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Abstract

We describe an approach to goal decomposition for a certain
class of Markov decision processes (MDPs). An abstraction
mechanism is used to generate abstract MDPs associated with
different objectives, and several methods for merging the poli-
cies for these different objectives are considered. In one tech-
nique, causal (least-commitment) structures are generated for
abstract policies and plan merging techniques, exploiting the
relaxation of policy commitments reflected in this structure,
are used to piece the results into a single policy. Abstract value
functions provide guidance if plan repair is needed. This work
makes some first steps toward the synthesis of classical and de-
cision theoretic planning methods.

1 Introduction
Markov decision processes (MDPs) have become a stan-
dard conceptual and computational model for decision the-
oretic planning (DTP) problems, allowing one to model un-
certainty, competing goals, and process-oriented objectives.
One of the key drawbacks of MDPs, vis-á-vis classical plan-
ning methods, is the exponential nature of standard, dynamic
programming policy construction algorithms. These gener-
ally require explicit state space enumeration.

Recent work in DTP has focused on techniques that exploit
problem structure to solve MDPs in efficient ways. Such
methods include problem decomposition based on reachabil-
ity analysis [4] and exact and approximate abstraction algo-
rithms [6, 2] in which states are (implicitly) aggregated de-
pending on whether they agree on the values of certain prob-
lem variables. Indeed, these abstraction methods apply an in-
sight fundamental to classical planning: feature-based search
methods are usually much more tractable than state-based
methods. This underlies, for instance, regression and causal
link planning algorithms [13].

In this paper, we investigate another way of decompos-
ing MDPs for efficient solution, namely, goal decomposition.
Specifically, if utility is assigned to the achievement of cer-
tain features (as in multi-attribute utility theory [8]), we will
consider “components” of the utility function separately. In
rough outline, we decompose the utility function, construct
an abstract policy for each component that maximizes per-
formance with respect to its objectives, and then attempt to
merge the abstract policies into a single, coherent, approxi-
mately optimal policy for the entire set of objectives.

We view goal decomposition of this type as a step to-
ward the further synthesis of decision-theoretic and classical
planning methods; goal decomposition is essential in least-
commitment planning. If two subgoals are noninteracting,
we can plan for each separately and “merge” the results. If
the solutions interact, least-commitment planners facilitate
the merging process by not committing to the ordering of ac-
tions required for a given subproblem when the order is not
relevant. In fact, a representation using causal links makes
clear the reasons for an action’s presence in the plan.

This second insight seems to offer genuine benefits to plan-
ning, but it has not been exploited in any proposed solution
methods for MDPs. Indeed, a major impediment to this ap-
proach is the requirement for some form of policy merging as
opposed to simple plan merging. This is difficult because the
concept of a policy for an MDP has no explicit flexibility: it
simply assigns actions to every state.

We note that the value function associated with an MDP
implicitly determines a set of optimal policies, not just a sin-
gle policy; thus it offers some flexibility. Intuitively, it can
be used to tell when an alternative action can be used instead
of that dictated by the policy with no or (under certain con-
ditions) little loss in value. We will describe a state-based
search process that allows us to merge policies using value
functions in this way.

We also consider intuitions from least-commitment plan-
ning to provide an alternative means of policy merging. We
provide a method for extracting causal structure from a pol-
icy, under certain assumptions, that reveals the aspects of the
policy that are essential to its performance and those that are
not. This flexibility permits policy merging to proceed more
readily. Since merging is not guaranteed to succeed, we also
give priority to abstract policies associated with more impor-
tant objectives. This prioritizationof goals approximates the
workings of optimal policy construction.

In Section 2 we overview MDPs and their representation,
nonlinear plans, and the MDP abstraction technique of [6].
Section 3 outlines the major components of our framework—
we describe: the construction of prioritized goals or objec-
tives; the extraction of a nonlinear plan from a given policy;
and methods for merging policies, including the use of least-
commitment structure. We describe directions for future re-
search, including challenges facing the generalization of this
approach, in Section 4.
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2 MDPs and Least-Commitment Plans
2.1 Markov Decision Processes
We assume that the system to be controlled can be described
as a fully-observable, discrete state Markov decision process
[1, 7, 12], with a finite set of system states S. The control-
ling agent has available a finite set of actions A which cause
stochastic state transitions: we writePr(s; a; t) to denote the
probability action a causes a transition to state t when exe-
cuted in state s. A real-valued reward functionR reflects the
objectives of the agent, with R(s) denoting the (immediate)
utilityof being in state s. A (stationary) policy� : S ! A de-
notes a particular course of action to be adopted by an agent,
with �(s) being the action to be executed whenever the agent
finds itself in state s. We assume an infinite horizon (i.e., the
agent will act indefinitely) and that the agent accumulates the
rewards associated with the states it enters.

