent ¢ can now update its
beliefsabout the strategy used by j at G, by asimpleapplica-
tion of Bayes rule. Agent ¢ first computes the probability that
J performed a; for any a; € PIO(j, s), given that it knows
theresulting state ¢t and that it performed action a;:

Pr(alj] = ajlali] = @i, 1) =

Prt]a[j] = a;, ali] = a;)Pr(a[j] = a;)
Pr(tlali] = ai)

(The prior probabilities are computed using agent i's beliefs
Bel; (k, ax, s) for arbitrary agents k& and the joint transition
probabilities) Agent i then updates its distribution over j's

7" Notethat we do not requiredetails of the belief distribution, sim-
ply the expectations or the Dirichlet parameters.

18 This stands in contrast to much work on learning equilibria and
emergent conventions.



strategies using this observation. Standard Dirichlet update
requires that one simply increment the parameter N by one
when outcome k (action a?) is observed. Because we have

indirect observation of the individual actions, we update N’/
by Pr(a%[t) (intuitively, by a“fractional” outcome).'” Inthe
special case when actionsare directly observable, we need not
compute the probabilities of action occurrences, instead sim-
ply incrementing the appropriate Dirichlet parameter.2°

In our example, we suppose that agent A adoptstheinitial
parameters {1, 1) representing itsbeliefsabout B’s strategy at
dtate s (i.e., it expects B to choose ! and r each with proba
bility .5). Suppose now that agent B moves right, and agent
A observes the resulting state. 1f the move can be observed
with certainty, agent A will updateits belief parameters about
agent B tobe (1, 2). However, if B’smoves are efror prone,
say with probability 0.9 of B actually moving right when r
is chosen and 0.1 when [ is chosen, then A’s belief parame-
ters become (1.1, 1.9). In either case, the best response for
the next time state s is encountered isr.

The decomposition of the MMDP into state games essen-
tially means that coordinationis restricted to the independent
coordination of local action choice at individua states as op-
posed to the globa coordination of a policy. Thus we can
get afeeling for thisprocess by experimentingwithindividual
state games. To illustratethis, we first consider n x » action-
observable symmetric coordination games, similar to the ex-
ample we described.?! In each such state game, we have n
agents each with n possible moves. The set of movesisthe
same for al agents and they are rewarded with value c if they
each execute the same move, and are given a smaler value
d if they do not. Hence, there are » optima (coordinated)
joint actions. We assume each agent can observe the exact
action performed by the other agents. The results of experi-
ments showing the convergence for various n x n games is
shown in Figure 2. The z-axis showsthe number of timesthe
game has been encountered, while the y-axis shows the aver-
age error probability—the chance an uncoordinated joint ac-
tion is adopted using the agents's best response strategies at
that point. In such action-observable, symmetric games, it is
quite easy to see that convergence to an optimal joint action
will be quite rapid—very roughly, agents choose random ac-
tions until one coordinated action is more likely than others.
For instance, inthe 10 x 10 game coordinationisall but as-
sured by the fourth play of the game.?? Once an equilibrium

19\While fractional parameters do not give a well-defined Dirich-
let, the expectationsthat result do, in fact, correspondto the weighted
combination of Dirichlet distributions that result from standard up-
date using the positive probability outcomes. Since we use only the
expectations below, this suits our needs.

20|t isimportant to note that the agents are updating asif the sam-
pled distribution were stationary, which it is not. Thus, convergence
must be ensured by properties of best responses.

21 These experiments are quite similar in nature to the kind de-
scribed in [47], aswell asthe model adopted in [35, 59].

22|n fact, for larger values of n, faster convergence is due to
the likelihood that the initial randomization is more likely to pro-
duce a unique most likely coordinated action, leading to immediate
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Figure2: Convergence of Action-Observable Symmetric Co-
ordination Games. All results are averaged over 30 trials.

is reached, the agents cannot diverge fromit. Thus, the con-
ventions adopted will be stable.

It is not too difficult to show that in this simple setting,
agents will converge with probability (quickly) approaching
oneto coordinated action (see[59] for instance). The decom-
position of the MM DP using the optimal value functionthere-
fore guaranteesthat theindependent, local coordination of the
state games ensures convergence to global coordinationand a
jointly optimal policy.

Proposition 2 Let M bean MMDP inwhich each state game
at strongly dependent statesis an action-observable, symmet-
ric, coordination game. The learning scheme described will
convergewithlimiting probabilityoneto ajointlyoptimal pol-
icy for M.

