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Abstract

The notion of default priority has played a cen-
tral role in default reasoning research. We
show that Pearl’s Z-ranking of default rules
need not always correspond to priorities. Sys-
tem Z can still be used for priorities, but per-
haps not in the obvious manner. Rather than
the Z-ranking of rules, we show that the Z-
rankings of the negations of the material coun-
terparts of rules correspond naturally to priori-
ties. We also show that the priorities of default
rules can be explained in terms of belief revi-
sion by appeal to the epistemic entrenchment
of the material counterpart of a rule in a the-
ory of expectations in the Theorist sense. Fur-
thermore, Brewka’s notion of preferred subthe-
ories provides a means of improving on Pearl’s
1-entailment, given this connection. These re-
sults are demonstrated within the modal logic
CO*, a unifying framework for various types of
default reasoning and belief revision.

1 Introduction

The notion of default priority has played a central role
in default reasoning research. Default rules can lead to
conflicting conclusions based on certain evidence, but
some rules seem to naturally take priority over others.
Thus, conflicts are resolved by permitting the violation
of lower priority rules in order to satisfy higher priority
rules, those that are deemed more important or seen as
somehow providing more information.
Many mechanisms have been proposed for represent-

ing priorities in systems like default logic and circum-
scription. The use of semi-normal defaults has been pro-
posed for asserting priorities in default logic (Reiter and
Criscuolo 1981). McCarthy’s (1986) simple abnormality
theories also embody this notion through the introduc-
tion of cancellation of inheritance axioms, while prior-
itized circumscription allows the explicit expression of
priorities (McCarthy 1986; Lifschitz 1985).

While these systems allow users to express priorities,
nothing about these systems explains what a priority is,
or why certain rules should have higher priority. In de-
fault logic and circumscription, one merely asserts the
priorities of rules, and nothing constrains these rankings
to respect any intuitions. Neither of these systems pro-
vides an account of naturally occurring priorities.
Various explanations of priorities rely on the notion

of specificity (Poole 1985). Suppose we have two default
rules “birds fly” and “penguins don’t.” If something is
known to be both a bird and a penguin, the conclu-
sions sanctioned by these rules conflict. Most accounts
claim that the rule “penguins don’t fly” should be ap-
plied (or has a higher priority) because penguins are a
specific subclass of birds and we prefer conclusions based
on more specific information. In a probabilistic setting,
this corresponds to making inferences based on the nar-
rowest reference class (Bacchus 1990).1

While specificity seems to be an appropriate criterion
for deciding priority, it wasn’t until conditional theo-
ries of default reasoning were developed that specificity
was put on a firm semantic basis. In particular, Pearl’s
(1990) System Z is a natural and compelling method of
assigning “priorities” to default rules, possible worlds,
and arbitrary formulae. It has commonly been under-
stood that the Z-ranking of rules corresponds to the pri-
orities of those rules. In this paper, we will show that
this is not always the case. Rather, the priorities of rules
are the Z-rankings of certain formulae, the negations of
the material counterparts of these rules.
We can explain default priorities in terms of belief re-

vision as well. When revising a theory or set of beliefs to
include some new fact (say, some new information that
has been learned), we are often forced to give up some
of these original beliefs if the new information is incon-
sistent with the theory. The epistemic entrenchment of
beliefs in a theory determines which of these should be
given up and which should be kept when conflict arises
(Gärdenfors 1988). We prefer to hold on to more en-
trenched beliefs. Default reasoning can be viewed as the

1However, other considerations may be involved in choos-
ing the appropriate reference class (Kyburg 1983).



revision of a theory of expectations to accommodate the
known facts (Gärdenfors and Makinson 1994; ?). Adopt-
ing this perspective, we show that a default priority, as
defined above, is nothing more than the degree of en-
trenchment of the material counterpart of a rule in the
theory of expectations. We use the correspondence be-
tween defaults and expectations to propose an exten-
sion of Pearl’s notion of 1-entailment, based on Brewka’s
(1989) preferred subtheories, that corrects certain defi-
ciencies in its behavior with inheritance and independent
conditionals. This approximates the idea of counting
“weighted rule violations” prescribed by the maximum
entropy principle (Goldszmidt, Morris and Pearl 1990),
and is very similar to conditional entailment (Geffner
and Pearl 1992).
In this paper, we will develop these connections within

the unifying framework of the bimodal logic CO*. In
(Boutilier 1991) this logic was shown to have the power
to express normative conditionals, statements much like
default rules, and capture solutions to the problem of ir-
relevance. In (Boutilier 1992c) we show that CO* is the
first “classical” logic of AGM belief revision (Gärdenfors
1988). The results of this paper indicate that default
reasoning can be viewed as a form of belief revision, a
connection developed much further in (?). In Section 2
we very briefly review the logic CO* and define the nor-
mative conditional ⇒, reading A ⇒ B as “A normally
implies B.” In Section 3, we discuss belief revision and
epistemic entrenchment, recall some results showing how
CO* can represent these concepts, and show how it is re-
lated to default reasoning. In Section 4, we discuss Sys-
tem Z and some results showing that Pearl’s system of
ε-semantics is equivalent to a fragment of CO*. In Sec-
tion 5, we demonstrate that the Z-ranking of a default
rule is not always equivalent to its priority, but that the
Z-ranking of a certain formula is. This turns out to be
precisely the degree of entrenchment of this formula in
a theory of expectations. This allows us to relate 1-
entailment, a form of inference based on Z-ranking, to
revision. In Section 6 we again use Z-ranking to de-
termine priorities, but use these priorities in Brewka’s
(1989) model of Theorist to determine a more reason-
able notion of consequence extending 1-entailment.