In order to compare policies, we adopt expected total dis-
counted reward as our optimalitycriterion; future rewards are
discounted by rate 0 � � < 1. The value of a policy � can
be shown to satisfy [7]:V�(s) = R(s) + �Xt2S Pr(s; �(s); t) � V�(t)
The value of � at any initial state s can be computed by solv-
ing this system of linear equations. A policy � is optimal ifV�(s) � V�0 (s) for all s 2 S and policies �0. The optimal
value function V � is simply the value function for any opti-
mal policy. We refer to [1, 7, 12] for a description of policy
construction techniques.

2.2 Action and Reward Representation
Several good representations for MDPs, suitable for DTP,
have been proposed. These include stochastic STRIPS opera-
tors [9, 6] and dynamic Bayes nets [5, 2] for representing ac-
tions, and related methods for describing reward functions.
We will adopt the STRIPS-style specification used in [6].

We assume a set of atomic propositions used to describe
the planningproblem of interest. Each action a is represented
by two components, a precondition and a probabilistic ef-
fect set. A precondition P is a list of literals, interpreted in
the usual way: a can only be performed in states satisfyingP . A probabilistic effect set E comprises a set of context-
effect pairs of the form hC;ELi. Each C is a context un-
der which action a has a different (stochastic) effect. We re-
quire that the set of contexts be mutually exclusive and ex-
haustive given P . The associated effects list EL describes
the possible effects action a could have in context C and the
probability with which they occur. More precisely, EL =hE1; p1; : : : ;En; pni where each Ei is a list of literals (an ef-
fect) and each pi is the probability of effect Ei occurring. IfEi occurs, the resulting state change is such that the literals
mentioned inEi become true and any literal whose atom does
not occur inEi retains its truth value [9] (i.e., Ei is a STRIPS-
style change list).

To concisely represent actions that have multiple, uncorre-
lated stochastic effects, we use action aspects [6]. Each as-
pect for action a is represented exactly as a probabilistic ef-
fect set, with its own set of contexts and effects. However, the

Action Context Effect Prob.

drill(p) (Asp.1) ; hole(p) 1:0
drill(p) (Asp.2) pressed(p) hot 0:9; 0:1:pressed(p) ; 1:0
drill(p) (Asp.3) ; :painted(p) 0:9; 0:1

paint(p) ; painted(p) 1:0
press(p) (Asp.1) ; pressed(p) 0:95; 0:05
press(p) (Asp.2) ; :painted(p) 0:95; 0:05
mdrill(p) (Asp.1) ; hole(p) 0:7; 0:3
mdrill(p) (Asp.2) ; :painted(p) 1:0

Figure 1: Stochastic STRIPS actions with Aspects

Feature Reward
hole(P1) ^ pressed(P1) 10

painted(P1) 7
hole(P2) 2

Figure 2: Additive Reward Function

effects lists in different aspects must be disjoint (i.e., have no
atoms in common). To determine the net effect of a in states, the condition Ci satisfied by s in each aspect Ei is deter-
mined, and a joint effect consisting of the union of one effects
list from each aspect occurs with the product of the probabil-
ities associated with these lists.1

This representation is illustrated in Figure 1. We have sev-
eral job shop operations that can be applied to parts, such
as drilling, manual drilling, pressing, and painting. The ef-
fects of these operations are shown in the table. For instance,
drill(p) has several independent effects (aspects): it produces
a hole in p, it might cause the drill bit to become hot if p is
pressed, and tends to destroy p’s paint job. If one drills a
pressed, painted part p, the different aspects combine to pro-
duce the following effects:hhole(p); hot;:painted(p)i : 0:81; hhole(p)i : 0:01;hhole(p);:painted(p)i : 0:09; hhole(p); hot; i : 0:09
Pressing can sometimes fail, and also destroys paint. Manual
drilling is not guaranteed to produce a hole and is guaranteed
to destroy paint. No preconditions are shown in the table, but
we assume that the drilling action has the precondition :hot
(the drill bit is not hot).

