A Constraint-Based Approach to Preference Elicitation and Decision Making

Craig Boutilier and Ronen Brafman and ChrisGeib and David Poole
Department of Computer Science
University of British Columbia
Vancouver, B.C. V6T 174 Canada

Abstract

We investigate the solution of constraint-based configuration
problems in which the preference function over outcomesis
unknown or incompletely specified. The aim is to configure
a system, such as a personal computer, so that it will be op-
timal for a given user. The goal of this project is to develop
algorithms that generate the most preferred feasible configu-
ration by posing preference queries to the user. In order to
minimizethe number and the complexity of preferencequeries
posed to the user, the algorithm reasons about the user’s pref-
erences while taking into account constraints over the set of
feasible configurations. We assume that the user can struc-
ture their preferencesin a particular way that, while natural in
many settings, can be exploited during the optimization pro-
cess. We also addressin a preliminary fashion the trade-offs
between computational effort in the solution of a problem and
the degree of interaction with the user.

1 Introduction

There has been considerableinterest in the area of automated
decision analysisand thedevel opment of automated decision
making aids. Suchtoolscan beusedto act on behalf of auser,
make decisions which are communicated to the user, or sim-
ply help a user in the process of formulating and solving a
particular decision problem. The specification of a decision
problem generally requires four components. an estimate of
the current state or conditionsunder which the decisionisto
be made; a set of actions or decisions that can be taken; a
model of the system dynamics which describes the potential
outcomes of any action; and a set or preferences qualifying
the relative goodness of particular outcomes.

Extracting these four types of information can be ex-
tremely difficult and time consuming, and human decision
analysts have developed sophisticated techniques to help
elicit this information from decision makers [8]. For many
application domains, however, once a model of the system
is known, it is unlikely to change in substantial ways. This
can provideconsiderableleveragein theconstruction of auto-
mated decision making agents (DAS) for a given application;
the models can be “hard-wired” into the DA program. This
isprecisaly thetype of situationwe wish to address, namely,

the development of DASs for particular applications that can
be used by any of a number of different usersto solve their
decision problems within that domain.

More difficult to deal within such amodel are user prefer-
ences. While many users may be faced with the “same” de-
cision scenario, these users will not generally have the same
preferences over decision outcomes.! In order to make the
right choices, aDA must interact with the user to determine
their preferences over outcomes. This form of preference
elicitationis yet another role often filled by human decision
analysts, who rely on sophisticated, intuitive techniques for
eiciting preferences. Any intelligent DA must havethe abil-
ity to extract user preferences on a case by case basis. This
type of information cannot be hard-wired or precompiled,
since the aim is to act on the behaf of, or advise, a partic-
ular user.

Preference dicitationisavery difficult task in genera and
isa key focus in work on decision analysis [10, 8, 6]. Au-
tomating the process of preference extraction can bevery dif-
ficult. Straightforward approaches involving the direct com-
parison of all pairs of outcomes are generaly infeasible for
a number of reasons, including the exponential number of
outcomes (in the number of relevant variables or attributes
for which preferences are indicated) and the complexity of
thequestionsthat are asked (the comparison of complete out-
comes). There has been considerable work on exploiting the
structure of preferences and utility functionsin away that al-
lows them to be appropriately decomposed [10, 1, 2]. For
instance, if certain attributes are preferentialy independent
of others [10], one can assign degrees of preference to in-
dividua attribute values without worrying about other at-
tribute values. Furthermore, if one assumes more stringent
conditions, often one can construct an additive value func-
tion in which each attribute contributesto overall preference
to a certain “degree” (the weight of that attribute) [10]. For
instance, it is common in engineering design problems to
make such assumptionsand simply requireusersto assessthe

! By the “ same decision problem” we mean simply that the un-

derlying system (i.e., the actions, dynamics, and initial state) is the
same.

weights [4]. This allowsthe direct tradeoffs between values
of different attributesto be assessed concisely.

Models such as these make the preference dlicitation pro-
cess easier by imposing specific requirements on the form of
the value function. In general, one must alow users to spec-
ify thestructure of their preferences in an automated decision
making context. One of the problemswe addressin the paper
is the development of a particular graphical model for struc-
turing preferences based on the dependence of attributevalue
preference on a certain set of attributes and their conditional
preferential independence with respect to others. Thismodel
will be fairly natural and concise in many settings, and has
good computational properties.

Even with good models of preference structure, assess-
ment of an entire preference ranking can involve consider-
ableeffort: therewill still be alarge number of parametersto
specify. Furthermore, the effort involved can be “wasted” if
we assess preferences (in detail) over outcomes that are in-
feasible (given the set of actionsavailable), or that are domi-
nated by other feasible outcomes. In general, onewould like
to exploreonly regions of the search space (space of possible
outcomes) that are feasible and assess preferences over this
region. For instance, this is the intuition underlying much
of goal programming [9, 5] and certain approaches to prob-
lem of engineering design [4]. Algorithmsthat generate non-
dominated (e.g., Pareto optimal) outcomes that are feasible
have been developed; a user is then presented with this set
and asked to rank them or determine the most preferred al-
ternative from this set. The second contribution of this pa-
per is the development of an agorithm that serves a simi-
lar purpose using our particular graphical model of prefer-
ences. We assumethat the set of possible actions(and implic-
itly the set of outcomes) isrepresented by a set of constraints
that determine feasible configurations. We then explore the
set of feasible outcomes using a constraint-based optimiza-
tizing (branch-and-bound) search algorithm to identify non-
dominated outcomes giventhe constraintson preferencesim-
posed by the moddl. Then preferences over these feasible,
nondominated aternatives can be assessed directly. As part
of this, we useanovel agorithmfor testing dominancegiven
preference information (essentially statements of conditional
preferential independence) contained in our model.