2 The Logic CO*

In (Boutilier 1990; Boutilier 1991), we presented modal
logics in which we defined a conditional connective ⇒,
reading A ⇒ B as “A normally implies B.” While the
original logics are standard modal systems, the logics
CO and CO* of (Boutilier 1991) are bimodal logics with
considerable expressive power. They can be used to ax-
iomatize solutions to the problem of irrelevance that have
typically required extra-logical machinery. These logics
can also be used to characterize the classic AGM model
of revision (Boutilier 1992c) described in the next sec-
tion. We recall several definitions here, but refer the

reader to these papers for further motivation and details.
We now review the Kripkean possible worlds semantics

for logics of normality. The bimodal logic CO is based
on a standard propositional modal language (over vari-
ables P) augmented with an additional modal operator
←

2. The sentence
←

2α is read “α is true at all inaccessible
worlds” (in contrast to the usual 2α that refers to truth
at accessible worlds).

Definition 1 A CO-model is a triple M = 〈W,R,ϕ〉,
where W is a set (of possible worlds), R is a transi-
tive, connected2 binary relation on W (the accessi-
bility relation), and ϕ maps P into 2W (ϕ(A) is the
set of worlds where A is true).

Satisfaction is defined in the usual way, with the truth
of a modal formula at a world defined as:

1. M |=w 2α iff for each v such that wRv, M |=v α.

2. M |=w

←

2α iff for each v s.t. not wRv, M |=v α.

We define several new connectives as follows: 3α ≡df

¬2¬α;
←

3α ≡df ¬
←

2¬α;
↔

2α ≡df 2α ∧
←

2α; and
↔

3α ≡df

3α∨
←

3α. It is easy to verify that these connectives have

the following truth conditions: 3α (
←

3α) is true at a
world if α holds at some accessible (inaccessible) world;
↔

2α (
↔

3α) holds iff α holds at all (some) worlds. The logic
CO is based on the following axioms and inference rules,
and is complete for the class of CO-models:

K 2(A ⊃ B) ⊃ (2A ⊃ 2B)

K′
←

2(A ⊃ B) ⊃ (
←

2A ⊃
←

2B)

T 2A ⊃ A

4 2A ⊃ 22A

S A ⊃
←

23A

H
↔

3(2A ∧
←

2B) ⊃
↔

2(A ∨B)

Nes From A infer
↔

2A.

MP From A ⊃ B and A infer B.

We often want to insist that all logically possible
worlds be contained in our set of worlds W . This gives
us the extension of CO called CO*.

Definition 2 A CO*-model is any M = 〈W,R,ϕ〉, such
that M is a CO-model and
{f : f maps P into {0, 1}} ⊆ {w∗ : w ∈ W}.3

This class of models is characterized by the logic CO*,
the smallest extension of CO containing the following:

2R is (totally) connected if wRv or vRw for any v, w ∈ W
(this implies reflexivity).

3For all w ∈ W , w∗ is defined as the map from P into
{0, 1} such that w∗(A) = 1 iff w ∈ ϕ(A); in other words, w∗

is the valuation associated with w.



LP
↔

3α for all satisfiable propositional α.

In order to define a normative conditional, we impose
the following interpretation on the accessibility relation
R: world v is accessible to w (wRv) iff v is at least as
normal as w. Thus, R is an ordering of situations re-
specting the degree to which an agent judges them to
be “normal” or unexceptional. The truth conditions for
A ⇒ B can be stated as “In the most normal situations
in which A holds, B holds as well.”4 This condition can
be expressed as

A ⇒ B ≡df
↔

2¬A ∨
↔

3(A ∧ 2(A ⊃ B))

3 Revision and Entrenchment

In this section we give a sparse description of the
main ideas behind belief revision, referring readers to
Gärdenfors (1988) for a comprehensive presentation of,
and motivation for, work in the area.
Most work on belief revision models belief sets as de-

ductively closed sets of sentences. We will use K to de-
note arbitrary belief sets, and if K = Cn(KB) for some
finite set KB, we will usually refer to the revision of K as
the revision of its base set KB. Revising a belief set K is
required when new information is learned and must be
accommodated with these beliefs. If K 6|= ¬A, learning
A is relatively unproblematic. More troublesome is revi-
sion when K |= ¬A as some beliefs in K must be given
up. The problem is in determining which part of K to
give up, as there are a multitude of choices. Choosing
which of these alternative revisions is acceptable depends
largely on context. Fortunately, there are some logical
criteria for reducing this set of possibilities.
The main criterion for discarding some revisions in

deference to others is that of minimal change. Informa-
tional economy dictates that as few beliefs as possible
from K be discarded in order to facilitate belief in A