The reward functionR can also be represented compactly
in many circumstances. We assume the reward function as-
sociates additive, independent rewards with different domain
propositions [8]: the reward associated with a state is simply
the sum of the rewards given for the propositions it satisfies.
Figure 2 shows such a function, where reward is given based
on the features of two distinct parts P1 and P2. We assume
reward 0 is associated with all unmentioned features.1This representation reflects the same kinds of independenceas-
sumptions one finds in Bayes net action representations [5, 2], and
offers the same conciseness of representation when there are multi-
ple uncorrelated effects.
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2.3 Approximate Abstraction
The abstraction technique developed in [6] can reduce the
size of the MDP one needs to solve to produce an approxi-
mately optimal policy. Using regression-like operations, we
can discover which atoms influence the probability of other
propositions becoming true when certain action sequences
are executed. When a reward function has independent com-
ponents, we can sweep through the action descriptions de-
termining which propositions (contexts and preconditions)
influence the ability to make the reward proposition true or
false, which propositions, in turn, influence these, and so on.
Such atoms are deemed relevant atoms, the set of which is de-
notedR. Once this process is completed, any atoms not inR
(i.e., that do not influence the probabilityof a reward proposi-
tion through any action sequence) can be ignored. Their truth
values cannot influence the optimal choice of action.

For instance, suppose the only atom that influences reward
is hole(P1). Since drilling affects this, its precondition:hot
dictates that atom hot is relevant. Since hot is affected by
drilling if pressed(P1), atom pressed(P1) is also added toR. No atom influences any action’s effect on pressed(P1);
thus, a fixed point is reached, with the only relevant atoms be-
ing hole(P1), hot and pressed(P1). The abstract MDP over
this reduced space has only 8 states, and can be more easily
solved to produce an optimal policy.

More importantly, one can ignore certain reward proposi-
tions to produce an approximate abstraction (see [6]). For
instance, in Figure 2, atoms hole(P1), pressed(P1), and
painted(P1) have a larger influence on reward than hole(P2).
By ignoring the hole(P2), we create an abstract space much
smaller than the one needed to solve the MDP optimally—
only atoms pertaining to P1 (and hot) are introduced intoR, hence the resulting abstract MDP. This MDP has only 16
states and is easier to solve. One optimal policy (among sev-
eral possibilities) for this MDP has the form:

If :pressed(P1) : press(P1)
If pressed(P1) ^ :hole(P1) ^ :hot : drill(P1)
If pressed(P1) ^ :hole(P1) ^ hot : mdrill(P1)
If pressed(P1) ^ hole(P1) ^ :painted(P1) : paint(P1)
If pressed(P1) ^ hole(P1) ^ painted(P1) : no-op

This computational benefit comes at the cost of optimality:
the policy makes no attempt to machine P2, since any value
associated with it has been ignored. However, if the value
lost is small enough, the tradeoff for a (potentially exponen-
tial) decrease in computation time may be acceptable.

Formally, we can describe the approach as follows: 1) Se-
lect a subset, IR, of immediately relevant atoms that influ-
ence immediate reward. These will generally be the atoms
that have the largest impact on reward. 2) Generate the setR of relevant atoms satisfying the properties: a) IR � R;
and b) if P 2 R “occurs” in an effect list of some action as-
pect, each atom occurring in the corresponding context, or in
the precondition for a, is in R. 3) Solve the MDP associated
with this reduced set of atomsR. We note that generating R
given the set IR can be done in O(EjRj) time, where E is
the size of the set of action descriptions (i.e., the number of
context-effect pairs).

2.4 Least-Commitment Plans

We will use least-commitment (or partially-ordered) plans to
represent the relevant parts of policies in a way that allows
them to be more easily “merged.” We briefly review the rel-
evant concepts here, but refer to [13] for more details.

A least-commitment plan (LCP) consists of a set of action
instancesA, a set of causal links involvingthese actions and a
set of ordering constraints (i.e., using the relations < and >)
over these actions. We ignore issues of quantification (e.g.,
involving codesignation constraints, etc.) for simplicity. A
causal link is a tuple ha; p; bi where a and b are actions andp is a proposition. Intuitively, such a link represents the fact
that a has effect p, b has precondition (or a context) p, and
that no action that might occur between a and b will change
the truth of p. We say that a produces p and that b consumesp. When constructing a plan, we may introduce an action c in
order to achieve a subgoal q, where c has the additional effect
of making p false. If c can be consistently ordered betweena and b, we say that c threatens ha; p; bi.2 To ensure the plan
is valid, we resolve the threat by insisting that c occur beforea or after b. Such constraints restrict the legal sequences of
action instances. We can think of an LCP as representing its
set of linearizations: the sequences of action instances in A
consistent with the ordering constraints.

