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Abstract

Recent research in decision theoretic planning has fo-
cussed on making the solution of Markov decision pro-
cesses (MDPs) more feasible. We develop a family
of algorithms for structured reachability analysis of
MDPs that are suitable when an initial state (or set of
states) is known. Usi nchompact, structured represen-
tations of MDPs (e.g., Bayesian networks), our meth-
ods, which vary in the tradeoff between complexity
and accurac ,{goduce structured descriptions of (esti-
mated? reachable states that can be used to eliminate
variables or variable valuesfrom the problem descrip-
tion, reducing the size of the MDP and making it eas-
ier to solve. One contribution of our work is the exten-
sion of ideas from GRAPHPLAN to deal with the dis-
tributed nature of action representations typically em-
bodied within Bayesnets and the problem of correlated
action effects. We also demonstrate that our algorithm
can be made more complete by using k-ary constraints
instead of binary constraints.” Another contribution is
the illustration of how the compact representation of
reachability constraints can be exploited by several ex-
|fst|r'1\% ISeF>)<Sact and approximate) abstraction algorithms
or .

1 Introduction

While Markov decision processes (MDPs) have proven to
be useful as conceptua and computational modelsfor deci-
sion theoretic planning (DTP), there has been considerable
effort devoted within the Al community to enhancing the
computational power of these models. One of thekey draw-
backs of classic agorithms such as policy iteration [16] or
valueiteration [1] isthe need to explicitly “ sweep through”
state space, making these techniquesimpractical for realis-
tic problems. Recent research on the use of MDPsfor DTP
has focussed on methods for solving MDPs that avoid ex-
plicit state space enumeration while constructing optimal or
approximately optimal policies. These include the use of
functionapproximatorsfor valuefunctions[2], aggregation
and abstraction techniques[5, 6, 12, 8], reachability analy-
sis[9], and decomposition techniques[11].
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In this paper we address the problem of integrating reach-
ability considerations into the construction of abstract
MDPs. In particular, we develop techniques whereby
knowledge of an initial state (or initial conditions) and the
concomitant reachability considerations influence the ab-
stractions produced for an MDP, forming what istermed by
Knablock [17] a problem specific abstraction. We assume
that the MDP is described in terms of random variables us-
ing dynamic Bayes nets (DBNSs) [6]; we a so assume anini-
tial state has been given. Given thisrepresentation, several
useful (exact and approximate) abstraction techniques can
be employed to solve an MDP without explicit state space
enumeration [5, 6, 12].! These all rely on theidentification
of conditionsunder which avariable can influence avalue
function or action choice, and can be viewed as decision-
theoretic generalizations of goal regression [4].

Reachability analysis allows one to determine that certain
states are not reachablein an MDP given a particular initial
dtate (or a set of possibleinitial states, or an initial distri-
bution), no matter what actions are performed. This can be
used to restrict dynamic programming to reachable states,
reducing the computational burden of solvingan MDP (for
instance, see the envelope approach of [9]). However, ap-
proaches that determine reachability using explicit transi-
tion matrix operations [13] or state-based search cannot be
exploited by variable-based abstraction techniques.

Our aim is to develop methods that determine the set of
reachable states implicitly by explicitly considering the
variable values or combinations of variable values that
can or cannot be redlized. This knowledge can be inte-
grated into abstraction techniques by eliminating abstract
states that contain unreachable variable combinations. The
method we develop is based on the GRAPHPLAN algo-
rithm[3]: the graph-building phase of GRAPHPLAN can be
viewed as performing an approximate reachability analysis
that is used to prune subsequent goal -regression search in a
classical planning framework. However, we make certain
modifications designed to deal with the DBN action repre-
sentation. In particular, the distributed nature of thisrepre-
sentation, while often more compact than (say) probabilis-
tic STRIPS operators[15], requiresthat care betaken to deal
with correlated effects. A second way inwhich we general-
ize the graph-building phase of GRAPHPLAN isto consider

'The integration of reachability with state aggregation has
been considered in the verification community (e.g., see [19]).
There explicit state space representations are used however.



both simpler and more complex constraintsin the construc-
tion of exclusion relations. We argue that reachability can
be performed with varying levels of completeness, leading
to oneway of addressing anytime tradeoffs.

In Section 2, we review MDPs, DBN representations of
MDPs, and briefly discuss techniques for policy construc-
tion that exploit the structure laid bare by this representa-
tion. In Section 3, we describe afamily of agorithmsbased
on GRAPHPLAN, where the complexity of exclusion con-
straints provides a certain latitude in the sophistication of
the reachability analysis performed. We aso consider the
empirical performance of the algorithms and provide sev-
eral results relating to soundness and completeness of the
algorithms. In Section 4, we describe how the output of this
analysis (in the form of variable value constraints) can be
used to abstract MDPs, and describe some resultsillustrat-
ing the tradeoff between reachability sophistication and the
size of the abstracted MDPs. We concludein Section 5with
additional discussion.

2 MDPsand Their Representation
2.1 Markov Decision Processes

We assume that the system to be controlled can be de-
scribed as a fully-observable, finite Markov decision pro-
cess [1, 16], with afinite set of system states .S. The con-
trolling agent has available afinite set of actions A which
cause stochastic state transitions: wewritePr(s, a, t) to de-
note the probability action « causes a transition to state ¢
when executed in state s. A real-valued reward function R
reflects the objectives of the agent, with R(s) denoting the
(immediate) utility of being in state s. A (stationary) pol-
icyn : S — A denotes a particular course of action to be
adopted by an agent, with 7 (s) being the action to be exe-
cuted whenever the agent findsitself in state s. We assume
an infinite horizon (i.e., the agent will act indefinitely) and
that the agent accumul ates the rewards associated with the
states it enters.

