To appear, Proc. 15th Intl. Joint Conf. on Al (IJCAI-97), Nagoya, August, 1997

Prioritized Goal Decomposition of Markov Decision Processes:
Toward a Synthesis of Classical and Decision Theor etic Planning

Craig Boutilier, Ronen I. Brafman, and Christopher Geib
Department of Computer Science
University of British Columbia
Vancouver, BC, CANADA, V6T 174
email: {cebly,brafman,geib} @cs.ubc.ca

Abstract

We describe an approach to goal decomposition for a certain
class of Markov decision processes (MDPs). An abstraction
mechanismis used to generate abstract M DPs associated with
different objectives, and several methodsfor merging the poli-
ciesfor these different objectives are considered. In onetech-
nique, causal (least-commitment) structures are generated for
abstract policies and plan merging techniques, exploiting the
relaxation of policy commitments reflected in this structure,
areusedto piecetheresultsinto asinglepolicy. Abstract value
functions provide guidanceif plan repair is needed. Thiswork
makessomefirst stepstoward the synthesisof classical and de-
cision theoretic planning methods.

1 Introduction

Markov decision processes (MDPs) have become a stan-
dard conceptua and computational model for decision the-
oretic planning (DTP) problems, alowing one to mode un-
certainty, competing goals, and process-oriented objectives.
One of the key drawbacks of MDPs, vis-a-vis classical plan-
ning methods, isthe exponential nature of standard, dynamic
programming policy construction agorithms. These gener-
ally require explicit state space enumeration.

Recent work in DTP has focused on techniquesthat expl oit
problem structure to solve MDPs in efficient ways. Such
methods include problem decomposition based on reachabil -
ity analysis[4] and exact and approximate abstraction algo-
rithms [6, 2] in which states are (implicitly) aggregated de-
pending on whether they agree on the values of certain prob-
lemvariables. Indeed, these abstraction methods apply anin-
sight fundamental to classical planning: feature-based search
methods are usually much more tractable than state-based
methods. This underlies, for instance, regression and causal
link planning algorithms[13].

In this paper, we investigate another way of decompos-
ing MDPsfor efficient solution, namely, goal decomposition.
Specifically, if utility is assigned to the achievement of cer-
tain features (as in multi-attribute utility theory [8]), we will
consider “components’ of the utility function separately. In
rough outline, we decompose the utility function, construct
an abstract policy for each component that maximizes per-
formance with respect to its objectives, and then attempt to
merge the abstract policies into a single, coherent, approxi-
mately optimal policy for the entire set of objectives.

We view goal decomposition of this type as a step to-
ward the further synthesis of decision-theoretic and classica
planning methods; goal decomposition is essential in least-
commitment planning. If two subgoals are noninteracting,
we can plan for each separately and “merge” the results. If
the solutions interact, |east-commitment planners facilitate
the merging process by not committing to the ordering of ac-
tionsrequired for a given subproblem when the order is not
relevant. In fact, a representation using causal links makes
clear the reasons for an action’s presence in the plan.

Thissecond insight seemsto offer genuine benefitsto plan-
ning, but it has not been exploited in any proposed solution
methods for MDPs. Indeed, a major impediment to this ap-
proach isthe requirement for some form of policy merging as
opposed to simple plan merging. Thisisdifficult because the
concept of apolicy for an MDP has no explicit flexibility: it
simply assigns actionsto every state.

We note that the value function associated with an MDP
implicitly determinesa set of optimal policies, not just asin-
gle policy; thus it offers some flexibility. Intuitively, it can
be used to tell when an aternative action can be used instead
of that dictated by the policy with no or (under certain con-
ditions) little loss in value. We will describe a state-based
search process that alows us to merge policies using value
functionsin thisway.

We also consider intuitions from least-commitment plan-
ning to provide an aternative means of policy merging. We
provide a method for extracting causal structure from a pol-
icy, under certain assumptions, that reveal s the aspects of the
policy that are essentid to its performance and those that are
not. This flexibility permits policy merging to proceed more
readily. Since merging is not guaranteed to succeed, we aso
givepriorityto abstract policies associated with moreimpor-
tant objectives. Thisprioritizationof goals approximatesthe
workingsof optimal policy construction.

In Section 2 we overview MDPs and their representation,
nonlinear plans, and the MDP abstraction technique of [6].
Section 3 outlinesthe major componentsof our framework—
we describe: the construction of prioritized goals or objec-
tives; the extraction of anonlinear plan from a given policy;
and methods for merging policies, including the use of least-
commitment structure. We describe directionsfor future re-
search, including challenges facing the generalization of this
approach, in Section 4.