We do not discuss here algorithms for producing LCPs, but
refer to [13] for a survey and to some of the key developments
presented in [10, 11].

3 Goal Decomposition
The aim of goal decomposition is similar to that of abstrac-
tion: to solve smaller MDPs by ignoring variables. Unlike
the abstraction method of [6], however, we do not solve a sin-
gle abstract MDP (e.g., for P1-objectives) and ignore other
objectives completely. Instead, we solve several abstract
MDPs, each pertaining to different sets of objectives (e.g.,
one for P1 and one for P2), and combine the results into a sin-
gle policy of higher value than any individual abstract policy.

There are two major challenges that must be met to solve
this task. First, we must decide how to decompose the re-
ward function in order to generate (and solve) small, abstract
MDPs (Section 3.1). Second, we must merge policies, which
itself involves several difficulties. Chief among these is the
fact that policies offer no flexibility. In Section 3.2, we de-
scribe how to extract essential causal structure from abstract
policies that reveals the flexibility inherent in a policy. In
Section 3.3, we discuss policy merging. We first describe a
merging procedure that uses the value functions of two ab-
stract policies, rather than the policies themselves, to guide
a search through state space. We then propose a method for
merging that uses the causal structure of the first policy to
constrain search through state space.

The details of the various algorithms described in this pa-
per are based on several assumptions. We assume that our
problems are goal-oriented; that is, we are only concerned
with the achievement of propositions in the “final state” that2We refer to [13] for a discussion of the complexities introduced
by the existence of conditional effects.
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results from executing a sequence of actions.3 We also as-
sume that each action has a primary or most probable effect,
and that an initial state has been given. These assumptions
legitimize the use of causal links and classical LCPs. We
conjecture, however, that the basic framework for MDP de-
composition and policy merging can be applied in much more
general settings with appropriate extensions.

3.1 Decomposing the Reward Function
Decomposing the reward function does not involve much
more than partitioning the set of reward attributes in some
way, say into sets IR1; IR2; : : :, and generating the appro-
priate sets of relevant atoms R1;R2; : : :. For instance, Fig-
ure 2 naturally suggests the decomposition described in Sec-
tion 2.3, (using the rewards associated with P1 in one abstrac-
tion and the reward for P2 in another). Several factors will
influence the choice of abstract MDPs.

When merging policies (Section 3.3), we assume that cer-
tain abstract policies are given priority over others; that is,
abstractions should be orderable in terms of importance. Par-
titioning of reward attributes should therefore be such that
features with large impact on reward should lie within more
important partitions. In our example, the rewards associated
with the completion of P1 are more critical, so the partitions
are ordered so that P1’s success is given priority over P2.
When objectives conflict and policies cannot be satisfactorily
merged (e.g., if P1 and P2 require the same consumable re-
source), this prioritization allows the more important objec-
tives to be achieved. This approximates the behavior of an
optimal policy, which would make a similar tradeoff when
faced with conflicting objectives.

Attributes whose effect on reward is not independent
should obviously be placed in the same abstraction. In our
example, the contribution to reward made by hole(P1) and
pressed(P1) is highly correlated. Achieving one without ac-
counting for the other makes little sense.

The odds of successful policy merging can be increased if
there is little interaction between atoms in different abstract
spaces; this can be a factor in the choice of IR sets. If an ac-
tion influences an atom in two different spaces, the policies
may interact in undesirable ways. The potential for interac-
tion can be detected by a simple extension of the algorithm
that generates R sets. Such interaction cannot generally be
avoided, but if the overlap is substantial one might consider
merging different IR sets, or breaking them up differently.
Of course, larger MDPs usually result and the “degree of po-
tential interaction” should be balanced against the increased
size of the MDP and the potential loss in value if one of the
objective sets cannot be accommodated by merging. We re-
fer to [6] for further discussion of reward attribute selection
for abstraction and the tradeoff with abstract MDP size.

