
Planning Under Uncertainty: Structural
Assumptions and Computational Leverage

Craig Boutilier�
Dept. of Comp. Science

Univ. of British Columbia

Vancouver, BC V6T 1Z4

Tel. (604) 822-4632

Fax. (604) 822-5485

cebly@cs.ubc.ca

Thomas Deany
Dept. of Comp. Science

Brown University

Providence, RI 02912

Tel. (401) 863-7645

Fax. (401) 863-7657

tld@cs.brown.edu

Steve Hanksz
Dept. of Comp. Sci. and Eng.

Univ. of Washington

Seattle, WA 98195

Tel. (206) 543-4784

Fax. (206) 543-2969

hanks@cs.washington.edu

Abstract

The problem of planning under uncertainty has been addressed by re-
searchers in many different fields, adopting rather different perspectives on
the problem. Unfortunately, these researchers are not always aware of the
relationships among these different problem formulations, often resulting in
confusion and duplicated effort. Many probabilisticplanning or decision mak-
ing problems can be characterized as a class of Markov decision processes
that allow for significant compression in representing the underlying system
dynamics. It is for this class of problems that we as experts in intensional
representations are advantageously positioned to contribute efficient solution
methods. This paper provides a general characterization of the representa-
tional requirements for this class of problems, and we describe how to achieve
computational leverage using representations that make different types of de-
pendency information explicit.

Keywords: decision-theoretic planning, action representation, uncertainty, stochastic domains

Notice: This paper has not already been accepted by and is not currently under review for a journal or

another conference. Nor will it be submitted for such consideration during IJCAI’s review period.�This research was supported by NSERC Research Grant OGP0121843, and the NCE IRIS-II
program Project IC-7.yThis work was supported in part by a National Science Foundation Presidential Young Investi-
gator Award IRI-8957601 and by the Air Force and the Advanced Research Projects Agency of the
Department of Defense under Contract No. F30602-91-C-0041.zThis work was supported in part by NSF grant IRI–9008670 and in part by a grant from the
University of Washington Royalty Research Fund.

Planning Under Uncertainty: Structural
Assumptions and Computational Leverage

Craig Boutilier Thomas Dean Steve Hanks

Abstract

The problem of planning under uncertainty has been addressed by re-
searchers in many different fields, adopting rather different perspectives on
the problem. Unfortunately, these researchers are not always aware of the
relationships among these different problem formulations, often resulting in
confusion and duplicated effort. Many probabilisticplanning or decision mak-
ing problems can be characterized as a class of Markov decision processes
that allow for significant compression in representing the underlying system
dynamics. It is for this class of problems that we as experts in intensional
representations are advantageously positioned to contribute efficient solution
methods. This paper provides a general characterization of the representa-
tional requirements for this class of problems, and we describe how to achieve
computational leverage using representations that make different types of de-
pendency information explicit.

1 Introduction

Much attention has been devoted to planning and decision making under uncertainty
by researchers in different fields. While much of this research addresses the same
basic set of problems, there is an often unfortunate lack of awareness or appreciation
of ideas from other fields, mainly due to the fact that the classes of problems being
attacked and their underlying assumptions have never been made explicit. There is a
pressing need for a clear statement of the fundamental characteristics of probabilistic
planning problems, and the various assumptions and methods of existing solution
techniques. It is worthwhile to point out why we believe that research in this area,
while currently missing some opportunities for synergy and exploiting previous
work, is on the right track. In particular, we show how symbolic and graphical
representations used in AI planning and reasoning under uncertainty can help to
significantly extend the applicability of some powerful techniques.

Roughly speaking, the class of problems we consider are planning problems
whose dynamics can be modeled as stochastic processes. These Markov decision
processes (MDPs) capture the system dynamics in terms of a probability distribution
describing the next state of the system given the current state and any choice of

1

action.1 We are especially interested in that subclass of problems for which the
system’s state can be characterized by a set of variables, say of size M , and for
which the system dynamics can be compactly represented (in space bounded by
some polynomial function of M). Since a set of M boolean variables can represent
a state space of size 2M , this requires that the domain exhibit certain regularities, for
example, when certain properties of the next state depends only on some small subset
of the M variables. Furthermore we are interested in problems whose solution has
a similarly compact representation.

The task confronting research on decision-making agents is the transformation
of a compact representation of the system dynamics into a (compact) solution, with
the time and space requirements of the process being a polynomial function of M .
This task can be accomplished in many cases by exploiting structure inherent in
the specification of the system dynamics and in the value function that determines
the quality of a policy. Major goals in planning under uncertainty are to under-
stand this class of problems better, to characterize the problems for which efficient
transformations are possible, and to develop efficient solution techniques for these
cases.