Finally we note that while search can determine the set of
feasible outcomes, thus minimizing the degree of intrusion
upon auser required for preference assessment, the converse
effect also exists: preferenceinformation can be used to dras-
tically prune the search space. It is often easy to tell that all
outcomes below a particular branch isasearch tree are domi-
nated by an already enumerated feasible outcome. Thusthere
isatensi on between thetwo desi derata of minimizing user ef-
fort and reducing computationtime. The search a gorithmwe
develop does prune the search space to whatever extent pos-
siblegiventheinformationin the graphical preference model

(which can often be considerabl€). However, we suggest that
this pointsto a clear need for interactive search algorithms
in which the objective function in a particular region of the
search space can be obtained through user queries in an ef-
fort to minimize computational effort. Thisobservationisnot
novel (seework, e.g., on interactive goa programming [5]).
There are clear tradeoffs involved between the number and
complexity of the user queries required to prune part of the
search space and the amount of search time (or size of the
search space) expected to be pruned. The fina contribution
of this paper, somewhat more speculative, isaset of sugges
tionsfor how such a process might be realized in the context
of our search algorithm, and what sorts of preference struc-
ture and queries might best support this goal. The ultimate
aim of thisline of research isthe devel opment of on-lineop-
timization procedures in which the underlying objective is
initially unknown (or partially known), where the objective
functioncan be“filled in” throughinteractionwithauser, and
where user queries about preferences are minimized (in num-
ber and complexity) subject to the need for effective search.

The paper is structured as follows. In Section 2, we de-
scribe the necessary background on preference functions. In
Section 3 we define constrai nt-based configuration problems
in an effort to make our task more concrete. We define our
graphical preference model, CP-networks, in Section 4 and
describe its semantics in terms of ceteris paribus or condi-
tional preferential independence statements. We al so present
an algorithmfor domination testing using such amodel. Sec-
tion5 deal swith optimizati on using CP-model sand describes
abranch-and-bound algorithmfor determining the set of non-
dominated feasible outcomes in an efficient manner. Sec-
tion 6 offers some suggestions for making the search algo-
rithm interactive, and we offer some thoughts on future re-
search in Section 7.

2 Preferences and Optimization

We focus our attention on single-stage decision problems
with complete information, ignoring in this paper any issues
that arisein multi-stage, sequential decision analysisand any
considerationsof risk that ariseinthe context of uncertainty.?
We begin with an outline of the relevant notions from deci-
sion theory. We assume that the world can be in one of a
number of states S and at each state s there are a number of
actions .4, that can be performed. Each action, when per-
formed at a state, has a specific outcome (we do not concern
ourselves with uncertainty in action effects or knowledge of
thestate). Theset of all outcomesisdenoted O. A preference
ranking isatotal preorder > over the set of outcomes: o1 >
0o meansthat outcome o, isequally or more preferred to the
decision maker than o». The aim of decision making under

2Such issuesinclude assigning preferences to sequences of out-
come states, assessing uncertainty in beliefs and system dynamics,
and assessing the user’s attitude towards risk.

certainty is, given knowledge of a specific state, to choose
the action that has the most preferred outcome. We note that
the ordering > will bedifferent for different decision makers.
For instance, two different customers might have radically
different preferences for different types of computer systems
that a sales program is helping them configure. Often, for a
state s, certain outcomesin O cannot result from any action
a € A,: those outcomes that can obtain are called feasible
outcomes (given s).

What makes the decision problem difficult is the fact that
outcomes of actions and preferences are not usually repre-
sented so directly. Wefocus here on preferences. We assume
aset of features (or variablesor attributes) F = {Fy,-- - F,, }
over which the decision maker has preferences. Each fea
ture F; is associated with a domain of feature values F; =
{fi, - fi } itcan take. The product space F = Fy x - - - x
F, isthe set of outcomes. Thus direct assessment of a pref-
erence function is usualy infeasible due to the exponential
size of 7. We denote a particular assignment of valuesto a
set X C F asz, and the concatenation of two such partial
assignmentsto X andY (X NY = @) byzy. f XUY = F,
Ty isa(complete) outcome.

Fortunately, a preference function can be specified (or par-
tially specified) concisaly if it exhibits sufficient structure.
We describe certain types of structure here, referring to [10]
for adetailed description of these (and other structural forms)
and adiscussion of theirimplications. Thesenotionsare stan-
dard in multi-attribute utility theory. A set of features X is
preferentially independent of its complement Y = F — X
iff, for al 71, 2, v, ¥, We have

1Y, = T2y it Ty, = Eay,

In other words, the structure of the preference relation over
assignmentsto X, when dl other variables are held fixed, is
the same no matter what values these other variables take.
If the relation above holds, we say 7, is preferred to z, ce-
teris paribus. Thus, one can assess the relative preferences
over assignments to X' once, knowing these preferences do
not change as other attributesvary. We can define conditional
preferential independence analogously. Let X, Y and 7 par-
tition I (each set isnonempty). X and Y are conditionally
preferentially independent given 7 iff, for dl z1, %2, 7, ¥,
we have

T1Y1Z = Ty, Z I B1YeZ = Taysz

In other words, the preferential independence of X and Y
only holds when 7 is assigned z. If thisrelation holds for
all assignmentsz, wesay X and Y are conditionally prefer-
entially independent given 7.