In order to compare policies, we adopt expected total dis-
counted reward as our optimality criterion; future rewards
are discounted by rate 0 < 7 < 1. Thevalue of apolicy 7
can be shown to satisfy [16]:

Va(s) = R(s) + 8> Pr(s, m(s),t) - Va(t)

tes

Thevalueof 7 at any initial state s can be computed by solv-
ing this system of linear equations. A policy = is optimal
if Va(s) > Vp(s) fordl s € S and policiesz’. The op-
timal value function V* is the same as the value function
for any optimal policy. A number of state-based techniques
for constructing optimal policiesexist, including vaueiter-
ation [1] and policy iteration [16].

2.2 Structured Representation and Computation

One of thekey problemsfacing theuse of MDPsfor DTPis
Bellman’s “curse of dimensionality:” the number of states
grows exponentialy with the number of problem variables.
Fortunately, severa good representations for MDPs, suit-
able for DTP, have been proposed that alleviate the asso-
ciated representational and computationa burdens. These

include stochastic STRIPS operators [12, 15] and dynamic
Bayes nets [6, 10]. We will usethe latter.

We assume that a set of variables V. = {V;,---Vn} de-
scribes our system, with each V; having a finite domain
Dom(V;) of possiblevaues. To represent actions and their
transition probabilities, for each action we have a dynamic
Bayes net (DBN) with one set of nodesrepresenting thesys-
tem state prior to the action (one node for each variable),
another set representing the world after the action has been
performed, and directed arcs representing causal influences
between these sets. Each post-action node has an associated
conditional probability table (CPT) quantifying the influ-
ence of the action on the corresponding variable, given the
valueof itsinfluences (see[6, 7] for amore detailed discus-
sion of this representation). Figures 1(a) and (b) illustrate
network fragmentsfor two different actions (spray painting
three parts, and assembling parts P4 and P5 into P6).

Thelack of an arc from a pre-action variable X (or a post-
action variable X”) to a post-action variable Y in the net-
work for action a reflects the independence of «’s effect on
Y from the prior value of X (or itseffect on X’). We cap-
ture additional independence by assuming structured CPTs.
In particular, we use a decision tree to represent the func-
tion that maps combinations of parent values to (condi-
tional) probabilities. For instance, the tree in Figure 1(a)
shows that DryPx (is part  dry) influences the probabil-
ity of PntPx (is # painted) becoming true only if PntPx is
fase and MntPx (is « mounted) is true (1eft arrows denote
“true’ and right arrows“false’).? Arcs between post-action
variables represent correlated action effects. For instance,
in Figure 1(b), the effect of assembly on the ready status of
P4 and P5 is determined by the success of assembly. Note
that this representation is distributed in the sense that the
effect of an action on distinct variablesis captured by dis-
tinct CPTs. Instead of treating each possible effect asacon-
junction of literalsasin STRIPS, the DBN specifies the ef-
fects on each variable “independently.” This offers econ-
omy of representation for many typesof actions. The paint-
ing action, for instance, has three independent effects on
three different parts. The representation of this action in
(probabilistic variants of) STRIPS [15] requires specifying
all eight combinations of painted/not painted values; and
the size of the STRIPS representation generally grows ex-
ponentially with the number of independent effects.

A similar representation can be used to represent the reward
function R, asshowninFigure1(c). Herewe see afragment
of areward functionthat indicatesthat parts P1 and P2 both
must be drilled to be worthwhile(reward 20)—withadight
cost incurred if drilling is done so as to cause wear—while
an independent reward of 5 isreceived for assembling P6

Apart from the naturalness and conciseness of representa-
tion offered by DBNs and decision trees, these represen-
tations lay bare a number of regularities and independen-
ciesthat can beexploitedin optimal and approximatepolicy
congtruction. Methods for optimal policy construction can
use compact representations of policiesand valuefunctions
in order to prevent enumeration of the state space.

~ZCertain persistence relations can be exploited in the spec-
ification of actions: the dashed arcs (such as those for MIdPx
and MntPxin Fi(I:]ure 1(a)). correspond to persistence distributions
wherethevariableretainsits value after the action. Werefer to[7]
for a detailed discussion of persistencein DBNSs.
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Figure1: (a) Action network (spray painting); (b) action network with correlations (assembly); (c) reward tree

In [6] a structured version of modified policy iteration is
developed, in which vaue functions and policies are rep-
resented using decision trees and the DBN representation
of the MDP is exploited to build these compact policies.
Roughly, the DBN representation can be used to dynam-
ically detect the relevance of various variables under cer-
tain conditionsat any point in the computation, thus allow-
ing statesto be aggregated by ignoringirrelevant variables.
For instance, in the example described above, states where
AsmP6 holds are never distinguished by the truth values
of RdyP4 or RdyP5, since once AsmP6 holds these facts
areirrelevant to value or the optimal choice of action. The
method can be extended to deal with approximation by us-
ing “degrees’ of relevance aswdll [5].

A simpler abstraction technique developed in [12] uses a
dtatic analysis of the problem (as opposed to a dynamic
analysis) to delete irrdlevant or marginally relevant vari-
ablesinthe problem description. For instance, the fine dif-
ferences in reward associated with Worn in Figure 1(c) can
be ignored by deleting this variable. The DBN descrip-
tion of actions allows oneto easily detect that certain other
variables (for instance, careful alignment) have no impact,
through any “causal chain” (or sequence of actions), on the
truth of theremaining reward variables. Anabstract MDPis
formed by removing from the problem description any vari-
ables deemed irrelevant in thissense. The smaller MDPis
easier to solve, but its solution will usualy be suboptimal
(though with easily determined error bounds).

3 Structured Reachability Analysis

One of the distinguishing features of MDPs vis-a-vis clas-
sical planning models is the need to construct policies that
describe appropriate actions at al states. If we know the
initial state (e.g., asin a planning problem), computational
effort may be “wasted” in the determination of appropriate
actionsfor states that can never berealized given theinitia
state, even if abstraction methods are used.