3.2 Extracting Causal Structure from Policies
Once the reward function has been decomposed, the abstract
MDPs associated with feature setsR1;R2; : : : can be formu-
lated and solved, and optimal policies �1; �2; : : : and value3We refer to [4] to see how such objectives can be encoded in
an MDP using absorbing states. For example, we can have a distin-
guished stop action that precludes further actions.

functions V1; V2; : : : determined. We note that this process
can proceed in an incremental anytime fashion, with attention
focused on the highest priority MDPs, leaving lower priority
MDPs to be solved as time permits.

As we will see, it will be useful to extract the essential
causal structure of a policy � in the form of a LCP: this flex-
ibility will aid in merging. We assume each action has a
unique most likely or primary effect. We define the most
likely execution path (MLEP) of an abstract policy to be the
sequence of actions and states, given the initial state I, that
is most likely. We assume that this path ends in some ab-
stract goal state G (see below). We generate the LCP for pol-
icy � by extracting causal link information from the actions
that occur along this path and the objectives that are actually
achieved in G. Any linearization of this LCP is guaranteed
to be “optimal” in the sense that its MLEP leads to the same
abstract goal state. Furthermore, should execution of the plan
fall “off path” with an unlikely action effect, � can be used to
dictate a new action choice (a new LCP can also be generated
at this point if replanning/remerging is desired).

LCP extraction for � proceeds as follows. We first gen-
erate the MLEP for � given initial state I to goal state G.4
We then call a least-commitment planning algorithm, such as
Weld’s [13] UCPOP, with initial state I and goals consisting
of those reward propositions in the current R set satisfied byG. Planning will be very constrained (and efficient) however:
when a subgoal q for action b is selected, the most recent ac-
tion a (in MLEP) that produces q is chosen as the producer
and causal link ha; q; bi is generated. Any requirements for
action a (preconditions and specific context propositions)are
then added as subgoals. We note that there is no ambiguity in
choice of context for a (and hence a’s conditional effects) as
these are uniquely determined by the state in which a occurs
in MLEP. Finally, threats to causal links are resolved respect-
ing the ordering of MLEP.

At each step, the LCP produced by this algorithm has �’s
MLEP as one of its linearizations. Since this path is a solution
to the planning problem we constructed, UCPOP will return a
plan without backtracking: MLEP acts as an oracle. Further
efficiency can be gained by generating causal link informa-
tion during MLEP generation, leaving only threat resolution
to complete the planning process.

To illustrate, consider the optimal abstract policy de-
scribed in Section 2.3 (pertaining to P1) with initial state::hot;:pressed(P1);:hole(P1);:painted(P1)
The action sequence hpress(P1); drill(P1); paint(P1)i ap-
pears on the MLEP, and the goals pressed(P1), hole(P1) and
painted(P1) are determined. UCPOP then uses the actions
above to generate the LCP shown in Figure 3: causal links
are denoted by solid lines and ordering constraints by dashed
lines. Note that press(P1) and drill(P1) are ordered be-
fore paint(P1) because they threaten the effect painted(P1).
On the other hand, press(P1) and drill(P1) are unordered:
though the policycommits to their ordering, this commitment4A terminal stateG can be identified as one whose value V�(G)
is not significantly greater than the sum of the reward propositions
it satisfies, or one for which a stop action has been selected.
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Initial State

paint(P1)

press(P1)

drill(P1)

pressed(P1)

Final State

painted(P1)

hole(P1)

pressed(P1)

painted(P1)

hole(P1)

hot

Figure 3: Causal structure with ordering constraints

is discovered to be unessential to goal achievement in the
planning process. Execution in either order (assuming most
likely outcomes) will be optimal.

As we will see, plan merging benefits from having LCPs
with as few constraints and causal links as possible, increas-
ing the odds of success. The LCP extraction algorithm can
be altered to produce “relaxed” plans that approximately cor-
respond to MLEP. In particular, we may ignore certain con-
text conditions consumed by an action if these do not sub-
stantially influence goal achievement. For example, suppose
smooth(P1), while potentially important at certain states,
is of marginal value on the current MLEP for �. If, say,
smooth(P1) is produced by the initial state and consumed
by drill, and only marginally increases the probability of
hole, the link from the initial state to drill could be dropped.
Merging new plans with this relaxed LCP might result in a
(slightly) less than optimal execution of � if the new plan de-
stroys smooth(P1) before drilling; however, the added flexi-
bility makes merging easier and may be worthwhile.