The rate of convergence can be adversdly affected if the

gameis not symmetric. For example, consider the asymmet-
ric2 x 2 game given by:

bl b2
al| 4 O
a2|1 4

Should the agents start with prior parameters (1, 1) represent-
ing their beliefs about the other’s moves, then «’sinitial best
responseis a2, whileb’sisb1. The agents will not have the
chance to coordinate their actions until they can randomize
among their pure best responses—when a the proba-
bility of b1 tobe 2 (or b assignsprobability £ toa2). Giventhe
integer nature of the updates, thiscan only happen at thesixth
interaction, and every seventh interaction after that. Thus, the
rate of convergence isautomatically slowed sevenfold. How-
ever, aslong asthevauesin the state game are of finite preci-
sion, convergenceisguaranteed. Thus, convergencetoaglob-
ally optimal policy is assured even when the symmetric (and
n x n) conditions are dropped.

convergence.



One possibleway of enhancing convergence isto consider
the notion of -best responses[29]. Thisallows agentsto ran-
domize among actions that are close to being best responses
given their current beliefs. 1n the example above, the beliefs
of the agents “hover” around the point at which the will ran-
domize (e.g., a’sbelief remaincloseto (2, 2)); but they reach
that point only when the Dirichlet parameters sum to a mul-
tiple of seven. Allowing e-best responses gives the agents
ample opportunity to break out of such cycles. Another pos-
sihility is to allow a small amount of “experimentation” by
agents [59]: at any point in time, an agent will choose a ran-
dom PIO-actionwith probability  (adopting the best response
optionwith probability 1 — ¢). We notethat the agents can pop
out of equilibriawith small probability once coordination is
achieved if experimentation or -best responses are used, but
this probability diminishes over time in the latter case.

Finally, we note the relationship of learning of thistypeto
the solution of games by fictitiousplay [41]. Fictitiousplay is
not guaranteed to converge for non-zero-sum games in gen-
eral, but as noted by Young [59], will converge for coordina-
tion games under many circumstances.

The use of ¢-best responses and experimentation is even
more crucia in cases where actions are not directly observ-
able. In general, should we update Dirichlet parameters with
the probabilities of action occurrences in a nondeterminis-
tic, action-unobservabl e setting, agentswill (generally) never
reach a point a which randomization is possible. For exam-
ple, consider our original of a2 x 2-coordination problem in
which the success probability of agiven left or right action is
0.9. Inthiscase, shouldtheinitial randomization lead to aco-
ordinated joint action, the agents will remain in equilibrium.
However, if they do not successfully coordinate at thefirstin-
teraction, theupdated di stributionscan never be such that each
agent assigns equa probability to the other’s actions. Thus,
the chance of coordinationis 0.5 no matter how many times
the gameis played.?? Figure 3 showsthe performance of ran-
domizing over pure -best responses for the 2 x 2 symmetric
coordination game with nondeterministic actions (with “suc-
cess’ probability of 0.9 each), for variousvaluesof €. Wenote
the “base case” inwhich ¢ = ( does not improve over time:
onceinitia coordinationfails, all hopeof coordinationislost.
The question of whether there exists an ¢ for which conver-
gence for a particular action-observable problem is guaran-
teed (with l[imiting probability one).

Figure 4 shows results for the same problem where exper-
imentation is performed with different probabilities. It isim-
portant to note that al error probabilitiesinclude the chance
of uncoordinated action due to an experimenta choice. Ex-
perimentation appears to be a very effective means of ensur-
ing coordinationinthe setting of inexactly observable actions.
We conjecture that decayed experimentation rates or cutting
off experimentation at a certain point would enhance its per-
formance.

