
A POMDP Formulation of Preference Elicitation Problems

Craig Boutilier
Department of Computer Science

University of Toronto
Toronto, ON, M5S 3H5, CANADA

cebly@cs.toronto.edu

Abstract
Preference elicitation is a key problem facing the
deployment of intelligent systems that make or rec-
ommend decisions on the behalf of users. Since not
all aspects of a utility function have the same im-
pact on object-level decision quality, determining
which information to extract from a user is itself a
sequential decision problem, balancing the amount
of elicitation effort and time with decision quality.
We formulate this problem as a partially-observable
Markov decision process (POMDP). Because of the
continuous nature of the state and action spaces of
this POMDP, standard techniques cannot be used to
solve it. We describe methods that exploit the spe-
cial structure of preference elicitation to deal with
parameterizedbelief states over the continuous state
space, and gradient techniques for optimizing pa-
rameterized actions. These methods can be used
with a number of different belief state representa-
tions, including mixture models.

1 Introduction
Preference elicitation (PE) is a fundamental problem in the
development of intelligent decision tools and autonomous
agents. Software and agents of this type are often charged
with the task of making decisions, or recommending courses
of action, for a specific user. Making optimal decisions on be-
half of a user requires knowing some information about her
preferences or utility function. It is important to keep in mind
that utility functions can vary widely from user to user (even
while the other ingredients of a decision scenario, such as sys-
tem dynamics, remain fixed across users). For this reason,
preferenceelicitation—the process of extracting the necessary
preference or utility information from a user—is arguably one
of the more important problems facing AI. Applications of
elicitation processes are pervasive, ranging from low-stakes
decision processes (e.g., the control of user interaction with
a product Web site) to critical decision assessment systems
(e.g., clinical decision making[5; 6]).

The elicitation of preference and utility functions is com-
plicated by the fact that utility functions are very difficult for

Copyright c© 2002, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

users to assess[8; 11]. The burden of elicitation can be less-
ened considerably in a givenspecificdecision scenario (or a
restricted set of scenarios). An optimal decision can usually
be made without full knowledge of a user’s preferences. For
example, if some outcomes (or attribute values) simply aren’t
possible in a specific situation, the utilities for those outcomes
(or values) have no bearing on the decision problem. Fur-
thermore, even “relevant” utility information may have only
marginal impact on decision quality. If the cost of obtaining
that information exceeds the benefit it provides, then this in-
formation too can be safely ignored.

The development of optimalelicitation strategies, that ad-
dress the tradeoff between effort expended in elicitation and
the impact on object-level decision quality, has been explored
very little. The chief exception is the work of Chajewska,
Koller, and Parr[6], who model this problem by assuming
a distribution over utility functions, and refining uncertainty
over a user’s utility as queries are answered. Their myopically
optimal elicitation strategy involves asking the (single) query
with greatestexpected value of informationwith respect to the
current distribution.

In this paper, we extend this point of view in several ways,
the most important of which is viewing elicitation as asequen-
tial decision problem to be solved (approximately) optimally
rather than myopically. Intuitively, a myopic approach can
fail to ask the correct questions because it neglects the value
of futurequestions when determining the value of thecurrent
question. As is well known (and as we demonstrate), greedy
approaches to computing value of information can underesti-
mate the value of information if value can only be obtained
from a sequence of queries. Specifically, if no single question
can cause a change in the optimal decision, a myopic approach
will never try to reduce its uncertainty. The model of[6] can
easily be extended to do multistage lookahead, overcoming
this difficulty. However, since the required computations in
this model are online, we instead pose the elicitation problem
as a partially-observable Markov decision process (POMDP).
The POMDP perspective also allows for more suitable termi-
nation criteria, noisy response models, and permits policies
to be constructed for arbitrary belief states (rather than solv-
ing the problem online for a fixed prior). In addition, optimal
value functions (and implicitly, optimal policies) can be com-
puted offline, allowing for fast online response during the elic-
itation process itself.

Conceptually, the POMDP formulation is straightforward;
but practically, difficulties emerge because of the continu-
ous nature of the underlying state (utility function) and ac-
tion (query) spaces. We propose several methods for dealing
with these problems that exploit the structure of the elicitation
problem. In particular, we propose an approach to approx-
imating the optimal value function that handles the continu-
ous action and state spaces of the POMDP effectively, and al-
lows for the concise representation of value functions for be-
lief states represented using mixture models.