(Gärdenfors 1988). While pragmatic considerations will
often enter into these deliberations, the main emphasis
of the work of Alchourrón, Gärdenfors and Makinson
(1985) is in logically delimiting the scope of acceptable
revisions. They propose a set of eight postulates main-
tained to hold for any reasonable notion of revision (see
e.g. (Gärdenfors 1988)). A revision function ∗ maps a
belief set K and a proposition A to another belief set
K∗A, the result of revising K by A.
While these postulates describe logical constraints on

revision, it is often the case when revisingK we are more
willing to give up certain sentences than others. This is
referred to as epistemic entrenchment, and we say A is
no more entrenched than B (A ≤E B) if we are at least
as willing to give up A as B when revising theory K. In

4This is only a rough formulation, for it presupposes the
Limit Assumption, which is not a property required by our
definition. There need not be a set of most normal worlds
satisfying A. The conditional A ⇒ B is still meaningful in
this circumstance (Boutilier 1991; Boutilier 1992c).

(Gärdenfors 1988) postulates for guiding the revision of
K are presented that any reasonable notion of epistemic
entrenchment should satisfy. He also shows that a re-
vision operator satisfies the eight AGM postulates iff it
respects the following postulates for entrenchment:

(E1) If A ≤E B and B ≤E C then A ≤E C.

(E2) If A ⊢ B then A ≤E B.

(E3) If A,B ∈ K then A ≤E A ∧B or B ≤E A ∧B.

(E4) If K 6= Cn(⊥) then A 6∈ K iff A ≤E B for all B.

(E5) If B ≤E A for all B then ⊢ A.

The revision operator ∗ and the entrenchment ordering
are related by the identity

B ∈ K∗A iff A ⊃ ¬B <E A ⊃ B

Gärdenfors and Makinson (1994) have also shown how
belief revision can determine a nonmonotonic conse-
quence relation. We describe a specific instance of this
construction applied to a default theory. We can think of
default rules as corresponding to expectations about the
world. This view is adopted in Poole’s (1988) Theorist
framework, where default inference is effected by con-
sidering maximal subsets of such expectations (or “hy-
potheses”) that are consistent with the known facts. Let
T be a set of default rules or expectations; for instance,

T = {penguin ⊃ bird, bird ⊃ fly, penguin ⊃ ¬fly}.

If we took this theory at face value, we could never add
penguin on threat of inconsistency. However, revising
T by penguin allows us to give up some of the “default
rules”, which allow exceptions by their very nature. In
general, we say that B is a nonmonotonic consequence
of A (given default theory T ) if B ∈ T ∗A. This is shown
to be a meaningful notion (Makinson and Gärdenfors
1990), and bears a close relationship to Theorist. Unfor-
tunately, no notion of priority or specificity is sanctioned
by these considerations alone. We examine this idea that
default reasoning is the process of revising such a theory
of “expectations” in Section 5, and how priorities can be
determined naturally.
CO* can also be used to represent AGM revision as

discussed in (Boutilier 1992c). We omit details here,
but note that we can define a subjunctive conditional
in CO* that captures precisely the AGM revision postu-
lates. The connection to revision is made via the Ramsey
test, whereby a subjunctive A > B is true with respect
to a given state of belief K just when revising K by A

results in a belief in B. Not surprisingly, the subjunctive
and normative conditionals are identical in CO* and in
(?) we pursue this connection, further establishing the
correlation between default reasoning and belief revision
that is our concern here.5

5For the interested reader, we also describe how the
Gärdenfors triviality result is avoided in (?).



Naturally, we can also capture the entrenchment of
beliefs in CO*. Assuming a particular theory K is de-
termined by a CO*-model M (see (Boutilier 1992c) for
details), we can define ≤EM , the entrenchment ordering
determined by M , as

B ≤EM A iff M |=
↔

2(¬A ⊃ 3¬B).

In (Boutilier 1992b) we show this ordering respects the
postulates (E1) through (E5), and that any entrench-
ment ordering is representable in a CO*-model.

4 System Z

One problem that has plagued default reasoning is that
of priorities, as manifested in the above example. Revis-
ing T by P (using P , B, and F as the obvious abbrevia-
tions) provides no guidance as to which of the two pos-
sible resulting theories should be preferred. Intuitively,
we ought to give up B ⊃ F , since P is logically stronger,
or more specific than B. That is, default B ⊃ F has
lower priority, or is more readily violated, than the oth-
ers. Priorities have a long tradition in default reasoning
(e.g., (McCarthy 1986)), but the most natural account
seems to be that of Pearl.
Pearl (1990) describes a natural ordering on default

rules named the Z-ordering, and uses this to define a non-
monotonic entailment relation, 1-entailment, put forth
as an extension of ε-semantics (Pearl 1988). The default
rules r of (Pearl 1990) have the form α → β, where α and
β are propositional. We say a valuation (possible world)
w verifies the rule α → β iff w |= α∧ β, falsifies the rule
iff w |= α ∧ ¬β, and satisfies the rule iff w |= α ⊃ β.
For any rule r = α → β, we define r∗ to be its material
counterpart α ⊃ β. We assume that T is a finite set of
such rules (and when the context is clear, we take T to
refer also to the set of material counterparts).