However, it is often the case that we can rather easily de-
terminethat certain variable values or combinations cannot
be made true given the initia state. Any such knowledge
of reachability can be exploited to reduce the range of dy-
namic programming. Furthermore, if thisreachability anal-
ysiscan be performed in astructured manner—that is, at the
level of dtate variables rather than explicit states—the re-
sultscan be combined with the policy construction methods
and abstraction techniques described above. For instance,

in our example above, if the initia state is known to lack
sufficient material to produce either of P4 or P5, then their
ready status cannot be changed, nor can the state of assem-
bly of P6. Asa conseguence, one can legitimately remove
all mention of these variables from the MDP description—
by fixing them to have the same valuesthey have at theini-
tial state—resultingin areduced MDP of much smaller size
(wediscussin detail how to construct areduced MDPinthe
next section). If there is enough material to produce one of
P4 or P5, then RdyP4 and RdyP5 might change, but the con-
?itie%n on P6 cannot, and again AsmP6 can have its value
ixed.

3.1 Reachability Analysiswithout Direct Correlations

Our agorithm for structured reachability analysis in in-
spired by GRAPHPLAN [3], aclassical planning algorithm
that essentially performsareachability analysisto construct
aplan graph and then performs goal regression within that
graph. Specifically, the graph building phase of GRAPH-
PLAN operates by alternating the construction of proposi-
tional levels and action levels. At each propositional level
is a set of propositions (or variable values) together with
exclusion constraints among pairs of propositions that in-
dicate that a state cannot be reached that makes both true.
The initial state determines the first propositional level.
An actionlevel is created from the preceding propositional
level by creating nodes for those actions whose precondi-
tions are satisfied (reachable) at the previous level. Two
actions are marked as exclusive if they “conflict” and the
next propositional level iscreated by considering the effects
of the actions at the preceding action level. Exclusionson
these propositions are determined by examining conflicts
between their producing actions.

Our agorithmfollowsthe same genera pattern asthegraph
building phase of GRAPHPLAN; in particular, we aternate
the creation of actionand propositional level s, and represent
reachabl e statesat the propositional level implicitly through
the presence of variable values and exclusion constraints.
Our agorithm is rather different in several respects, how-
ever, due to its application to MDPs and the nature of the
DBN representation of actions. Key differences dueto the
DBN representation include the need to handle conditional
effects, the distributed nature of action effects, and corre-
lations that arise within actions or ssimply because of ini-
tial conditions. Because we are dealing with infinite hori-
zon MDPs, we areinterested only in thelong-run reachable
states, not in the transient behavior of reachable states. A



final distinctionis our emphasis on the tradeoff between ar-
bitrary exclusion constraints and computational efficiency,
in contrast to the binary constraints considered in GRAPH-
PLAN. We elaborate on these differences bel ow.

The algorithm REACHABLEK issketched in Figure 2. The
annotation K refersto the fact that it dealswith only n-ary
congtraints for n < K; thisis, in fact, a family of ago-
rithms, where the complexity parameter i can range from
1to NV (thenumber of domain variables). Aswediscussbe-
low, the larger K is, the more compl ete the resulting anal -
ysis, but the more complex the algorithm. The agorithm
assumes that no actions have correlated effects (i.e, there
are no “within slice” arcs). We do thisfor ease of presen-
tation, describing the appropriate changes for correlated ef-

fects below.?

We begin with some preliminary definitions. Let B be
the DBN for an action «, let V' be some variable, and let
CPTga, ‘e/d) denotethetreequantifyinga’seffecton V. V' is
unaffected by « (or persistsunder a), if V' retainsits previ-
ousvalueunder al conditions(these are captured by dashed
persistencearcs). Otherwise V' isaffected by «. For any af-
fected variable V', each branch of CPT(«, V) isacondition
for V wirt. a. The effect set of action « on variable V' un-
der condition C' isthe set of variable values {v; } such that
Pr(V = v|C,a) > 0 (i.e, the set of valuesthat ¥ might
take if « is executed when C holds). An n-ary exclusion
congtraint over a set of variable valuesis any set of n val-
ues drawn from that set.

Theinput to REACHABLEK isan initial state consisting of
an assignment of valuesto all variables.* Theoutputwill be
aset of variableval uestogether with aset of n-ary exclusion
congtraints, n < K, over these values. We interpret this
output as follows: all states consisting of some assignment
of values drawn from the output set are (estimated to be)
reachable unless this assignment contains some exclusion
congtraint. Thusaset of reachable statesisrepresented (and
congtructed) in an implicit, structured fashion.

Aswith GRAPHPLAN, we aternate the construction of ac-
tion and propositional levels. A propositional leve is, as
with the agorithm output, a set of variable values with n-
ary exclusion congtraints. The initia propositiona level is
determined by theinitial state. The main loop shows how
to construct an action level from the previous propositional
level and how to construct the next propositional level from
that action level.

Action Level Creation: An action level consists of CAE
nodes and n-ary exclusion relations among them. A CAE
nodeisatriple(C, a, ) where: C isacondition or a con-
junction of literals; a is an action; and e is an effect (vari-
able value). Intuitively, this refers to the fact that action a
performed under condition C' might have effect e (we say
“might” because actions are stochastic). The first step of
action level creation simply creates CAE nodes: for any ac-
tion a and variable V' affected by «, we create a CAE-node
for each condition C' labeling a branch of CPT(a, V') and
effect (or value of V) e in the effect set for V. However,
thisisonly donefor those conditionsC' that are consistent at

®We will seethat induced correlations can still arise and must
be accounted for, even under this assumption.

*The extension to multiple initial states (e.g., an initial distri-
bution) si mpl|y requires that the possible variables values and ap-
propriate exclusion constraints be used as input.