2*The agents's beliefs and strategies, do therefore converge on
a Nash equilibrium; but not an optimal coordinated (pure strategy)
equilibrium.
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Figure3: Convergence of Stochastic 2 x 2 Game using ¢-Best
Response. All results are averaged over 100 trials.
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Figure 5: Potentia Difficulty with PIO Actions

Finally, the assumed independence of the state games and
the use of the optimal value function to produce state game
values deserves some discussion. The structure of the state
gamesis such that only PIO actions can be considered as can-
didates for coordination. As mentioned, this assumption is
justified in the long run, for these values reflect truly coordi-
nated policies. However, at any point before coordination is
assured at al strongly dependent states, the current policies of
the agents necessarily have alower valueat some (perhapsall)
states. If we were to adopt the more precise model of [29], we
would model the learning process as part of the MMDPin or-
der to ensureoptimal performanceduringlearning. For exam-
ple, agentsmay decidethat learningto coordinate (in the sense
we have described) may not be worth therisk. Restricting the
attention of agentsto PIO actions may preclude such consid-
erations. For instance, consider the two-agent MMDP shown
inFigure5. At state 1, thePlO actionsfor each agent are « and
b: coordinated choice will ensure repeated transition through
the high reward state 2. However, under typical assumptions
theinitial probability of coordinated action is0.5. If thedis-
count parameter 3 is small enough, the optimal choice given
theinitial inability to coordinate is for each agent to choose
action ¢, regardless of how quickly convergence to a coordi-
nated choice might arise.

By restricting attention to PIO actions, such considerations
cannot be accounted for; however, the restriction has compu-
tational advantages. In small part thisisbecauseit reducesthe
number of actions and agentsinvolvedin coordination. Much
more significant is the fact that no agent needs to recompute
thevaluefunctionfor theMMDP (or the state games) whenits
beliefs about another agent’s strategy is updated. Computing
avaue function (in order to determine a best response) is a
daunting task to perform once, let a one once per interaction.

One final justification for the restriction to PIO choicesin
the state games isrelated to the interpretation of discounting.
Recently, certain work in Al has advocated the use of theaver-

age reward optimality criterion as opposed to discounted total
reward [33, 11]. Using such acriterion in the example above
would ensure that the agentsindeed want to coordinate at state
1, even if convergence of the learning processis dow.

4.3 Multiagent Reinforcement Learning

One can clearly apply ideas from reinforcement learning to
the solution of MMDPs in which agents lack knowledge of
the model being used. In this case, since the agent’s do not
know the effects of joint actions nor the rewards associated
with particul ar states, thereislittlethat can bedoneinitiallyin
the way of restricting attention to particular actions, or using
beliefsabout other agents. Oneway of usingRL inMMDPsis
tohave each agent learn itspolicy by standard means (e.g., Q-
learning) without regard to other agents. In other words, other
agents are simply treated as part of the environment.

Recent work in applying Q-learning to multiagent systems
seems to adopt just this approach. For instance, Mataric [34]
describes experimentswith mobilerobotsinwhich Q-learning
isapplied to a cooperative task with good results. In a simi-
lar vein, Yanco and Stein [58] also reported experimenta re-
sults with hierarchical Q-learning in order to learn coopera-
tive communi cation between aleader and follower agent (see
also[16]). Inbothworks, convergenceisachieved. A dightly
different “semi-cooperative’ application of Q-learning is re-
ported in [45], where a set of agents used straightforward Q-
learning in the presense of other agents with orthogonal and
dightlyinteractinginterests. |nthese experiments, Q-learning
also converges, but not to a optimal solution.?* Finally, simi-
lar resultsare obtained in [46] with afully cooperative setting;
convergence to good policies is obtained, although learned
policies were generally suboptimal due to inadequate explo-
ration.

There has been little theoretical analysis of Q-learning in
multiagent settings, though it has been applied with some
success in fully cooperative and noncooperative games. As
with learning in MMDPs, one difficulty with multiagent Q-
learning is the fact that the distributions are not stationary,
as agents react to the changing strategies of others. In the
fully cooperative setting, we conjecture that straightforward
Q-learningwill lead to equilibrium strategies (and perhaps op-
timal policies given appropriate exploration). Thisisaresult
of someinterest given the popularity of Q-learning and related
methods for “automatic agent programming.” Of course,
though it may prove useful in semi-cooperative settings, it
seems clear that Q-learning will not generally converge to
good (e.g., Pareto optimal) solutions.

Inthe area of zero-sum games, littleattempt has been made
to apply Q-learning. One exception is the work of Littman
[32] which addresses two-person zero-sum games. Each ex-
perienceat a particular stateresultsin an updated Q-valuethat
isdetermined by usingasmall linear programto solvethe ana
logue of alocd state game. There it is conjectured that Q-

24 More precisely, the solutionswere not generally Pareto optimal;
certain agents could have done better had other agents been more co-
operative. These other agents, however, had no incentive to do so.



learning will converge to an equilibrium.