This decomposability of a preference functions often al-
lowsoneto identify the most preferred outcomesrather read-
ily. Unfortunately, the ceteris paribus component of these

definitions ensures that the statements one makes are rela-
tively weak. In particular, they do not imply a stance on spe-
cific value tradeoffs. For instance, suppose two variables A
and B are preferentially independent so that the preferences
for values of A and B can be assessed separately; e.g., sup-
posea; > asandby > bsy. Clearly, a; b, isthemost preferred
outcome and a-b- isthe least; but if feasibility constraints
make a1b; impossible, we must be satisfied with one of a1 b,
or a»b;. We cannot tell which is most preferred using these
separate assessments. However, under stronger conditions
(e.g., mutual preferential independence) one can construct an
additive value function in which weights are assigned to dif-
ferent attributes (or attribute groups). Thisis especialy ap-
propriate when attributestake on numerical values. Werefer
to [10] for a discussion of this problem.

Given such aspecification of preferences, anumber of dif-
ferent techniques can be used to search the space of feasible
outcomes for a most preferred outcome.

3 The Configuration Problem

For concreteness, we focus on configuration problems with
full information. A configuration problem is one in which
the decision to be taken consists of a number of aspects,
each of which must be decided on—that is, one chooses
a configuration—and which interact in potentially complex
ways to determine the outcome of the decision.

Intuitively, one can view such a decision problem as the
problem of “configuring a system.” The decision maker is
forced to choosing a number of different components, from
avariety of options, which when put together determine just
how good the resulting system is. For example, one could
configure acomputer system by choosing a processor from a
particular set of options, a specific amount of memory, cer-
tain peripherals, and so on. Just how good this system is de-
pends on the needs and preferences of the user for whom the
system is being configured. These preferences will often be
specified with respect to set of features or attributes (as dis-
cussed intheprevioussection), these being determined by the
chosen configuration. Thisinducesindirect preferences over
configurations.

We formalize the problem as follows:

Definition We assume the existence of afinite set of compo-
nent attributes 'y, - - - C,,,. With each attribute C; we as-
sociate a domain, or finite set of component values, C; =
{ci, i, }. Theconfigurationspacefor agiven problem
istheset C = C; x --- x C,. Each dlement of C isacon-
figuration.

For instance, the domain of component processor might
be {486, pent75, pent100, pent133}, while the component
games might have values none, basic, and advanced.

Definition We assume the existence of afinite set of feature
attributes Fy, - - - F,,. Witheach attribute F; we associatea

domain, or finite set of feature values, 7; = {fi, - /% }.
The outcome space or feature space for a given problem
istheset ¥ = F; x --- x F,,. Each dlement of F isan
outcome.

Asan example, we might have the feature desk-top-publ with
values
{rudmniry, basic, advned, highvol}. Again we empha
size that the distinction between features and componentsis
that components represent the controllable aspects of the de-
cision problem (essentially the action space), while features
represent those qualitiesof an overall configurationfor which
a user can readily (or more easily) articulate direct prefer-
ences. Thereis no reason that C; = F; isforbidden—auser
may have direct preferences over certain component val ues;
but generally, we expect these setsto have little overlap.
Configurationsare bound to satisfy certain constraints. We
will take alogical approach to the specification of constraints
and their sol ution—inparticul ar treating them as satisfiability
problems (see [11])—though more classic CSP formulations
could also be used directly.

Definition The set of configuration constraints Cons: is a
set of logical constraints over the possible assignments of
values to different components. The set of feasible con-
figurationsCr C C consists of those configurations that
satisfy al constraintsin Cons:.

An example of aconfiguration constraint might be
Ci=e; Vs e}

Definition A causal model M isamapping M : C — F.
We assume that M istotal and deterministic. Generally,
the model M will be represented by a set of causal rules
(i.e, logical rules) M.

Two examples of such causa rulesare:

Ch = C% O F = fll
Cre{ch, 3} NCs £ 2D FyL = f]

We will assume that the set of causal rulesgivenisconsistent

and complete. We notethat Cons: and M together determine

which elements of feature space are “reachable.” We define
the set of feasible outcomes 7 C F to betheimage of Cr
under the mapping M ; that is, M (Cr) = Fr.

Given a preference ranking > over feature space, an opti-
mal configurationisany ¢ € Cr suchthat M (c) = f forany
f € Fp. Inother words, we would like afeasible configura-
tion that determines a (necessarily feasible) outcome that is
at least as good as any other feasible outcome.

Our configuration problem can be stated concisely as fol-
lows: given a set of components and features, a set of con-
figuration constraintsand a causal model; given theability to

ask preference queriesover F; determinean optimal feasible
configuration.

4 CP-Networks

We now define a representation for user preferences that
is somewhat graphical in nature, and exploits conditional
preferential independencein structuring auser’s preferences.
The model is similar to a Bayesian network on the surface,
however, the nature of the relation between nodes within a
network will generally be quite weak (e.g., compared with
the probabilistic relations that exist in Bayes nets). Oth-
ers have defined graphical representations of preference re-
lations; for instance Bacchus and Grove [1, 2] have shown
some strong results pertaining to undirected graphical repre-
sentations of additiveindependence. Our representation and
semantics is rather distinct, and our main aim in using the
graph isto capture statements of conditional preferentia in-
dependence.

For each feature F', we ask the user to identify a set of par-
ent features P(F") that can affect her preference over vari-
ous I’ values. That is, given a particular value assignment
to P(F), the user should be able to determine a preference
order for the values of F, al other things being equal. For-
mally, denoting al other features asidefrom 7 and P(F') by
I, wehavethat I and I are conditionally preferentially in-
dependent given P(F). Given thisinformation, we ask the
user to explicitly specify her preferences over F' vaues for
al possible P(F) values. We use the above information to
create an annotated graph in which each festure F has P(F')
asitsset of parents. Thenode I isannotated with atable de-
scribing the user’s preferences over her values given every
combination of parent values. We call these structures con-
ditional preference networks (or CP-networks).