Definition 3 (Pearl 1990) T tolerates α → β iff there
is some world that verifies α → β, and falsifies no
rule in T ; that is, {α ∧ β} ∪ {γ ⊃ δ : γ → δ ∈ T } is
satisfiable.

Toleration can be used to define a natural ordering on
default rules by partitioning T as follows:

Definition 4 (Pearl 1990) For all i ≥ 0 we define
Ti = {r : r is tolerated by T − T0 − T1 − · · ·Ti−1}

Assuming T is ε-consistent (see below), this results in
an ordered partition T = T0 ∪ T1 ∪ · · ·Tn. Now to each
rule r ∈ T we assign a rank (the Z-ranking), Z(r) = i

whenever r ∈ Ti. Roughly, but not precisely (see below),
the idea is that lower ranked rules are more general, or
have lower priority. Given this ranking, we can rank
worlds according to the highest ranked rule they falsify:

Z(w) = min{n : w satisfies r, for all r ∈
T such that Z(r) ≥ n}.

Again, lower ranked worlds are to be considered more
normal. Now any propositional α can be ranked accord-
ing to the lowest ranked world that satisfies it; that is

Z(α) = min{Z(w) : w |= α}.

Given that lower ranked worlds are considered more nor-
mal, we can say that a default rule α → β should hold
iff the rank of α ∧ β is lower than that of α ∧ ¬β. This
leads to the following definition:

Definition 5 (Pearl 1990) Formula β is 1-entailed by α

with respect to T (written α ⊢1 β) iff Z(α ∧ β) <

Z(α ∧ ¬β) (where Z is determined by T ).

We will see some examples of the types of conclusions
sanctioned by 1-entailment in Section 6, but refer to
(Pearl 1990) for further details.

The default rules ordered by Z-ranking are usually
assumed to be statements of high probability, based
on Pearl’s (1988) ε-semantics. A set of rules T is ε-
consistent if each rule can be consistently assigned a
conditional probability no less than 1− ε for arbitrary ε

approaching 0. The theory T ε-entails a rule α → β if
the conditional probability of β given α can be made ar-
bitrarily high merely by making the probabilities of each
rule in T achieve some threshold. We can show that this
logic of default rules, based on arbitrarily high probabili-
ties, corresponds exactly to the fragment of CO* consist-
ing of simple conditional sentences of the form α ⇒ β.
Assume T is a finite set of simple default rules.6

Theorem 1 T is CO*-consistent iff T is ε-consistent.

Theorem 2 T |=CO∗ A ⇒ B iff T ε-entails A → B.

Semantically, the equivalence of normative conditional
inference in CO* and ε-semantics can be seen by exam-
ining Pearl’s (1990) construction used to determine the
ε-consistency of a set of rules (see also Adams (1975))
and equating more probable worlds with more normal
worlds in the sense of CO*.

As shown in (Boutilier 1991), the notion of 1-
entailment can be axiomatized in CO*. As discussed
there, for any theory T there exists a unique CO*-model
ZT corresponding precisely to the Z-ranking of worlds
according to T (ZT is defined by the identity vRw iff
Z(v) ≥ Z(w)). We recall that ZT |= A ⇒ B iff A ⊢1 B,
for any given T . Thus, any semantic or syntactic results
regarding Z-ranking and 1-entailment can be applied to
simple conditional theories in CO*. In what follows, we
take default rules to be normative conditionals in CO*.

6We take a rule to be either α → β or α ⇒ β, depending
on context. We also assume each antecedent α is satisfiable,
for simplicity, but these results can be restated for the more
general case (Boutilier 1992a). Proofs may also be found in
(Boutilier 1992a).



5 Priorities as Entrenchment

We saw that revision in its simplest form could not ac-
count for priorities on conflicting defaults. However,
it seems clear that some notion of epistemic entrench-
ment could characterize this feature. Let T be a set
of expectations. As in the Theorist framework, or the
Gärdenfors-Makinson revision model of nonmonotonic
logic, facts (nonmonotonically) derivable from premise A
are those sentences (classically) derivable from {A}∪T ′,
where T ′ ⊆ T is some maximal subset of T consistent
with A. This corresponds to having an initial belief set
K = Cn(T ) and revising K with new facts A, keeping
as much of K (or more precisely, T ) as possible. As
we saw earlier, there can be several choices for T ′, but
some are preferable to others. In default reasoning, these
preferences are expressed as priorities on default rules:
certain rules should not be applied in deference to others
in the case of conflict. In revision, preferences are repre-
sented by epistemic entrenchment: certain sentences (in
this case defaults) are more likely to be given up when
revising than others.
Given this parallel, the question remains: do prior-

ities correspond to entrenchments? The most obvious
proposal is to associate priorities of default rules with
their Z-rankings. In most naturally occurring sets of de-
faults (or rather, most naturally occurring “examples”)
this proposal is adequate. However, the following ex-
ample quickly shows that the Z-ranking of rules, Z(r),
cannot be viewed as entrenchment of the corresponding
material conditionals r∗ in a default theory.