In this paper we make a small step toward achieving the these goals by describing
the classes of problems currently being attacked by researchers and identifying the
major sources of structure that can be exploited to expedite the planning process.
We begin by describing a broad class of problems, starting with a characterization
of the basic dynamical model and followed immediately by a characterization of the
associated decision problem. We then describe how certain dynamical models can
be compactly encoded using using standard methods from artificial intelligence and
other areas of computer science. Finally, we show how structure in the dynamical
models, made explicit in such representations, can be used to expedite various sorts
of inference critical to solving these decision problems.

2 Markov Decision Processes

In this section we present MDPs: a general framework for planning and decision
problems. We first focus on capturing the dynamics of the underlying system, then
describe how a planning problem can be formulated as that of choosing actions that
alter the system dynamics so that certain criteria are satisfied.

2.1 States, transitions, and trajectories

A state is a description of the system at a particular time that captures all information
relevant to the agent’s decision making process. We assume a finite state space

1Depending on one’s background it is common to talk about a decision maker “controlling a
dynamical system” or about “an agent acting in the world.” We refer to the decision maker as an
agent which takes actions in the interest of controlling the behavior of some system. Its choice of
actions is called a policy.

2

a b

c

d

Figure 1: (a) A state-transition diagram; (b) a general stochastic process; (c) a
Markov chain; and (d) a stationary Markov chainS = fs1; : : : ; sNg of possible system states. A discrete-time stochastic dynamical
system consists of a state space and a probability distribution governing the next
state of the system given the past states of the system (we assume the agent’s course
of action is fixed). The sequence of states corresponds to the stages of the system.2

Let T be the set of all stages.
We generally consider the system’s state at some stage t of the process to be a

random variableSt that takes values from the set S . Figure 1(b) shows an alternative
view of a discrete-time, stochastic dynamical system in which the nodes are random
variables denoting the state at a particular time, and the arcs reflect the dependence
of states on previous states. If the next state depends only on the current state (at
any fixed stage) then the system is Markovian, and can be represented graphically as
in Figure 1(c). If the distribution governing the next state is the same for all stages,
then the system is stationary and can be represented schematically using just two
stages as shown in Figure 1(d). A stationary process can also be represented using
state-transition diagram (Figure 1(a)), where nodes correspond to states and arcs
denote possible transitions (labeled with transition probabilities). The size of such
a diagram is at least O(N) and at most O(N2), depending on the number of arcs
(possible transitions).

We will usually restrict our attention to discrete-time, finite-state, stochastic
dynamical systems with the Markov property; i.e., Markov chains. We can represent
an T -stage Markov chain using T transition matrices of size N �N . Each matrix
consists of probabilities pij , where pij = Pr(St+1 = sjjSt = si). If the process is
stationary, one matrix will suffice. Finally, a trajectory or history through the state
space is a sequence of states, hS0; S1; : : : ; ST i, denoting the evolution of the system
for T stages. Given a set of transition matrices, a distribution over starting states
induces a distribution over trajectories.

2The stage of a system provides a loose notion of time. An action causes a transition from one
stage t to the next t+ 1. Under the assumption that all actions take a single unit of time, this view is
equivalent to saying that an action “moves” the system from time t to time t + 1. This assumption
is not required for any of what follows.

3

2.2 Actions, policies, and value functions

We assume that our system can be controlled (to some extent) by an agent. The
agent’s action choices determine particular transition probabilities, thus influencing
the distribution over histories. The agent therefore must choose a course of action
that produces a “good” distribution over histories according to some measure.

We assume that an agent has available to it a finite set of actionsA = fa1; : : : ; aKg
that influence the state of the system probabilistically. Formally, an action ak maps
each state si into a distribution over S that characterizes the possible outcomes of
that action. An action can be represented by a set of T transition matrices with
entries pk;tij = Pr(St+1 = sjjSt = si; At = ak), the probability that the system will
move to state sj when ak is executed in state si at stage t (1 � t � T). It is typically
assumed that the action’s effects are independent of the stage at which it is executed.
In this case an action can be described by a single N by N transition matrix pkij .

Although the effects of an action can depend on any aspect of the prevailing state,
often the agent cannot observe every aspect of the state. Since its decisions can be
based only on what it observes, we model the (potentially restricted) observational
or sensing capabilities of an agent by introducing a finite set of observations O =fo1; : : : ; oHg. The agent receives an observation prior to its action choice at each
stage t, denoted by the random variable Ot. We let Pr(Ot+1 = ohjSt = si; At =ak; St+1 = sj) be the probability that the agent observes oh at stage t+ 1 given that
it performs ak in state si and ends up in state sj .