Examplel Asking the user to describe her preference over
feature B, we are told that this preference depends on the
value for A and on that value aone (ceteris paribus). We
then make A aparent of B and ask about her preference on
B for each value of A. She may say that, when « holds, she
prefersb over b, and whena@ holdsshe prefersb over b, ceteris
paribus. Thisiswritten here as:

b=b

QA

In this paper, we show how to expl oit theinformation con-
tained in CP-networkswhen the dependency graph isapoly-
tree (a DAG with a most one path between any two nodes
when the arcs are treated as undirected edges) and features
are binary. We note that nothing in the semantics forces the

graph to be acyclic.

Example2 Suppose we have two features A and B, where
Aisaparent of B and A has no parents. Assume thefollow-
ing conditional preferences:

a=a, a:b>=b;, a:b>b

Somewhat surprisingly, this information is sufficient to to-
tally order the outcomes:

ab = ab > @b > ab.

Notice that we can judge each outcome in terms of the condi-
tional preferencesit violates. The ab outcome violates none
of the preference constraints. Outcome ab violates the con-
ditional preference for B. Outcome @b violates the prefer-
ence for A. Outcome @b violates both. What issurprisingis
that the ceteris paribussemanticsimpliesthat violatingthe A
congtraint is worse than violating the B constraint (we have
ab > @b). That is, the parent preferences have higher priority
than the child preferences.

Example 3 Suppose we have three features A, B, and C,
and suppose that the preference dependency graph is discon-
nected. Let'sassumethat a > @, b = b, and ¢ > ¢. Given
this information we can conclude that abe is the most pre-
ferred outcome, then comes @be, abe, and abe. These three
cannot be ordered based on the information provided. Less
preferred than the last two is abe, and so on. The least pre-
ferred outcomeisabe.

Example4 Suppose we have three features A, B, and C,
and the conditiona preference graph forms a chain with A
having no parents, A the parent of B, and B the parent of C'.
Suppose we have the following dependence information:

a=a, a:b>=b, @:b=b; b:c=7 b:¢xc

These preference constraintsimply the following ordering:
abe > abe = abe = abe > Ghe = abe > abe,

which totally ordersall but one of the outcomes. Notice how
we get from one outcome to the next in the chain: weflip (or
exchange) the value of exactly one feature according to the
preference dependency information. The element not in this
chain is@be, and we can derive the ordering abé > abe >
@be. Thus, the only two outcomes not totally ordered are @be
and abe. From example 2, we saw that violations of prefer-
ence congtraintsfor parent features are worse than violations
of constrains over child feature preferences. In one of the
two unordered outcomes we violate the preference over the
most important feature (namely A), while in the other out-
come we violate preference over two less important features
(B and C'). The semantics of the CP-networks does not spec-
ify which of these tuples has preference over the other.

There aretwo important thingsto notice about these exam-
ples. First, achain of “flipping feature values’ can beused to
show that one outcome is better than another. Second, viola-
tions are worse (i.e., have a larger negative impact on pref-
erence) the higher up they are in the network, although we
cannot compare two (or more) lower level violationsto vi-
olation of a single ancestor constraint. These observations

Figure 1: An Example Conditional Preference Graph

are exploited in the agorithm described below for deciding
whether one outcome is preferred to another, given the pref-
erence constraints represented in a CP-networks. Consider
now the following more general example.

Example5 Consider the preference graph of Figure 1. Sup-
pose that the conditional preferences are:

a-a, b>b;
i (aAb)V(@AbL):T-c

(aAb)V(@AD):c~¢
c:d=d, ¢:d>=d; d:e=% d:e»e;
d:f>=f d:f~=f f:9-7 [:9>g

g:h>=h; T:h>=h

We illustrate the intuitions behind out algorithm for domi-
nance testing through a sequence of examples.

Suppose we want to compare outcome abede fh (which
violatesthe g preference) and outcome @béde fgh (which vi-
olatesthe a preference). In order to show that thefirst ispre-
ferred, we generate the sequence: abede fgh < abede fgh <
abedefgh < abedefgh < abedefgh < abedefgh. Intu-
itively, we constructed a sequence of increasingly preferred
outcomes, using only valid conditiona independence rela-
tions represented in the CP-network, by flipping values of
variables. We are allowed to change the value of a “higher
priority” variable (higher in the network) to its preferred
value, even if thisintroduces a new preference violation for
some lower priority variable (a descendent in the network).
For instance, the first flip of A’svauein thissequencetoits
preferred state repairs the violation of A’s preference con-
straint, while introducing a preference viol ation with respect
to C (thevaluec is dispreferred when @b holds). This pro-
cess is repeated (e.g., making C' take its conditionally most
preferred value at the expense of violating the preference for
D) until the single preference violation of F' (in the “target”
outcome) isshownto be preferred to thesinglepreference vi-
olationof A (intheinitial outcome). This demonstrates how
theviolation of conditional preference for a specific vaue of

Input: (1) CP-network P for features F'y | .
(2) Two feature-valuevectorsc; = (f1, . ..
YES-c; ispreferredto ¢2 accordingto P.

NO —c¢; isnot preferredto ¢ accordingto P.

.., F', (topologically sorted).

Output:

For i=1to n {
Let F = (Fy,,.
Let lefz(fjl,...,f;;) for j=1,2.

Let X; = FlipS(F,,(le,...,sz),cllf,62lf)+
(X;-violation in ¢3) — (F;-violation in ¢y).

If X; <0 Return NO }

Return YES.

..,sz) be F;"s parents in P.

Figure 2: Algorithm for Dominance Checking.

some variables is dispreferred to the violation of one of its
descendent’s preferences.