An interesting question is the extent to which the model-
based approaches to RL can be applied to MMDPs. In a cer-
tain sense, one can view the learning approaches to MMDPs
(and n-person games generally) as atype of model-based RL.
At each point an agent updatesits model of the other agents's
strategies and playsthe best responseto that strategy profile at
any pointintime. Theana ogy withthe Dynaarchitecture[54]
israther compelling. It may well be the case that simultane-
ouslearning of the system model and other agents's strategies
isaprofitable method of attacking this problem.

5 Structured Representation and
Computation

One of the most pressing problems in the solution of MDPs
and in RL isthe need for problem representations, structured
computational methods and approximation techniques. As
mentioned earlier, planning problems are typically specified
in terms of some number of domain festures—random vari-
ables or propositions—so the size of the state space grows
exponentially in terms of the “natura” problem size. The
so-called “curse of dimensionality” plagues attemptsto solve
MDPs using standard methods, specified as they are explic-
itly in terms of the state space. Just as with RL, the problem
iseven more severe when conventionsmust belearned, for re-
peated interaction at many states is required before the prob-
lem is considered solved.

One way of addressing this problem in the case of both
known and unknown modelsisthroughthe use of aggregation
methods (or generaization), in which a number of states are
grouped because they have similar or identical value and/or
action choice. These aggregates are treated asa singlestatein
dynamic programming a gorithmsfor the solutionof MDPsor
therelated methodsused inRL [44, 5, 36, 7,9, 19, 22, 14, 38].
Such aggregations can be based on anumber of different prob-
lemfeatures, such assimilarity of states according to somedo-
main metric, but generally assume that the states so grouped
have the same optimal value. In addition, such schemes can
be exact or approximate, adaptive or fixed, and uniform or
nonuniform, and can be generated using a priori problem
characteristics or learned generalizations.

In large problems, we should not expect agents to learn
to coordinate their actions separately at each state. Lessons
learned in one state should be applied to similar states; and
learning can be enhanced if the experiences at similar states
are merged to increase confidence in learned strategies. In
this section, we briefly describe structured problem represen-
tations, their use in the solution of MDPs, and make some pre-
liminary suggestions how these ideas can be exploited in the
learning of coordinated policiesin MDPs via generalization.
Research into generalization and approximation will be cru-
cia if learning strategies are to be applied to redlistic prob-
lems.

To begin we present abrief summary of some of our earlier
work on structured representation and computation for MDPs.
We assume that a set of atomic propositions P describes our

system, inducing a state space of size 2/P!, and use two-stage
temporal or dynamic Bayesian networks to describe our ac-
tions [18, 9].?° For each action, we have a Bayes net with
one set of nodes representing the system state prior to the ac-
tion (one node for each variable), another set representing the
world after the action has been performed, and directed arcs
representing causal influences between the these sets. Each
post-action node has an associated conditional probability ta-
ble (CPT) quantifying the influence of the action on the cor-
responding variable, given the value of itsinfluences (see [9]
for amore detailed discussion of this representation).? Fig-
ure 6(a) illustrates this representation for asingle action.”

Thelack of arcfromapre-actionvariable X toapost-action
variable Y in the network for action a reflects the indepen-
dence of a’seffect on'Y from the prior value of X. We cap-
tureadditional independence by assuming structured CPTs. In
particular, we use adecision tree to represent the function that
maps combinations of parent variablesto (conditional) prob-
abilities. For instance, thetreesin Figure 6(a) show that I in-
fluencesthe probability of 11/ becoming true (post-action), but
onlyif Risalsotrue. Thus, additiona regularitiesintransition
probabilities are used to provide a more compact representa
tion than the usua (locally exponentia) CPTs (the matrices).
A similar representation can be used to represent the reward
function R, as shown in Figure 6(b).

In[9], we present an algorithm for solving MDPs that ex-
ploits such a representation. Decision trees as used as com-
pact function representationsfor policiesand value functions,
essentially representing values for clusters, or regions of the
state space, as opposed to individua states. Using thisrepre-
sentation, aform of structured dynamic programming can be
implemented in which Bellman backups are performed over
theseregions. (We notethat theregionsare not fixed through-
out policy construction, but are adapted as the value function
isupdated.) The result isacompact “region-based” represen-
tation of both the optimal policy and value function.?® Anil-
lustration of such a policy and its corresponding val ue func-
tion is shown in Figure 7. For example, the policy is repre-
sented by associ ating actionswith eight distinct regionsof the
state space instead of 64 states.