This model allows a wide variety of assumptions about the agent’s sensing
capabilities. At one extreme are fully observable MDPs (FOMPDs), in which the
agent knows exactly what state it is in at each stage t. We model this case by
letting O = S and Pr(ohjsi; ak; sj) = 1 iff oh = sj . At the other extreme are non-
observable systems in which the agent receives no information about the system’s
state during execution. We can model this case by letting O = fog; the same
observation is reported at each stage, revealing no information about the state (i.e.,
Pr(sj jsi; ak; o) = Pr(sjjsi; ak)). We can also model intermediate cases in which the
agent receives incomplete or noisy information about the system state (i.e., partially
observable MDPs, or POMDPs).

We extend the notion of history to account for actions and observables in the
obvious way: a history is a sequence of tupleshhS0; O0; A0i; hS1; O1; A1i; : : : hST ; OT ; AT ii
summarizing the state, observation and action for the duration of the system’s
execution. The observable history at stage t corresponds to the finite sequencehhO0; A0i; : : : ; hOt�1; At�1ii, where O0 is the observation of the initial state. The
observable history at stage t constitutes all the information available to the agent in
deciding how to act at stage t.

The general decision problem can be described as building a policy �, which
maps the observable history at stage t to an action: � : O ! A. Extreme as-
sumptions about observability simplifies the structure of the policy somewhat. In

4

the fully observable case a policy depends only on the (current) state and the stage:� : S � T ! A. In the non-observable case the agent must act based only on
knowledge of its previous actions (and stage); this form of policy corresponds to a
linear unconditional sequence of actions (a straight-line plan) hA1; A2; : : : ; AT i.

Clearly, a policy induces a distribution Pr(hj�) over the set of histories H. In
order to distinguish certain policies as preferred, we define a value function V(�)
that maps histories to the reals, V : H ! R; the agent prefers history h to h0 just in
case V(h) > V(h0). We then define the expected value of a policy to be:

EV(�) = Xh2HPr(hj�)V(h)
We will consider planning problems that vary in two dimensions: the horizon

over which the value function is evaluated; and the criterion that determines whether
a particular policy should be considered a solution to a problem.

Finite-horizon problems evaluate the agent’s performance over a fixed, finite
number of stages M . An infinite horizon problem, on the other hand, considers
performance over an arbitrary period of time. We will also consider indefinite-
horizon problems in which the policy is executed until some terminating or goal
state is reached. An indefinite-horizon problem can always be recast as an infinite-
horizon problem, but generally cannot be represented using a fixed finite horizon.3

We will also distinguish optimization problems from satisficing problems. In
the former case the agent seeks a policy that maximizes expected value, whereas in
the latter it seeks a policy � such that EV(�) > � for some fixed threshold � 2 R.

This framework for posing decision problems is quite general, subsuming a num-
ber problems commonly addressed in the decision-making and planning literature,
such as classical planning and FOMDPs. We demonstrate this below.

3 Structural Assumptions and Structured Representations

The generality of the framework for posing planning problems described in the
previous section comes at a high price in terms space (for storing the transition
matrices and the policy itself), time (required to generate a solution policy), and ease
of specification. By examining assumptions that admit structure in the representation
of state, actions, value functions, or policies, we can identify classes of problems
that can potentially be solved effectively.

3.1 Structure in the state

We will begin by examining structured states, or systems whose state can be de-
scribed using a finite set of state variables (or fluents) whose values change over
time. If there are M such (say, boolean) variables then the size of the state space
is jSj = N = 2M . For large M , specifying or representing the dynamics explicitly

3We consider particular forms for value functions below.

5

A

C

Pr A1 A0 B0,()t 0= t 1=

A0 0= B0 0=,

B

A1 1=

A0 0= B0 1=,
A0 1= B0 0=,
A0 1= B0 1=,

A1 0=

0.4 0.6

0.3 0.7

0.2 0.8

0.4 0.6 0.2

0.4 A0 1=

B0 1=

0.3

Figure 2: Two-stage Bayes network (left) with conditional probability distribution
(center) for one node and decision-tree (right) for that distribution

using state-transition diagrams or N �N matrices is impractical. In the following,
we define a class of problems in which the dynamics can be represented in O(M)
space. We begin by considering how to represent Markov chains compactly and then
consider incorporating actions and representing other aspects of the value function.