Suppose we compare abede fgh (which violates the ¢¢
preference and the I preference) and abéde fgh (which vio-
latesthe A preference). These turn out not to be comparable
(neither ispreferred to theother). The sequence of flipsabove
cannot be extended to change the values of both G and H so
that their preference constraintsare violated. The soleviola
tion of the A constraint cannot be dominated by the violation
of two (or more) descendentsin a chain.

If we want to compare abede fgh (which violates the E
preference and the G preference) and @bede fgh (which vi-
olatesthe A preference), we can use the foll owing sequence:
abedefgh < abedefgh < abedefgh < abedefgh <
abedefgh. The violationof £ and G is preferred to the vi-
olation of A: intuitively, the A violation can be absorbed by
violationin each path starting at D.

Now consider the comparison of abede fgh (which vio-
latesthe G and H preferences) and @bede fgh (whichviolates
the A and B preferences). We can usethefollowingsegquence
of flips to show preference: @bedefgh < abedefgh <
abedefgh < abédefgh < abédefgh < abédefgh =
abedefgh < abedefgh < abedefgh < abedefgh. This
shows how two violationsin ancestor variables can be used
to cover two violationsin their descendents.

These examples illustrate how certain preference violations
have priority over othersin determining therelative ordering
of two outcomes. Intuitively, dominance is shown by con-
structing a sequence of lega flipsfrom theinitial outcometo
thetarget. However, we can see that we merely need to count
the number of flips needed in a downward “sweep” through
the network to verify that such a sequence exists. The algo-
rithm in Figure 2 makes these intuitions precise.

Figure 2 presents an algorithm for checking whether one
tuple of feature values ¢, is preferred to another tuple e
given a CP-network whose graph is singly connected. The
algorithm returns Y ES whenever ¢, is preferred to ¢, and it
returnsNO if thisrel ation cannot be determined. We notethat
itisatrivia matter, given ¢; and ¢, to rule out one (or some-

JEa)iea = (fE, 10

times both) of the possibilitiesc; > ¢5 or ¢35 > ¢1.3

The algorithm works as follows: using a topological sort
of the CP-network, we assign X values to each of the fea-
tures. Intuitively, the X vaue of feature F; isthe maximal
number of exchanges (or flips) in the value of this feature
along any sequence of increasingly preferred outcomes (fea-
turetuples) commencing with ¢, and terminatingat ¢, . Inor-
der to calculate thisvalue, we use the Fl i ps function. This
function has the following inputs: (1) the (initia) vaue of
I’ sparentsat o, (2) the(final) value of I;’sparentsat ¢y, (3)
the number of flipsthat F;'s parents can make (i.e., their X
values), and, implicitly (4) the dependence of F;'svaue on
itsparents’ values, as recored in the CP-network. Thisfunc-
tion calculates the maximal number of value changes that
F;’sparents can induce in F; given that they start in their ¢,
values, they end in their ¢; values, and en route, each par-
ent I}, cannot change its values more than X;, times. We
can calculate the Fl i ps value by enumerating al possible
“paths’ that satisfy these constrai ntsand counting the number
of timesthe preferred value of F; changes as afunction of its
parents. In order to cal culatethe X vaueof F;, wemust aso
consider whether or not itsinitia ¢, valueisa preference vi-
olation (in which case we can add another flip, as sanctioned
by the ceteris paribus semantics) and whether or not is final
1 valueisapreferenceviolation (inwhich case we must sub-
tract oneflip).

Finally, if the X value of some node is negative, then
clearly, no increasing sequence of tuples of the above form
exists, and ¢; isnot preferred to c,.

Our approach can be generalized to handle multiply-
connected graphs, but as in Bayesian nets, the cost of com-
putation can increase substantially. In particular, we cannot
only consider a single families in computing the X values.
Rather, we must consider al children that share parents to-
gether. Inthat case, we generate maximal (i.e., undominated)
vectors of X values for these children. These values de-
pend on all of these children’s parents. Then, we must check
whether for any of these undominated tuples, the algorithm
would return YES. Only when NO isreturned for al possi-
ble tuples, can we return a negative answer.

We note that this is not the only possible semantics one
could use for “networks’ representing preferences. For in-
stance, the conditional preference for some attribute A given
itsparents could be taken to be stronger than indicated by the
ceteris paribus interpretation—astrict lexicographic notion
of importance, such as that discussed in Section 6, could be
used. Moreover, there are a number of other ways in which
one could structure a preference function. We conjecture,

*We can find the first features (in a topological sort of the net-
work), F7 and F» whose preference constraints are violated by ¢,
and ¢z, respectively. If F isadescendent of F», weruleoutc; >
co; if 5 isadescendentof £, weruleout co > c;; if neither, then
neither outcomeis preferred and the dominance algorithm need not
be consulted.

however, that such conditional ceteris paribus assertions are
quite natura in many settings. We expect that models com-
bining different formsof preference statements, including ce-
teris paribus statements, will offer greater expressive power
and more natural models.

5 Finding the Best Configuration

We assume that the set of configuration constraints has been

given and that a CP-network of the user’s preferences over

outcome space has been specified. We present a (more or

less) non-interactive approach to the problem of finding an

optimal configuration in this section, and defer discussion of

making the model moreinteractive to the following section.
Our approach consists of four distinct phases:

1. CompileCong: intoaset of constraintsConsr that implic-
itly represent Fr, the set of feasible outcomes.

2. Determine the set of nondominated feasible outcomes in
f € Fr (given the specified CP-network).

3. Asktheuser to select amost preferred outcome f fromthe
nondominated set.

4. Determine afeasible configuration ¢ for outcome f

We do not address Phase 1 or Phase 4 of the agorithm
in detail here. Trandating a set of constraints Cons:, via
the causal modd, into constraints Consr over the outcome
space, is a straightforward task, as is the abductive process
required to obtain aconfiguration that determinesamost pre-
ferred feasible outcome. Thisisnot to say thereare not inter-
esting issues pertaining to this process (e.g., can a compact
set of constraints Cons: be mapped into amore unwieldy set
Consy); but thisis not our centra focus here. The one as-
sumptionwe makeisthat theset Consg of constraintson fea
sible outcomes is represented in conjunctive normal form.

