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Abstract

There has been a growing interest in AI in the de-
sign of multiagent systems, especially in multiagent
cooperative planning. In this paper, we investigate
the extent to which methods from single-agent plan-
ning and learning can be applied in multiagent set-
tings. We survey a number of different techniques
from decision-theoretic planning and reinforcement
learning and describe a number of interesting issues
that arise with regard to coordinating the policies of
individual agents. To this end, we describe multia-
gent Markov decision processes as a general model
in which to frame this discussion. These are specialn-person cooperative games in which agents share
the same utility function. We discuss coordination
mechanisms based on imposed conventions (or so-
cial laws) as well as learning methods for coordi-
nation. Our focus is on the decomposition of se-
quential decision processes so that coordination can
be learned (or imposed) locally, at the level of indi-
vidual states. We also discuss the use of structured
problem representations and their role in the gener-
alization of learned conventions and in approxima-
tion.

1 Introduction
There has been a growing interest in AI in the design of sys-
tems of multiple autonomous agents that interact in various
ways as they pursue their own ends, or perhaps seek compat-
ible goals. Of special interest are systems in which individ-
ual agents share the same goals or utility function—in such
fully cooperative settings, the agents collectively act to com-
mon desired ends. While more general problems involving
the interaction of potentially self-interested agents have re-
ceived the bulk of attention in distributedAI, fully cooperative
problems naturally arise in task distribution. For example, a
user might assign some number of autonomous mobile robots,
or perhaps software agents, to some task, all of which should
share the same utility function (namely, that of the user); for
certain purposes, it may make sense to model a business or or-
ganization in a similar way.

One important class of multiagent problems is that of mul-
tiagent planning (or multiagent sequential decision making),
that is, the problem of devising effectve action policies or
strategies for a set ofn agents whom share common ends [23].
The key aspect of this problem is coordinating the actions of
the individual agents so that the shared goals are achieved ef-
ficiently. Of course, the problem of multiagent planning falls
squarely within the setting of n-person cooperative game the-
ory. From the perspective of game theory, we are interested
in n-person games in which the players have a shared or joint
utility function. In other words, any outcome of the game has
equal value for all players. Assuming the game is fully co-
operative in this sense, many of the interesting problems in
cooperative game theory (such as coalition formation and ne-
gotiation) disappear. Rather it becomes more like a standard
(one-player) decision problem, where the collection ofn play-
ers can be viewed as a single player trying to optimize its be-
havior against nature.

Since planning and sequential decision-making have been
studied extensively in AI in the context of single agent sys-
tems, and assuming fully cooperative games can be prof-
itably viewed as “collective single agent problems”, the ques-
tion naturally arises: to what extent can methods for single
agent decision making be extended to the cooperative mul-
tiagent setting? This paper makes a contribution to the an-
swer of this question by surveying some techniques used in
the single agent case, making some proposals for extending
certain of these techniques, and suggesting a number of di-
rections research in cooperative multiagent decision making
might take. Since we are interested in planning under un-
certainty, with competing objectives and (potentially) indef-
inite or infinite horizon, we adopt Markov decision processes
(MDPs) [26, 42] as our underlying (single agent) decision
model. MDPs have been used as the basis for much work in
decision-theoretic planning (DTP) [20, 17, 7, 55, 9], and tech-
niques for computing optimal policies have been adapted to
AI planning tasks. Furthermore, MDPs form the foundation
of most work in reinforcement learning (RL), in which agents
learn optimal policies through experience with the environ-
ment [27, 28].

The extension of MDPs to the cooperative multiagent case
is straightforward. Indeed, treating the collection of agents as



a single agent with joint actions at its disposal allows one to
compute (or learn) optimal joint policies by standard meth-
ods, provided the agents are of “one mind.” Unfortunately,
this is rarely the case; we generally expect agents to plan or
learn independently. However, choices made separately may
be jointly suboptimal. Thus the real problem in extending
single agent methods to cooperative settings is determining
methods of coordination. We must ensure that the individual
decisions made can be coordinated so that joint optimality is
achieved. We note that all agents are interested in this coordi-
nation since jointly optimal action is individually optimal for
each agent.

Solutions to the coordination problem can be divided into
three general classes, those based on communication, those
based on convention and those based on learning. For exam-
ple, agents might communicate in order to determine task al-
location [37, 57]; conventions (or social laws) might be im-
posed by the system designed so that optimal joint action is as-
sured [31, 48]; or a coordinated policy (or conventions) might
be learned through repeated interaction [47, 46, 32]. We focus
here primarily on imposed conventions and learned coordina-
tion of behavior, especially in sequential decision processes.
Ultimately, we are interested in the extent to which models,
representations and computational schemes for DTP and RL
can be applied to solving cooperative problems requiring co-
ordination.

In the following section, we survey a number of methods
used in the solution of (single-agent) MDPs, including those
used in both DTP and RL. In Section 3, we define multiagent
Markov decision processes, discuss the coordination problem,
and describe how an MMDP can be decomposed into local
state games. In Section 4, we discuss possible solutions to the
coordination problem. We first describe the use of imposed
conventions (for example, a lexicographic convention can be
used in MMDPs). We then discuss possible learning meth-
ods for coordination, with special attention given to learning
of “locally coordinated” policies at the level of state games.
We discuss issues of convergence and describe several experi-
ments in this regard. We also briefly look at possible RL meth-
ods and coordination. In Section 5, we briefly describe the use
of factored representations of states and actions for the natu-
ral specification of MDPs problems and how they can be ex-
ploited computationally. Of special interest is their potential
to allow generalization of learned conventions. We conclude
with a discussion of possible extensions of this model. To a
large extent, this paper describes a starting point for the in-
vestigation of fully cooperative, multistage, stochastic games
as a foundation for multiagent planning in stochastic domains.
Our ultimate goal is to explore successively weaker versions
of the model that make fewer assumptions about the capabil-
ities and shared utilities of agents, along with approximation
methods for solving such problems.

We note that there is a considerable amount of work in co-
operative (and noncooperative) game theory that is relevant to
the problems we address here. Many of these techniques can
be applied more or less directly. While we focus on the “AI

perspective” and the extension of models used in AI, we will
point out some relevant connections to the game theory liter-
ature. However, there are surely a number of game-theoretic
methods that are even more suited to the issue of multiagent
planning and coordination that remain unmentioned. This pa-
per should be viewed merely as a start toward bridging the gap
between planning, machine learning and game theoretic ap-
proaches to coordination, a start from the AI side of the gap.
A successful bridge will require additional work from both
sides.

2 Single Agent Decision Processes
Increasingly, research in planning has been directed towards
problems in which the initial conditions and the effects of ac-
tions are not known with certainty, and in which multiple, po-
tentially conflicting objectives must be traded against one an-
other to determine optimal courses of action. Decision the-
oretic planning generalizes classical AI planning by address-
ing these issues [20]. In particular, the theory of Markov deci-
sion processes (MDPs) has found considerable popularity re-
cently both as a conceptual and computational model for DTP
[17, 7, 55, 9, 49]. In addition, reinforcement learning [28] can
be viewed as a means of learning to act optimally, or incre-
mentally constructing an optimal plan through repeated inter-
action with the environment. Again, MDPs form the underly-
ing model for much of this work. We review MDPs and asso-
ciated decision methods in this section, along with the appli-
cation of MDPs to RL.