2 The Underlying Decision Problem
We assume that we have a system charged with making a de-
cision on behalf of a user in a specificdecision scenario. By
a decision scenario, we refer to a setting in which a fixed
set of choices (e.g., actions, policies, recommendations) are
available to the system, and the (possibly stochastic) effects
of these choices are known. The system’s task is to take the
decision with maximum expected utility with respect to the
user’s utility function over outcomes, or some approximation
thereof. The system may have little information about the
user’s utility function, so to achieve this aim it must find out
enough information to enable a good decision to be made. We
assume that the system has available to it a set of queries it can
ask of the user that provide such information.1

Formally, assume adecision scenarioconsists of a finite set
of possibledecisionsD, a finite set ofn possible outcomes (or
states)S, and a distribution functionPrd ∈ ∆(S), for each
d ∈ D.2 The termPrd(s) denotes the probability of outcome
s being realized if the system takes decisiond. A utility func-
tion u : S → [0, 1] associates utilityu(s) with each outcome
s. We often viewu as an-dimensional vectoru whoseith
componentui is simply u(si). We assume that utilities are
normalized in the range[0, 1] for convenience. Theexpected
utility of decisiond with respect to utility functionu is:

EU (d, u) = pdu =
∑
i∈S

Prd(si)ui

Note thatEU (d, u) is linear inu. The optimal decisiond∗
w.r.t. u is that withmaximum expected utility (MEU).3

In general, the utility functionu will not be known with cer-
tainty at the start of the elicitation process (nor at its end). Fol-
lowing [6], we model this uncertainty using a densityP over
the set of possibly utility functions

U = {u : 0 ≤ u ≤ 1} = [0, 1]n

If a system makes a decisiond under such conditions of un-
certainty, the expected utility ofd must reflect this. We define
the expected utility ofd given densityP overU as follows:

EU (d, P) =
∫

pduP (u)du

1We use the term “queries” for concreteness; any interaction with
a user can provide (noisy) information about her utility function.

2The extension of our elicitation methods to a set of possible de-
cision scenarios is straightforward.

3If u is represented using some more concise model, such as a lin-
ear utility model[11] or a graphical model[4],u is simply the vector
of parameters required for that model. All results below apply.

SinceEU is linear isu, EU (d, P) can be computed easily if
the expectationofu w.r.t.P is known. In such a state of uncer-
tainty, the optimal decision is thatd∗ with maximum expected
utility EU (d∗, P). We denote byMEU (P) the value of be-
ing in state ofP , assuming one is forced to make a decision:
MEU (P) = EU (d∗, P).4

In order to reduce its uncertainty about the user’s utility
function, the system has available to it a set ofqueriesQ. With
each queryq is associated a finite set of possibleresponses
Rq = {r1

q , · · · , rm
q }. A common type of query is thestandard

gamble w.r.t. outcomesi, where the user is asked if she prefers
si to a gamble in which the best outcomes> occurs with prob-
ability l and the worsts⊥ occurs with probability1 − l [11].
Note thatu(s>) = 1 andu(s⊥) = 0 given our normaliza-
tion assumptions. We designate this queryqi(l) and focus our
attention on standard gamble queries. Of course, many other
query types can be captured within our generic model.

For standard gamble queries we have a binary response
space:R(q) = {yes ,no}. The responses to a query may be
noisy: we assume aresponse modelof the formPr(ri

q|q, u)
which denotes the probability of any responseri

q ∈ Rq to
questionq by a user with true utilityu. To keep the presen-
tation simple, we assume fixed false positive and false nega-
tive probabilities for each query typeqi: soPr(yes |qi(l), ui <
l) = pi

fp , while Pr(no|qi(l), ui ≥ l) = pi
fn . We letpi

tp =
1 − pi

fn andpi
tn = 1 − pi

fp be the probabilities of “correct”
positive and negative responses.

Finally, each questionq has a costc(q). This reflects the dif-
ficulty the user is expected to have in answering the question
due to the mental burden in imposes on the user, the compu-
tational costs associated with computing an answer, the time
required to process the question, or many other factors.5

Given a responser to a questionq, the updated conditional
densityPr can be determined by application of Bayes rule:

Pr(u) = P (u|r) =
Pr(r|q, u)P (u)∫
Pr(r|q, u)P (u)du

(1)

The (myopic)expected value of information (EVOI)of a
query can be defined by considering the difference between
MEU (P) and the expectation (w.r.t.r) of MEU (Pr). A
query can be deemed worthwhile if its EVOI outweighs its
cost, and a myopically optimal elicitation strategy involves
asking queries with maximal EVOI at each point[6].

3 Preference Elicitation as a POMDP
Value of information plays an important role in good elicita-
tion strategies, as proposed in[6]. We take a different, though
similarly motivated, approach by formulating the elicitation
problem as a POMDP. This view makes the sequential na-
ture of the elicitation problem clear and avoids problems fac-
ing myopic EVOI. Furthermore, by posing the problem as a

4Taking the expectation w.r.t.P (U) is not unproblematic: certain
“calibration assumptions” of the elements ofU is necessary to ensure
that this expectation makes sense[3]. We do not discuss this subtlety
further, but the disquieted reader can treatU as expected monetary
value or some other surrogate.

5To keep the model simple, we assume questions have a constant
cost, though costs depending onu are often reasonable.

POMDP we have access to solution techniques for construct-
ing a policy that covers all possible initial belief states (as
opposed to one policy designed for a fixed prior as in[6]).
Of course, many computational difficulties must be overcome
(see the next section); but if these can be surmounted, the ad-
vantages of a full POMDP formulation are clear.