3.3 Prioritized Policy Merging
Using State Space Search Suppose we now have a set
of abstract MDPs that have been solved. For concreteness,
assume two such MDPs whose optimal policies �1; �2 and
value functions V1; V2 have been determined. Our goal is to
produce a new policy� that behaves well with respect to both
sets of objectives, without solving a new MDP that combines
both abstract spaces. To do this, we can use the value func-
tions as heuristics to guide a search through state space. Each
value function tells us how good a state is with respect to
its own objectives: if Vi(s) is high, the goals in MDP i are
achievable. Note, however, that this does not mean the goals
are achievable jointly with those of some other MDP j.

More precisely, we define a search process whose nodes
are states, whose arcs are labeled with actions, and whose ini-
tial state is the start state. At any active node of the search
tree, we consider the effect of each possible action; that is, we
add children corresponding to the unique state resulting from
each action. Each such state s has values Vi(s). The most
promising such state is that with the highest such values.5
Even if no action dominates all others, under the assumption5The unique state associated with an action is due to the
“pseudo-deterministic” assumption we made, but, in fact, the value
of this resulting state is not the only consideration. If an action is
likely to be successful but has some risk associated with it, the fact
that its likely outcome is better than that of another action is not suf-
ficient reason to select it (note that the abstract policies do take such

that the reward function is additive, the sum of values Vi(s)
can be used as the heuristic value of state s.

How this search process proceeds is rather flexible; but a
best-first approach seems most appropriate. Each value Vi(s)
is a “perfect” heuristic in that, should the agent consider only
objectives in space i, it could attain Vi(s). If the agent at-
tempts to integrate other objectives, this can only cause the
value Vi(s) to go down (or, at best, stay the same). Thus, the
“multivalued” heuristic (or the sum of values Vi(s)) overesti-
mates the true value of the state s, and is admissible—a sim-
ple best first search using this as the heuristic function will be
appropriate.6 The search process terminates once an appro-
priate goal state is reached.

Merging does require that we consider the “combined” ab-
stract space containing the relevant atoms from all abstract
MDPs involved. However, while this space is considerably
larger than the individual abstract spaces, we never need to
construct policies, or plan in substantial ways, in the com-
bined space. Thus, the exponential “blow up” in state space
size is not a factor in policy merging.

To illustrate the process, consider the example above,
where the value functions with respect to parts P1 and P2 are
denoted V1 and V2. Assume pressed(P2) holds at the start
state (along with the relevant propositions for P1). Suppose
press(P1) is chosen as the first action: it causes no drop inV1 or V2.7 However, at any subsequent point drill(P1) or
drill(P2) will cause a drop in value because hot becomes true,
preventing drilling of the other part. But an alternative initial
action, drill(P1), exists and subsequent search will lead di-
rectly to an appropriate sequence of actions. Notice that this
process leads to a policy in which the actions drill(P1) and
press(P1) are reversed (w.r.t. the original �1). Note, how-
ever, that policy �1 does not play a role in the search process.

Modifying the example slightly, suppose that drilling
causes hot to become true no matter what. In this case,
drill(P2) causes a drop in V1, while drill(P1) causes a drop
inV2 (regardless of pressed(P1)). Since P1 has higher value,
the first drop is greater and we will “commit” to drilling P1,
and using mdrill for P2.

Finally, we note that pseudo-determinism is exploited by
the search to find a merged action sequence rather than a pol-
icy per se. However, as mentioned, should any action have
an unlikely effect, the agent can always resort to one of the
abstract policies to decide how to act at the resultant, “off-
path” state (e.g., choose to execute �i for that abstract policy
with highest value Vi(s)). We could also imagine applying
the search process to the most probable “unlikely” branches,
or remerging online as circumstances warrant.

Using Plan Structure to Guide Search One difficulty
with the search process described above is the fact that the ac-
tual search space explored can be quite large. Furthermore,
a number of alternatives may be explored before a genuine

considerations into account). Thus we use the expected value of an
action w.r.t. Vi (or Q-value of the action) as a guide.6Multiple path (or cycle) checking is also appropriate in our
pseudo-deterministic setting to ensure progress in being made.7To be precise, a slight drop in value, corresponding to the dis-
count factor will occur. We shall ignore this effect in our discussion.