Input: Initial State V'* = v; (1 <4 < N)and Complexity Parameter &
Output: Reachable Value List Values together with n-ary exclusion relationships
Excl on n-tuples of valuesfor distinct variables, wheren < K
Let Values= {v} : 4 < N} (initial state)
LetExcl = 0
Loop until no changein Values, Excl
1. Create Action Level:
i. For each action «, affected variable V', condition C' labeling a branch of
CPT(a, V') such that C occursin Values, Excl, and value v isin this effect set:
Add (C, a, v} to action level.
ii. For each v in Values add (v, no-op(v), v) to action level.
iii. For each node{C, a, v} in action level, and each distinct variable V'’
affected by a, congtruct 1IS{C, a, v}, V').
iv. Foreach(C1,a1,v1),{C2, az, v2) a thecurrent action level: mark the
pair as exclusivelif vy conflictswith C'5 or v conflictswith C'y, unlessa; = a2
v. For any subset S of actionnodes, » = | S| < k, with conditionsCy, - - - C',:
mark S asexclusiveif some subset of UC; isinExcl. {(v1, v2) € Excl; or
vi. Repeat until no action exclusionsfound:
If {C2, a2, v2) ismarked asexclusive of each element of IS({C, a, v}, V'),
thenmark (Cz, a2, v2) exclusiveof (C, a, v)
2. Create New Proposition Level: Values, Excl
i. Foreach (C, a, v} at current action level:
Add v to Values record (C, a, v) as“away to achieve” v;
ii. Foreachset S C Values suchthat | S| < K:
If all ways of achieving elementsof .5 have exclusive elements, add .5 to Excl.

Figure 2: Algorithm REACHABLEK

the previous propositional level. In addition, asin GRAPH-
PLAN, we assume that a specia action no-opﬁ;;) exists for
every value v: itsconditionissimply v and it has no effect
other than v (this deals with persistence relations). These
are applied in the second step of action level creation.

One superficial difference with GRAPHPLAN is our use of
conditionsin action nodes: the fact that action « has condi-
tional effectsistreated by creating adifferent “action” node
(herea CAE node) for each conditionunder which a hasdif-
ferent effects.> GRAPHPLAN can easily be extended to deal
with conditional effectsinthisway inclassica settings(see
[14, 18] where similar suggestionsare made). A more sub-
stantia difference hasto do with the distributed representa-
tion of action effects. To effectively ded with this, we cre-
ate nodesfor all possibleindependent effects of a, retaining
the distributed flavor of the DBN modd.

This tactic comes with its own difficulties however. Even
under the assumption that actions do not have correlated
effects, certain variable values may become correlated due
toinitial conditions. For example, imagine thereisalight
switch connected to 10 lights, LO through L9. Suppose that
toggling the switch deterministically flipsany light from on
to off, or off to on. Given any initia configuration of light
values (on or off), there are only two reachabl e states. This
cannot be captured using simple conflicts as in GRAPH-
PLAN (see below).

To capture such induced correl ations, we must examine the
relation between the effects of a single action on a dif-
ferent variables. To do this, step iii. of action leve cre-
ation determines the implication sets for each CAE-node.
Let (C1,a,v;) be a CAE-node, where v, is the value of
some variable V4 affected by «. For any distinct variable

5|f conditionsfor a giveriseto different distributions for the af-
fected variable V' but have the same effect set (i.e., the same val-
ues have positive probability), these conditions need not be dis-
tinguished, since we are only concerned with whether values are
reachable, not the probability with which they are reached. In Fig-
ure 1(a), the distinction DryPx is irrelevant to reachability. Pre-
processing of DBNsto collapsesuch conditionsis straightforward,
and easesthe complexity of reachability analysis.



V, dffected by a, we define IS({C1, a, v1),V2) to be the
set of CAE-nodes (Cs, a, v2), where v, € Dom(12), such
that C, and C'; are consistent at the previous propositional
level. Intuitively, if action a is performed under condition
C4 and has effect vy, it must aso have one of the effectsin
IS((C4, a, v1), V5). Inother words, a cannot affect only one
variableif theactionin fact has severa effects. Implication
sets are confined to single actions, and can grow no larger
than the size of the corresponding action description.

Step iv. of action level generation proceeds almost exactly
as GRAPHPLAN. We can execute a number of actions in
“parallel” aslong asthey have consistent conditionsand do
not destroy each others effects or conditions. The one ex-
ception occurs when we have a single action with several
distinct effects (which may destroy certain of the action’s
conditions). For example, if action a has a condition (or
precondition) P that gives rise to two effects, =P and @),
we do not want to mark thenodes (P, a, = P) and (P, a, Q))
as exclusive simply because a destroys one of itsown con-
ditions. We note that REACHABLEK only ever considers
binary exclusions of this form at the action level, due to
the fact that the effects of actions at CAE-nodes are single
literals, and the conditions of CAE-nodes are conjunctive.
Thus, no set of actions can bein conflict (clobbering effects
or preconditions) without some pair of actions within that
set conflicting.

Step v. also testsfor action exclusions based on the incon-
sistency of action conditions at the previous propositional
level. Again, thisis much like GRAPHPLAN; but in con-
trast to “clobbering” exclusions, herewemust test k-ary ac-
tion exclusions: the inconsistency of a set of action condi-
tions cannot be reduced to pairwisetests. However, we can
restrict attention to sets of actions of size K, since any de-
tectable propositional exclusions can involveno more than
K values(thusexclusionsof morethan K action conditions
must be reducibleto exclusionsof asubset of sizeno greater
than K).

Thefinal stageof action level generation iteratively discov-
ers additional conflicts through the use of implication sets.
Toillustrate, suppose | S((C, a, v1), V) describes the pos-
sibleeffects a must have on 1, when performed under con-
dition C';. If some other CAE-node n. (e.g., the effect of o
on some other variable V) is marked as exclusive of all d-
ements of thisimplication set, then » must be exclusive of
(C1, a,v1). Asanexample, consider thelight switchabove,
and suppose theinitia configuration has LO off and L1 on.