To appear, Proc. 15th Intl. Joint Conf. on Al (IJCAI-97), Nagoya, August, 1997

2 MDPsand Least-Commitment Plans
2.1 Markov Decision Processes

We assume that the system to be controlled can be described
as afully-observable, discrete state Markov decision process
[1, 7, 12], with afinite set of system states S. The control-
ling agent has available afinite set of actions A which cause
stochastic state transitions: wewrite Pr(s, «, t) to denotethe
probability action a causes a transition to state ¢ when exe-
cuted in state s. A real-valued reward function R reflects the
objectives of the agent, with R(s) denoting the (immediate)
utility of beinginstates. A (stationary) policyr : S — A de-
notes a particular course of action to be adopted by an agent,
with 7 (s) being the action to be executed whenever the agent
findsitsef in state s. We assume an infinite horizon (i.e., the
agent will act indefinitely) and that the agent accumul ates the
rewards associated with the statesit enters.

In order to compare policies, we adopt expected total dis-
counted reward asour optimality criterion; futurerewards are
discounted by rate 0 < 3 < 1. The value of apolicy = can
be shown to satisfy [7]:

Va(s) = R(s) + 8> _Pr(s,m(s),1) - Vx (1)

tes

Thevaueof 7 at any initia state s can be computed by solv-
ing this system of linear equations. A policy = isoptimal if
Vr(s) > Vai(s) fordl s € S and policies #’. The optimal
value function V'~ is simply the value function for any opti-
mal policy. We refer to [1, 7, 12] for adescription of policy
construction techniques.

2.2 Action and Reward Representation

Several good representations for MDPs, suitable for DTR,
have been proposed. Theseincludestochastic STRIPS opera-
tors[9, 6] and dynamic Bayesnets[5, 2] for representing ac-
tions, and related methods for describing reward functions.
We will adopt the STRIPS-style specification used in [6].

We assume a set of atomic propositions used to describe
the planning problem of interest. Each action a isrepresented
by two components, a precondition and a probabilistic ef-
fect set. A precondition P isalist of literas, interpreted in
the usual way: a can only be performed in states satisfying
P. A probabilistic effect set £ comprises a set of context-
effect pairs of the form (C',EL). Each C is a context un-
der which action a has a different (stochastic) effect. Were-
quire that the set of contexts be mutually exclusive and ex-
haustive given P. The associated effects list EL describes
the possible effects action « could have in context C' and the
probability with which they occur. More precisely, EL =
(E1,p1;...; Fn,pn)y Whereeach E; isalist of literals (an ef-
fect) and each p; isthe probability of effect £; occurring. If
E; occurs, the resulting state change is such that the literals
mentionedin F; becometrueand any literal whoseatom does
not occur in E; retainsitstruthvaue[9] (i.e, £; isaSTRIPS-
style change list).

To concisaly represent actionsthat have multiple, uncorre-
lated stochastic effects, we use action aspects [6]. Each as-
pect for action «a is represented exactly as a probabilistic ef-
fect set, withitsown set of contextsand effects. However, the

Il Action [Context [Effect [Prob.]
drill{p) (Asp.0) [hole(p) 1.0
drill(p) (Asp.2) pressed(p) hot 0.9

] 0.1

~pressed(p) [1.0

drill{p) (Asp-3) [—painted(p) 0.9
[0.1

paint(p) [painted(p) 1.0
press(p) (Asp.D) [Pr&ﬁbed(p) ggg
press(p) (Asp.2) [—painted(p) 0.5
[0.05

marl(p) (Asp.1) [hole(p) 0.7
[0.3

mdrill(p) (Asp.2) [] —painted(p) 1.0

Figure 1: Stochastic STRIPS actions with Aspects

Feature Reward
hole(P1) A pressed(P1) 10
painted(P1) 7
hole(P2) 2

Figure 2: Additive Reward Function

effectslistsin different aspects must bedigoint (i.e., haveno
atoms in common). To determine the net effect of « in state
s, the condition C; satisfied by s in each aspect &; is deter-
mined, and ajoint effect consi sting of the union of one effects
list from each aspect occurswith the product of the probabil -
ities associated with these lists.

Thisrepresentationisillustratedin Figure 1. Wehave sev-
eral job shop operations that can be applied to parts, such
as drilling, manual drilling, pressing, and painting. The ef-
fects of these operationsare showninthetable. For instance,
drill(p) hasseveral independent effects (aspects): it produces
aholein p, it might cause the drill bit to become hot if p is
pressed, and tends to destroy p’s paint job. If one drills a
pressed, painted part p, the different aspects combine to pro-
ducethefollowing effects:

(hole(p), hot, ~painted(p)) : 0.81; (hole(p)) : 0.01;
(hole(p), —painted(p)) : 0.09; (hole(p), hot,) : 0.09

Pressing can sometimesfail, and al so destroys paint. Manual
drillingisnot guaranteed to produce a hole and is guaranteed
to destroy paint. No preconditionsare shown in thetable, but
we assume that the drilling action has the precondition —hot
(thedrill bit isnot hot).