Theorem 3 Let T be a default theory with r1, r2 ∈ T .
Let r∗1 ≤E r∗2 iff Z(r1) ≤ Z(r2). Then ≤E will not, in
general, satisfy (E1)–(E5).

Proof As a counterexample, consider T consisting of
the following four rules:
r1 : (p ∧ q) ⇒ x

r2 : c ⇒ (¬p ∨ ¬q ∨ x)
r3 : p ⇒ (¬c ∨ q)
r4 : p ⇒ ¬x

It is easy to show that all rules have rank 0, ex-
cept r1, which has rank 1. A verifying assignment
for r3, r4 is {p,¬q,¬x,¬c}, and for r2 is {¬p, c},
while any assignment verifying r1 must falsify r4.
On this definition of entrenchment, r∗2 <E r∗1 . How-
ever, r∗1 ⊢ r∗2 , violating postulate (E2). �

While Z-ranking of rules is not a coherent notion of
entrenchment for our theory of expectations, we observe
that the Z-ranking of formulae does in fact satisfy pos-
tulates corresponding to the notion of plausibility, the
dual of entrenchment (Grove 1988; Gärdenfors 1988),
and leads us to the following definition. We assume a
background set of rules T and propositional A,B.

Definition 6 Let T be a default theory. We say A is no

more entrenched (with respect to T ) than B (writ-
ten A ≤ET B) iff Z(¬A) ≤ Z(¬B).

Recall that ZT is the unique CO*-model respecting the
Z-ranking of worlds determined by T .

Theorem 4 Let ≤EM be the entrenchment ordering de-
termined by ZT . Then ≤ET is identical to ≤EM .

Corollary 5 The relation ≤ET satisfies (E1)–(E5).

What does this say about priorities on default rules?
Clearly a formula is less entrenched than another if the Z-
ranking of its negation is less than that of the other. This
means we are prepared to violate default rules according
to the following definition of priorities:

Definition 7 Let T be a default theory, r1, r2 ∈ T . We
say r1 has no priority over r2 (r1 � r2) iff Z(¬r∗1) ≤
Z(¬r∗2). If r1 � r2 and not r2 � r1, then r1 has
lower priority than r2 (r1 ≺ r2).

This notion of priority is consistent with the view that
we will satisfy defaults with higher priorities in the case
of conflict when determining the consequence relation of
1-entailment, as substantiated by the following theorem.

Theorem 6 Let T be a default theory and let ∗ be the
revision function determined by the ordering of entrench-
ment ≤ET . Then A ⊢1 B iff B ∈ T ∗A.

Corollary 7 B ∈ T ∗A iff A ⊃ ¬B <ET A ⊃ B

Example Let T contain the following conditionals:

P ⇒ B, B ⇒ F, P ⇒ ¬F, B ⇒ W

where we read P , B, F , W and G as “penguin,”
“bird,” “fly,” “has-wings,” and “green” respectively.
Using CO* alone we can derive

B ∧ P ⇒ ¬F, F ⇒ ¬P, B ⇒ ¬P.

Using 1-entailment we can derive further:

¬B ⇒ ¬P, ¬F ⇒ ¬B, G ∧B ⇒ F, P ∧ ¬W ⇒ B.

In our theory of expectations we have, for instance,
both P ⊃ F and P ⊃ ¬F (since ¬P is also an
expectation). Since P ⊃ ¬F is more entrenched
(under Z-ranking) than P ⊃ F , the latter is given
up when revising our expectations to include P , or
equivalently, asking for the default consequences of
P . Hence, P ⊢1 ¬F .

Unfortunately, certain intuitively desirable conclu-
sions cannot be reached through 1-entailment, in
particular P ⇒ W . We turn to such difficulties in
the next section.

Thus, we see that 1-entailment can be modeled using a
revision function that satisfies entrenchment of formulae
respecting the Z-ordering. That the Z-ordering of the
negations of material counterparts of rules determines
natural priorities (as specified by the definition given
above), rather than the Z-ranking of the rules them-
selves, should be obvious given the following corollary.



r B ⇒ F P ⇒ ¬F P ⇒ B

Z(r) 0 1 1
Z(¬r∗) 1 2 2

Figure 1: “Common” example.

r r1 r2 r3 r4
Z(r) 1 0 0 0

Z(¬r∗) 2 2 1 1

Figure 2: “Uncommon” example.

Corollary 8 For any i, if {A} ∪ {r∗ : Z(r∗) ≥ i} is
consistent, then A ⊢1 r∗ for each r∗ such that Z(r∗) ≥ i.