We say the state space is flat if it is specified using one state variable (this
variable is denoted S as in the general model, taking values from S). The state
space is factored if there is more than one state variable. A state is then any possible
assignment of values to these variables. Letting Xi represent the ith state variable
and
Xi its (finite set of) possible values, we have S =
S = QMi=1
Xi . We let X ti
be the random variable representing the value of the ith state variable at stage t.

Bayesian networks provide a compact representation for factored state spaces.
A Bayes net is a directed acyclic graph with vertices corresponding to random
variables and edges indicating informational dependencies among the variables.
To quantify a Bayes net we supply a conditional probability distribution for each
variable given its parents and a marginal distribution for those vertices that have
no parents. Figures 1(b)-(d) are special cases of Bayes nets, called “temporal”
networks, in which the conditional distributions are state-transition probabilities
and the marginal distributions are initial state distributions.

A two-stage temporal Bayes network (2TBN) is a Bayes net with two sets of
variables U t = fX t

1; : : : ;X tMg and U t+1 = fX t+1
1 ; : : : ;X t+1M g with each arc either

(i) from a variable in U t to a variable in U t+1 or (ii) between variables in U t+1.
2TBNs afford us a compact representation for large state spaces, if they are factored
and the dependencies induced by the actions (represented by arcs from one stage
to the next) are relatively few. If there are M boolean state variables, each with
no more than L parents in the 2TBN, then the size of the factored representation isO(M2L). This is due to the fact that we require for each variable X ti its probability
given the any of the 2L possible value assignments to its L parents. This conditional
distribution is typically represented in the tabular form illustrated at the center of
Figure 2. This representation is said to be locally exponential (in L) but globally
linear (in M). At one extreme, if Xi depends only on itself, and the system can be
decomposed into M independent processes. At the other extreme the case in whichXi depends on all the X1; : : : ;XM corresponds to a flat state space.

6

The Bayes net representation is equivalent in expressive power to the general
stationary transition matrix model: every 2TBN has a natural interpretation as a
stationary Markov chain (assuming an initial distribution); and likewise every sta-
tionary Markov chain can be trivially represented as a 2TBN (see, e.g., Figure 1(b)).
However, if the state space of a Markov chain is factored with certain indepen-
dencies among variables, then a more concise 2TBN can be built that reflects these
independencies, allowing for compact representation of structured stationary chains.

A simple 2TBN is a 2TBN with no arcs between state variables in the second
stage.4 Note that not every Markov chain in factored form can be represented
as a simple 2TBN. In particular, any Markov chain with correlations among state
variables cannot be represented in a fully factored form. We can construct a sim-
ple 2TBN for a stationary chain by collapsing variables that exhibit intra-stage
correlation, forming a conjunction or “joint” variable; this gives up some of the
factorization of the state space, and incurs a local combinatorial explosion in the
representation.

The use of 2TBNs for Markov chains only captures variable independence, or
independence among variables without regard for specific values they might take.
Propositional independence, or independence of specific variable assignments will
only become apparent when examining the specific distribution in the conditional
probability table for a given node. We can graphically represent propositional
independence by representing the conditional distribution using a decision tree
instead of a table, allowing an even more concise description of an action’s effects.5

The decision tree on the right of Figure 2 is equivalent to the illustrated table, but
makes explicit the fact that the transition probability for A1 is independent of the
value of A0 given that B0 = 0.

3.2 Structure in actions and value function

As in the general model, we must represent the possible choices facing an agent and
the value of various histories, in addition to the system dynamics. We expect, just
as the representation of states can be factored and expressed compactly, that actions
and value functions will also exhibit regularities that can be exploited.

In the general model, the effects of an action are represented with a transition
matrix.6 If the effects of an action exhibit structure (e.g., if that action has no effect
on certain state variables), a 2TBN can be used in the obvious way to represent
that action. The decision problem can then be represented using one 2TBN for
each action. However, we can exploit regularities among different actions by using
one 2TBN in which all actions are described. In particular, we represent actions
using an action variable, whose value (an action) is “chosen” by the agent at any
stage. The conditional distribution for a variable then depends not only on its state-

4Such arcs are generally referred to as synchronic or domain constraints or ramifications.
5More generally, acyclic decision graphs might be used.
6We assume for the remainder of this section a stationary dynamics.

7

1
1

1

a b c

Figure 3: (a) Actions and costs in an influence diagram; (b) action parameters and
cost attributes; (c) independent and unaffected state variables

variable parents, but also on the particular action choice. Using decision trees, the
representation need not blow up (compared to one 2TBN per action) through the
introduction of a new multivalued parent variable; and savings are possible when
actions share similar effects on given variables.