The action nodes (off,, tgl, ony) and <0n1, no-op, on; ) do
not directly confhct (%y GRAPHPLAN’S Usudl criterion);

without accounting for implication setswe run thedanger of
judging both values to be simultaneously reachable (which
Isincorrect). However, (off,, tgl, ony) has a singleton im-
plicationset for L1 consisting of {ony, tgl, off, ), which does
conflict with {(on;, no-op, on; ). Stagev. will detect thisand
mark the two CAE-nodes as exclusive. Thus, the induced
correlationwill be detected, and thefact that LOand L1 have
opposite parity will be maintained throughout the analysis.

Propositional Level Creation: The fina part of the al-
gorithmis propositional level creation. Thisis reasonably
straightforward: wefirst create a value node for each vari-
able valuethat is produced at the previous action level; we
then mark any set of n nodes as exclusive if any set of n
CAE-nodes that could produce the n variable values con-
tainsapair of CAE-nodesthat is marked as exclusiveat the

previous action level. This requires a search through pos-
sible “assignments’ of actionsthat produce these values to
find a“ satisfying assignment” (one that has no conflicting
actions). While potentialy al subsets of n variable values
must be investigated, we can generate subsets of increas-
ing size to prune the search (any subset of values that in-
cludesa“smaller” exclusion constraint isitself infeasible).

With no pruning, there can be as many as 2k ZN R k-
ary subsets of values (potential exclusion constrai nts) to be
tested, if al variable values are present (assuming boolean
variabl es). Thus, REACHABLEK scales polynomially with
all factors except the complexity parameter k.

Termination: The algorithm terminates when afixed point
is reached (i.e., when two consecutive propositional lev-
els are identical). It is easy to verify that the agorithm
will terminate: even if the underlying MDP exhibits peri-
odic behavior, the presence of no-ops ensures that the set
of states (implicitly) represented by each propositional level
includesthe set of states at the previouslevel. We also note
that, unlike GRAPHPLAN, thereisno need to keep track of
any but the current action or propositional level. However,
we could deal with finite horizon MDPs by making an ex-
plicit“planning graph” that stored al levels of the graph up
to the horizon of interest.

3.2 Properties of the Algorithm

Two important properties of reachability algorithms are
completeness and soundness. An agorithmis sound if ev-
ery stateconsidered unreachable by thealgorithmis, infact,
unreachable (or equivalently, all reachable states are said to
be reachable by the algorithm). This isimportant for ac-
curate solution of an MDP: if al reachable states are in-
cluded in the reduced MDR, the optimal policy for the re-
duced MDPwill be an accurate reflection of optimal behav-
ior with respect to the given initia state. More specificaly,

let A denote areduced version of MDP A obtained by re-
moving all states deemed unreachable by a reachability al-

gorithm A. LetS C S bethe state spacefor M, let7x bean

optimal policy for M, and let V* denote the optimal value
functionfor M. If A issound, we are assured that:

Proposition 1 Let = be any polichor M that extends %A*
(i.e, m(s) = @ (s) forany s € S). Then, for any s € .S,
wehave: V- (s) = Vi(s) = V*(s)

Anagorithmiscompleteif al unreachable statesare said to
be unreachable by the algorithm, i.e., al unreachable states
are recognized. Completeness ensures that no unreachable
states areincluded in the reduced MDP, and it has the effect
of keeping thereduced MDP small, though, onitsown, does

not guarantee an optimal solution.®
Recall that the output of REACHABLEK isthe set of vari-
able values at the last propositional level together with 7-

ary exclusion constraints over those values, n < K. For
any 1 < K < N, theoutput of REACHABLEK issound:

Theorem 2 If statet = (v}, , v7, - - - v\, ) isreachablefrom

z ) 22
initial state s, then each valuev that makes up statet isin

% Noticethat the terms sound and completeare w.r.t. statements
of unreachability, which is really what we are interested in.



the set of valuesreturned by REACHABLEK. Furthermore,
no subset of values making up ¢ is marked as exclusive.

Finally, itiseasy to see that themore stringent the exclusion
congtraints, the fewer stateswill be deemed reachable.

Proposition 3 If Sk isthe set of reachable states returned
by REACHABLEK and S isthe set of reachable statesre-
turned by REACHABLEJ (for a fixed initial state s), where
J > K then Sy - Sk .

In other words, stronger constraintslead to more complete
reachability analysis.

Unless REACHABLEK produces identical results for all
vaues K < N, it isclear thaa REACHABLEK can-
not generaly be complete. In fact, it is not hard to see
why thisisthe case. Consider the example action in Fig-
ure 1(a), where three parts are spray painted and imag-
ine that it can be instantiated with any three parts from
the set {P1 P2 P3 P4}. Furthermore, imagine that three
litres of paint are consumed by the action. If the initial
dtate is such that there are exactly three litres of paint, we
havethreepossi bl einstanti ati onsof the paint action that can
be executed (ignoring permutations): Paint(P1, P2, P3),
Pai nt%Pl, P2,P4), and Paint(P2, P3,P4). Clearly each
pair of these will be marked as exclusive at thefirst action
level. If we are implementing REACHABLE2, we consider
only pairs of values when checking exclusions at the sub-
sequent proposition level; but no pair of propositions cho-
sen from {PntP1, PntP2, PntP3, PntP4} will be marked as
exclusive—there existsasingle action that can produce any
pair. This means that no exclusion constraints will be gen-
erated at the propositional level. When the algorithm ter-
minates (assuming nothing el se influences these proposi-
tions), we are left to assume that a state in which all four
parts are painted can be realized, which isincorrect. Thus
while soundnessis guaranteed (hence, “correct” solution of
the reduced MDP is assured), completeness does not hold,

meaning the reduced MDP may be larger than necessary.”

We note that GRAPHPLAN dedls only with binary con-
straints (and can be viewed as a special form of REACH-
ABLE2) and isthusincomplete in its analysis. Again, this
incompleteness does not impact the correctness of plan-
ning, just (potentially) the complexity of planning. In gen-
eral, completenessisnot assured except for REACHABLEN,
where NV isthe number of domain variables.

Theorem 4 If statet = (v}, v} ---v]' ) is consistent with
the output of REACHABLEN given initial state s, thent is
reachable from s.