The reward function R can also be represented compactly
in many circumstances. We assume the reward function as-
sociates additive, independent rewardswith different domain
propositions[8]: thereward associated with astateissimply
the sum of the rewards given for the propositionsit satisfies.
Figure 2 shows such afunction, where reward is given based
on the features of two distinct parts P1 and P2. We assume
reward 0 is associated with all unmentioned features.

! This representation reflects the samekinds of independenceas-
sumptions one finds in Bayes net action representations [5, 2], and
offers the same conciseness of representation when there are multi-
ple uncorrelated effects.

To appear, Proc. 15th Intl. Joint Conf. on Al (IJCAI-97), Nagoya, August, 1997

2.3 Approximate Abstraction

The abstraction technique developed in [6] can reduce the
size of the MDP one needs to solve to produce an approxi-
mately optimal policy. Using regression-like operations, we
can discover which atoms influence the probability of other
propositions becoming true when certain action sequences
are executed. When areward function has independent com-
ponents, we can sweep through the action descriptions de-
termining which propositions (contexts and preconditions)
influence the ability to make the reward proposition true or
fase, which propositions, in turn, influence these, and so on.
Such atomsare deemed relevant atoms, the set of whichisde-
noted R . Oncethisprocessiscompleted, any atomsnotin’R
(i.e., that do not influencethe probability of areward proposi-
tion through any action sequence) can beignored. Their truth
values cannot influence the optimal choice of action.

For instance, supposethe only atom that influencesreward
ishole(P1). Sincedrilling affects this, its precondition —hot
dictates that atom hot is relevant. Since hot is affected by
drilling if pressed(P1), atom pressed(P1) is also added to
R. No atom influences any action’s effect on pressed(P1);
thus, afixed pointisreached, withtheonly relevant atomsbe-
ing hole(P1), hot and pressed(P1). The abstract MDP over
this reduced space has only 8 states, and can be more easily
solved to produce an optimal policy.

More importantly, one can ignore certain reward proposi-
tions to produce an approxi mate abstraction (see [6]). For
instance, in Figure 2, atoms hole(P1), pressed(P1), and
painted(P1) havealarger influence on reward than hole(P2).
By ignoring the hole(P2), we create an abstract space much
smaller than the one needed to solve the MDP optimally—
only atoms pertaining to P1 (and hot) are introduced into
'R, hence the resulting abstract MDP. ThisMDP has only 16
states and is easier to solve. One optimal policy (among sev-
eral possibilities) for this MDP has the form:

If —pressed(P1) : press(P1)
If pressed(P1) A —hole(P1) A —hot : drill(P1)
If pressed(P1) A —hole(P1) A hot : mdrill(P1)
If pressed(P1) A hole(P1) A —painted(P1) : paint(P1)
If pressed(P1) A hole(P1) A painted(P1) : no-op

This computational benefit comes at the cost of optimality:
the policy makes no attempt to machine P2, since any value
associated with it has been ignored. However, if the value
lost issmall enough, the tradeoff for a (potentially exponen-
tial) decrease in computation time may be acceptable.

Formally, we can describe the approach as follows: 1) Se-
lect a subset, ZR, of immediately relevant atoms that influ-
ence immediate reward. These will generaly be the atoms
that have the largest impact on reward. 2) Generate the set
R of relevant atoms satisfying the properties: 8) ZR C R;
and b) if P € R “occurs’ in an effect list of some action as-
pect, each atom occurring in the corresponding context, or in
the precondition for a, isin R. 3) Solve the MDP associated
with thisreduced set of atomsR. We note that generating R
giventheset 7R can bedonein O(E|R|) time, where E' is
the size of the set of action descriptions (i.e., the number of
context-effect pairs).

24 Least-Commitment Plans

We will use least-commitment (or partially-ordered) plansto
represent the relevant parts of policiesin away that allows
them to be more easily “merged.” We briefly review therel-
evant concepts here, but refer to [13] for more details.

A least-commitment plan (LCP) consists of aset of action
instances A4, aset of causal linksinvolvingtheseactionsand a
set of ordering constraints(i.e., using therelations < and >)
over these actions. We ignore issues of quantification (e.g.,
involving codesignation constraints, etc.) for simplicity. A
causd link isatuple (a, p, b) where a and b are actions and
p isaproposition. Intuitively, such alink represents the fact
that a has effect p, b has precondition (or a context) p, and
that no action that might occur between « and b will change
the truth of p. We say that a produces p and that & consumes
p. When constructing aplan, we may introducean action ¢ in
order to achieveasubgoa ¢, where ¢ hasthe additional effect
of making p false. If ¢ can be consistently ordered between
a and b, we say that ¢ threatens (a, p, b).? To ensure theplan
isvalid, weresolve thethreat by insisting that ¢ occur before
a or after b. Such constraints restrict the legal sequences of
action instances. We can think of an LCP as representing its
set of linearizations: the sequences of action instancesin A
consistent with the ordering constraints.

We do not discuss here a gorithmsfor producing L CPs, but
refer to[13] for asurvey and to some of thekey developments
presented in [10, 11].