2.1 Markov Decision Processes

We consider DTP problems that can be modeled as completely
observable MDPs [26, 42]. We assume a finite set of statesS of the system of interest, a finite set of actions A available
to the agent, and a reward function R. While an action takes
an agent from one state to another, the effects of actions can-
not be predicted with certainty; hence we write Pr(s1; a; s2)
to denote the probability that s2 is reached given that action a
is performed in state s1. Complete observability entails that
the agent always knows what state it is in.1 We assume a
bounded, real-valued reward function R, with R(s) denoting
the (immediate) utility of being in state s. These rewards re-
flect the relative importance of various objectives. For our
purposes an MDP consists of S, A, R and the set of transition
distributions fPr(�; a; �) : a 2 Ag. Typical classical planning
problems can be viewed as MDPs in which actions are deter-
ministic and there are no competing objectives only a single
goal (e.g., the reward is 0-1) [6].

A plan or policy is a mapping � : S ! A, where �(s) de-
notes the action an agent will perform whenever it is in states.2 Given an MDP, an agent ought to adopt an optimal pol-
icy that maximizes the expected rewards accumulated as it1Partially observable processes are much more realistic in many
cases [13], but are much less tractable computationally [51]. We do
not consider these here (but see the concluding section).2Thus we restrict attention to stationary policies. For the prob-
lems we consider, optimal stationary policies always exist.



performs the specified actions. We concentrate here on dis-
counted infinite horizon problems: the current value of future
rewards is discounted by some factor � (0 < � < 1); and
we want to maximize the expected accumulated discounted
rewards over an infinite time period. The expected value of
a fixed policy � at any given state s can be shown to satisfy
[26]: V�(s) = R(s) + �Xt2S Pr(s; �(s); t) � V�(t) (1)

The value of � at any initial state s can be computed by solv-
ing this system of linear equations. A policy � is optimal ifV�(s) � V�0 (s) for all s 2 S and policies �0. The optimal
value function V � for the MDP is the value function for any
optimal policy.3

Techniques for constructing optimal policies for discounted
problems have been well-studied. While algorithms such as
modified policy iteration [43] are often used in practice, an
especially simple algorithm is value iteration, based on Bell-
man’s [4] “principle of optimality.” We discuss value itera-
tion because of its simplicity, as well as the close relationship
it bears to the RL techniques we describe below.

We start with a random value functionV 0 that assigns some
value to each s 2 S. Given value estimate V i, for each states we define V i+1(s) as:V i+1(s) = maxa2AfR(s) + �Xt2S Pr(s; a; t) � V i(t)g (2)

The sequence of functions V i converges linearly to the opti-
mum value in the limit. After some finite number n of itera-
tions, the choice of maximizing action for each s forms an op-
timal policy � and V n approximates its value.4 The step em-
bodied by Equation (2) is often dubbed a “Bellman backup.”

Much work in DTP has focused on developing represen-
tations and computational techniques for solving MDPs—
optimally or approximately—that are more suited to AI prob-
lems. We will discuss the representation problem in detail
in Section 5. The computational problem is in fact quite se-
vere for large state spaces. While standard MDP algorithms
tend to converge in relatively few iterations, each iteration re-
quires computation time at least linear in the size of the state
space (for value iteration, more for other algorithms). This
is generally impractical since state spaces grow exponentially
with the number of problem features of interest—the so-called
curse of dimensionality. Much emphasis in DTP research has
been placed on the issue of speeding up computation, and
several solutions proposed, including restricting search to lo-
cal regions of the state space [17, 21, 3, 55] or reducing the
state space via abstraction or clustering of states [7]. Both ap-
proaches reduce the state space in a way that allows MDP so-
lution techniques to be used, and generate approximately op-
timal solutions (whose accuracy can sometimes be bounded a3It is important to note that V � depends critically on the discount
factor. We assume that � is fixed in this discussion.4Appropriate stopping criteria are discussed in detail by Puter-
man [42].

priori [7]). Certain computational techniques exploit compact
representations of MDPs (we explore these in Section 5).

2.2 Reinforcement Learning

One difficultywith the applicationof DTP methods and MDPs
is the availability of an agent/system model. For instance, one
might have a planning agent available, with certain actions at
its disposal, but not have a good model of the effects of the
agent’s actions, the exogenous changes in the system, or the
relative desirability of particular system states. Furthermore,
even if a model is available, agents may have to adapt to small
changes in environmental dynamics.

Reinforcement learning is a popular way of addressing
these challenges, allowing policies to be learned on the ba-
sis of experience. Once again we assume that a fully observ-
able MDP models the system dynamics, but now the agent
only knows the possible states and actions of the MDP, not
the transition probabilities or the reward structure. It acts con-
tinuously, receiving training samples of the form hs; a; t; ri:
action a was taken at state s, the resulting state was t and re-
ward r was received at state s. Given any sequence (or sub-
sequence) of such samples, an agent must decide which ac-
tion to perform in the current state. Roughly, RL schemes can
be divided into model-free approaches and model-based ap-
proaches.

In model-free RL, an agent makes no attempt to directly
learn Pr orR, the parts of the MDP that are unknown. Instead
the agent learns the optimal value function and optimal policy
(more or less) directly. Two popular (and related) methods are
temporal difference (TD) learning [53] and Q-learning [56].
It is best to think of TD-methods as learning the value func-
tion for a fixed policy; thus it must be combined with another
RL method that can use the value function to do policy im-
provement.

Let V�(s) denote the current estimated value of state s un-
der (fixed) policy �. When an sample hs; a; t; ri is received
by performing action a in state s, the simplest TD-method
(known as TD(0)), will update the estimated value to be(1� �)V�(s) + �(r + �V� (t)) (3)

Here� is the learning rate (0 � � � 1), governing to what ex-
tent the new sample replaces the current estimate (recall � is
the discount factor). If � is decreased slowly during learning,
TD(0) will converge to the true value of V� should all states be
sufficiently sampled. More generally, the sample hs; a; t; ri
can be used to update the values of states that were visited
prior to s, not just s, if an eligibility trace (essentially, an en-
coding of history) is recorded. This is the basis of TD(�),
where a parameter � captures the degree to which past states
are influenced by the current sample [15]. In addition, there
are variants in which truncated eligibility traces are used.

Q-learning [56] is a straightforward and elegant method for
combining value function learning (as in TD-methods) with
policy learning. For each state-action pair hs; ai, we assume
a Q-value, Q(s; a), that provides an estimate of the value of



performing action a at state s, assuming that the currently “op-
timal” action for all subsequently reached states is performed.
More generally, letQ�(s; a) = R(s) + �Xt2S Pr(s; a; t) � V�(t) (4)

Then V�(s) = maxafQ�(s; a)g. We will define the opti-
mal Q-functionQ� to be the Q-function determined by Equa-
tion (4) withV � used as the target value function. Given an es-
timate of all such optimal Q-values, an agent updates its esti-
mateQ(s; a) based on sample hs; a; t; ri using a formula sim-
ilar to Equation (3):(1� �)Q(s; a) + �(r + �(maxa0 fQ(t; a0)g)) (5)

Since one of the goals of RL is to combine appropriate ac-
tion with learning, one can use the current estimated Q-values
at any state s to determine the best estimated choice of ac-
tion at s and perform that action. This permits the agent to
adopt the best policy given its current knowledge of the sys-
tem, while at the same time updating this knowledge. Unfor-
tunately, we would not expect convergence to an optimal pol-
icy should such a greedy approach be adopted: Q-learning is
only guaranteed to converge to the optimal Q-function (and
implicitlyan optimal policy) should each state be sampled suf-
ficiently [56]. Thus an exploration strategy must be adopted
to ensure that states with low value estimates are also vis-
ited. In much Q-learning research, ad hoc exploration strate-
gies are adopted (e.g., choosing the estimated best action some
fixed fraction of the time and the other actions uniformly the
remainder, or using a Boltzmann distribution with the esti-
mated Q-values of actions determining their likelihood of be-
ing selected). However, considerations of optimal exploration
strategies and optimal learning have been explored, especially
in relation to k-armed bandit problems [27, 28].