To appear, Proc. 15th Intl. Joint Conf. on AI (IJCAI-97),
 Nagoya, August, 1997

conflict is detected (as in the second case above). A second
difficulty lies in the fact that this process does not lend it-
self to revision of policies or to the incremental construction
of merged policies in an anytime manner. For example, if
we merge policies for several abstract spaces, and then later
solve another abstract MDP, merging the new policy requires
revisiting the entire search process, unless some form of de-
pendency information is recorded.

We now describe a process that alleviates these difficulties
to some extent: when merging �1 and �2, we will first ex-
tract an LCP P1 for �1 and restrict our search to action se-
quences that have high value with respect to V2 (on MDP 2).
Any such action sequence must, however, respect the causal
links in planP1. This makes the search process easier for two
reasons. First, the flexibility in ordering constraints in P1 al-
lows us to consider several different optimal policies (w.r.t.V1) without explicit backtracking. Second, we will not con-
sider policies that are inconsistent with P1. This means we
are committing to a particular means of achieving objectives
in the first space. As such, the resulting merged policy may
not be as good as one that doesn’t adhere to such restrictions;
but the computational benefits may make this worthwhile.
Once we’ve merged �1 and �2, we can extract a new LCPP2 that can be used when considering subsequent objectives.
Recording plans allows the merging process to proceed in an
incremental fashion. We now make this more precise.

Assume that an LCP P1 has been extracted for a particu-
lar set of objectives,8 and that an abstract value function V2
has been generated for a new abstract MDP. Our merging pro-
cess is prioritized: as before, we generate a path starting at
the start state. Only now, this path must be consistent withP1 (i.e., some linearization of P1 is a subsequence of this
path), and V2 alone is used as the heuristic function. Hence,
we search for the best policy with respect to V2 subject to
the constraints imposed by P1. This prioritization is neces-
sary in instances where all objectives cannot be met. Since
some must be “sacrificed,” we commit to the plan pertaining
to higher valued objectives.9 The search proceeds as follows:

1. Each search node corresponds to a state and is annotated by a set
of open links and permissible actions from P1.

2. Each arc in the search tree is annotated by an action.

3. We use V2 as the heuristic function.

4. We search from the start state: its open links are produced by
start, and permissible actions are those that can consistently be
executed first in P1.

5. Each node is expanded using only actions that are on the permis-
sible list from P1, or that do not threaten any link on the open list.
Irrelevant actions (that do not belong to P1 and do not influence
atoms inR2) are not considered.

6. If an action a from P1 is used, the child node is annotated as fol-
lows: all links consumedby a are removed from the open list and
those producedby a are added;a is removed from the permissible8This need not be for a single abstract MDP: a set of such MDPs

may have been merged as in the previous section.9We assume without further mention that if abstract policy �1
has very low value, compared to the set of objectives it is designed
to achieve, it can be ignored completely. Priority can be altered dy-
namically in this and other ways.

Initial State

paint(P1)

press(P1)

drill(P1)

pressed(P1)

Final State

painted(P1)

pressed(P1)

hole(P1)
hole(P1)

hot

hole(P2)

hot
hole(P2)

drill(P2)

painted(P1)

Figure 4: Merged causal structure (1)

list; and any new action, all of whose predecessors (w.r.t. order-
ing constraints of P1) now lie on the search path, is added to the
permissible list.

The open list keeps tracks of links that must be respected by
any action inserted to achieve objectives inV2, while the per-
missible list serves as a “plan counter” for P1. A best-first
search using V2 can be used. Once this search is complete,
we can extract (backtrack-free) a new LCP P2 from the cho-
sen path. The process can then be repeated using P2 should
one wish to consider further objectives (abstract MDPs).

It is often the case that more than one optimal policy exists.
Althoughour use of LCPs allows us to capture the causal link
structure of a number of policies, there may be different poli-
cies involving substantially different actions (e.g., a different
way of making holes). Hence, at any point where merging re-
sults in a greatly reduced value in V2, we have the option of
backtracking to a different optimal (or possibly suboptimal)
policy for the earlier abstract MDP, generating a new plan for
it and attempting to merge with this new plan. Thus, our com-
mitment to P1 need not be absolute.