3 Goal Decomposition

The aim of goal decomposition issimilar to that of abstrac-
tion: to solve smaller MDPs by ignoring variables. Unlike
theabstraction method of [6], however, we do not solveasin-
gle abstract MDP (e.g., for P1-objectives) and ignore other
objectives completely. Instead, we solve several abstract
MDPs, each pertaining to different sets of objectives (e.g.,
onefor P1 and onefor P2), and combinetheresultsintoasin-
glepolicy of higher valuethan any individua abstract policy.

There are two major challenges that must be met to solve
thistask. First, we must decide how to decompose the re-
ward function in order to generate (and solve) small, abstract
MDPs (Section 3.1). Second, we must merge policies, which
itself involves several difficulties. Chief among these is the
fact that policies offer no flexibility. In Section 3.2, we de-
scribe how to extract essential causal structure from abstract
policies that reveals the flexibility inherent in a policy. In
Section 3.3, we discuss policy merging. We first describe a
merging procedure that uses the value functions of two ab-
stract policies, rather than the policies themselves, to guide
a search through state space. We then propose a method for
merging that uses the causal structure of the first policy to
constrain search through state space.

The details of the various a gorithms described in this pa-
per are based on several assumptions. We assume that our
problems are goal-oriented; that is, we are only concerned
with the achievement of propositionsin the “fina state” that

2Werefer to [13] for adiscussion of the complexitiesintroduced
by the existence of conditional effects.

To appear, Proc. 15th Intl. Joint Conf. on Al (IJCAI-97), Nagoya, August, 1997

results from executing a sequence of actions.> We aso as-
sume that each action has a primary or most probable effect,
and that an initia state has been given. These assumptions
legitimize the use of causal links and classical LCPs. We
conjecture, however, that the basic framework for MDP de-
composition and policy merging can be applied in much more
genera settings with appropriate extensions.

3.1 Decomposing the Reward Function

Decomposing the reward function does not involve much
more than partitioning the set of reward attributes in some
way, say intosetsZR+,ZRa, . . ., and generating the appro-
priate sets of relevant aaomsR 1, R, For instance, Fig-
ure 2 naturally suggests the decomposition described in Sec-
tion 2.3, (using therewards associated with P1 in one abstrac-
tion and the reward for P2 in another). Several factors will
influence the choice of abstract MDPs.

When merging policies (Section 3.3), we assume that cer-
tain abstract policies are given priority over others; that is,
abstractions should be orderabl ein terms of importance. Par-
titioning of reward attributes should therefore be such that
features with large impact on reward should lie within more
important partitions. In our example, the rewards associated
with the completion of P1 are more critical, so the partitions
are ordered so that P1's success is given priority over P2.
When abjectivesconflict and policiescannot be satisfactorily
merged (e.g., if P1 and P2 require the same consumable re-
source), this prioritization allows the more important objec-
tives to be achieved. This approximates the behavior of an
optimal policy, which would make a similar tradeoff when
faced with conflicting objectives.

Attributes whose effect on reward is not independent
should obvioudly be placed in the same abstraction. In our
example, the contribution to reward made by hole(P1) and
pressed(P1) is highly correlated. Achieving one without ac-
counting for the other makes little sense.

The odds of successful policy merging can beincreased if
there is littleinteraction between atoms in different abstract
spaces; thiscan beafactor inthechoice of ZR sets. If anac-
tion influences an atom in two different spaces, the policies
may interact in undesirable ways. The potential for interac-
tion can be detected by a simple extension of the algorithm
that generates R sets. Such interaction cannot generally be
avoided, but if the overlap is substantial one might consider
merging different ZR sets, or breaking them up differently.
Of course, larger MDPs usually result and the * degree of po-
tential interaction” should be balanced against the increased
size of the MDP and the potential lossin valueif one of the
objective sets cannot be accommodated by merging. We re-
fer to [6] for further discussion of reward attribute selection
for abstraction and the tradeoff with abstract MDP size.

3.2 Extracting Causal Structure from Policies

Once the reward function has been decomposed, the abstract
MDPs associated withfeaturesets R 1, R s, . . . can beformu-
lated and solved, and optimal policies 7y, w2, . .. and value

W refer to [4] to see how such objectives can be encoded in
an MDP using absorbing states. For example, we can have adistin-
guished stop action that precludesfurther actions.

functions V1, V5, . . . determined. We note that this process
can proceed inanincremental anytimefashion, with attention
focused on the highest priority MDPs, leaving lower priority
MDPsto be solved as time permits.