It is common to make explicit the actions (and value, as we describe below) using
a generalization of Bayes nets called influence diagrams [13]. Figure 3(a) shows the
influence diagram equivalent of a 2TBN; action variables (or decision nodes) are
depicted as boxes, cost functions as diamonds, and state variables as circles.7 There
are additional opportunities for representational economy that arise in 2TBNs; often
an action can be factored or parameterized, with the effect on different variables
depending only on certain factors (see Figure 3(b)).

A more extreme case of a variable being independent of action is illustrated
in the use of the STRIPS assumption and implicit frame axioms. In models with
boolean variables, we can describe states using logical propositions. A variant of the
decision tree representation of actions are probabilistic state space operators (PSOs)
— an extension of the classical STRIPS operators [10]. A PSO � is a set of triples
of the form h�; �; !i where � is a set of propositions (preconditions) that describe
a subset of S , � is a probability, and ! is a set of propositions (postconditions)
describing another subset of S . Semantically, if � is satisfied just prior to �, then
with probability � the postconditions in ! are satisfied immediately following �. If
a proposition is not included in �, then it is assumed not to affect the outcome of �;
if a proposition is not included in !, then it is assumed to be unchanged by �.8 For

7Actions may have incoming arcs (as we describe below) denoting available observations; but
for now we assume the agent is aware of the entire state (since we are assuming stationarity, previous
history is irrelevant).

8The table in Figure 3(c) illustrates such a “persistence” distribution.

8

example, given the following representation for �� = fhfPg; 1; ;i; hf:Pg; 0:2; fPgi; hf:Pg; 0:8; f:Pgig
if P is true prior to �, nothing is changed following � (all variables persist); but ifP is false, then 20% of the time P becomes true and 80% of the time P remains
false. If the 2TBN in Figure 2 represents some action �, taking value 0 to be false
and 1 to be true, it can be written as the following PSO (assuming B;C persist):� = fhfA;Bg; 0:8; fAgi; hf:A;Bg; 0:7; fAgi; hf:Bg; 0:6; fAgig

Probabilistic state-space operators have certain advantages over other represen-
tations. First, the conditions under which an action has distinct effects (i.e., gives
rise to different joint distributions) can be represented using arbitrary propositions.
Second, the effects of an action on distinct variables under a given set of conditions
can be encoded together, thus eliminating the need for a redundant partitioning of the
state space for every affected variable. One drawback of this representation is the
need to specify mutually exclusive propositional partitions for each condition under
which the action induces a distinct joint distribution. Network representations, on
the other hand, only require partitions for each distinct variable (though see [4] for
factored PSOs).

Structure in the Value Function: Value functions, in the general case arbitrary
functions of histories, also typically exhibit useful structure. A time-separable value
function V is one in which the value assigned to a history is some function (gener-
ally a sum or product) of sub-value functions applied to each stage of the process.9

Furthermore, the sub-value functions are typically stationary, and thus can be cap-
tured in a 2TBN (Figure 3). Although some useful value functions (e.g., temporal
deadlines and maintenance intervals) cannot be represented effectively under such
assumptions, the advantage of separability is that the performance function EV(�)
can be represented using a small number of parameters (the size required to representV depends on the size of the state space and not the length of the process).

Another common simplification of the value function is the notion of a goal,
which is some subset of the state space identified as valuable. An agent that derives
value only from achieving a goal can be modeled using a separable value function
in which the only goal states are assigned a non-zero reward. A richer model might
allow goal states with (positive) rewards and non-goal states with (negative) costs.

4 Computational Leverage

We have seen how structural assumptions about the domain admit natural parame-
terizations and compact representations for states, actions, and value functions. But

9In an infinite-horizon problem sums or products of sub-values is usually not be bounded; in this
case, value per stage is often discounted, or the limiting average per stage is used to judge quality.

9

we also want to use such representations to make explicit these structural properties
in the hope that they can be exploited by solution algorithms. In this section, we
survey some existing solution techniques, showing how their effectiveness depends
on structural features of the domain, and suggest ways in which these solution
techniques might be combined to produce even more effective algorithms.

4.1 Dynamic programming

Dynamic programming (DP) is the most common technique for solving MDP prob-
lems. Originally proposed in [1], the DP technique is based on the following
“principle of optimality.” If EV�t (s) is the optimal expected value for the t-stage
policy given that the system is in state s 2 S , then

EV�t+1(s) = C(s) + maxa2A Xs02S Pr(s0js; a)EV�t (s) (1)
In other words, an optimal solution to the (t+ 1)-stage problem can be expressed in
terms of the optimal solution to the t-stage problem. DP implements this recurrence
relation, and computes the optimal policy for a fixed-horizon T -stage policy (for
some constant T) in time polynomial in jSj, jAj and T . The space required to store
the policy is O(T jSj).