This shows that if the set of rules above a certain pri-
ority threshold is consistent with some set of premises
A, each of these rules is “applied” when 1-entailment is
used. Thus rules are satisfied according to the priority
determined by the Z-ranking of their negated material
counterparts; in other words, the priority determined by
the degree of entrenchment of their counterparts in the
theory of expectations

{A ⊃ B : A ⇒ B ∈ T }

To the extent that these priorities are representative
of default priorities in general, we can state that de-
fault priorities correspond accurately to the epistemic
entrenchment of the corresponding material condition-
als within a default theory. Why the Z-ranking of rules
doesn’t correspond to priorities is demonstrated, using
our previous examples, in Figures 1 and 2. In the first,
we see that “common” examples of sets of rules often sat-
isfy the property Z(r) = Z(¬r∗) − 1. Whenever we ask
for the consequences of α using 1-entailment, we must in-
spect the set of minimal (in Z-rank) α-worlds. Given this
relationship between Z(r) and Z(¬r∗) we notice that de-
fault rules are “given up” in the order of their Z-ranking.
However, this connection does not always hold, as evi-
denced by Figure 2. Using the example from Theorem 3
we see that Z(r2) = Z(¬r∗2)− 2; so, while rule r1 has a
higher Z-ranking than r2, r2 cannot have lower priority
than r1, since it cannot be given up (i.e., falsified) with-
out giving up r1. Whenever we apply r1, rule r2 auto-
matically “follows”. We have determined that while the
Z-ranking of default rules is a natural ordering, it can-
not, in general, be viewed as a priority ranking. Instead,
it induces priorities, by associating ranks with formulae,
priorities corresponding to the Z-ranking of the negation
of the material counterparts of rules. This view of prior-
ities is also in concordance with the notion of epistemic
entrenchment of rules within a default theory, or theory
of expectations.

6 Preferred Subtheories

The Z-ranking of rules provides a very natural and com-
pelling method of determining default priorities. The
preference for more specific default rules is put on a firm
semantic basis in a conditional framework and Z-ranking
reflects this. To take our standard set of three default
rules (P ⇒ B, B ⇒ F , P ⇒ ¬F ), given the knowl-
edge P ∧ B, we could potentially choose to use either
the second rule or the third, but not both. In CO* (in-
deed, in most conditional logics for default reasoning)
P ∧ B ⇒ ¬F is derivable from this rule set, indicating
a preference for the third rule. This can be explained as
follows: at the most normal P -worlds, B and ¬F must
both hold. Since the most normal P∧B-worlds cannot be
more normal than these P -worlds, this set is also the set
of most normal P ∧B-worlds. Since ¬F holds at each of
these, the conditional holds. Of course, these cannot be
the most normal B-worlds due to the constraint B ⇒ F .
Thus, the most normal B-worlds must be strictly more
normal than these P -worlds (hence B ⇒ ¬P is derivable
as well). The Z-ranking of a rule indicates the degree of
normality of the most normal worlds that can confirm
that rule. The rules with P in the antecedent necessar-
ily have a higher ranking (are confirmed by less normal
worlds) than those with B as a head.

The notion of 1-entailment is determined by the Z-
ranking of rules, and is based on the intuition that worlds
should be considered as normal as possible subject to
the constraints imposed by the rules. The Z-ranking of
rules induces a ranking of worlds (or ordering of normal-
ity) through the definition of Z(w). While this seems to
determine a reasonable notion of consequence, certain
classes of examples are not treated appropriately using
1-entailment. This problem has been identified in (Gold-
szmidt, Morris and Pearl 1990; Geffner and Pearl 1992).
One problem is with the default inheritance of properties
from superclasses. The example in the last section illus-
trates this phenomenon. The conclusion W (wings) is
not derivable given P (penguin) even though we should
expect (default) transitivity through the class B (bird).
This can be explained by observing that the most normal
P -worlds must violate the rule B ⇒ F and must be given
a Z-rank of 1 rather than 0 (most normal). However, any
world w1 satisfying P ∧B ∧ ¬F ∧¬W is given the same
rank as a world w2 satisfying P ∧B∧¬F ∧W . While w1

violates both B ⇒ F and B ⇒ W , the Z-ranking of w1

is determined by the maximum rank of the set of rules it
violates. Once the rank 1 rule B ⇒ F is violated (as in
w2), violation of a further rank 1 rule B ⇒ W (as in w1)
incurs no additional penalty. In terms of entrenchment
in the induced default theory T , the expectations P ⊃ W

and P ⊃ ¬W are equally entrenched. A related class of
examples are those containing independent conditionals.

Example Consider two independent defaults R ⇒ W

(if it’s raining I walk to school) and F ⇒ M (if



it’s Friday I have a meeting). From the knowledge
R ∧ ¬W ∧ F one cannot conclude via 1-entailment
that M is true, even though the violation of the
first default, R ∧ ¬W , should not prevent applica-
tion of the second. Since both rules have rank 0, 1-
entailment assumes that violating both rules makes
a world no less normal than violating one rule.