As we will see, it will be useful to extract the essential
causal structure of apolicy = intheform of aLCP: thisflex-
ibility will aid in merging. We assume each action has a
unique most likely or primary effect. We define the most
likely execution path (MLEP) of an abstract policy to be the
sequence of actions and states, given theinitial state /7, that
is most likely. We assume that this path ends in some ab-
stract goal state & (see below). We generate the LCP for pol-
icy w by extracting causal link information from the actions
that occur along this path and the objectivesthat are actually
achieved in GG. Any linearization of this LCP is guaranteed
to be “optimal” in the sense that its MLEP leads to the same
abstract goal state. Furthermore, should execution of theplan
fall “off path” with an unlikely action effect, = can be used to
dictateanew action choice (anew LCP can a so be generated
at thispoint if replanning/remerging is desired).

LCP extraction for = proceeds as follows. We first gen-
erate the MLEP for = given initid state I to god state G.*
Wethen call aleast-commitment planning algorithm, such as
Weld's[13] UCPOP, with initia state / and goals consisting
of thosereward propositionsin the current R set satisfied by
G. Planningwill bevery constrained (and efficient) however:
when a subgoal ¢ for action b is selected, the most recent ac-
tion a (in MLEP) that produces ¢ is chosen as the producer
and causal link {a, ¢, b) is generated. Any requirements for
action a (preconditionsand specific context propositions) are
then added as subgoals. Wenotethat thereisno ambiguity in
choice of context for a (and hence a’s conditional effects) as
these are uniquely determined by the state in which a occurs
inMLEP Finally, threatsto causal linksare resolved respect-
ing the ordering of MLEP.

At each step, the LCP produced by thisagorithm has 7's
MLEPasoneof itslinearizations. Sincethispathisasolution
tothe planning problemwe constructed, UCPOPwill returna
plan without backtracking: MLEP acts as an oracle. Further
efficiency can be gained by generating causal link informa:
tion during MLEP generation, leaving only threat resolution
to compl ete the planning process.

To illustrate, consider the optimal abstract policy de-
scribed in Section 2.3 (pertaining to P1) with initia state:

—hot, ~pressed(P1), ~hole(P1), ~painted(P1)

The action sequence (press(P1), drill(P1), paint(P1)) ap-
pears onthe MLEP, and the goals pressed(P1), hole(P1) and
painted(P1) are determined. UCPOP then uses the actions
above to generate the LCP shown in Figure 3: causdl links
are denoted by solid linesand ordering constraints by dashed
lines. Note that press(P1) and drill(P1) are ordered be-
fore paint(P1) because they threaten the effect painted(P1).
On the other hand, press(P1) and drill(P1) are unordered:
thoughthe policy commitsto their ordering, thiscommitment

* A terminal state G' can beidentified as onewhosevalue V; (G)
is not significantly greater than the sum of the reward propositions
it satisfies, or one for which a stop action has been selected.

To appear, Proc. 15th Intl. Joint Conf. on Al (IJCAI-97), Nagoya, August, 1997

Initial State Final State
ressed le ressed(PL
p (press(P1) p (P1)
ai nted(P1. inted(P1;
p: (P1) paint(P1) painted(P1)
hole(PL 7
&Py _ < hole(P1)
(diey
hot

Figure 3: Causal structurewith ordering constraints

is discovered to be unessential to goa achievement in the
planning process. Execution in either order (assuming most
likely outcomes) will be optimal.

Aswe will see, plan merging benefits from having LCPs
with as few constraints and causal links as possible, increas-
ing the odds of success. The LCP extraction agorithm can
be altered to produce“ relaxed” plansthat approximately cor-
respond to MLEP. In particular, we may ignore certain con-
text conditions consumed by an action if these do not sub-
stantially influence goal achievement. For example, suppose
smooth(P1), while potentially important at certain states,
is of marginal value on the current MLEP for =. If, say,
smooth(P1) is produced by the initial state and consumed
by drill, and only marginaly increases the probability of
hole, thelink from the initia state to drill could be dropped.
Merging new plans with this relaxed LCP might result in a
(dightly) lessthan optimal execution of = if the new plan de-
stroys smooth(P1) before drilling; however, the added flexi-
bility makes merging easier and may be worthwhile.

3.3 Prioritized Policy Merging
Using State Space Search Suppose we now have a set
of abstract MDPs that have been solved. For concreteness,
assume two such MDPs whose optimal policies y, 7 and
value functions V1, V> have been determined. Our goal isto
produceanew policy 7 that behaveswell with respect to both
sets of objectives, without solvinganew MDP that combines
both abstract spaces. To do this, we can use the value func-
tionsas heuristicsto guidea search through state space. Each
value function tells us how good a state is with respect to
its own objectives: if V;(s) ishigh, thegoasin MDP i are
achievable. Note, however, that thisdoes not mean the goals
are achievablejointly with those of some other MDP ;.
More precisely, we define a search process whose nodes
are states, whose arcs are | abel ed with actions, and whoseini-
tia state is the start state. At any active node of the search
tree, we consider the effect of each possibleaction; thatis, we
add children corresponding to the unique state resulting from
each action. Each such state s has values V;(s). The most
promising such state is that with the highest such values.®
Even if no action dominates al others, under the assumption

5The unique state associated with an action is due to the
“pseudo-deterministic” assumption we made, but, in fact, the value
of this resulting state is not the only consideration. If an action is
likely to be successful but has some risk associated with it, the fact
that its likely outcomeisbetter than that of another action is not suf-
ficient reasonto select it (note that the abstract policies do take such

that the reward function is additive, the sum of values V; (s)
can be used as the heuristic value of state s.