In this section we describe Phase 2 of the algorithmin de-
tail, and Phase 3 inlessdetail. The search algorithmisshown
in Figure 3. The steps of the algorithm work as follows.
We first note that the search for nondominated outcomes
proceeds by searching separately for assignments to discon-
nected components of a particular problemgraph. More pre-
cisely, givenaset of variables, aset of CP-arcs denoting con-
ditional independence relations among them and a set of fea
sibility constraints over those variables, we define the prob-
lem graph to be the undirected graph obtained by removing
directionality information from the CP-arcs, and adding an
undirected arc between any two variables that occur in the
same constraint. It isnot hard to see:

Proposition 1 Let (&; be some disconnected components of
a problemgraph . The variableswithin component &; can
be optimized without regard to theval ues of variablesoutside
that component.

Input: Connected graph G, context K, constraints C'
Output: Feasible, nondominated outcomes given K

Choose any variable V' with no parentsin G
Letvy, va,. .. vg bethe preferenceordering for the valuesof V' given K
Let Result = @
FOR: = 1...%k DO:
AssignV = v,
Reduce congtraints C' by V' = v, to obtain C';
Let Sat; beelementsof C satisfiedby V' = v,
IF Sat; C Sat; forsomej < 4
OR C; isinconsistent THEN
Go to end of loop
ELSE
Reduce graph G to get G';
Let G}, - - - G™ bethe connected componentsof G;
FORj = 1...mDO:
Searcth,K UiV =v}, 0,
IF Search(G?) # @, fordl j < m THEN
Addv; x Search(G]) x - - Search(G?,) to Result
Return Result

Figure 3: Search Algorithm for Non-dominated Outcomes

&
() ©
W

(@ (b)

Figure 4: (&) Problem Graph; and (b) Reduced Problem
Graph with disconnected components

Thisgivesusagood way of decomposing the search problem
into distinct searches over smaller variable sets: the solutions
can be pieced together to obtain all nondominated outcomes.

This decomposition can be conditional as well. For in-
stance, consider the graph shown in Figure 4(a), where undi-
rected arcs indicate constraint relations and directed arcs are
CP-arcs. Suppose at some point inthe search variable A has
beeninstantiated withvaluea; (i.e., wearesearching for out-
comes where A = a1). In al subsequent search steps (i.e.,
under that node in the search tree), the CP-arcs that emanate
from A can be removed (since thereis no longer any choice
inthe assignment to A, it cannot influence the preference for
other child values).* Furthermore, all constraintsarcs can be
removed if they involve A, and any constraint arc between
two variables, distinct from A, corresponding to a constraint
that issatisfied by A = @1, can alsoberemoved. Thiscanre-
sult in new disconnected fragments being obtained, each of
which can be optimized independently given A = a;. For
instance, Figure 4(b) shows such a reduced graph. It is as-

“Wewill seebelow that A can only beinstantiated onceall of its
CP-parents have been instantiated and removed from the graph.

sumed: that a constraintinvolvingvariables A, B and F' has
been satisfied by A = a4, disconnecting B from £ (they can
now be optimized independently); and that a constraint in-
volving A, D and £ was not satisfied by A = a1, so D and
E remain coupled in the reduced constraint.

Our search is a straightforward, depth-first, branch-and-
bound styleagorithm[7, 14, 13]. The agorithm proceeds by
assigning values to variables in a depth-first fashion, using
a variable ordering that is consistent with the ordering con-
straints imposed by CP-arcs (i.e., no child can be assigned
before its parents). The value ordering for a variable A is
that determined by the preferencesfor A valuesgiventhecur-
rent partial variables assignment (which must include an as-
signment to all of A’sparents). Whenever avariable A isas-
signed avalue a;, the set of constraints passed on to the next
search nodeisreduced: any constraint satisfied by theassign-
ment is removed from the constraint set, and any constraint
involving adigunct that requires A # «; is made tighter by
removing that digunct. If thisassignment causes the current
graph (or subgraph) to become disconnected, each fragment
invokes an independent search.’

We note that there is some pruning that can take placein
the search tree. In particular, supposethat thevaluesof A are
ordered according to preference as ay, - - - a . If assignment
A = a; satisfies an equal or smaller set of constraints (in a
fixed context) than was satisfied by A = «a;, ¢ < j, then we
do not continue to search under A = «;: we can show that
any feasible outcome given involving A = «; is dominated
by some feasible outcome involving A = «a;, and whether
or not thisdominating outcomeisin the set of nondominated
outcomes, any outcome involving A = «; (and the given
context) cannot belong to that set. 1n essence, thesearchisa
depth-first branch-and-bound, wherethe set of nondominated
alternatives so far generated correspond (in some sense) to
our current lower bound.

Finally, we note that when potential nondominated alter-
nativesfor aparticul ar subgraph are returned involving some
assignment A = «; (and agiven context C'), we compare the
aternative to all nondominated aternatives (for context ()
involving more preferred assignments A = a;, 1 < j. If
the nondomination test described in the previous section is
passed, the alternative is added to the nondominated set for
the current subgraph and context. We note that the domina-
tion agorithm is run only on the subgraph, not on all vari-
ablesin the original problem.