3.1 A POMDP Formulation

The POMDP formulation is quite direct. The set of system
states isU , the set of possibly utility functions. The set of be-
lief states of the POMDP is simply the set of densities over
U . Since our state space is an-dimensional continuous space,
we will require some parameterized representation of belief
states. The system dynamics are trivial: the underlying utility
functionu never changes, so at each timet, u is exactly as
it was at timet − 1. The actions available to the system are
queriesQ and decisionsD; we letA = Q∪D. Queries induce
no change in the underlying system stateu, but do provide in-
formation about it. Each decisiond is a terminal action. The
costc(q) of questionq is state-independent; but the terminal
reward associated with a decisiond does depend on the state:
Rew(d, u) = EU (d, u). The sensor model for the POMDP is
the response modelPr(rq|q, u). Assuming standard gamble
queries, we have a continuous action space: for each outcome
si, we have queries of the formqi(l) for anyl ∈ [0, 1]. We as-
sume an infinite horizon model (since the process terminates
at an unspecified time) with discount factorγ.

We can formulate the optimal value function and policy us-
ing the standard Bellman equations over the fully-observable
belief state MDP[14]. We define the optimal value function
V ∗, ranging over belief statesP , as:

V ∗(P) = max
a∈A

Q∗
a(P)

where the Q-functionsQ∗
a are defined for each query and de-

cision. For decisionsd, we haveQ∗
d(P) = EU (d, P). For

queriesqi(l) we parameterizeQ∗
i by the lottery probabilityl:

Q∗
i (l, P) = c(qi(l)) + γ

∑
r∈R

Pr(r|qi(l), P)V ∗(Pr)

Finally, the optimal (stationary) policyπ∗ is given by the ac-
tion, decision or query, maximizing the value function.

3.2 Belief State Representation

Because the underlying state space is a multidimensional con-
tinuous space, solving a POMDP of this type, as well as per-
forming belief state maintenance for policy implementation,
requires a reasonable belief state representation. In such cir-
cumstances, some parametric form is often used; for instance,
ann-dimensional Gaussian might be used to represent belief
states (perhaps truncated at the utility boundaries). Particle fil-
ter models can also be used to solve continuous state POMDPs
[15].

One difficulty with parametric models is their inflexibility.
A mixture of Gaussians offers considerably more flexibility
in this regard—this representation is adopted in[6]. A diffi-
culty with Gaussian mixtures is that they are not closed under

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 1: Update of Gaussian after queryqi(0.5).

belief state update using standard gamble queries.6 Specifi-
cally, under our model, ifP is Gaussian, thenPr is a mix-
ture of twotruncatedGaussians, as shown in Figure 1. For in-
stance, given the answeryes to queryqi(l), we havePr(u) =
α−P (u) if ui < l andPr(u) = α+P (u) if ui ≥ l, where
α = pi

tp

∫
ui<l

P (u) + pi
fp

∫
ui≥l

P (u) is a normalizing con-

stant,α− = pi
tp/α andα+ = pi

fp/α. The relative weights of
the two components is given by,w− = α− ∫

ui<l
P (u) and

w+ = α+
∫

ui≥l
P (u).

While Gaussian mixtures aren’t closed under update, after
conditioning on a response, this “truncated” mixture model
can be sampled and refit using a standard method such as EM
[2]. This technique is adopted in[6]. An alternative we con-
sider here is to use mixtures of truncated Gaussians directly as
a belief state representation. This has two advantages. First,
one needn’t refit the belief state using computationally expen-
sive procedures like EM—given an initial mixture, we sim-
ply retain the truncated mixtures that result from updating af-
ter a series of queries. Second, because the truncated mixture
is exact with respect to the initial belief state, no belief state
approximation is needed. A drawback is that the number of
truncated components doubles with each update. A suitable
compromise involves maintaining a truncated mixture until
the number of components becomes unwieldy, then refitting
this model to a new mixture using EM.

We also consider the use of uniform distributions, a para-
metric form that meshes well with the queries at hand. We use
a prior consisting of a mixture ofk uniform distributions. Up-
dating a uniform after queryqi(l) results in a mixture of two
uniforms identical to the original except with the upper and
lower bounds in dimensioni revised. Again, EM can be used
to reduce the number of components periodically.

3.3 Difficulties Facing the Formulation
Even with good belief representation, standard methods for
solving a POMDP cannot be used. Methods for finite spaces
rely on the fact that the optimal value function is (approxi-
mately) piecewise linear and convex (PWLC)[14]. Contin-
uous state problems require some form of special structure

6For certain forms of queries, Kalman filter-like techniques can
be used for updating Gaussians however.