How this search process proceeds is rather flexible; but a
best-first approach seems most appropriate. Each vaueV;(s)
isa“perfect” heuristicinthat, should the agent consider only
objectives in space 4, it could atain V;(s). If the agent at-
tempts to integrate other objectives, this can only cause the
value V;(s) to go down (or, a best, stay thesame). Thus, the
“multivalued” heuristic (or thesum of valuesV; (s)) overesti-
mates the true value of the state s, and isadmissible—asim-
plebest first search using thisasthe heuristicfunction will be
appropriate.’ The search process terminates once an appro-
priate goal stateis reached.

Merging does requirethat we consider the* combined” ab-
stract space containing the relevant atoms from all abstract
MDPs involved. However, while this space is considerably
larger than the individual abstract spaces, we never need to
congtruct policies, or plan in substantia ways, in the com-
bined space. Thus, the exponential “blow up” in state space
sizeisnot afactor in policy merging.

To illustrate the process, consider the example above,
where the value functionswith respect to partsP1 and P2 are
denoted V7 and V5. Assume pressed(P2) holds a the start
state (along with the relevant propositionsfor P1). Suppose
press(P1) is chosen as the first action: it causes no drop in
Vi or V5. However, at any subsequent point drill(P1) or
drill(P2) will cause adropin val uebecause hot becomes true,
preventing drilling of the other part. But an alternativeinitial
action, drill(P1), exists and subsequent search will lead di-
rectly to an appropriate sequence of actions. Notice that this
process leads to a policy in which the actions drill(P1) and
press(P1) are reversed (w.r.t. the origina ;). Note, how-
ever, that policy 7, doesnot play aroleinthe search process.

Modifying the example dlightly, suppose that drilling
causes hot to become true no matter what. In this case,
drill(P2) causes adropin V;, whiledrill(P1) causes adrop
in V4 (regardless of pressed(P1)). Since P1 has higher value,
thefirst drop is greater and we will “commit” to drilling P1,
and using mdrill for P2.

Finally, we note that pseudo-determinism is exploited by
the search to find amerged action sequence rather than a pol-
icy per se. However, as mentioned, should any action have
an unlikely effect, the agent can always resort to one of the
abstract policies to decide how to act at the resultant, “ off-
path” state (e.g., chooseto execute r; for that abstract policy
with highest value V;(s)). We could also imagine applying
the search process to the most probable“unlikely” branches,
or remerging online as circumstances warrant.

Using Plan Structure to Guide Search One difficulty
withthesearch process described aboveisthefact that theac-
tual search space explored can be quite large. Furthermore,
a number of aternatives may be explored before a genuine

considerationsinto account). Thuswe use the expected value of an
actionw.r.t. V; (or @-value of the action) as a guide.

SMultiple path (or cycle) checking is also appropriate in our
pseudo-deterministic setting to ensure progressin being made.

“To be precise, a slight drop in value, corresponding to the dis-
count factor will occur. We shall ignore this effect in our discussion.

To appear, Proc. 15th Intl. Joint Conf. on Al (IJCAI-97), Nagoya, August, 1997

conflict is detected (as in the second case above). A second
difficulty lies in the fact that this process does not lend it-
self to revision of policiesor to theincremental construction
of merged policies in an anytime manner. For example, if
we merge policiesfor several abstract spaces, and then later
solve another abstract MDP, merging the new policy requires
revisiting the entire search process, unless some form of de-
pendency information is recorded.

We now describe aprocessthat aleviates these difficulties
to some extent: when merging 7; and -, we will first ex-
tract an LCP P, for m; and restrict our search to action se-
quences that have high value with respect to V> (on MDP 2).
Any such action sequence must, however, respect the causa
linksinplan P;. Thismakesthe search process easier for two
reasons. Firgt, the flexibility in ordering constraintsin P; a-
lows us to consider severa different optimal policies (w.r.t.
V1) without explicit backtracking. Second, we will not con-
sider policiesthat are inconsistent with P;. This means we
are committing to a particular means of achieving objectives
in the first space. As such, the resulting merged policy may
not be as good as onethat doesn’t adhere to such restrictions;
but the computationa benefits may make this worthwhile.
Once we've merged 7, and -, we can extract a new LCP
P, that can be used when consi dering subsequent objectives.
Recording plansallowsthe merging process to proceed in an
incremental fashion. We now make this more precise.