Note the two crucial simplifying assumptions made in this formulation of the
problem: full observability and a separable value function. Full observability is a
particularly powerful assumption, allowing a policy to be expressed as a mapping
from S � T to A; furthermore the Markov assumption for S guarantees that the
optimal action choice at stage t depends only on St. The separability of the value
function is crucial to the recursive nature of the problem, allowing the optimal(t+1)-stage policy to be expressed as a function of the current state and the optimalt-stage value.

The principle of optimality can be applied to infinite-horizon problems as well.
These include expected average-per-stage reward problems and classic expected
total discounted reward problems [1, 12], where the value function is the discounted
sum of rewards incurred at every stage of execution:

V(h) = 1Xt=0

tC(St; At; St+1)
where
 is a fixed discount rate (0 <
 < 1). Optimal policies for these problems,
assuming FOMDPs, are stationary, therefore requiring only O(jSj) space.

DP techniques can be applied in partially-observable settings as well [23], but
the problem is that the state space becomes the set of all probability distributions
over S , which can, in the worst case, grow exponentially with the number of stages
in the problem. Using DP to solve POMDPs (with an additive discounted value
function) is currently practical only for very small problems [17].

Although DP techniques were developed using flat state-space and action rep-
resentations, the same basic technique can be applied to factored representations,

10

t 0= t 1= t T=t 2=

Figure 4: A temporal influence diagram

exploiting problem structure. Figure 4 illustrates a general influence diagram (in
contrast to the 2TBN structures in Figure 3). The highlighted value node represents
the value of the policy, and is a function of the sub-value nodes associated with each
stage. The arrows into the action variables capture the available information when
the decisions at the corresponding stages are made.

This influence diagram represents a finite-horizon, fully observable10 problem
with a separable value function — the horizon is inherently fixed by the number of
stages in the graph. DP techniques can be employed to solve problems of this sort
[24]: while the same basic principle of optimality is used, computational leverage
can be gained by algorithms that use the structured representation to identify relevant
or irrelevant variables at various stages of the process, given decisions at later stages
[24, 5]. As such, groups of states, “indistinguishable” in relevant details, are treated
as a single state for computational purposes.

4.2 Backchaining

Most AI planning algorithms are based on the idea of backchaining: the algorithm
identifies a desired state, chooses an operator that would effect that state, then adopts
the subproblem of trying to enable that chosen operator. Classical planning algo-
rithms have implemented this approach using a variety of algorithms, all involving
a goal state and symbolic state-space operators.

Classical planning problems can be posed in terms of an indefinite-horizon non-
observable system with deterministic dynamics: there is a single initial state and
for every action k and state si there is some state sj such that pkij = 1. Therefore a
policy (straight-line plan) � defines a single history, and the value function assigns
this history 1 if the final state in the history is a goal state and 0 otherwise.

10That is, the complete state at any stage t is known when making a decision at that stage. Partially
observable problems are captured by highlightingobservable variables or using informationarcs into
decision nodes.

11

Though most classical planning problems have been cast in deterministic terms,
the Buridan and C-Buridan planners [16, 9] reformulate the problem in probabilis-
tically: given a distribution over states, a set of actions, a goal expression, and a
probability threshold � , generate a sequence of actions that when executed will leave
the system in a goal state with probability at least � . This problem can be recast as a
POMDP with indefinite horizon, requiring a policy with expected value at least � .11

The Buridan planners use classical backchaining techniques to solve this prob-
lem, making use of two key structural properties of the problem: goal states instead
of arbitrary value functions means that these are the only states with reward; and
state-space operators impose structure on the system dynamics. Backchaining is
essentially the matching of desired world states with appropriate actions. A key
advantage of backchaining is that the agent needs to consider only those aspects of
the state and those actions are relevant to the immediate problem. If a state variable
or action is irrelevant to achieving the current goal, the algorithm need not reason
about it at all; such irrelevance can be identified in the action representation. In a
sense, these planners (as well as classical planners) backchain over propositions, or
structured clusters of states, implicitly grouping together states that are identical in
the relevant details. The computational complexity of building a plan need not grow
as irrelevant variables or actions are added to the domain.