(such as Gaussian belief states, linear dynamics, etc.) or the
use of function approximation. The value function for the
elicitation POMDP has no convenient closed form, so func-
tion approximation is needed. Let our belief state have a para-
metric form with parameter vectorθ (e.g., the weights of a
Gaussian mixture together with the mean and covariance pa-
rameters of each component). Our goal is then to construct an
estimateṼ (θ) of the optimal value function.

Several general approaches to value function approxima-
tion for POMDPs have been proposed. Those motivated by
the PWLC nature of the value function[7; 13] are not appro-
priate here. More general approximators, such as feedforward
neural networks, seem more promising[12]. Grid-based mod-
els[10] can also used, but require computationally demanding
projections (refitting) of updated belief states for each DP up-
date. Policy search methods[9] and clustering to discretize
utility space[5] might also be used.

We’ll also require a method for dealing with the continuous
action space. Again, unless there is some special structure,
special techniques will be required to handle the large action
space. Fortunately, our action space is well-parameterized;
specifically, we have a finite number of query typesqi, with
each type parameterized by a lottery probabilityl.

4 An Approximation Technique for PE
To deal with the difficulties described above we propose a
technique for solving the PE POMDP using a suitable func-
tion approximation architecture. We assume our belief state
is captured by a mixture model with an unspecified number of
components (recall that generally the number of components
increases over time). Our aim will be to compute the value
function only for a single parametric component rather than
for the entire mixture. Online policy implementation will re-
quire that we use this “single component” value function to
determine the value of a mixture density.

4.1 Approximating the Value Function
We useθ to denote the parameter vector for a single be-
lief state component. Rather than approximating the value
function directly, we will compute Q-functions, one for each
query typeqi. The approximatorQi(l, θ) is parameterized
by the lottery probabilityl. We don’t approximateQd for
decisionsd, since their exact computation is straightforward.
We assume an approximation architecture with parameters or
weightsw, that can be trained in some standard fashion. We
also assume that theQi are differentiable with respect tol.7

We solve the PE POMDP using a form of asynchronous
approximate value iteration[1]. At each iteration we sample
a (non-mixture) belief stateθ and a queryqi(l) according to
some sampling schedule. We compute the backed up Q-value
of queryqi(l) at stateθ using the current approximations:

Qi(θ, l) = c(qi) + γ[Pr(yes |qi(l), θ)V (θyes) +
Pr(no|qi(l), θ)V (θno)] (2)

(hereθyes denotes the updated belief state given responseyes ,
and similarly forno). Letting qnew denote the backed up

7We discuss approximation architectures below.

value, we then train our approximatorQi with inputsl andθ
and outputqnew .

Unfortunately, the computation of Eq. 2 is not straightfor-
ward. First, the resulting densities are mixtures of the un-
derlying components. For instance, ifθ is a truncated Gaus-
sian, thenθyes is a mixture of two truncated Gaussiansθ1

yes

andθ2
yes , with mixing weightsα1 andα2. Unfortunately, the

value function (via the Q-functions) is only defined for single
components. Furthermore, determiningV (θyes) from the Q-
function approximators requires the solution of:

V (θyes) = max[max
d

Qd(θyes), max
i

max
l

Qi(θyes , l)] (3)

Maximization over decisionsd and query typesqi is straight-
forward, but maximizing over the continuous inputl is less so.
(Similar remarks obviously apply toV (θno).)

We deal with the first problem by taking advantage of
the fact that we construct Q-functions—rather than the value
function directly—to determine Q-values of the necessary
mixtures. Specifically, suppose we have belief stateθ =
α1θ1 + α2θ2 that is the mixture of two components. Then
the expected value of a decisiond for the mixture is:

Qd(θ) = Qd(α1θ1 + α2θ2)
= α1Qd(θ1) + α2Qd(θ2) (4)

A similar fact holds for queries:

Proposition 1 Qi(α1θ1 + α2θ2, l) = α1Qi(θ1, l) +
α2Qi(θ2, l)

Proof: Let θ denote the mixtureα1θ1 + α2θ2. We observe
that the update ofθ given responseyes to queryqi(l) is a mix-
tureθyes = αyes

1 θyes
1 + αyes

2 θyes
2 , where

αyes
1 =

α1 Pr(yes |�1)

Pr(yes |�)
, αyes

2 =
α2 Pr(yes |�2)

Pr(yes |�)
(5)

andθyes
i is the update of the componentθi given ayes re-

sponse. Similar expressions hold forθno .
Letting c denote the query cost and suppressing the query

qi(l) on the righthand side of the conditioning bars, we have:

Qi(�, l) = c + γ[Pr(yes|�)V (�yes) + Pr(no|�)V (�no)]

= c + γ[αyes
1 Pr(yes|�)V (�yes

1) + αyes
2 Pr(yes |�)V (�yes

2)

+ αno
1 Pr(no|�)V (�no

1) + αno
2 Pr(no|�)V (�no

2)]

= c + γ[α1 Pr(yes |�1)V (�yes
1) + α2 Pr(yes |�2)V (�yes

2)

+ α1 Pr(no|�1)V (�no
1) + α2 Pr(no|�2)V (�no

2)]