Model-based approaches to RL use the samples to gener-
ate both a model of the MDP (i.e., estimated transition prob-
abilities bPr and rewards bR) and a value function or policy.
One possible manner in which to incorporate models in RL is
called the certainty equivalence approach: one treats the cur-
rent estimated model as if it were accurate, and constructs an
optimal policy based on the current estimate [28]. It is clear
that this approach will generally be wildly infeasible, for it re-
quires recomputation of an optimal policy after each sample
(nor does it address the issue of exploration). Sutton’s Dyna
technique [54] adopts a less extreme approach. After a sam-
ple hs; a; t; ri is obtained, the estimated model bPr; bR is sta-
tistically updated and some number of Q-values are revised
using the new model. In particular, some number k of state-
action pairs hs0; a0i are chosen randomly and their values are
updated using the current model:5Q(s0; a0) = bR(s0) + �Xt02S bPr(s0; a0; t0) � (maxa fQ(t0; a)g)

(6)5It is assumed that the experienced state-action pair s; a is up-
dated as well.

This is analogous to performingk asynchronous dynamic pro-
gramming steps using the current model, as opposed to com-
puting the optimal policy for this model.

A very interesting refinement of this model is prioritized
sweeping [37]. Instead of updating random Q-values, the
states that are updated are those that are likely to have the
largest changes in value given the effect of the sample on the
estimated model. Let � be the (absolute) difference between
the previous estimated value of s and the new value computed
using the updated model. The potential priority of any direct
predecessor p of s is given bymaxa bPr(p; a; s)� (the true pri-
ority of p may be higher if it had a higher priority before this).
Then backups are performed on the k highest priority states
(updating priorities as we proceed). While prioritized sweep-
ing requires additional computational effort and bookkeeping,
it generally results in considerably faster convergence (see
[37] for details). Intuitively, this is so because the backups
are focused on states that, under the current model, will have
their values changed the most given the change in the model
induced by the sample.

One of the more pressing issues in RL is that of general-
ization and value function approximation. As with the solu-
tion of MDPs, the standard models are usually given an ex-
plicit state space formulation. Computing backups over each
state is infeasible for large problems; in RL, the problem is ex-
acerbated by the need to sample each state a large number of
times to obtain accurate models or value estimates. General-
ization provides a means to apply the state value, Q-value or
other model parameters that have been learned at one state to
a number of other states, based on known or inferred problem
characteristics. This reduces the need to visit each state. We
discuss generalization further in Section 5. The reader inter-
ested in additional details on RL is referred to [28] for a nice
survey of the area.

3 Multiagent MDPs and the Coordination
Problem

Multiagent planning typically assumes that there are some
number of (often heterogeneous) agents, each with their own
set of actions, and a given task to be solved. While gener-
ally each agent might have its own goals, we assume that our
problem is fully cooperative. Thus, the utility of any particu-
lar system state is the same for all agents. In the presense of
uncertainty and general utility models, we can model such a
problem as a multiagent Markov decision process (MMDP),
an MDP in which the action chosen at any state consists of in-
dividual action components performed by the agents. We be-
gin by defining MMDPs, and propose them as a useful frame-
work in which to study coordination mechanisms.

We think of MMDPs as decision processes rather than
games because of the existence of a joint utility function.
But, in fact, they are nothing more than n-person stochastic
games is which the payoff function is the same for all agents.
MMDPs are a form of stochastic game [41]; but it is most
closely related to the general framework for repeated games
discussed by Myerson [39] (which themselves are generaliza-



tions of partially observable MDPs [52, 1]). We will have oc-
casion to exploit both perspectives: MMDPs as a generaliza-
tion of (single-agent) MDPs; and MMDPs as a specialization
of n-person stochastic games.

Definition A multiagent Markov decision process is a tuplehS; �; fAigi2�;Pr; Ri where: S and � are finite sets of
states and agents, respectively; Ai is a finite set of ac-
tions available to agent i; Pr : S � A1 � � � �An � S ![0; 1] is a transition function; and R : S ! R is a real-
valued reward function.

For any MMDP, we dub A = �i2�Ai the set of joint ac-
tions. Intuitively, at any stage of the process the agents will
each select an individual action to perform and execute it. The
resulting joint action influences the evolution of the system.
The transition function describes the probability of a transi-
tion from state s to state t given the occurrence of a joint ac-
tion a. We usually write Pr(s; a; t) to denote this quantity.6
Agent i’s “component” of a joint action a is written a[i]. We
also write ai=b to denote the joint action formed by replac-
ing a[i] in action a by the individual action b 2 Ai. Finally,
the reward function determines the reward R(s) received by
the entire collection of agents (or alternatively, by each agent)
when the system is in state s.

Given an MMDP, we want to produce behavior in the in-
dividual agents that maximizes the expected reward they will
receive as the system progresses through time. A stationary
individual policy for agent i is a mapping �i : S ! �(Ai)
that chooses, for any state s, a probability distribution over
the agent’s actions. An individual policy is deterministic if
some action is given probability1 at each state, otherwise it is
randomized.7 The joint policy� induced by the set of individ-
ual polices f�igi2� is the obvious mapping from states into
joint actions (or distributions over joint actions). The value of
a joint policy � is given by Equation (1) as in the single agent
case, with the obvious modification for randomized policies.

Because of the joint utility function, it is useful to think of
the collection of agents as a single agent whose goal is to pro-
duce an optimal policy for the joint MDP. Since optimal de-
terministic policies exist, restricting attention to joint policies
in which the agents choose randomized individual policies in-
dependently does not rule out optimal joint action.8 Clearly,
the best thing the agents can do, either individually and col-
lectively, is adopt an optimal joint policy. We take the optimal
value functionV � for the joint MDP to be the “gold standard”
of performance for the multiagent system.6An interesting problem is that of letting the effects of each in-
dividual’s actions ai be stated and providing mechanisms to deter-
mine the joint effect of a set of individual actions “automatically”
(see [11]), since this is often the most natural way to specify a prob-
lem. We do not address this issue here and assume the joint effects
are given (but see Section 5).7Policies correspond to behavioral strategies [30] that are re-
stricted to be stationary.8Not all randomized policies for the joint MDP can be modeled
as a collection of randomized individual policies, since correlated ac-
tion choice between two agents cannot be captured this way.
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Figure 1: A Two-Agent Coordination Problem

The difficulty with treating an MMDP as a standard MDP
in which the actions are “implemented” in a distributed fash-
ion lies in coordination. In general, there are a number of dis-
tinct optimal policies for an MDP. While the agents can each
choose the individual policy induced by some optimal joint
policy, there is no guarantee that the agents select the same
joint policy, and thus that the actual joint policy selected is
in fact optimal. To illustrate with an extremely simple exam-
ple, consider an MMDP designed for two agents, A and B, in
which there are two optimal policies. The policies agree in the
choice of joint action at all states except for s: at s they can
each perform action l or action r (move left or right, see Fig-
ure 1). Assume that should they adopt optimal joint actions at
all other states, the value of the joint policy in which the four
possible actions are taken at state s is given by the table:

l r
l 1 0
r 0 1

(These are the optimal Q-values at state s for the given joint
actions.) Should agent A choose hl; li and agent B choosehr; ri, the joint policy induced by the individual policies,
which chooses hl; ri at state s, is not optimal. In other words,
agents A and B must coordinate their policies at state s.