Another key assumption is the existence of goal states. This is in some sense
the problem feature that obviates the need for DP and makes backchaining feasible.
In a general MDP, any state can contribute to the policy’s value. DP over a finite
horizon is undirected: since all (reachable) states have potential impact, all must be
considered when constructing a policy. DP is simply an efficient way to consider
all states; but even if structured system dynamics reduce the “effective state space”
[24, 5], all groups of states must be visited. In a goal-based setting, no value is
accrued for states visited in the process of achieving the goal nor for anything that
happens after the goal is achieved.12 An optimal plan must reach a goal state.
Thus the search for a plan (and associated trajectory through the state space) can
be directed toward goal states; backchaining exploits and depends crucially on this
directedness.

4.3 Abstraction and aggregation

By exploiting structured representations, both DP and backchaining can be used in a
manner that groups together various states that are differ only in irrelevant features.
This type of aggregation is adaptive: the variables identified as relevant at one
stage of the problem (or the computation) may be different from those at another

11The Buridan planner solves a non-observable process, and generates straight-line plans; C-
Buridan extends the action representation to allow observational actions and the plan representation
allows actions to be executed contingent on the result of observations.

12Though see [26] for a system that uses backchaining in the context of a value function that also
takes into account the costs and benefits of alternative plans that achieve the goal.

12

stage. For example, while only the goal proposition is initially relevant in a classical
planning problem, once a subgoal has been identified, its propositions are the ones
deemed relevant. Planning algorithms and influence diagram solution techniques
implicitly perform such classifications.13

One can also perform nonadaptive aggregation or abstraction of a planning
problem; that is, we can identify relevant variables prior to using a planning or policy
construction algorithm, and construct an abstract state space consisting of aggregate
states. Such aggregate states typically consist of groups of states that differ only on
irrelevant features. A crucial aspect of such abstraction mechanisms is the ability
to construct an abstract decision problem whose dynamics and value function is
suitable for the abstract state space. Once again the structured representation of
actions and value functions often allow one to determine the relevance of variables
and action prior to planning. In classical hierarchical planning [20], state-space
operators suggest the criticality of various propositions, allowing one to plan for the
most important propositions. In MDPs, 2TBNs with value nodes or PSOs can be
used to identify the relative contribution variables make to overall value [4].

By ignoring variables, we generally cannot guarantee the discovery of an optimal
(or even satisficing) policy, unless these variables are “strictly” irrelevant. In the
classical setting, an abstract plan is used to guide the search for a concrete plan [20]
with this guarantee. In general MDPs, nonoptimal plans will have some value; by
identifying and eliminating variables with relatively little contribution to value, sat-
isficing policies are thus feasible [4]. Ultimately, more adaptive, nonuniform prior
aggregation techniques should offer the advantages of both forms of aggregation.

5 Related Work

The general model we have presented here and the particular representations we
described draw tremendously from existing work. Space limitations prevent the
comprehensive discussion of related work that is warranted; but we briefly mention
some of the especially relevant research.

Bertsekas [3] and Puterman [19] provide excellent and extensive coverage of
Markov decision processes and dynamic programming. Dean and Wellman [8]
present the view of planning problems in terms of expected value over histories,
while Dean et al. [6] propose MDPs as a model for planning in stochastic domains.

Dean and Kanazawa [7, 14] introduce the notion of 2TBNs and probabilistic
action networks based on influence diagrams. Luenberger [18] provides a definition
and discussion of separable value functions. Tatman and Shachter [24] show how
separable value functions are incorporated in influence diagrams and their relation
to dynamic programming. Boutilier et al. [5] describe similar ideas using 2TBNs
with decision trees for infinite horizon problems and compact policy representations.
Shachter and Peot [22] describe how value nodes can be replaced by chance nodes

13See [2] for adaptive aggregation in flat states spaces.

13

to solve influence diagrams using probabilistic inference; see Savage [21] on the
foundational relationship between utilities and probabilities.

Wellman [25] describes a STRIPS assumption for planning under uncertainty,
while Hanks and McDermott [11] introduce probabilistic state-space operators.
Kushmerick et al. [16] propose a method for open-loop probabilistic planning
using PSOs in nonobservable domains, while Draper et al. [9] address closed-
loop probabilistic planning in partially-observable settings (see also [23, 17] for the
classical definition of POMDPs).

Sacerdoti [20] uses abstraction for planning in classical settings, while Knoblock
[15] addresses the question of generating abstractions using STRIPS action descrip-
tions. Boutilier and Dearden [4] propose a nonadaptive abstraction method for
MDPs that exploits factored representations of actions and value functions.