= c + γ[α1(Pr(yes |�1)V (�yes
1) + Pr(no|�1)V (�no

1))

+ α2(Pr(yes |�2)V (�yes
2) + Pr(no|�2)V (�no

2))]

= α1Qi(�1, l) + α2Qi(�2, l)

The third equality is obtained using the expressions in Eq. 5
(and analogous expressions for theno response).J

We deal with the second issue, maximization, as follows.
Maximization over the decisionsd ∈ D is straightforward.
For a given queryqi, the maximization over lottery probabili-
tiesl is achieved using some suitable optimization technique.
For certain function approximators, this optimization may be
computed analytically. Otherwise, since the approximator is

differentiable with respect to inputl (which is true for most
common approximators), we can—given a fixed single com-
ponent belief state—approximate the value ofmaxl Qi(θ, l)
using gradient ascent. Specifically, since∂Qi(θ,l)

∂l is defined,
we can find a local maximum readily.8 Of course,θyes is a
mixture of two truncated Gaussians. But we can still use gra-
dient ascent by noting that:

∂Qi(θyes , l)
∂l

= α1

∂Qi(θ1
yes , l)

∂l
+ α2

∂Qi(θ2
yes , l)

∂l
(6)

Consequently,V (θyes) can be determined by computing
the value of each decisiond, using Eq. 6 to determine the max-
imum value of a query of the formqi for eachi, and then max-
imizing over these|S ∪ D| values. The value given ano re-
sponse is determined analogously. These are combined using
Eq. 2 to get an backed up estimate ofQi(θ, l).

4.2 Online Policy Execution
The procedure above produces a collection of Q-functions,
one for each query typeqi. With this in hand, we can de-
termine the optimal action for a single component belief
stateθ as follows: computeQd(θ) for eachd, compute
maxl Qi(θ, l) for eachqi using gradient ascent, then choose
the action,d or qi(l), with maximum value. The resulting be-
lief state is, however, a mixture. But even though we have
computed Q-functions explicitly only for single components,
we can use these to directly determine the optimal action for
a mixture using the ideas described above. Optimizing overl
for a mixture ofk components can be accomplished using the
same technique as optimizing for a 2-mixture (using the obvi-
ous extension of Eq. 6). We describe practical enhancements
to this scheme in the next section.

Online policy implementation then consists of two basic
steps per stage: (a) if belief statebt = {θt[i], wt[i]} denotes
the mixture belief state at staget, we choose the optimal action
for b, and execute it (either asking a query or recommending
a decision); (b) if the action is a query, we update our belief
state w.r.t. the response to producebt+1, and continue.

One difficulty with this online policy implementation tech-
nique lies in the fact that the number of mixture components
may quickly become unmanageable. If the prior is a single
component mixture, we will have (up to)2t components after
t queries. Note that this fragmentation is purely a function of
belief state update, and not due to policy implementationper
se. But belief state maintenance is much more tractable if the
number of components is reduced periodically. One way to do
this is to prune components with low weight. This is compu-
tationally feasible, but must be done with some care to ensure
that important parts of “total belief space” are not ignored. An
alternative is to simply fit the current belief state to a smaller
mixture model using EM. This is more computationally de-
manding, but will provide more accurate results if dramatic
reduction in model size is desired. Computation is a critical
consideration since refitting needs to be done online; but pe-
riodic refitting can be managed intelligently.

8We can show that the optimal Q-function for queryi is concave
in l, thus if our approximator reflects this fact, we can be reasonably
confident that a global maximum will be found.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.48

0.49

0.5

0.51

0.52

0.53

0.54

Query Probability (l)

V
al

ue

Figure 2: A 1-D View of a 2-stage Q-function.

5 Practical Tricks and Empirical Results

In this section we describe some preliminary empirical results
using the elicitation method described. In our experiments
we use mixtures of uniform distributions as our belief state
model since updating and computing the required expecta-
tions is quite simple (as the model fits very well with the form
of the queries we use).

5.1 Practical Enhancements

Each Q-function approximator has as input the parameters of
an n-dimensional uniform (i.e., upper and lower bounds in
each dimension) as well as a query pointl. All of our results
use a quadratic function approximator. We have experimented
with linear approximatorsand feedforwardneural networks as
well. Linear approximators clearly do quite poorly, as the Q-
functions are obviously nonlinear. Figure 2 illustrates a 1-D
slice of the optimal two-stage-to-go Q-function at a fixed be-
lief state, which is uniform (in the dimension shown) on in-
terval[0.4, 0.7]. The Q-function is concave inl and quadratic
in the difference ofl and the mean (over the region of posi-
tive density).9 Quadratic approximatorsseem to provide good
quality solutions over the range of the belief state. Given an
n-dimensional belief space, the quadratic approximator has
2n + 1 inputs, andO(n2) weights to be tuned. Tuning was
accomplished using simple gradient descent in weight space
with momentum. Optimization over lottery probabilitiesl
(when computing Bellman backups) was accomplished using
no specific gradient information (instead Matlab’sFMNBND
function was used). The training schedule we used was as fol-
lows: we first trained the approximatorswith 2-stage-to-goQ-
functions. The reason for this was that these backups require
no “bootstrapping” since the one-stage function can be com-
puted exactly (since it involves only decisions not queries).
This helped quickly capture the quadratic dependence of Q-
functions on the difference between the inputl and the mean