The output of Phase 2 is the set of al outcomes that are
potentially most preferred: it containsall and only outcomes
that are nondominated given the CP-network specified by

5We note that other constraint propagation techniques [11] can
be usedin astraightforward fashion if constraints are representedin
classical ways. For instance, constraint propagation techniques are
combined with branch-and-bound in partial constraint satisfaction
algorithms [7, 14].

the user. Phase 3 then presents these dternatives to the user
for selection. We generally expect, for significant problems,
that users will have a hard time ng complicated out-
comes involving al variables. There are severa strategies
one might adopt to make this task more manageable. Apart
from dependence, our DA might ask a user to rate variables
according to importance (we discuss importance in the next
section). In addition, the same graph decomposition tech-
niques used in the search agorithm can be used structure
the questions about tradeoffs into questions involving much
smaller sets of variables.

We notethat an algorithmvery similar to this one has been
proposed by D’ Ambrosio and Birmingham [4]. They study
“preference-directed design” of devices using a constraint-
based approach to the enumeration of the Pareto optimal set
for a given problem. The also consider the decomposition
of a constraint network as variables are instantiated, render-
ing variables independent of one another in the optimization
process. One key distinction is that their work assumes ad-
ditiveand mutual preferential independence among al vari-
ables. Hence they do not deal with dependenciesin the pref-
erence function.

6 Interactive Search

Given a CP-network of preferences, one can enumerate the
set of nondominated outcomes, which can then be presented
tothe user to determinewhich of the alternativesismost pre-
ferred. The procedure described above adopts a very spe-
cific stance on what preference queries should be asked of
a user, and when they should be asked. As discussed in the
introduction, however, there are tradeoffs one might address
when considering whether to ask about a particular prefer-
ence or to search the set of feasible outcomes to determine
if this query really needs to be asked. We discuss how such
tradeoffs might be addressed within our framework. These
suggestions have a somewhat informal or speculative qual-
ity, and are the focus of ongoing research.

One assumption made in basic model is that a complete
CP-network is specified by a user before optimization isun-
dertaken. It certainly seems reasonable to expect a user to
specify (or answer questions about) the general structure of
their preferences. Arguably, auser could be quite prepared to
answer questionsabout dependence structure—thetask isnot
especialy onerous. It may be quite another matter to spec-
ify complete CPTs associated with each nodein the network.
For anode A with k parents, thereare d* separate conditional
preference functions to assess (where d is the expected do-
main size for attributes), each involving a ranking of the d
valuesay, - --,aq of A5 In many circumstances, the com-

We notethat these CPTs may exhibit certain regularitiesthat ad-
mit compact function representation and ease the assessment prob-
lem. For instance, although A may have k parents, the preference
ranking over A’svaluesmay bethe sameif any of the A’sparentsis

pleterankingover all d valuesof A may not beneeded: forin-
stance, we could ask for only the“top” portion of the ranking
associated with a certain assignment to A’s parents, assum-
ing (or hoping) that any nondominated feasible outcome will
only involve these top values (and recall, search proceeds
in the order of preference over these values). To be forced
to consider elements near the bottom of the ranking means
that the problem isvery constrained. For similar reasons, we
may not want to ask the user a priori to assess the condi-
tional rankings associated with each assignment of valuesto
the parents. The combinationsof parent valuesthat havelow
preference (say, componentwise) may never be considered, if
we are fortunate and the problem is not overly constrained.

A question that needs to be addressed is just how one
can tell a priori how much information about a particular
set of conditional preferences one is expected to use dur-
ing optimization. We make only afew informal suggestions
here. First, since attributes are instantiated during search in
an order consistent with the dependence ordering in the CP-
network, we generally expect nodes “deeper” in the network
to be more constrained by the time we attempt to find values
for them. Thus, we should expect to require more values for
these variables to be ranked. Furthermore, there are a num-
ber of measures that have been developed in the CSP litera
ture that indicate the tightness of constraints with respect to
particular variables. The more constrained avariableis, the
more val ueswe expect to haveto rank. We notethat thetight-
ness of constraintsabout aparticul ar attributeisaconditional
notion: in one context the constraints may be severe, while
in another they can be quite relaxed. This can be exploited
also: if in a preferred context the constraints on an attribute
areless stringent, we can expect to be ableto assign that vari-
able more preferred values.

If we do not have a complete instantiation of the CPTs
in the CP-network, the search agorithm can find itself at
some point lacking theinformation it needs to proceed. This
indicates the interactive nature of the search problem. At
any such point, our DA will pose certain queries to the user
(e.g., asking the user to rank the values of attribute A given
some instantiation of its parents). We expect a number of or-
thogonal, yet interesting issues to arise in the implementa-
tion of such a proposal, including those pertaining to human-
computer interaction (e.g., are user’'swilling to answer pref-
erence queries about the same attribute at widely spaced
points in time). Issues such as these suggest that asking
gueries about preferences only when it isassured that thisin-
formation is needed may not be suitable.

So far the discussion has centered on relaxing the initial
requirements of preference information from the user with

(say) true, and a second ranking only applies when each of the par-
entsis false. This will certainly ease assessment, and can exploit
compact CPT representations such as those used in Bayesian net-
works[3, 12].

the hope that this information refers only to dominated or
infeasible portions of the search space. The converse ques-
tionis: what information should one ask in order to further
prunethe search space? One possibleway to prunethesearch
space isto ask questions about preference tradeoffs that are
not derivable from the network. For instance, imagine we
have two root nodes in a network labeled with variables A
and B, witha; > as and by > b,. While the network con-
tainsno informationabout therel ative preference of a, b, and
a-by, thisinformation could alow tremendous pruning of the
search space. If we can determinethat, say, a1b2 > a2b1, we
can order the search to consider a4 b, first, and to prune parts
of the search space under a»b, that involvesimilar (or more
stringent constraints) than the “corresponding” a; b» nodes.
Thiskind of tradeoff query can a so be applied to questionsof
“conditional preference violation” at different pointsin CP-
network as well.