There are a number of simple ways in which one ensure
coordination. The first is to have a central controller com-
pute an optimal joint policy � and communicate the individ-
ual policies induced by � to the corresponding agents. A sec-
ond method is to have each agent (or one agent in this case)
communicate its choice of action to the others. However, we
assume that a central controller is not feasible and that com-
munication is not possible.9 Thus, individual agents must de-
termine their own policies.

Treating the MMDP as an n-person game, it is easy to see
that determining an optimal joint policy is a problem of equi-
librium selection [39, 25]. In particular, each optimal joint
policy is a Nash equilibrium of the stochastic game: once the
agents adopt the individual components of an optimal policy,
there is no incentive to deviate from this choice. While equi-
libria are usually taken to form the basic solution concept for
games, a classic problem in game theory is that of selecting9This is the usual assumption in many multiagent settings, and,
in fact, offers many advantages in cases where the utility function or
system dynamics might change, or where new agents are added to
the system; in these cases it will often be desirable to have individ-
ual agentsadjust their policies on-line and incrementally. In addition,
adding means of communication to agents might prove too costly, or
the timeliness of action might be adversely affected by communica-
tion delays.



a particular equilibrium from the set of equilibria. Thus, our
coordination problem is simply that of equilibrium selection.

Determining possible equilibria in multistage games is gen-
erally a difficult problem. However, the special structure of
our cooperative setting makes this (relatively) easy, since op-
timal joint policies can be computed using the straightforward
dynamic programming techniques described in the last sec-
tion. One additional assumption can make the coordination
problem even more tractable. We assume that every agent
knows the structure of the game and therefore can compute
the optimal value function V � for the joint MDP.10 This al-
lows us to decompose the coordination problem as follows.

Since an agent knows V �, it can readily determine the set
of optimal joint actions at any state s; this is simplyfa 2 A : R(s) + �Xt2S Pr(s; a; t) � V �(t) = V �(s)g
The set of potentially individually optimal (PIO) actions for
agent i at state s are those actions in Ai that belong to at least
one of the optimal joint actions for s. We assume (for the time
being) that agents will select actions from this PIO set. We de-
note this set PIO(i; s). We say state s is weakly dependent for
agent i if there is more than one PIO choice for i at s. In this
case, the agent’s choice may require coordination with those
of other agents at state s.

We define the state game Gs for state s to be the simple
matrix game consisting of those agents for which s is weakly
dependent, the set of PIO actions ai for each agent i at states, and the payoff function for any combination of choices by
these agents. The payoff is given by the expectation of the
value of the resulting state, E(V �(t)ja; s) = Q�(a; s), for
the joint action a induced by this choice, under the assump-
tion that all agents not included in the game adopt the (unique)
PIO action at s. For instance, the state game in our example
is given by the matrix of Q-values above that assigns 1 to co-
ordinated choice and 0 to uncoordinated choice. It is often
profitable to view the coordination problem as that of finding
coordinated joint action (or equilibrium selection) at the state
games that arise in the MMDP rather than finding a coordi-
nated global policy. The local nature of the state game prob-
lems makes this perspective much more feasible. However,
we must emphasize that, while potentially useful, this decom-
position into state games ignores certain dependencies in the
“true” solution of state games. We elaborate on this is the next
section.

4 Conventions and Learned Coordination
In this section, we address the coordination problem in
MMDPs. In particular, we focus on conventions as a means
to coordinate the choices of agents. We adopt the view of
[31, 47, 48] that conventions or social laws are restrictions on
the possible action choices of agents in various circumstances.
For example, one might think of the traffic rule that states one10The important issue of distributed computation is not addressed
here.

should drive on the righthand side of the road as a useful con-
vention that prevents accidents.

In the setting of MMDPs, the coordination problem is that
of designinguseful conventions to restrict the agents to choose
PIO actions that together constitute an optimal joint action at
each state. We consider two general means of applying con-
ventions to the coordination problem: the imposition of con-
ventions by the system designer, and the learning of coordi-
nated policies by the agents through repeated interaction with
one another. In addition, we briefly discuss the application of
RL techniques to MMDPs when the agents do not know the
system model.

4.1 Designed Conventions and Social Laws
Conventions are examined in detail by Lewis [31]. Shoham
and Tennenholtz [48] address the issue from a computational
perspective. For them a social law is a restriction on the set of
possible actions an agent can adopt at a given state—a “use-
ful” social law is one that ensures each agent can construct
successful plans withoutregard to the actions adopted by other
agents. That is, an agent can use its knowledge of the re-
strictions placed on other agents to ensure that its chosen ac-
tions will not be “interfered with” by the actions of others (of
course, the laws must permit the planning agent enough lati-
tude to achieve its goals). While this general problem can be
quite difficult even in more restrictive settings than MMDPs
[48], we will make three assumptions that permit a very gen-
eral convention to be imposed on the agents in an MMDP.

In the setting of MMDPs, there is a simple convention that
can be applied quite generally should we take the liberty of re-
quiring that the system designer give agents the ability to iden-
tify one another.11 Three assumptions allow this convention
to be imposed:

1. The set of agents is ordered.

2. The set of actions available to each agent i is ordered.

3. These orderings are known by all agents.

We can make use of this information by adopting the lexico-
graphic convention for coordinating PIO action choices. In-
tuitively, at any state s, the set of agents for which s is weakly
dependent will coordinate as follows: the first agent (accord-
ing to the agent ordering) in this set will adopt the first (in
its action ordering) PIO action available to it. The next agent
will adopt its first PIO action consistent with the first agent’s
choice, and so on.12 Another point of view: each agent sorts
the set of joint optimal actions for s lexicographically and
adopts its component of the first joint action as its policy at
state s. Agents not involved in this state game will adopt their
single PIO action for state s. It is a rather trivial observation
that:11We might take this to be part of the assumption of complete state
observability, since different agents may have different policies or
even action sets, and being able to distinguish one agent from another
becomes an important part of predicting the effects of joint actions.12The actions can be selected simultaneously; no turn-taking is
implied.



Proposition 1 If each agent a adopts the individual policy �a
specified by the lexicographic convention, the induced joint
policy � is optimal for the joint MDP.

In our example, we suppose that A < B and l < r for bothA
and B. The convention states that A and B will both choosel at state s.13

This convention does not rely on the values attached to
the state game Gs, for the convention ensures that an opti-
mal equilibrium will be achieved without consideration of the
values of suboptimal (joint) moves. Furthermore, the lexico-
graphic convention allows one to further reduce the number
of agents and moves that must be coordinated. We say an ac-
tion b 2 Ai is individually optimal for agent i at state s, if
for any optimal joint action a at s, action ai=b is also opti-
mal at s. (This implies b is in the PIO set for i.) Assuming
other agents can coordinate among themselves, an agent i for
which an individually optimal choice exists need not bother
coordinating its choice with the other agents. We say a state
is strongly dependent for i if there is no optimal choice for i
among its PIO choices. The reduced lexicographic conven-
tion is identical to the above except that coordination is re-
stricted to agents for which s is strongly dependent; agents for
which s is merely weakly dependent can choose freely among
their optimal action choices. The proposition above holds for
the reduced convention as well.