This compl eteness guarantee comes at high computational
cost. Testing every set of NV values at a propositional level
induces a huge combinatoria explosion: at worgt, if every
valueof every variableisredizable (evenif notin combina-
tion), one ends up enumerating the entire state space (recall
that the al gorithm grows exponentially with the complexity
parameter k). However, domain or operator specific knowl-
edge may be used to restrict the size of k in certain circum-
stances. Furthermore the monotonicity guarantee of Propo-
sition 3 suggests that the family of reachability algorithms
can beused inan anytimefashionto do more detail ed reach-
ability analysis as time permits.

"Notethat in this example quaternary constraints are needed to
provethat all four parts cannot be painted.

| Alg. [ Rch.MDP [ FEif. MDP_ | Time(9) ]
Rchl 2Te 0 0.02
sl Rch2 gte 0 1.19
Rch3 te 0 62.96
Rchl 217 2° 0.02
2 Rch2 27 2? 121
Rch3 27 2° 68.02
Rchl 270 2* 0.02
s3  Rch2 218 0 1.68
Rch3 3/4-2'% 0 109.25
Rchl 2% 217 0.04
$4  Rch2 97/128 - 2%° 97/128 - 2'° | 183.76
Rch3 || 1067/2048 - 2'° 5/8 .27 6744.43
Rchl 2%° 2%° 0.06
s5 Rch2 97/128 - 2% 97/128 - 2'7 | 194.12
Rch3 || 3201/4096 - 2°° 5/8-27 8019.12
Rchl 2%¢ 2%¢ 0.04
s6  Rch2 97/128 - 272 97/128 - 2'® | 197.59
Rch3 || 3201/4096 - 2*! 5/8-2° 8172.19

Table 1: Resultsof REACHABLEK (K = 1,2, 3)for differ-
ent initial states

Empirical Evaluation: To illustrate typica behavior,
we have run REACHABLEL, REACHABLE2 and REACH-
ABLE3 on asmall manufacturing domain. Space precludes
afull domain description, but roughly, we have six partsthat
play aroleinthe reward function: valueis attached to per-
forming certain operations on these parts. Some of the ob-
jectives are conjunctive, for example, processing parts P1
and P2 (in this case, painting, drilling and polishing) only
hasvalueif P3isalso processed.® The domainis described
by 31 binary propositions (with 23! states, far larger than
can behandled by explicit MDP sol utiona gorithms) and 30
actions (including a spray paint action for two parts, similar
to that in Figure 1(a)).

We have run each algorithm on six different initial states
that intuitively vary in the number of states they render
reachable. Thisis achieved by varying the action precon-
ditions and resource constraints at the initia state. For in-
stance, s1 (in Table 1) meets no “useful” action precondi-
tionsand has no resources available for building or assem-
bling parts. Other states allow certain objectivesto be met,
but not others; for instance, in s4, s5 and s6 there is not
enough paint to paint more than two parts.

Theresultsare summarizedin Table 1, wherefor each state-
algorithm pair we list the size of the reachable MDP given
that initial state as estimated by the agorithm, the size of
the effective MDP (described in the next section), and the

time taken to construct the reachable set.’

® Thisrelation between value-laden propositionswill beimpor-
tant in the next section.

®The algorithm was implemented in Prolog and run using Sic-
stus Prolog on a Sparc Ultra2. The algorithm implemented has
few optimizations, except that k-ary constraints are generated in
increasing order of k, allowing some “pruning.” Rather than test
for termination, here we simply ran REACHABLEK to three lev-
els, sincein all examplesafixéd point is reached at or before the
third propositional level.



We see that, as expected, REACHABLE3 determines a
smaller (estimated) reachable region than REACHABLE2,
which in turn deems fewer states reachable than REACH-
ABLEl. For instance, at state s1, where no “useful”

resources or preconditions are met, these agorithms all

quickly discover that 15 of the 31 variables cannot change
value, resulting in areachable MDP with size 2'%. Here no
binary or ternary exclusion constraints exist, thus all three
algorithmsproducethesame results. Inthefina four states,
the al gorithms differ, with more complicated processing re-
sulting in a smaller reachable MDP being determined. No-
ticethat the amount of timerequired by REACHABLE2 and
REACHABLES3 increases dramatically with the “complex-
ity” of thereachable MDP (i.e., the number of variableval-
ues realizable and actions executable), with REACHABLE3
taking on the order of 2 hours for the last two problems.
Whilethesizes of the*reachable MDPs’ may still provetoo
unwieldy for effective solution, these results can be used to
leverage abstraction techniques, as we describe in the next
section, making the effective MDP more manageabl e till.

Apart from considering k-ary constraintsfor smaller values
of &, there are a number of other shortcuts one can adopt in
the algorithm that ensure soundness while sacrificing a cer-
tain degree of completeness. Among these are: performing
anincompletesearch for k-ary exclusion constraints (which
might allow unreachable value combinations to be desig-
nated reachable); and performing partia propagation of ac-
tion exclusions through implication sets. These make the
algorithmquiteflexiblefor the purposes of anytime compu-
tation; and none of these adjustmentsaffect theability to ac-
curately solve the reduced MDP (but do affect its size and,
hence, required solutiontime). A more incrementa variant
of thismodel with potential anytimeapplicability could also
be adopted in which REACHABLEK Isrun on successively
larger values K. The algorithm can be modified so that n-
ary congtraints are computed using the output of then — 1-
ary output.

3.3 Including Correlated Action Effects

The algorithm REACHABLEK presented above is designed
to deal with DBNs representing actions without correl ated
effects. The action depicted in Figure 1(b), to give one ex-
ample, would not be dealt with correctly. We note, how-
ever, that simpleprobabilistic dependency among action ef-
fects does not cause difficulties: it isonly deterministically
correlated effects that are problematic. More precisdly, if
the effect of an action on one variable depends on its effect
on another, such that the set of possiblevalues (i.e., values
with positive probability) taken by the second variablevary
with the action’s effect on thefirst, we call these determin-
isticaly correlated. This restricts the value combinations
that the action can produce. Correlationsthat reflect sim-
plechangesinthe probabilitiesof certain vaues, but not the
possiblevalues that can be realized, will be ignored. In the
remainder of this section, we use the terms correl ation and
dependence in this stronger sense.