9In general, the optimalt-stage Q-function is a degree2t polyno-
mial for a uniform distribution.

vector. After a fixed number of 2-stage backups at systemati-
cally chosen belief points, we generated random belief states
and queries and applied the backup procedure described in the
previous section.10

We exploit certain properties of value of information to re-
strict training and overcome approximator deficiencies. For
example, given a density with upper and lower boundsui and
li in dimensioni, a queryqi(c) with c outside that range has no
value (i.e., will not alter the belief state). We restrict training
to queries that lie within the range of the belief state. Since
approximators generalize, they tend to assign value to queries
outside the range that arelowerthan their true value, due to the
nature of VOI (see Figure 2). For this reason, we restrict the
value of a query outside the range of the belief state to be equal
to the value at its boundary. Although asking queries outside
the range of a single mixture component needn’t be consid-
ered in unmixed models, assigning values to such queries is
necessary when computing VOI w.r.t. amixture.

Online policy implementation reflects the considerations
described above. Our current implementation uses some sim-
ple pruning strategies to keep the number of mixture compo-
nents manageable (pruning components of low weight), but
no sophisticated refitting of mixtures. Because of the crude-
ness of the Q-function approximators, some heuristics are also
used to ensure progress is made. For example, we only ask
queries such that the mass of the belief state on either side of
the query point is greater than some thresholdδ.

5.2 Empirical Results
Our first example is reasonably small, involving a decision
problem with four outcomes, with six decisions. For each out-
come, there is one decision that achieves that outcome with
probability 0.7 (and each other outcome with probability 0.1).
The other two decisions achieve two of the outcomes with
moderate probability 0.4, and the remaining two decision with
low probability (0.1). Each query has a cost of0.08 and noise
parameter (i.e., false positive and false negative rates)0.03.
Recall that utilities lie in the range[0, 1].

Figure 3 shows a plot of the sampled Bellman error as a
function of the number of random backups, starting immedi-
ately after the initial systematic sweep of belief space (64000
backups). Bellman error is determined by sampling 2000 ran-
dom belief-state query pairs and evaluating Bellman error at
each. Results are averaged over 10 runs (error bars show stan-
dard deviation w.r.t. these runs). Average error is on the or-
der of 2.5 per cent. Computation time for the initial back-
ups is minimal, since 2-stage backups require no bootstrap-
ping (hence no optimization over query points): on average
these 64000 these took 83s. For the other backups, computa-
tion time is more intensive: the 160000 backups shown take
on average 11899s (about 3.3 hours), or .074s per backup. The
70-fold increase in time per backup is almost exclusively due
to the optimization of the query probabilities when assessing
the max Q-value of a query type. This is largely due to the
fact that our preliminary implementation relies on a generic
optimization procedure. We expect much better performance

10All experiments were implemented in Matlab, under Linux, us-
ing a PIII 933MHz, 512Mb PC.

60 80 100 120 140 160 180 200 220 240
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Bellman Backups (thousands)

B
el

lm
an

 E
rr

or

Figure 3: Bellman Error (over 10 runs): Four outcomes.

when gradient information is used to do optimization. We
note, however, that: (a) the expense of this computation is
borne offline; and (b) this level of Bellman error is approached
long before all backups are completed.

The value of offline value function construction is borne
out: determining the optimal action online takes minimal time
(several hundredths of a second) and scales linearly with the
number of mixture components. We report on a systematic
evaluation of the number of queries in a longer version of
the paper, including a comparison to the greedy query strat-
egy . Generally, the implementation asks few queries; but we
do notice that frequently the procedure will become stuck in
loops or ask nonsensical queries due to the looseness of the ap-
proximate Q-functions. We are currently exploring more re-
fined approximators, including feedforward NNs, and piece-
wise linear approximators.

We also ran an example with 20 outcomes and 30 deci-
sions. Computation time per Bellman backup increases sub-
stantially because of the need to optimize over 20 queries at
each backup (and the increase in the number of approximator
parameters). Average backup time for 139000 2-stage back-
ups is 0.002s, while for the 240000 full backups shown is
0.57s. The quadratic approximator does a reasonable job of
capturing the value function: average Bellman error for one
sample run is illustrated in Figure 4.

To illustrate the difficulty with the myopic approach, we
compare the myopic strategy of[6] to the sequential model
developed here on the following simple example. We have
seven outcomess1, . . . , s7, and seven decisionsd1, · · · , d7.
The decisionsdi (i ≤ 5) each have a0.5 chance of causing
outcomesi andsi+1, while d6 causes eithers6 or s1. Deci-
siond7, in contrast, is guaranteed to realize outcomes7.