Lexicographic conventions are general,
domain-independent mechanisms for coordinating agents in
MMDPs. Furthermore, they are implementable in the sense
that they can be adopted by an agent in the offline construc-
tion of the policy. No choices need be made online when
implementing the policy: coordination is assured and auto-
matic. This stands in sharp contrast with mechanisms such
as communication/negotiation or appeal to an arbiter/central
controller, which necessarily delay execution of the concrete
actions and thus could effect the optimality of the choice that
is (say) negotiated. We do however assume consistent knowl-
edge of the required orderings among all agents. This assump-
tion is especially plausible in, though certainly not restricted
to, systems of homogeneous agents with similar capabilities.
For instance, we can imagine a user deploying a set of like
agents that must come up with (say) a division of labor and
coordinationstrategy to solve a number of ongoing tasks. Fur-
thermore, “metaconventions” to deal with the loss or introduc-
tion of additional agents can easily be envisaged (e.g., putting
new agents last in the ordering).

4.2 Learned Coordination and Conventions

There will be many settings where a designer is unable or un-
willing to impose orderings, or where knowledge of another
agent’s capabilities is not accompanied by the knowledge of
its ordering. In such cases, agents may often learn to coordi-
nate through repeated experience and learning the individual
policies adopted by other agents.13The agent ordering does not imply the existence of a hierarchical
or master-slave relationship among agents.

Research in learned coordination and emergent conven-
tions has been studied quite extensively in both AI and game
theory. Two rather distinct classes of models have been stud-
ied: those in which agents from a large population are ran-
domly matched and evolve their strategies in response to the
expected play within the population; and those in which a
fixed set of agents repeatedly interact with one another. In
AI, Shoham and Tennenholtz [47] have explored emergent
conventions in the setting of a large population of randomly
matched individuals. They experiment with a simple coordi-
nation game and investigate a large number of learning con-
ventions based on both the “internal” success of a strategy and
the predicted best response to the population at large, as well
limited memory models.

Such models have been studied quite extensively in game
theory as well, including experimental work and formal anal-
ysis of convergence [2, 35, 59, 24]. The notion of fictitious
play [41] offers a very simple learning model in which agents
keep track of the frequency with which opponents use particu-
lar strategies, and at any point in time adopt a best response to
the randomized strategy profile corresponding to the observed
frequencies. Two models in particular seem especially rele-
vant to our enterprise. Young [59] uses a matching model,
but the ideas there clearly apply to our setting. In this model,
agents can sample a fixed amount of past history (using in-
complete sampling) in order to determine the frequency with
which other agents play various strategies, and adopt appro-
priate best responses. He shows conditions under which such
a method will converge to a pure strategy equilibrium (which
include coordination games). The work of Kalai and Lehrer
[29] is also of considerable importance here. They model a
“repeated game” as a true stochastic game so that performance
during learning can be accounted for when determining a best
response. They assume agents have a prior distribution over
the strategies of their opponents and update these beliefs as
warranted by their experience, adopting best responses based
on their beliefs.

We now consider ways in which these and similar ideas
can be applied to the setting of MMDPs, with an eye towards
computational issues. We assume each agent has prior beliefs
about the policies of other agents (we must ensure that these
priors are obvious and readily computable) and that these be-
liefs are updated as the agents act and interact. While we want
our agents to converge to an optimal joint policy, which in
many cases will be deterministic, the agents will be forced
to adopt randomized policies while learning, for obvious rea-
sons. For instance, in our initial example, until agents A andB have some confidence in the other’s choice of action, ran-
domized choice of the actions l and r at state s will prevent
“deadlock.” As proposed by Kalai and Lehrer [29], at each
stage of the game we would like agents to update their beliefs
about other agents’s policies, and then adopt a best response
to the set of updated policies. Such a strategy will eventually
lead to a Nash equilibrium for the general repeated game; fur-
thermore, in this case, we hope for convergence to an optimal



equilibrium.14
An important aspect of the model of Kalai and Lehrer is

the fact that the repeated interactions of agents at any point
in time are “strung together” to form a stochastic game. Any
given agent’s decision at some point in the game are influ-
enced not only by the immediate outcome of the local game,
but by its impact on future choices. Thus issues such as sacri-
ficing (local) optimality for the sake of exploration does not
arise; agents aim for globally optimal moves over the hori-
zon of interest (which may well include exploration in cer-
tain situations). However, this idealized perspective leads to
a number of practical difficulties in MMDPs. Among these
are representing strategies over an infinite time horizon, and
the requirement that an agent compute a new best response
at each step given its updated beliefs about the other agents’s
strategies.15

As above, the fact that the agents have access to the MMDP
and the optimal value function—and can therefore break the
MMDP into state games that require coordination—can pro-
vide us with a means to “cheat” in the learning of global equi-
libria. We propose that agents learn coordination of policies
by learning coordinated action choice for the individual state
games independently. Since state games incorporate the opti-
mal value function, long range consequences of action choices
are not ignored as they might be in myopic learning in re-
peated games. This also obviates any need for exploration of
the environment.

The use of state games in this fashion merely approximates
the true uncoordinated decision process. The agents are learn-
ing coordination for a state game whose values reflect the op-
timal (therefore coordinated) joint policy, rather than the cur-
rent policy. However, these values do represent the desired
“target” values as well as, presuming other action choices are
eventually coordinated, true limiting values. Furthermore,
there are several computational advantages associated with
this method. Even when beliefs are updated, there is no need
to recompute a new policy as a best response—each agent
needs only compute a new best response for the state game.
Finally, as with conventions, learning need only take place
for the state games for which coordination is necessary (at
strongly dependent states), and only among agents on whom
this coordination depends.

We now describe a method of this type in more detail. We
assume each agent knows the optimal value function, the PIO
choices available to all agents at any state s and therefore the
state game Gs. We restrict agents to choose from among their
PIO choices at each state.16 Any agent for whom the state s is14We do not want the agents in our example to adopt the random-
ized policy which includes choosing actions l and r each with proba-
bility 0:5; this constitutes an equilibrium, but certainly not an optimal
policy.15In many stylized settings, such as the repeated prisoner’s
dilemma, many interesting strategies (such as tit-for-tat) do have
compact representation. But the computational difficulty is very sim-
ilar to that for the “certainty equivalence approach” to model-based
RL described in Section 2.2.16In general, there may be reasons to do otherwise; see below.

not strongly dependent is not part ofGs. We also assume each
agent involved in the state game Gs has an prior distribution
over the set of randomized strategies that could be adopted by
other agents involved inGs. The beliefs of agent i about agentj (w.r.t. Gs) is a probability distribution over the set of ran-
domized strategies agent j might adopt for Gs (i.e., random-
ized over PIO(j; s)). We denote by Beli(j; aj; s) the degree
of belief agent i has that j will perform action aj at state s.