6 Conclusion

Research in decision-theoretic planning and planning under uncertainty has taken
many different directions, and each line of research adopted a particular set of
assumptions about the underlying problem and about the target problem domain.
Frequently, neither the assumptions, nor the relationship between assumptions and
proposed representation and solution techniques, have been made clear.

We have presented a general model for the specification of planning problems
using Markov decision processes, described several representations for factored
state spaces, action spaces and value functions, and shown how these can compactly
represent an MDP that exhibits structure. We have argued that one of the main goals
in planning under uncertainty is to exploit these compact representations by de-
veloping algorithms that efficiently transform compact problem specifications into
compact solution representations when problems exhibit the required structure. By
describing how existing solution techniques use particular representations we are
able to identify the key structural assumptions underlying their success. Further-
more, with these assumptions in hand, we expect that even more powerful methods
for planning under uncertainty can be developed, leading to the discovery of new
classes of problems that can be solved effectively.

References

[1] R. Bellman. Dynamic Programming. Princeton University Press, 1957.
[2] D. P. Bertsekas and D. A. Castanon. Adaptive aggregation for infinite horizon

dynamic programming. IEEE Trans. on Aut. Control, 34(6):589–598, 1989.
[3] D. P. Bertsekas. Dynamic Programming. Prentice-Hall, 1987.
[4] C. Boutilier and R. Dearden. Using abstractions for decision theoretic planning

with time constraints. AAAI-94. Seattle, 1994.

14

[5] Craig B., R. Dearden, and M. Goldszmidt. Exploiting structure in policy
construction. To appear AAAI Spr. Symp. on Extending Theories of Action,
1995.

[6] T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson. Planning with deadlines
in stochastic domains. AAAI-93, pp.574–579. Washington, DC, 1993.

[7] T. Dean and K. Kanazawa. A model for reasoning about persistence and
causation. Comp. Intel., 5(3):142–150, 1989.

[8] T. Dean and M. Wellman. Planning and Control. Morgan Kaufmann, 1991.
[9] D. Draper, S. Hanks, and D. Weld. Probabilistic planning with information

gathering and contingent execution. 2nd Intl. Conf. AI Planning Systems, 1994.
[10] R. Fikes and N. J. Nilsson. Strips: A new approach to the application of

theorem proving to problem solving. Art. Intel., 2:189–208, 1971.
[11] S. Hanks and D. V. McDermott. Modeling a dynamic and uncertain world i:

Symbolic and probabilistic reasoning about change. Art. Intel., 1994.
[12] R. A. Howard. Dynamic Programming and Markov Processes. MIT Press,

Cambridge, Massachusetts, 1960.
[13] R. A. Howard and J. E. Matheson. Influence diagrams. In R. A. Howard,

J. E. Matheson, editors, The Principles and Applications of Decision Analysis.
Strategic Decisions Group, Menlo Park, 1984.

[14] K. Kanazawa and T. Dean. A model for projection and action. IJCAI-89,
pp.985–990. Detroit, 1989.

[15] C. A. Knoblock. Generating Abstraction Hierarchies: An Automated Ap-
proach to Reducing Search in Planning. Kluwer, 1993.

[16] N. Kushmerick, S. Hanks, and D. Weld. An algorithm for probabilistic plan-
ning. AAAI-94. Seattle, 1994.

[17] W. S. Lovejoy. A survey of algorithmic methods for partially observed markov
decision processes. Annals of Op. Res., 28:47–66, 1991.

[18] D. G. Luenberger. Introduction to Linear and Nonlinear Programming.
Addison-Wesley, 1973.

[19] M. L. Puterman. Markov Decision Processes. Wiley, New York, 1994.
[20] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Art. Intel.,

5:115–135, 1974.
[21] L. J. Savage. The Foundations of Statistics. Dover, 1972.
[22] R. Shachter and M. Peot. Decision making using probabilistic inference mod-

els. UAI-92, Stanford, 1992.
[23] R. D. Smallwood and E. J. Sondik. The optimal control of partially observable

markov processes over a finite horizon. Op. Res., 21:1071–1088, 1973.
[24] J. A. Tatman and R. D. Shachter. Dynamic programming and influence dia-

grams. IEEE Trans. on Sys., Man, and Cyber., 20(2):365–379, 1990.
[25] M. P. Wellman. The STRIPS assumption for planning under uncertainty.

AAAI-90, pp.198–203. Boston, 1990.
[26] M. Williamson and S. Hanks. Optimal planning with a goal-directed utility

model. 2nd Intl. Conf. on AI Planning Systems, 1994.

15