Suppose our prior over utility functions is
given by the mixture of uniforms with the fol-

1 1.5 2 2.5 3 3.5 4

x 10
5

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Bellman Backups

B
el

lm
an

 E
rr

or

Figure 4: Bellman Error: 20 outcomes, 30 decisions.

lowing six components (each weighted equally):

s1 s2 s3 s4 s5 s6 s7

b1 [.9 1] [.9 1] [0 .1] [0 .1] [0 .1] [0 .1] [.7 .8]
b2 [0 .1] [.9 1] [.9 1] [0 .1] [0 .1] [0 .1] [.7 .8]
b3 [0 .1] [0 .1] [.9 1] [.9 1] [0 .1] [0 .1] [.7 .8]
b4 [0 .1] [0 .1] [0 .1] [.9 1] [.9 1] [0 .1] [.7 .8]
b5 [0 .1] [0 .1] [0 .1] [0 .1] [.9 1] [.9 1] [.7 .8]
b6 [.9 1] [0 .1] [0 .1] [0 .1] [0 .1] [.9 1] [.7 .8]

For each belief componentbi and statesj , this table shows the
range for whichbi assigns positive (uniform) density tou(sj).
Intuitively, this prior reflects the fact that the user prefers some
pair of (adjacent) outcomes from the set{s1, . . . , s6}, but
which exact pair is unknown.s7 is considered to be a safe
alternative. With this prior, myopic VOI associates no value
to any query: a (noise-free) query can restrict the belief state
to fewer than two components; but that will not be enough to
change the optimal decision w.r.t. the prior (which isd7). In
contrast, the POMDP approach recognizes that the answers to
a sequence of (properly chosen) queries can ensure that a bet-
ter decision is made.

This problem was run using a similar training regime to
those described above, with 98000 2-stage backups followed
by 160000 full backups. Bellman error quickly falls to the
0.025 range (i.e., about 2.5%) after the two stage backups
and hovers in that range for the remainder of the training
run.11 Backup up times for the 2-stage backups is0.0014s per
backup, while for full backups the time is0.173s per backup.
Two sample query paths for the specific prior above are shown
in Figure 5. It should be noted that function approximation er-
ror can cause the value of queries to be overestimated on oc-
casion. On a number of runs, the policy executed asks sev-
eral questions about a specific utility dimension even though
the current belief state contains enough information to recom-
mend the optimal decision. We expect better function approx-
imation strategies will help alleviate this problem. Again we
point out that the myopic approach on this problem asks no
questions for this prior and simply recommends the alterna-
tive, decisiond7.

As a final example, we consider a combinatorial bidding
scenario, in which a bidding agent must offer bids for four dif-
ferent goods auctioned simultaneously in four different mar-
kets. To discretize the decision space, we assume that the

11Query cost is0.02 and noise probabilities are0.03.

Is U(s6) < 0.9?

Is U(s4) < 0.9?

Is U(s3) < 0.9?

Is U(s5) < 0.9?

Best decision is d1

Best decision is d5

yes

yes

yes

no

no

Figure 5: Example Query Paths: Myopic Problem.

agent can offer three distinct bids—low, medium, and high—
for each good. Each of these bid levels corresponds to a pre-
cise cost: should the bid win, the user pays the price associ-
ated with each bid (with, of course, higher prices associated
with higher bid levels). To suppress the need for strategic rea-
soning, the agent has a fixed, known probability of winning a
good associated with each of the three bid levels. The proba-
bilities of winning each good are independent, and increasing
in the bid level.

With four goods and three bid levels, there are 81 possible
decisions (mappings from markets to bids) and 16 outcomes
(subsets of goods the user might obtain). The user’s utility
function need not be additive with respect to the goods ob-
tained. For instance, the user might value goodsg1 andg2 in
conjunction, but may value neither individually. Thus utility
is associated with each of the 16 outcomes. We assume that
the overall utility function (accounting for the price paid for
each good) is quasi-linear; so the price paid is subtracted from
the utility of the subset of goods obtained.12

A plot of the Bellman error as a function of the backups for
the bidding problem is shown in Figure 6 for a single run of
the problem.

Our results are certainly preliminary, but do suggest that
this approach to elicitation is feasible; since the model pushes
almost all of the computational burden offline, computational
concerns are mitigated to a large extent. However, our results
also suggest the need for further study of suitable approxima-
tion architectures, and integration with parametricutility mod-
els. With parametric utility, large outcome spaces can be dealt
with using low dimensional belief states, which will certainly
enhance the feasibility of the model.

6 Concluding Remarks
We have described an abstract model of preference elicitation
that allows for a system to optimally trade off the cost of elic-

12The specific parameter settings used are as follows. The prices
associated with low, medium, and high bids are0.02, 0.05 and0.1,
respectively (these are normalized on the utility scale[0, 1]). The
probabilities of winning given a low, medium, and high bid, are0.2,
0.4 and0.85, respectively. These parameters are the same for all four
markets. Query cost is0.01 and responses have a0.03 probability of
being incorrect. The discount rate is0.95.