To illustrate the merging process, let our first abstract planP1 be that in Figure 3 (corresponding to P1), and let the
second value function V2 correspond to the sole objective
pertaining to P2 (attained by drill(P2)). Assume again that
pressed(P2) holds. Search using V2 suggests a number of
potential actions: drill(P2), drill(P1), and press(P1). In-
tuitively, the first action is desirable relative to V2 and the
other two actions are from P1. (Action mdrill(P2) is subop-
timal w.r.t. V2, and all actions involving P1 are irrelevant toV2.) The action drill(P2) threatens drill(P1) in P1 because
of its effect hot. Hence, we consider the next possible action,
drill(P1). Suppose we choose to follow this path. As a sub-
sequent action, we can choose either drill(P2) or press(P1).
The conditional effect hot of drill(P2) is no longer a threat.
We can continue from here on in a straightforward manner,
eventually generating the LCP shown in Figure 4. Note that
merging reversed the ordering of press(P1) and drill(P1)
in the original abstract policy without backtracking, show-
ing the benefits of extracting causal structure. In addition,
mdrill(P2) is never considered because of its low value.

As a second example, again imagine that hot becomes true
whenever drilling occurs. Any attempt to use drill(P2) as
the first action will threaten drill(P1) as above; but drill(P1)
precludes subsequent execution of drill(P2). The commit-
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Figure 5: Merged causal structure (2)

ment to the initial plan means that an alternative action
must be chosen: the value function V2 dictates that action
mdrill(P2) should be performed and the goal state is then
reached (thoughwith lower probability). An LCP can then be
extracted which achieves both sets of objectives, as shown in
Figure 5. We note that action mdrill(P2) is not on the MLEP
for the optimal policy �2; but commitment to the first plan
forced us to consider a suboptimal way of achieving the sec-
ond objective. In general, the algorithm—using the optimal
value function V2—effects “repair” of an unmergeable pol-
icy. Indeed, if at that point the optimal policy�2 dictated that
a different (conflicting) objective should be attempted (e.g.,
shipping a different part instead of P2), the merging algo-
rithm would have stirred us to a completely new “goal.”

The key difference between merging using only abstract
value functions and merging using a plan is that the latter
commits to a particular way of achieving the higher priority
objectives and attempts to work around these commitments
when determining how to achieve lower priority objectives.
This commitment has some clear computational advantages,
but comes at the cost of perhaps sacrificing some lower pri-
ority objectives because one is not willing to consider (sub-
stantially) different ways of attaining high priority goals.

The plan-based merging approach shares much of the mo-
tivation underlyingwork on intentionsand resource-bounded
reasoning in planning [3]. Although it may result in infe-
rior policies as compared to the first, less constrained search
method, the commitment embodied by the plan-based ap-
proach is suitable when, due to uncertainty and resource con-
straints, we prefer an anytime approach in which we first gen-
erate a plan for the most important objectives. Later, we can
modify such plans, taking into account other, less important
objectives. In addition, efficient planning may often require
us to accept certain assumptions about the state of the world
or its dynamics. Once we learn that one of these assumptions
is false, it may not be possible to replan from scratch, as re-
quired by the first merging approach. Revision of a plan to re-
flect changing assumptions may prove more suitable in such
circumstances.

This use of commitment could be taken even further: we
could extract an LCP for both (sets of) objectives and attempt
to merge them, thus committing to a specific means of attain-
ing both. We note that it may be possible to use and modify
existing plan merging techniques (e.g., see [14]) in this re-

gard. However, strong commitment to earlier (higher prior-
ity) plans remains essential if plans prove unmergeable.

4 Concluding Remarks
We have suggested a method of goal decomposition for
MDPs based on abstraction and least-commitment planning.
Our technique allows certain classes of MDPs to be solved
efficiently, though suboptimally, through the solution of a set
of considerably smaller MDPs associated with different ob-
jectives. There are a number of questions relating classical
planning, DTP and resource-bounded reasoning that may, in
the future, be addressed satisfactorily within this framework.
These include the derivation of goals from general decision-
theoretic considerations, the utility of classical plans in DTP
settings, and the derivation of intentions or commitments
from the decomposition of objective functions.

We are currently exploring generalizations of this ap-
proach, in particular, the development of least-commitment,
causal link representations of complete policies and meth-
ods of extracting such from standard, state-based policies.
This will enable the restrictive assumptions of goal-based,
pseudo-deterministic problem structure to be dropped. We
are also exploring other means of merging and methods for
bounding the error associated with prioritized merging.
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