The counterintuitive results provided by 1-entailment
in each of these examples is due to its insistence on mak-
ing worlds as normal as possible. This ensures that
a world violating many rules of a certain rank is no
less normal than a world violating a single rule of that
rank, as reflected in the definition of Z(w). Forcing such
worlds to be as normal as their less objectionable coun-
terparts (those violating single rules) will not effect the
satisfaction of each default rule: violating one rule al-
ready ensures that a world is considered abnormal and
cannot be used to confirm rules of that rank. While
1-entailment considers only the “quality” of violated de-
fault rules in its ranking of worlds, it seems natural to
consider also the number of violated rules. This has
been suggested by Goldszmidt, Morris and Pearl (1990)
in their maximum entropy proposal, and in Pearl and
Geffner’s (1992) conditional entailment.
In a priority-free setting Poole’s (1988) Theorist

framework can be viewed as counting rule violations.
Given a set of default expectationsD, the default conclu-
sions based on a set of facts F are determined by adding
to F some maximal subset S of D where F ∪S is consis-
tent. As described earlier, this can seen as the revision
of D to include F , but unfortunately does not allow for
priorities on default rules, or the entrenchment of ex-
pectations in D. Brewka (1989) has presented a simple
generalization of Theorist in which the set of defaults D
is partitioned to reflect priorities. Specifically

D = D0 ∪D1 ∪ · · ·Dn

where each Di is a set of propositional formulae (default
expectations) such that the defaults in Di are preferred
to, or have priority over, those in Dj just when i <

j. In particular, we take D0 to be a consistent set of
premises which will not be violated.7 Just as Theorist
takes maximal consistent subsets of D, Brewka proposes
preferred subtheories of D:

S = D0 ∪ S1 ∪ · · ·Sn

is a preferred subtheory of D iff D = D0 ∪ S1 ∪ · · ·Sk is
a maximal consistent subset of D = D0 ∪D1∪· · ·Dk for
1 ≤ k ≤ n. In other words, we add to D0 as many for-
mulae from D1 as possible without forcing inconsistency,
then add to these defaults from D2, and so on.

7Brewka “prohibits” D0, maintaining that by allowing the
most reliable set of formulae (premises) to be inconsistent
Theorist is generalized. However, if consistent premises are
not required, this is easily captured by postulating an empty
set D0 (or F in the case of Theorist).

The problematic aspect of Brewka’s theory is that lit-
tle indication of the source of these priorities (the parti-
tioning ofD) is given (although he does provide a syntac-
tic mechanism for determining specificity). In general,
any partitioning in permitted even though some of these
are effectively useless. For instance, placing B ⊃ F inD1

and B∧P ⊃ ¬F inD2 will ensure that the second default
is never applied to derive ¬F . System Z provides a natu-
ral ranking of rules that would seem to determine just the
“priorities” needed for Brewka’s partitioning. However,
Brewka’s notion of preferred subtheory automatically ac-
counts for the intuitive preference that as many default
rules as possible of a certain priority level be applied.
This is due to the maximality condition on the subsets
Si, and stands in sharp contrast with 1-entailment. It
should be a simple exercise to combine the two notions.
Let T be a consistent set of default rules or con-

ditionals in CO*, such that T is partitioned as T =
T0 ∪ T1 ∪ · · ·Tn. Thus, the highest ranked rules have
a rank of n. Roughly, these rules should have higher pri-
ority than the others, followed by rank n− 1 rules, and
so on. The corresponding set of expectations D (the ma-
terial counterparts of T ) should be partitioned similarly.

Definition 8 Let T be a consistent set of simple condi-
tionals in CO* with a maximum Z-rank of n. The
Brewka theory DB of expectations corresponding to
T is given by DB = D1 ∪ · · · ∪Dn+1 where

Di = {α ⊃ β : α ⇒ β ∈ Tn+1−i}

So, e.g., D1 consists of the counterparts of the rank
n rules, while Dn+1 corresponds to rank 0 rules.

We can also define a skeptical consequence relation,
called B-entailment, using the Brewka theory deter-
mined by T simply by considering what holds in all pre-
ferred subtheories of DB. If α is a premise, it should be
added to DB in the role of D0.

Definition 9 Let T be a set of conditionals and DB =
D1 ∪ · · · ∪ Dn+1 the corresponding Brewka theory.
We say α B-entails β with respect to T (written
α ⊢B β) iff β is entailed by all preferred subtheories
of (setting D0 = {α})

DB+α = {α} ∪D1 ∪ · · · ∪Dn+1.

It should be clear that asking for the consequences of
the theory DB will not correspond to 1-entailment.

Example Consider theory T from our earlier example.
We saw that P ⊢1 W is not sanctioned by T . The
Brewka theory DB contains two partitions: D1 =
{P ⊃ B,P ⊃ ¬F} and D2 = {B ⊃ F,B ⊃ W}.
The unique preferred subtheory of DB+α where
α = P will contain all expectations except B ⊃ F .
In particular, even though the expectations in D1



cause the violation of B ⊃ F , the other expecta-
tion in D2 is consistent and will be satisfied, unlike
1-entailment. Hence, P ⊢B W is sanctioned by T .

A similar analysis shows that B-entailment provides
more intuitive results on our example containing inde-
pendent conditionals.
The Z-ranking of rules can be used to determine an

ordering on possible worlds that captures 1-entailment.
The definition of Z(w) induced by the ranking of rules
is characterized by the unique CO*-model ZT , which in
turn satisfies a conditional α ⇒ β just when α ⊢1 β.
However, it is not an intrinsic property of the Z-ranking
of rules that causes the problems in 1-entailment we
examined above. Rather it is the induced ranking of
worlds and the model ZT . Indeed, Z-ranking can be used
to determine different orderings on worlds, or different
CO*-models. In particular, we can define a ranking of
worlds, or CO*-model, that satisfies the conditionals cor-
responding to B-entailment, thus capturing some notion
of counting rule violations in CO*. We must first intro-
duce some terminology. We assume a fixed consistent
set of conditionals T throughout, partitioned as usual.