One fina notion that may be applicable, especialy in an
informal way, isthe notion of importance of variables. Sup-
posevariables A and B are preferentially independent of all
other variables; let X denote the set of al other variables.
We say that A is more important than B iff, for all «;, a;, Z,
and some by, if a;b,T = a;b, %, thenfor dl b;, b,, we have
a;bT = a;b,T. Intuitively, if A ismore important than B
we are willing to give up any value of B in order to retain a
more preferred value of A (this could be viewed as a partial
lexicographic ordering applied only to variable A w.rt. B).
For instance, if we have determined that ¢; > a2 > a3 and
b1 = by > b3, then we automatically know that, although for
afixed value of A, thisrelation over B’s values holds, any
A B combinationwith ahigher valueof A (e.g., a1b3) ispre-
ferred to one with alower value of A (e.g., a»b1) regardiess
of B’svaue. Thisnotionhastheobviousconditional and set-
based anal ogs.

If a user is willing to specify that certain attributes are
more important in thissense, many tradeoffsthat remain un-
expressed within the CP-network can be determined with lit-
tle effort. Asaresult, certain nondominated outcomes that
would be part of the output of the origina search agorithm
will not be given, and large parts of the search space can
be pruned. Of course, the definition of importance imposes
stringent requirements that may not often be met in practice.
However, one can imagine looser notions of importance in-
volving a subset of the values of some attributethat might be
useful; e.g., A may be moreimportant than B with respect to
the “jump” between a- and a3, meaning that the user would
sacrifice any “amount” of B to prevent a3. In addition, the
notionof importance could be used less precisely to prunethe
search space in domains where discovery of good outcomes
quickly is more important than discovery of an optimal out-
come (or in domainswhere it is expected users have only an
impreci se notion of their exact preferences over complicated
outcomes). We note that in the course of search moreimpor-

tant variables should be ordered before their less important
counterparts, and we conjecture that importance respects de-
pendence ordering (if a “rational” user suggests otherwise,
we have not developed a proper set of features).

7 Concluding Remarks

We have sketched a framework for constraint-based opti-
mization in settingswhere auser’s preferences are not known
by the decision agent. The key components of our proposa
are agraphical model for structuring user preferences based
on the notion of conditional preferential independence, and a
branch-and-bound a gorithm for enumerating nondominated
outcomes. In addition, we examined a specific class of prob-
lems, configuration problems, in which constraints on feasi-
ble actions must first be mapped into constraints on features
over which preferences are specified. We have made some
preliminary suggestionsfor the modification of our search al-
gorithm so that it becomes more interactive.

Thereare anumber of very important i ssuesthat need to be
addressed to make this approach to interactive optimization
feasible. As noted earlier, the form of the preference state-
ments required by CP-networksisnot theonly natural or con-
cise form of preference statement a user could make. Many
other types of statements could be offered (including state-
ments of importance as described earlier) and other forms of
structuring may be possible. Related to thisis the extension
of thisframework to deal with additivevaueand utility func-
tions, and continuous variables. Here models such as those
proposed in [1, 2] may prove useful, as well as techniques
used for goal programming [9, 5].

Within this discrete framework, the use of standard CSP
formulations and constraint propagation techniques could
prove quite useful in pruning search. A number of interest-
ing human-computer interaction issues also arise. Among
these, wewould liketo investigate: the naturalness of differ-
ent types of preference statements and queries; how sensitive
usersare to the ordering of preference queriesand thelag be-
tween “related” queries; aswell asboundsonthe number and
complexity of the queriesrequired to solve specific classes of
problems.

References

[1] F. Bacchusand A. Grove. Graphical models for preference
and utility. In UAI-95, pp.3-10, Montreal, 1995.

[2] F. Bacchusand A. Grove. Utility independencein qualitative
decision theory. In KR-96, Cambridge, 1996.

[3] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.
Context-specificindependencein Bayesian networks. In UAI-
96, pp.115-123, Portland, OR, 1996.

[4] J.G.D’Ambrosio and W. P. Birmingham. Preference-directed
design. J. Art. Intel. in Eng. Des., Anal. and Manuf., 1995.

[5] J.S.Dyer. Interactive goal programming. Mgmt. Sci., 19:62—
70, 1972.

[6] S. French. Decision Theory. Halsted, 1986.

[7] E.C.FreuderandR. J. Wallace. Partial constraint satisfaction.
Art. Intel., 58:21-70, 1992.

[8] R.A.Howardand J. E. Matheson, eds. Readingson the Prin-
ciples and Applications of Decision Analysis. Strategic Deci-
sion Group, Menlo Park, CA, 1984.

[9] J. P Ignizio. Linear Programmingin Single and Multiple Ob-
jective Systems. Prentice-Hall, 1982.

[10] R. L. Keeney and H. Raiffa. Decisionswith Multiple Objec-
tives: Preferencesand Value Trade-offs. Wiley, 1978.

[11] A. K. Mackworth. The logic of constraint satisfaction. Art.
Intel., 58:3-20, 1992.

[12] D. Poole. Exploiting the rule structure for decision making
within the independent choice logic. In UAI-95, pp.454-463,
Montreal, 1995.

[13] G. Verfaillie, M. Leméitre, and T. Schiex. Russian doll search
for solving constraint optimization problems. In AAAI-96,
pp.181-187, Portland, OR, 1996.

[14] R. J. Wallace. Enhancements of branch and bound methods
for the maximal constraint satisfaction problem. In AAAI-96,
pp.188-195, Portland, OR, 1996.