100 150 200 250 300 350 400
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Bellman Backups (Thousands)

B
el

lm
an

 E
rr

or

Figure 6: Bellman Error: Bidding Problem.

itation with the gain provided by elicited utility information.
By casting the problem as a POMDP, the sequential and noisy
nature of the process is addressed, as is the need to construct
policies for arbitrary priors. Our function approximation tech-
niques allow for optimization over continuous state and ac-
tion spaces, and permit one to determine appropriate actions
for mixture belief states despite the fact that we only compute
value functions for single components.

We have described very preliminary experiments using spe-
cific utility, belief state, and approximation representations,
but it should be clear that the general ideas apply much more
broadly. Investigation of other instantiations of this model is
ongoing. Of particular importance is the use of this approach
with more compact utility functions representations (such as
decomposed additive models), and exploiting independence
in the belief state representation as well (which in turn en-
hances computation by reducing the inherent dimensionality
of the Q-functions). Allowing more general queries is of ob-
vious importance.

Maximizing “system utility” rather than “user utility” is an
interesting variation of this model: in this case, knowledge
of the user’s utility function is useful if it enables good pre-
diction of the user’s behavior (e.g., purchasing patterns). The
system then wishes to maximize its own utility (e.g., profit).
One might also consider a game-theoretic extension in which
a user wishes to conceal her preferences (to some extent) to
foil this aim. Indeed, this form of elicitation could play an
important role in automated negotiation and bargaining. Fi-
nally, effectively modeling long-term interactions (e.g., cap-
turing utility functions that change over time), and learning
suitable response and dynamics models, present interesting
challenges.

Acknowledgements
Thanks to Fahiem Bacchus, Sam Roweis, Dale Schuurmans,
and Rich Zemel for their helpful discussions, and to the
anonymous referees for their comments. This research was
supported by Communications and Information Technology
Ontario, the Institute for Robotics and Intelligent Systems,
and the Natural Sciences and Engineering Research Council

of Canada.

References
[1] Dimitri P. Bertsekas.Dynamic Programming: Deterministic

and Stochastic Models. Prentice-Hall, Englewood Cliffs, 1987.

[2] Christopher M. Bishop.Neural Networks for Pattern Recogni-
tion. Clarendon, Oxford, 1995.

[3] Craig Boutilier. On the foundations ofexpectedexpected util-
ity. (manuscript), 2001.

[4] Craig Boutilier, Fahiem Bacchus, and Ronen I. Brafman. UCP-
Networks: A directed graphical representation of conditional
utilities. InProceedings of the Seventeenth Conference on Un-
certainty in Artificial Intelligence, pages 56–64, Seattle, 2001.

[5] U. Chajewska, L. Getoor, J. Norman, and Y. Shahar. Util-
ity elicitation as a classification problem. InProceedings of
the Fourteenth Conference on Uncertainty in Artificial Intelli-
gence, pages 79–88, Madison, WI, 1998.

[6] Urszula Chajewska, Daphne Koller, and Ronald Parr. Making
rational decisions using adaptive utility elicitation. InProceed-
ings of the Seventeenth National Conference on Artificial Intel-
ligence, pages 363–369, Austin, TX, 2000.

[7] Hsien-Te Cheng.Algorithms for Partially Observable Markov
Decision Processes. PhD thesis, University of British
Columbia, Vancouver, 1988.

[8] Simon French. Decision Theory. Halsted Press, New York,
1986.

[9] Eric A. Hansen. Solving POMDPs by searching in policy
space. InProceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence, pages 211–219, Madison, WI,
1998.

[10] Milos Hauskrecht. Value-function approximations for partially
observable Markov decision processes.Journal of Artificial In-
telligence Research, pages 33–94, 2000.

[11] R. L. Keeney and H. Raiffa.Decisions with Multiple Objec-
tives: Preferences and Value Trade-offs. Wiley, New York,
1976.

[12] Long-Ji Lin and Tom. M. Mitchell. Memory approaches to re-
inforcement learning in non-Markovian domains. Technical
Report CS–92–138, Carnegie Mellon University, Department
of Computer Science, May 1992.

[13] Ronald Parr and Stuart Russell. Approximating optimal poli-
cies for partially observable stochastic domains. InProceed-
ings of the Fourteenth International Joint Conference on Arti-
ficial Intelligence, pages 1088–1094, Montreal, 1995.

[14] Richard D. Smallwood and Edward J. Sondik. The optimal
control of partially observable Markov processes over a finite
horizon.Operations Research, 21:1071–1088, 1973.

[15] Sebastian Thrun. Monte Carlo POMDPs. InProceedings of
Conference on Neural Information Processing Systems, pages
1064–1070, Denver, 1999.