One method of coping with correl ated effectsisto construct
compound variables: any variablesinaDBN for which ac-
tion a’s effects are dependent are joined, forming a single
variabletaking asvalues assignmentsto theindividual vari-
ables. Only the effect on post-action variables are merged:
the pre-action variables can stay as they were. The distri-
bution over effects on this compound variable is then eas-

ily computed using the original DBN. Different DBNswill
typically have different groupingsof variables (if any).
ReEAacHABLEK can work directly on this modified repre-
sentation, requiring only minor adjustments. When CAE
nodes are formed, they may refer to compound variables.
Testing for action conflicts requires comparing not just in-
dividua variables, but a'so compound variables. However,
thisis straightforward, involving comparing listsof literas
for conflicts. Creating the propositional level requires that
we*“split” any compound effects of CAE nodes. But no spe-
cia attention is required to create exclusion constraints at
the propositional level, since constructing implication sets
and action conflicts using compound variables will impose
any dependencies on the propositional level. Our current
implementation of REACHABLEK worksin thisfashion.

Onedisadvantage of creating compound variablesisthe po-
tential for exponentia blowup in the domain sizes of such
variables. We are currently exploring a version of REACH-
ABLEK that deds directly with correlations in action and
proposition level construction. We defer detailsto alonger
version of this paper; but roughly we can use the structure
of the network, specifically the dependencies among action
effects, to carefully construct implication sets for differ-
ent variables. Once the implication sets are correctly con-
structed, the algorithm works much like it does currently.
The main distinction lies in the fact that the conditionsin
CAE nodes can now refer to post-action variables in cer-
tain cases. This requires some care in detecting conflicts
among actions. We hope to examine empirically the differ-
ences in performance between thisstrategy and our current
(compound variable) approach in the near future.

We note that one can simply ignore correlated effectsin the
algorithm. Aswith the shortcuts mentioned in the previous
section, thiswill not affect the soundness of the algorithm,
but can cause the set of reachabl e statesto be overestimated.

4 Abstraction and Reachability Combined

The most important aspect of our reachability algorithmsis
that they produce a representation of the (estimated) reach-
able states in a structured form—a set of variable values
with exclusion congtraints relating them. We refer to this
output as the reachable set. Because REACHABLEK does
not produce an explicit list of reachable states, it can bein-
tegrated readily with MDP representations such as DBNs
and the abstraction agorithms for MDPs that were briefly
discussed in Section 2.2. In fact, there are severa ways
in which this representation of reachable states can be ex-
ploited by these abstraction techniques. We describe a se-
guence of increasingly sophisticated ways in which to ex-
ploit reachability constraints.

Thesimplest way inwhichto usethereachabl e set produced
by REACHABLEK isto remove any variable values from
the MDP description that do not occur in the reachable set.
For instance, if V' hasonly two possiblevauesinthereach-
able set, say, v; and v,, al other values can be ignored,
since they cannot be realized. Furthermore, a variable
iscompletely removable if it has only one reachable value.
To exploit this fact in the algorithms that use DBN repre-
sentations of MDPs, we want to reduce the DBNs (and re-
ward tree) of the MDP. This process is reasonably straight-
forward. Intuitively, we remove any unreachable variables
values from the reward tree or CPT-trees by removing any
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Figure 3: Reduced (a) action network and (b) reward tree

edgesinthetreelabeled with unreachablevalues. If thisre-
sultsin anode with only one outgoing edge, the variableit-
salf isremovable (i.e., hasonly onereachable value), andis
deleted from the tree (the subtree attached to the remaining
edge is promoted). Any removable variables can be com-
pletely deleted from the DBNs as well. The reduction of
this MDP representation can be performed in linear time,
and resultsin reward tree and set of DBNs that accurately
reflectsthereduced or effective MDP. By retaining thestruc-
tured nature of the representation, the result can be used by
any standard abstraction algorithm (Section 2.2).

As an illugtration, referring to Figure 1(a), we may dis-
cover through REACHABLEK that DryPx is always true.
The DBN in that figure can then be reduced by removing
any mention of the variable DryPx and replacing the CPT
entry that refers to DryPx with the distribution determined
by its“true’ value—thisisillustrated in Figure 3(a). Since
DryPx now has a fixed value, it can, in fact, be completely
removed from the problem description.

More complex processing of the same type can use the ex-
clusion constraintsin the reachable set. Rather than reduc-
ing trees and DBNs using only the absence of certain val-
ues, the fact that combinations of variable values cannot
be realized can be exploited. In particular, we can prune
any (reward or DBN) treein which abranch islabeled with
values that include an exclusion constraint. To do thisre-
quiresthat we simply prunethat branch at the earliest point
a congtraint is violated. For example, referring to the re-
ward tree in Figure 1(a), we may discover a binary exclu-
sion constraintinvolving DrIP1 and DrlP2 (e.g., thereisnot
enough skilled labor to make both true). The reward tree
can then be reduced rather dramatically as shown in Fig-
ure 3(b): the infeasibility of certain objectives lets us dis-
miss certain others.*”

Because our reachability techniques can be used to produce
compact DBN representationsof the reduced MDP, one can
directly apply structured abstraction techniques to the re-
duced MDPin order to solveit. The advantage of first pro-
ducing a reduced MDP is that the descriptions are gener-
ally smaler (and can certainly be no larger). This gener-
ally results in fewer distinctions being made by the struc-
tured algorithm being used. If one needs only solve a plan-
ning problem (for agiveninitial state or set of initial states)

%Here we prune the tree at node DrlP2, replacing it with the
false subtree. Sincethe result is atree with DrlP1 at the root, but
identical left and right subtrees, we take the liberty of removing
the root node: clearly DrIP1isnolonger relevant to reward. Gen-
erally suchisomorphisms can be detected readily given canonical
variable orderings.

rather than the complete policy construction problem, this
can offer a considerable advantage.