Assume that an LCP P, has been extracted for a particu-
lar set of objectives,® and that an abstract value function V5
has been generated for anew abstract MDP. Our merging pro-
cess is prioritized: as before, we generate a path starting at
the start state. Only now, this path must be consistent with
Py (i.e, some linearization of P; is a subsequence of this
path), and V; aoneisused as the heuristic function. Hence,
we search for the best policy with respect to V> subject to
the constraintsimposed by P;. This prioritization is neces-
sary in instances where al objectives cannot be met. Since
some must be “ sacrificed,” we commit to the plan pertaining
to higher val ued objectives.” Thesearch proceeds asfollows:

1. Each search node correspondsto a state and is annotated by a set
of open links and permissible actions from P; .

2. Eacharcin the search tree is annotated by an action.
3. Weuse V; asthe heuristic function.

4. We search from the start state: its open links are produced by
start, and permissible actions are those that can consistently be
executed first in P;.

5. Eachnodeis expanded using only actionsthat are on the permis-
siblelist from P;, or that do not threaten any link on the openlist.
Irrelevant actions (that do not belong to P; and do not influence
atomsin R) are not considered.

6. If anactiona from P; isused, the child node is annotated as fol -
lows: al links consumedby « are removed from the open list and
those producedby « are added; « isremoved from the permissible

8 This need not befor asingle abstract MDP: aset of suchMDPs
may have been merged asin the previous section.

We assume without further mention that if abstract policy
has very low value, compared to the set of objectivesit is designed
to achieve, it can beignored completely. Priority can be altered dy-
namically in this and other ways.

Initial State Fina State
ressed(P1 ressed(P1
p (7) press(P1) p (P1)
i ted(Plx)‘A inted(P1)
. ain ain
- P paint(P1) P
hole(P1) o7

hole(P1)

ot (diey)

hole(P2)
= @ hole(F2)

Figure 4: Merged causal structure (1)

list; and any new action, all of whose predecessors (w.r.t. order-
ing constraints of P;) now lie on the search path, is added to the
permissible list.

The open list keeps tracks of linksthat must be respected by
any actioninserted to achieve objectivesin V5, whilethe per-
missible list serves as a “plan counter” for P;. A best-first
search using V- can be used. Once this search is complete,
we can extract (backtrack-free) anew LCP P, from the cho-
sen path. The process can then be repeated using P-» should
one wish to consider further objectives (abstract MDPs).

It isoften the case that more than oneoptimal policy exists.
Althoughour use of LCPsallowsusto capturethecausal link
structure of anumber of policies, there may bedifferent poli-
ciesinvolving substantialy different actions (e.g., adifferent
way of making holes). Hence, at any point where merging re-
sultsin agresatly reduced valuein V5, we have the option of
backtracking to a different optimal (or possibly suboptimal)
policy for the earlier abstract MDP, generating anew plan for
it and attempting to merge withthisnew plan. Thus, our com-
mitment to P; need not be absol ute.

To illustratethe merging process, let our first abstract plan
P, be that in Figure 3 (corresponding to P1), and let the
second value function V- correspond to the sole objective
pertaining to P2 (attained by drill(P2)). Assume again that
pressed(P2) holds. Search using V> suggests a number of
potential actions: drill(P2), drill(P1), and press(P1). In-
tuitively, the first action is desirable relative to V- and the
other two actions are from P;. (Action mdrill(P2) is subop-
tima w.r.t. V5, and al actionsinvolving P1 are irrelevant to
V5.) The action drill(P2) threstens drill(P1) in P; because
of itseffect hot. Hence, we consider the next possible action,
drill(P1). Supposewe chooseto follow this path. Asa sub-
sequent action, we can choose either drill(P2) or press(P1).
The conditional effect hot of drill(P2) is no longer a threst.
We can continue from here on in a straightforward manner,
eventually generating the LCP shown in Figure 4. Note that
merging reversed the ordering of press(P1) and drill(P1)
in the origina abstract policy without backtracking, show-
ing the benefits of extracting causal structure. In addition,
mdrill(P2) is never considered because of itslow value.

Asasecond example, againimagine that hot becomestrue
whenever drilling occurs. Any attempt to use drill(P2) as
thefirst action will threaten drill(P1) as above; but drill(P1)
precludes subsequent execution of drill(P2). The commit-

To appear, Proc. 15th Intl. Joint Conf. on Al (IJCAI-97), Nagoya, August, 1997

Initial State Fina State
ressed(P1 ressed(P1
p (P1) press(P1) p (P1)

inted(P1) s inted(P1)
ain ain

P paint(P1) P

hole(P1) 7
ot K drill(P1) hale(P1)

hole(P2) hole(P2

ar2) mdrill(P2) a(F2)

Figure 5: Merged causal structure (2)

ment to the initial plan means that an aternative action
must be chosen: the value function V5 dictates that action
mdrill(P2) should be performed and the goal state is then
reached (thoughwithlower probability). AnLCP can thenbe
extracted which achieves both sets of objectives, asshownin
Figure5. We notethat action mdrill(P2) isnot onthe MLEP
for the optimal policy m5; but commitment to the first plan
forced us to consider a suboptimal way of achieving the sec-
ond objective. In general, the algorithm—using the optimal
value function Vo—effects “repair” of an unmergeable pol-
icy. Indeed, if at that point the optimal policy - dictated that
a different (conflicting) objective should be attempted (e.g.,
shipping a different part instead of P2), the merging ago-
rithm would have stirred us to a completely new “goal.”