As a general rule, any reasonable prior could be used (pro-
vided it does not rule out the choice of some action in the
state game). However, we will consider only the case where
each agent uses a simple prior, the Dirichlet distribution. This
can be represented with a small number of parameters and can
be updated and used quite easily. Let n be the cardinality ofj’s PIO set. Agent i’s beliefs about j are represented by the
Dirichlet parameters N j1 ; � � �N jn, capturing a density function
(see [40]) over such strategies. The expectation of kth ac-

tion being adopted by j is
NjkPNji . Intuitively, each N jk can

be viewed as the number of times outcome k (in this case ac-
tion k) has been observed. The initial parameters adopted by
agent i represent its prior beliefs about agent j’s strategy. For
simplicity, we assume that prior parameters are set uniformly
(e.g., at 1), reflecting a uniform expectation for each of j’s ac-
tions (this is not a uniform prior over strategies, of course).

Once an agent finds itself in a state s for which coordina-
tion is required, it will compute the set of pure best responses
based on its beliefs about the other agents’s strategies for Gs.
That is, it will determine which of its actions inGs have max-
imum expected utility given the expected actions of the other
agents.17 The agent must then choose one of these pure best
responses randomly (and we assume uniformly) and execute
it.

When all agents have executed the selected individual ac-
tions at state s, the induced joint action causes a state transi-
tion, and every agent observes the resultingstate t. This obser-
vation provides it with information regarding the actions se-
lected by the other agents at s. Since actions have stochastic
outcomes, we do not presuppose that i can directly observe the
action performed by j.18 (We will consider the simpler case of
direct action observation below.) Agent i can now update its
beliefs about the strategy used by j at Gs by a simple applica-
tion of Bayes rule. Agent i first computes the probability thatj performed aj for any aj 2 PIO(j; s), given that it knows
the resulting state t and that it performed action ai:

Pr(a[j] = ajja[i] = ai; t) =
Pr(tja[j] = aj; a[i] = ai)Pr(a[j] = aj)

Pr(tja[i] = ai)
(The prior probabilities are computed using agent i’s beliefs
Beli(k; ak; s) for arbitrary agents k and the joint transition
probabilities.) Agent i then updates its distribution over j’s17Note that we do not require details of the belief distribution, sim-
ply the expectations or the Dirichlet parameters.18This stands in contrast to much work on learning equilibria and
emergent conventions.



strategies using this observation. Standard Dirichlet update
requires that one simply increment the parameter Nk by one
when outcome k (action akj ) is observed. Because we have

indirect observation of the individual actions, we update N jk
by Pr(akj jt) (intuitively, by a “fractional” outcome).19 In the
special case when actions are directly observable, we need not
compute the probabilities of action occurrences, instead sim-
ply incrementing the appropriate Dirichlet parameter.20

In our example, we suppose that agent A adopts the initial
parameters h1; 1i representing its beliefs aboutB’s strategy at
state s (i.e., it expects B to choose l and r each with proba-
bility :5). Suppose now that agent B moves right, and agentA observes the resulting state. If the move can be observed
with certainty, agent A will update its belief parameters about
agent B to be h1; 2i. However, if B’s moves are error prone,
say with probability 0:9 of B actually moving right when r
is chosen and 0:1 when l is chosen, then A’s belief parame-
ters become h1:1; 1:9i. In either case, the best response for
the next time state s is encountered is r.

The decomposition of the MMDP into state games essen-
tially means that coordination is restricted to the independent
coordination of local action choice at individual states as op-
posed to the global coordination of a policy. Thus we can
get a feeling for this process by experimenting with individual
state games. To illustrate this, we first consider n� n action-
observable symmetric coordination games, similar to the ex-
ample we described.21 In each such state game, we have n
agents each with n possible moves. The set of moves is the
same for all agents and they are rewarded with value c if they
each execute the same move, and are given a smaller valued if they do not. Hence, there are n optimal (coordinated)
joint actions. We assume each agent can observe the exact
action performed by the other agents. The results of experi-
ments showing the convergence for various n � n games is
shown in Figure 2. The x-axis shows the number of times the
game has been encountered, while the y-axis shows the aver-
age error probability—the chance an uncoordinated joint ac-
tion is adopted using the agents’s best response strategies at
that point. In such action-observable, symmetric games, it is
quite easy to see that convergence to an optimal joint action
will be quite rapid—very roughly, agents choose random ac-
tions until one coordinated action is more likely than others.
For instance, in the 10 � 10 game coordination is all but as-
sured by the fourth play of the game.22 Once an equilibrium19While fractional parameters do not give a well-defined Dirich-
let, the expectations that result do, in fact, correspondto the weighted
combination of Dirichlet distributions that result from standard up-
date using the positive probability outcomes. Since we use only the
expectations below, this suits our needs.20It is important to note that the agents are updating as if the sam-
pled distribution were stationary, which it is not. Thus, convergence
must be ensured by properties of best responses.21These experiments are quite similar in nature to the kind de-
scribed in [47], as well as the model adopted in [35, 59].22In fact, for larger values of n, faster convergence is due to
the likelihood that the initial randomization is more likely to pro-
duce a unique most likely coordinated action, leading to immediate
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Figure 2: Convergence of Action-Observable Symmetric Co-
ordination Games. All results are averaged over 30 trials.

is reached, the agents cannot diverge from it. Thus, the con-
ventions adopted will be stable.

It is not too difficult to show that in this simple setting,
agents will converge with probability (quickly) approaching
one to coordinated action (see [59] for instance). The decom-
position of the MMDP using the optimal value function there-
fore guarantees that the independent, local coordination of the
state games ensures convergence to global coordination and a
jointly optimal policy.

Proposition 2 LetM be an MMDP in which each state game
at strongly dependent states is an action-observable, symmet-
ric, coordination game. The learning scheme described will
converge with limitingprobabilityone to a jointlyoptimal pol-
icy for M .

The rate of convergence can be adversely affected if the
game is not symmetric. For example, consider the asymmet-
ric 2� 2 game given by:

b1 b2
a1 4 0
a2 1 4

Should the agents start with prior parameters h1; 1i represent-
ing their beliefs about the other’s moves, then a’s initial best
response is a2, while b’s is b1. The agents will not have the
chance to coordinate their actions until they can randomize
among their pure best responses—when a assesses the proba-
bilityof b1 to be 47 (or b assigns probability 47 to a2). Given the
integer nature of the updates, this can only happen at the sixth
interaction, and every seventh interaction after that. Thus, the
rate of convergence is automatically slowed sevenfold. How-
ever, as long as the values in the state game are of finite preci-
sion, convergence is guaranteed. Thus, convergence to a glob-
ally optimal policy is assured even when the symmetric (andn� n) conditions are dropped.

convergence.



One possible way of enhancing convergence is to consider
the notion of "-best responses [29]. This allows agents to ran-
domize among actions that are close to being best responses
given their current beliefs. In the example above, the beliefs
of the agents “hover” around the point at which the will ran-
domize (e.g., a’s belief remain close to h47 ; 37 i); but they reach
that point only when the Dirichlet parameters sum to a mul-
tiple of seven. Allowing "-best responses gives the agents
ample opportunity to break out of such cycles. Another pos-
sibility is to allow a small amount of “experimentation” by
agents [59]: at any point in time, an agent will choose a ran-
dom PIO-action with probability" (adopting the best response
option with probability1�"). We note that the agents can pop
out of equilibria with small probability once coordination is
achieved if experimentation or "-best responses are used, but
this probability diminishes over time in the latter case.