The extension of the Bayesian network representation of
actionsto multiagent MDPsis straightforward, asisthe struc-
tured computation of optimal valuefunctionsand policiesfor
the joint MDP. Intuitively, this offers tremendous potential
for learning coordinated policies. We might imagine, for in-
stance, that thetreein Figure 7 represents the possi bl e optimal
joint policies. Furthermore, supposethat the region HCU (the

2% For a survey of the issuesin structured computation and repre-
sentation in MDPs, see [6].

26 To simplify the presentation, we consider only binary variables.

2TThisis atoy domain in which a robot is supposed to get coffee
from a coffee shop acrossthe street, can get wet if it israining unless
it has an umbrella, and is rewarded if it brings coffee when the user
requests it, and penalized (to a lesser extent) if it gets wet [9, 10].
This network describesthe action of fetching coffee.

28 See[22] for asimilar approach to RL for goal-based, determin-
istic problems.
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leftmost branch) admits several PIO action choices for sev-
eral agents. If the agents solvethe MMDP in such away that
they each determine the same value function structure, then
each of them will recognize that the same jointly optimal ac-
tion choice can be applied to each state in that region. Thus,
an experience in any state in that region can be applied by all
agents to the update of their beliefs regarding all statesin the
region. Indeed, the coordinating agents need only have one
set of beliefs per region.?® Thisisan additional advantage of
decomposing the coordination problem into state games.

These representations can a so be exploited in value func-
tion approximation and the construction of approximately op-
tima policies [8]. Generally speaking, value trees such as
these can be pruned during computation to keep down com-
putational costs, whilesacrificing optimality. Error boundson
theresulting policies can be given aswell. Thisoffersfurther
compaction of the value function and additional generaliza-
tion in learning. Some additiona difficulties may arise how-
ever; for example, should two agents approximate the value
function differently, convergence of learning may be drasti-
caly affected. Issues such as these are of great interest.

Finally, we note that much research has been carried out
in the RL community on generalization of learned values and
action choices, as well as value function approximation (es-
pecialy in continuous domains); see, for example, [22, 14,
38, 12, 36, 50]. The survey [28] provides a nice discussion
of these issues.

6 Concluding Remarks

We have surveyed a number of issues that arise in the appli-
cation of single-agent planning and learning techniquesto the
setting of fully cooperative multiagent planning. There are a
number of models and methods from planning, learning and
game theory that can be applied directly or extended to theco-
ordination problemin MMDPs. But there are agreat number
of extremely interesting avenues of research that need further
exploration.

With regard to learning coordination in MMDPs, exper-
imental work with different learning strategies is crucial.
Proofs of convergence and methods for speeding up conver-
gence for specific schemes, especially those with nice com-
putational properties, must be forthcoming—for instance, un-
der what circumstances does Q-learning convergein MMDPs.
Another interesting question is the extent to which specially
designed priors might prevent, guarantee or speed up con-
vergence to coordinated equilibria. Finaly, further investiga
tion is needed of the extent to which problem decomposition
methods such as those described here affect the optimality of
performance while learning, and principled ways in which to
address the tradeoffs between “base level” performance and
computational demands.

2°To consider another example related to the right half of the tree,
the agents may divide up the tasks of getting coffee and picking up
mail in exactly the same way without regard to whether it is raining
R, or they arewet W. To consider a different convention because of
changesin these variables would be absurd (in this case).

Probably one of the most pressing needsisthe further study
of coordination learning using structured problem represen-
tations, generalization and approximation techniques. This
seems to be an area in which the synthesis of Al representa-
tions and game-theoretic model s holds the most promise.

Finally, the assumptionsunderlying the MM DP model may
not be redlistic in many cases. For instance, knowing what
agents are involved in the problem, the actions at their dis-
posal, or their action models may be inappropriate. The most
unrealistic assumption is that of full observability. We view
MM DPsas apoint of departurefor futureinvestigation, aspe-
cia case whose assumptions can gradually be relaxed in an
effort to find computationally effective coordination mecha
nismsin more general settings. Included in thisistheinvesti-
gation of learned communication languages and protocols.
Acknowledgements: Thanksto Yoav Shoham for hisencour-
agement. Thanksa sotoDavid Pooleand Michadl Littman for
their comments and discussion of these ideas. Thisresearch
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