The key difference between merging using only abstract
value functions and merging using a plan is that the latter
commits to a particular way of achieving the higher priority
objectives and attempts to work around these commitments
when determining how to achieve lower priority objectives.
This commitment has some clear computational advantages,
but comes at the cost of perhaps sacrificing some lower pri-
ority objectives because one is not willing to consider (sub-
stantially) different ways of attaining high priority goals.

The plan-based merging approach shares much of the mo-
tivation underlyingwork onintentionsand resource-bounded
reasoning in planning [3]. Although it may result in infe-
rior policies as compared to the first, less constrained search
method, the commitment embodied by the plan-based ap-
proach is suitablewhen, due to uncertainty and resource con-
straints, we prefer an anytime approach in which wefirst gen-
erate a plan for the most important objectives. Later, we can
modify such plans, taking into account other, less important
objectives. In addition, efficient planning may often require
us to accept certain assumptions about the state of the world
or itsdynamics. Once we learn that one of these assumptions
isfase, it may not be possible to replan from scratch, asre-
quired by thefirst merging approach. Revisionof aplantore-
flect changing assumptions may prove more suitablein such
circumstances.

This use of commitment could be taken even further: we
could extract an LCPfor both (sets of) objectivesand attempt
to merge them, thus committing to aspecific means of attain-
ing both. We notethat it may be possible to use and modify
existing plan merging techniques (e.g., see [14]) in thisre-

gard. However, strong commitment to earlier (higher prior-
ity) plans remains essential if plans prove unmergesble.

4 Concluding Remarks

We have suggested a method of goal decomposition for
MDPs based on abstraction and | east-commitment planning.
Our technique allows certain classes of MDPs to be solved
efficiently, though suboptimally, through the solution of a set
of considerably smaller MDPs associated with different ob-
jectives. There are a number of questions relating classica
planning, DTP and resource-bounded reasoning that may, in
thefuture, be addressed satisfactorily within thisframework.
These include the derivation of goalsfrom general decision-
theoretic considerations, the utility of classical plansin DTP
settings, and the derivation of intentions or commitments
from the decomposition of objective functions.

We are currently exploring generalizations of this ap-
proach, in particular, the devel opment of |east-commitment,
causal link representations of complete policies and meth-
ods of extracting such from standard, state-based policies.
This will enable the restrictive assumptions of goal-based,
pseudo-deterministic problem structure to be dropped. We
are aso exploring other means of merging and methods for
bounding the error associated with prioritized merging.

References
[1] R. E. Bellman. Dynamic Programming. Princeton, 1957.

[2] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting
structure in policy construction. In 1JCAI-95, pp.1104-1111,
Montreal, 1995.

[3] M. E.Bratman. Intentions, Plans, and Practical Reason. Har-
vard, 1987.

[4] T.Dean, L. P.Kaelbling, J. Kirman, and A. Nicholson. Plan-
ning with deadlines in stochastic domains. In AAAI-93,
pp.574-579, Washington, D.C., 1993.

[5] T.DeanandK. Kanazawa. A model for reasoning about per-
sistence and causation. Comp. Intel., 5(3):142-150, 1989.

[6] R.DeardenandC. Boutilier. Abstraction and approximate de-
cision theoretic planning. Artif. Intel., 89:219-283, 1997.

[7] R. A. Howard. Dynamic Programming and Markov Pro-
cesses. MIT Press, Cambridge, 1960.

[8] R.L.Keeney and H. Raiffa. Decisionswith Multiple Objec-
tives: Preferencesand Value Trade-offs. Wiley, New York,
1978.

[9] N. Kushmerick, S. Hanks, and D. Weld.
for probabilistic least-commitment planning.
pp.1073-1078, Seattle, 1994.

[10] D. McAllester and D. Rosenblitt. Systematic nonlinear plan-
ning. In AAAI-91, pp.634—639, Anaheim, 1991.

[11] J. S. Penberthy and D. S. Weld. UCPOP: A sound, complete,
partial order planner for adl. In KR-92, 1992.

[12] M. L. Puterman. Markov Decision Processes. Discrete
Sochastic Dynamic Programming. Wiley, NY, 1994.

[13] D.S.Weld. Anintroduction to least commitment planning. Al
Magazine, Winter 1994:27-61, 1994.

[14] Q. Yang, D. S. Nau, and J. Hendler. Merging seperately gen-
erated plansin limited domains. Comp. Intel., 8(4), 1992.

An algorithm
In AAAI-94,