Finally, we note the relationship of learning of this type to
the solution of games by fictitious play [41]. Fictitious play is
not guaranteed to converge for non-zero-sum games in gen-
eral, but as noted by Young [59], will converge for coordina-
tion games under many circumstances.

The use of "-best responses and experimentation is even
more crucial in cases where actions are not directly observ-
able. In general, should we update Dirichlet parameters with
the probabilities of action occurrences in a nondeterminis-
tic, action-unobservable setting, agents will (generally) never
reach a point at which randomization is possible. For exam-
ple, consider our original of a 2� 2-coordination problem in
which the success probability of a given left or right action is0:9. In this case, should the initial randomization lead to a co-
ordinated joint action, the agents will remain in equilibrium.
However, if they do not successfully coordinate at the first in-
teraction, the updated distributionscan never be such that each
agent assigns equal probability to the other’s actions. Thus,
the chance of coordination is 0:5 no matter how many times
the game is played.23 Figure 3 shows the performance of ran-
domizing over pure "-best responses for the 2� 2 symmetric
coordination game with nondeterministic actions (with “suc-
cess” probabilityof 0:9 each), for various values of ". We note
the “base case” in which " = 0 does not improve over time:
once initial coordination fails, all hope of coordination is lost.
The question of whether there exists an " for which conver-
gence for a particular action-observable problem is guaran-
teed (with limiting probability one).

Figure 4 shows results for the same problem where exper-
imentation is performed with different probabilities. It is im-
portant to note that all error probabilities include the chance
of uncoordinated action due to an experimental choice. Ex-
perimentation appears to be a very effective means of ensur-
ing coordination in the setting of inexactly observable actions.
We conjecture that decayed experimentation rates or cutting
off experimentation at a certain point would enhance its per-
formance.23The agents’s beliefs and strategies, do therefore converge on
a Nash equilibrium; but not an optimal coordinated (pure strategy)
equilibrium.
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Figure 5: Potential Difficulty with PIO Actions

Finally, the assumed independence of the state games and
the use of the optimal value function to produce state game
values deserves some discussion. The structure of the state
games is such that only PIO actions can be considered as can-
didates for coordination. As mentioned, this assumption is
justified in the long run, for these values reflect truly coordi-
nated policies. However, at any point before coordination is
assured at all strongly dependent states, the current policies of
the agents necessarily have a lower value at some (perhaps all)
states. If we were to adopt the more precise model of [29], we
would model the learning process as part of the MMDP in or-
der to ensure optimal performance during learning. For exam-
ple, agents may decide that learning to coordinate (in the sense
we have described) may not be worth the risk. Restricting the
attention of agents to PIO actions may preclude such consid-
erations. For instance, consider the two-agent MMDP shown
in Figure 5. At state 1, the PIO actions for each agent are a andb: coordinated choice will ensure repeated transition through
the high reward state 2. However, under typical assumptions
the initial probability of coordinated action is 0:5. If the dis-
count parameter � is small enough, the optimal choice given
the initial inability to coordinate is for each agent to choose
action c, regardless of how quickly convergence to a coordi-
nated choice might arise.

By restricting attention to PIO actions, such considerations
cannot be accounted for; however, the restriction has compu-
tational advantages. In small part this is because it reduces the
number of actions and agents involved in coordination. Much
more significant is the fact that no agent needs to recompute
the value function for the MMDP (or the state games) when its
beliefs about another agent’s strategy is updated. Computing
a value function (in order to determine a best response) is a
daunting task to perform once, let alone once per interaction.

One final justification for the restriction to PIO choices in
the state games is related to the interpretation of discounting.
Recently, certain work in AI has advocated the use of the aver-

age reward optimality criterion as opposed to discounted total
reward [33, 11]. Using such a criterion in the example above
would ensure that the agents indeed want to coordinate at state
1, even if convergence of the learning process is slow.

4.3 Multiagent Reinforcement Learning

One can clearly apply ideas from reinforcement learning to
the solution of MMDPs in which agents lack knowledge of
the model being used. In this case, since the agent’s do not
know the effects of joint actions nor the rewards associated
with particular states, there is little that can be done initially in
the way of restricting attention to particular actions, or using
beliefs about other agents. One way of using RL in MMDPs is
to have each agent learn its policy by standard means (e.g., Q-
learning) without regard to other agents. In other words, other
agents are simply treated as part of the environment.

Recent work in applying Q-learning to multiagent systems
seems to adopt just this approach. For instance, Mataric [34]
describes experiments with mobile robots in which Q-learning
is applied to a cooperative task with good results. In a simi-
lar vein, Yanco and Stein [58] also reported experimental re-
sults with hierarchical Q-learning in order to learn coopera-
tive communication between a leader and follower agent (see
also [16]). In both works, convergence is achieved. A slightly
different “semi-cooperative” application of Q-learning is re-
ported in [45], where a set of agents used straightforward Q-
learning in the presense of other agents with orthogonal and
slightlyinteracting interests. In these experiments, Q-learning
also converges, but not to a optimal solution.24 Finally, simi-
lar results are obtained in [46] with a fully cooperative setting;
convergence to good policies is obtained, although learned
policies were generally suboptimal due to inadequate explo-
ration.

There has been little theoretical analysis of Q-learning in
multiagent settings, though it has been applied with some
success in fully cooperative and noncooperative games. As
with learning in MMDPs, one difficulty with multiagent Q-
learning is the fact that the distributions are not stationary,
as agents react to the changing strategies of others. In the
fully cooperative setting, we conjecture that straightforward
Q-learning will lead to equilibriumstrategies (and perhaps op-
timal policies given appropriate exploration). This is a result
of some interest given the popularityof Q-learning and related
methods for “automatic agent programming.” Of course,
though it may prove useful in semi-cooperative settings, it
seems clear that Q-learning will not generally converge to
good (e.g., Pareto optimal) solutions.

In the area of zero-sum games, little attempt has been made
to apply Q-learning. One exception is the work of Littman
[32] which addresses two-person zero-sum games. Each ex-
perience at a particular state results in an updated Q-value that
is determined by using a small linear program to solve the ana-
logue of a local state game. There it is conjectured that Q-24More precisely, the solutions were not generally Pareto optimal;
certain agents could have done better had other agents been more co-
operative. These other agents, however, had no incentive to do so.



learning will converge to an equilibrium.
An interesting question is the extent to which the model-

based approaches to RL can be applied to MMDPs. In a cer-
tain sense, one can view the learning approaches to MMDPs
(and n-person games generally) as a type of model-based RL.
At each point an agent updates its model of the other agents’s
strategies and plays the best response to that strategy profile at
any point in time. The analogy with the Dyna architecture [54]
is rather compelling. It may well be the case that simultane-
ous learning of the system model and other agents’s strategies
is a profitable method of attacking this problem.

5 Structured Representation and
Computation

One of the most pressing problems in the solution of MDPs
and in RL is the need for problem representations, structured
computational methods and approximation techniques. As
mentioned earlier, planning problems are typically specified
in terms of some number of domain features—random vari-
ables or propositions—so the size of the state space grows
exponentially in terms of the “natural” problem size. The
so-called “curse of dimensionality” plagues attempts to solve
MDPs using standard methods, specified as they are explic-
itly in terms of the state space. Just as with RL, the problem
is even more severe when conventions must be learned, for re-
peated interaction at many states is required before the prob-
lem is considered solved.