The simple abstraction algorithm of [12] can benefit sub-
gtantially from this sort or analysis. As mentioned above,
we may easily determine that certain objectives are infea
sible and remove them from the problem description (e.g.,
DrlP1, DrIP2 above). Remova of such variables can in-
ducethe abstraction algorithmto remove certain other vari-
ables aswell: propositionsthat may have been relevant be-
cause they made the achievement of an objective more or
less likely may be deemed irrelevant in the reduced MDP
if the objective has been deleted. Thus, reachability anal-
ysis can lead to dramatically smaller abstract MDPs. not
only are the unreachable values removed, but factors rele-
vant only to such removed values can a so be deleted.

Empirical Evaluation: In our manufacturing example de-
scribed in the previous section, we get very substantial re-
ductions in MDP size by first removing unreachable val-
ues and va ue combinationsfrom the M DP description. Us-
ingthealgorithmof [12] without reachability, assuming that
only strictly irrelevant variables are removed (i.e., with no
approximation), we can remove 2 of the31 variables, reduc-
ingthe MDP to size 2?°. Integrating the output of REACH-
ABLEK with abstraction provides much more substantial
reductionsin MDP size, asillustrated in Table 1, where ef-
fective MDP size showshow thissizevariesfor different de-
grees of reachability and different initial states. All of these
stateslack certain useful resources or make certain key pre-
conditionsfa se; thusthereachable set of objectivesat each
stateis restricted in one way or another.

For example, when REACHABLEL isappliedto state s1, al-
though we find that many states are till reachable, we dis-
cover that none of our objectives (variablesinfluencing re-
ward) are within our control. The effective MDP has size
zero, indicating that there is really no decision problem to
be solved. Thusasimplereachability analysispreventsone
from solving an MDP of size 23!, Other initial states (care-
fully chosen to make particular subsets of our objectives
achievable) determine reduced MDPs with substantial re-
ductionsin size as well. Notice that at state s2, REACH-
ABLE1 produces an effective MDP with only four states.
At s3, REACHABLEL cannot detect the fact that one sm-
ple objective is unachievable (resulting in a small MDP
for that objective only), but REACHABLE2 discovers that
even it is not reachable. States s4 through s6 involve an
objective whose infeasibility can only be discovered using
ternary exclusion constraints. Though a high overhead is
involved in invoking REACHABLE3, the reduction in the
sizes of the effective MDPs are dramatic when compared
to the results of REACHABLEL or REACHABLE2. At state
s4, for instance, the effective state space is reduced by a
factor of roughly 5000 when REACHABLE3 isused instead
of REACHABLEZ2, potentially making acomputationally in-
feasible decision problem tractable.

Theseresultsare illustrativeand encouraging (though there
isnoreason ingeneral to expect greater marginal reductions
as the complexity of exclusion constraints increases—this
is an artifact of our example). The fact that even simple
reachability analysis can substantially reduce the effective
size of an MDP seems clear; and more complex anaysis
will, a higher computationa cost, provide deeper overall
reductions.



The more sophisticated techniques of [4, 5, 6] can, of
course, benefit in the same way as the simple abstrac-
tion method. However, these algorithms create dynamic,
nonuniform abstractions, creating and recreating tree rep-
resentations of vaue functions and policies. As such, the
simple approach of using the reachable set to reduce MDP
descriptions once and for all does not take full advantage
of the reachability analysis. Algorithms like these can be
augmented dlightly to fully exploit the output of REACH-
ABLEK: since these agorithms put together combinations
of variables dynamically, they may start to compute policy
values for states satisfying variable values that are marked
as exclusive. It isa simple matter to add tests that use the
congtraintsreturned by REACHABLEK toruleout unrealiz-
able variable value combinationswhen building policy and
value trees. Roughly, when a tree is constructed that con-
tains a branch labeled with variables values that are exclu-
sive, a suitable subtree can be removed from thetree. This
resultsin smaller treesbeing maintained, which isthemain
factor in reducing the complexity of these algorithms.'!
Once again, the fact that reachability analysisis performed
using the structured representation of theMDPisthekey to
integrating reachability with abstraction.

5 Concluding Remarks

We have described an agorithm for performing structured
reachability analysis of an MDP, using DBN action repre-
sentations, that allows oneto trade off the complexity of the
analysis with completeness. Our approach is inspired by
the GRAPHPLAN agorithm, but generalizes the concepts
introduced there by handling conditional effects and cor-
relations, and by providing the flexibility to adjust the de-
gree of reachability considered. We have illustrated how
thiscan be exploited in certain MDP abstraction algorithms
to provide deeper MDP reductions when initial states are
fixed. One cannot expect reachability to play a substan-
tial rolein MDP reduction in all cases (ergodic MDPs, for
example); but it can be significant in many circumstances,
such as when rewards are conditional, when certain vari-
ables are observable, but uncontrollable (e.g., road condi-
tions, the wesather, interest rates), or when resource con-
straints restrict the set of reachable states. Our preliminary
empirical results on resource-constrai ned problems suggest
that reachability can offer dramatic MDP reductionsin cer-
tain circumstances.

A number of interesting directions emerge for future re-
search. The application of theseideasto classica planning
settings, when viewed as extensionsto GRAPHPLAN, could
proveuseful. We are also interested in expl oiting the distri-
butional information in our action descriptions to perform
approximatereachability analysis, focusing attentiononthe
most “important” reachable states (e.g., perhaps the most
probable, but accounting for improbable states that have a
high impact on vaue).

Acknowledgements: Thanks to Bob Givan and Matthew
Spears for their comments and for pointing out a correction
to an earlier version of the algorithm.
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