Definition 10 For any valuation (world) w, the set of
rules of rank i falsified by w is denoted

V i
w = {r ∈ Ti : w falsifies r}

Definition 11 For valuations w, v, let

max(v, w) = max{i : V i
w ⊂ V i

v or V i
v ⊂ V i

w}

If the set above is empty, we let max(v, w) = −1.

Thus, max(v, w) denotes the highest rule ranking such
that the set of rules of this rank violated by w and v

are such that one set is strictly contained in the other.
We will use this quantity to rank worlds. If a world v

violates a rule ranked higher than any rule violated by
v, then v will be considered more normal. However, if
this highest rank is the same for each world, v can be
considered more normal is it violates fewer (with respect
to set inclusion) rules of that rank than w.

Definition 12 The Brewka model of T , denoted ZB
T =

〈W,R,ϕ〉, is defined as follows: we let W and ϕ be
as usual, capturing the set of valuations appropriate
for the our propositional language; we define R as

1. If max(v, w) = −1 then vRw and wRv

2. If V
max(v,w)
w ⊂ V

max(v,w)
v , vRw but not wRv

Proposition 9 ZB
T is a CO*-model.

Theorem 10 ZB
T |= α ⇒ β iff α ⊢B β.

Thus, the Z-ranking of rules can be used to deter-
mine a notion of entailment in CO* that differs from

1-entailment and captures the idea that as many de-
faults as possible should be applied within a given pri-
ority threshold, even if certain rules cannot be applied.
Naturally, the results of Section 5 can be applied directly
to B-entailment as they were to 1-entailment. In particu-
lar, we can define an entrenchment ordering and revision
function that corresponds to the notion of revising our
expectations to effect default prediction.

Definition 13 Let T be a default theory. The entrench-
ment ordering for the purposes of B-entailment≤EB

is the entrenchment ordering ≤EM determined by
the CO*-model ZB

T .

Proposition 11 The relation ≤EB satisfies (E1)–(E5).

Theorem 12 Let ∗ be the revision function induced by
≤EB, and let D be the expectation set determined by
conditionals T . Then A ⊢B B iff B ∈ D∗A iff A ⊃
¬B <EB A ⊃ B.

Naturally, the priorities of default rules reflect the en-
trenchment of the corresponding material counterparts
or expectations. Just as Theorem 3 shows that the
Z-ranking of rules does not capture priorities precisely
within the context of 1-entailment, the counterexample
there also shows this to be the case for B-entailment. So
while the “priority levels” of Brewka seem compelling,
they do not provide a guarantee that rules (or more pre-
cisely, expectations) will be given up in the order speci-
fied by the partition. In particular, the ordering specified
by the partition D1 ∪ · · ·Dn will not, in general, be an
entrenchment ordering; but the adopting the view that
priorities correspond to entrenchment of expectations is
justified, as it is quite easy to show that the analog of
Corollary 8 holds for B-entailment (where Z-ranking of
formulae is replaced by entrenchment using ≤EB).

7 Concluding Remarks

We have shown that Z-ranking is a useful way of rank-
ing rules, but that these ranks cannot generally be inter-
preted as priorities. Rather these induce entrenchment
orderings on a theory of expectations, and revision of
this theory corresponds to default prediction. Further-
more, Z-ranking need not be tied to 1-entailment, but
can be used to induce priorities for other forms of en-
tailment. We have presented one such notion, appealing
to Brewka’s preferred subtheories, and demonstrating its
applicability on certain examples on which 1-entailment
fails to behave appropriately. Brewka’s model reflects
many of the same intuitions as prioritized circumscrip-
tion (McCarthy 1986) and our B-entailment bears a re-
markable similarity to Geffner and Pearl’s (1992) condi-
tional entailment. In particular, both of these notions
of consequence have the goal of minimizing violations of
defaults, but prefer to satisfy any higher priority default
at the expense of lower priority defaults. In circumscrip-
tion, however, priorities must be specified independently.



Although we have not done so here, it should be
easy to see how the Brewka model ZB

T can be axiom-
atized in CO*, just as the model ZT is axiomatized in
(Boutilier 1991). However, the Theorist-style formula-
tion suggests a straightforward conceptual and compu-
tational approach to B-entailment. While the notion of
counting rule violations within a priority level is cap-
tured by B-entailment, this notion is somewhat different
from the implicit “sum of weighted rule violations” of the
maximum entropy formalism (Goldszmidt, Morris and
Pearl 1990). Both maximum entropy and conditional
entailment address certain difficulties with the priorities
induced by System Z. An investigation of the differences
with B-entailment should prove enlightening. The re-
vision model of defaults might also be applied to these
systems as well, 1-entailment and B-entailment simply
being two examples of the use of priorities as entrench-
ment. This may illuminate important similarities and
distinctions among these systems.
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