One way of addressing this problem in the case of both
known and unknown models is through the use of aggregation
methods (or generalization), in which a number of states are
grouped because they have similar or identical value and/or
action choice. These aggregates are treated as a single state in
dynamic programming algorithms for the solutionof MDPs or
the related methods used in RL [44, 5, 36, 7, 9, 19, 22, 14, 38].
Such aggregations can be based on a number of different prob-
lem features, such as similarity of states according to some do-
main metric, but generally assume that the states so grouped
have the same optimal value. In addition, such schemes can
be exact or approximate, adaptive or fixed, and uniform or
nonuniform, and can be generated using a priori problem
characteristics or learned generalizations.

In large problems, we should not expect agents to learn
to coordinate their actions separately at each state. Lessons
learned in one state should be applied to similar states; and
learning can be enhanced if the experiences at similar states
are merged to increase confidence in learned strategies. In
this section, we briefly describe structured problem represen-
tations, their use in the solution of MDPs, and make some pre-
liminary suggestions how these ideas can be exploited in the
learning of coordinated policies in MDPs via generalization.
Research into generalization and approximation will be cru-
cial if learning strategies are to be applied to realistic prob-
lems.

To begin we present a brief summary of some of our earlier
work on structured representation and computation for MDPs.
We assume that a set of atomic propositionsP describes our

system, inducing a state space of size 2jPj, and use two-stage
temporal or dynamic Bayesian networks to describe our ac-
tions [18, 9].25 For each action, we have a Bayes net with
one set of nodes representing the system state prior to the ac-
tion (one node for each variable), another set representing the
world after the action has been performed, and directed arcs
representing causal influences between the these sets. Each
post-action node has an associated conditional probability ta-
ble (CPT) quantifying the influence of the action on the cor-
responding variable, given the value of its influences (see [9]
for a more detailed discussion of this representation).26 Fig-
ure 6(a) illustrates this representation for a single action.27

The lack of arc from a pre-action variableX to a post-action
variable Y in the network for action a reflects the indepen-
dence of a’s effect on Y from the prior value of X. We cap-
ture additional independence by assuming structured CPTs. In
particular, we use a decision tree to represent the function that
maps combinations of parent variables to (conditional) prob-
abilities. For instance, the trees in Figure 6(a) show that U in-
fluences the probabilityofW becoming true (post-action), but
only ifR is also true. Thus, additional regularities in transition
probabilities are used to provide a more compact representa-
tion than the usual (locally exponential) CPTs (the matrices).
A similar representation can be used to represent the reward
functionR, as shown in Figure 6(b).

In [9], we present an algorithm for solving MDPs that ex-
ploits such a representation. Decision trees as used as com-
pact function representations for policies and value functions,
essentially representing values for clusters, or regions of the
state space, as opposed to individual states. Using this repre-
sentation, a form of structured dynamic programming can be
implemented in which Bellman backups are performed over
these regions. (We note that the regions are not fixed through-
out policy construction, but are adapted as the value function
is updated.) The result is a compact “region-based” represen-
tation of both the optimal policy and value function.28 An il-
lustration of such a policy and its corresponding value func-
tion is shown in Figure 7. For example, the policy is repre-
sented by associating actions with eight distinct regions of the
state space instead of 64 states.

The extension of the Bayesian network representation of
actions to multiagent MDPs is straightforward, as is the struc-
tured computation of optimal value functions and policies for
the joint MDP. Intuitively, this offers tremendous potential
for learning coordinated policies. We might imagine, for in-
stance, that the tree in Figure 7 represents the possible optimal
joint policies. Furthermore, suppose that the region HCU (the25For a survey of the issues in structured computation and repre-
sentation in MDPs, see [6].26To simplify the presentation, we consider only binary variables.27This is a toy domain in which a robot is supposed to get coffee
from a coffee shop across the street, can get wet if it is raining unless
it has an umbrella, and is rewarded if it brings coffee when the user
requests it, and penalized (to a lesser extent) if it gets wet [9, 10].
This network describes the action of fetching coffee.28See [22] for a similar approach to RL for goal-based, determin-
istic problems.
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leftmost branch) admits several PIO action choices for sev-
eral agents. If the agents solve the MMDP in such a way that
they each determine the same value function structure, then
each of them will recognize that the same jointly optimal ac-
tion choice can be applied to each state in that region. Thus,
an experience in any state in that region can be applied by all
agents to the update of their beliefs regarding all states in the
region. Indeed, the coordinating agents need only have one
set of beliefs per region.29 This is an additional advantage of
decomposing the coordination problem into state games.

These representations can also be exploited in value func-
tion approximation and the construction of approximately op-
timal policies [8]. Generally speaking, value trees such as
these can be pruned during computation to keep down com-
putational costs, while sacrificing optimality. Error bounds on
the resulting policies can be given as well. This offers further
compaction of the value function and additional generaliza-
tion in learning. Some additional difficulties may arise how-
ever; for example, should two agents approximate the value
function differently, convergence of learning may be drasti-
cally affected. Issues such as these are of great interest.

Finally, we note that much research has been carried out
in the RL community on generalization of learned values and
action choices, as well as value function approximation (es-
pecially in continuous domains); see, for example, [22, 14,
38, 12, 36, 50]. The survey [28] provides a nice discussion
of these issues.

6 Concluding Remarks
We have surveyed a number of issues that arise in the appli-
cation of single-agent planning and learning techniques to the
setting of fully cooperative multiagent planning. There are a
number of models and methods from planning, learning and
game theory that can be applied directly or extended to the co-
ordination problem in MMDPs. But there are a great number
of extremely interesting avenues of research that need further
exploration.

With regard to learning coordination in MMDPs, exper-
imental work with different learning strategies is crucial.
Proofs of convergence and methods for speeding up conver-
gence for specific schemes, especially those with nice com-
putational properties, must be forthcoming—for instance, un-
der what circumstances does Q-learning converge in MMDPs.
Another interesting question is the extent to which specially
designed priors might prevent, guarantee or speed up con-
vergence to coordinated equilibria. Finally, further investiga-
tion is needed of the extent to which problem decomposition
methods such as those described here affect the optimality of
performance while learning, and principled ways in which to
address the tradeoffs between “base level” performance and
computational demands.29To consider another example related to the right half of the tree,
the agents may divide up the tasks of getting coffee and picking up
mail in exactly the same way without regard to whether it is rainingR, or they are wet W . To consider a different convention because of
changes in these variables would be absurd (in this case).

Probably one of the most pressing needs is the further study
of coordination learning using structured problem represen-
tations, generalization and approximation techniques. This
seems to be an area in which the synthesis of AI representa-
tions and game-theoretic models holds the most promise.

Finally, the assumptions underlying the MMDP model may
not be realistic in many cases. For instance, knowing what
agents are involved in the problem, the actions at their dis-
posal, or their action models may be inappropriate. The most
unrealistic assumption is that of full observability. We view
MMDPs as a point of departure for future investigation, a spe-
cial case whose assumptions can gradually be relaxed in an
effort to find computationally effective coordination mecha-
nisms in more general settings. Included in this is the investi-
gation of learned communication languages and protocols.
Acknowledgements: Thanks to Yoav Shoham for his encour-
agement. Thanks also to David Poole and Michael Littman for
their comments and discussion of these ideas. This research
was supported by NSERC Research Grant OGP0121843.
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