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Abstract

Preference elicitation is a key problem facing the
deployment of intelligent systems that make or rec-
ommend decisions on the behalf of users. Since not
all aspects of a utility function have the same im-
pact on object-level decision quality, determining
which information to extract from a user is itself a
sequential decision problem, balancing the amount
of elicitation effort and time with decision quality.
We formulate this problem as a partially-observable
Markov decision process (POMDP). Because of the
continuous nature of the state and action spaces of
this POMDP, standard techniques cannot be used to
solve it. We describe methods that exploit the spe-
cial structure of preference elicitation to deal with
parameterized belief states over the continuous state
space, and gradient techniques for optimizing pa-
rameterized actions. These methods can be used
with a number of different belief state representa-
tions, including mixture models.

Introduction

users to asse$8; 11]. The burden of elicitation can be less-
ened considerably in a givespecificdecision scenario (or a
restricted set of scenarios). An optimal decision can usually
be made without full knowledge of a user’s preferences. For
example, if some outcomes (or attribute values) simply aren't
possible in a specific situation, the utilities for those outcomes
(or values) have no bearing on the decision problem. Fur-
thermore, even “relevant” utility information may have only
marginal impact on decision quality. If the cost of obtaining
that information exceeds the benefit it provides, then this in-
formation too can be safely ignored.

The development of optima&licitation strategiesthat ad-
dress the tradeoff between effort expended in elicitation and
the impact on object-level decision quality, has been explored
very little. The chief exception is the work of Chajewska,
Koller, and Parfi6], who model this problem by assuming
a distribution over utility functions, and refining uncertainty
over auser’s utility as queries are answered. Their myopically
optimal elicitation strategy involves asking the (single) query
with greatesexpected value of informatiavith respect to the
current distribution.

In this paper, we extend this point of view in several ways,
the mostimportant of which is viewing elicitation aseguen-

Preference elicitation (PE) is a fundamental problem in thg;5 decision problem to be solved (approximately) optimally

development of intelligent decision_ tools and autonomous$,iher than myopically. Intuitively, a myopic approach can
agents. Software and agents of this type are often chargedjj 1o ask the correct questions because it neglects the value
with the task of making decisions, or recommending coursesy f,yre questions when determining the value of tuerent
of action, for a specific user. Making optimal decisions on be'question. As is well known (and as we demonstrate), greedy
half of a user requires knowing some information about hefy 5 rgaches to computing value of information can underesti-
preferences or utility function. Itis important to keep in mind i a¢e the value of information if value can only be obtained
that utility functions can vary widely from user to user (evenfom 5 sequence of queries. Specifically, if no single question
while the other ingredients of a decision scenario, Such as sygy, cayuse a change in the optimal decision, amyopic approach
tem dynamics, remain fixed across users). For this reasolyj| never try to reduce its uncertainty. The model[6f can
preference elicitation—the process of extracting the necessagygjly pe extended to do multistage lookahead, overcoming
preference or utility information from a user—is arguably oneynis gifficulty. However, since the required computations in
of the more important problems facing Al. Applications of {his model are online, we instead pose the elicitation problem
elicitation processes are pervasive, ranging from low-stakegg 5 partially-observable Markov decision process (POMDP).
decision processes (€.g., the control of user interaction withe pOMDP perspective also allows for more suitable termi-
a product Web site) to critical decision assessment systeMgation criteria, noisy response models, and permits policies
(e.g., clinical decision makingp; 6). -~ o to be constructed for arbitrary belief states (rather than solv-
The elicitation of preference and utility functions is com- i the problem online for a fixed prior). In addition, optimal
plicated by the fact that utility functions are very difficult for \,o),e functions (and implicitly, optimal policies) can be com-
Copyright(© 2002, American Association for Artificial Intelligence puted offline, allowing for fast online response during the elic-
(www.aaai.org). All rights reserved. itation process itself.



Conceptually, the POMDP formulation is straightforward; Since EU is linear isu, EU (d, P) can be computed easily if
but practically, difficulties emerge because of the continuthe expectation of w.r.t. P is known. In such a state of uncer-
ous nature of the underlying state (utility function) and ac-tainty, the optimal decision is thdt with maximum expected
tion (query) spaces. We propose several methods for dealingility EU (d*, P). We denote byWEU (P) the value of be-
with these problems that exploit the structure of the elicitationing in state ofP, assuming one is forced to make a decision:
problem. In particular, we propose an approach to approxdEU (P) = EU(d*, P).*
imating the optimal value function that handles the continu- In order to reduce its uncertainty about the user’s utility
ous action and state spaces of the POMDP effectively, and afunction, the system has available to it a sejadries). With
lows for the concise representation of value functions for beeach query; is associated a finite set of possibésponses

lief states represented using mixture models. R, = {r;, -, rg' . Acommontype of query is thandard
gamble w.r.t. outcome, where the user is asked if she prefers
2 The Underlying Decision Problem s; to agamble in which the best outcomeoccurs with prob-

bility [ and the worst; occurs with probabilityt — 7 [11].

ote thatu(st) = 1 andu(s,) = 0 given our normaliza-
&ion assumptions. We designate this qug(y) and focus our
r%ttention on standard gamble queries. Of course, many other

We assume that we have a system charged with making a d

cision on behalf of a user in a specitiecision scenarioBy

a decision scenario, we refer to a setting in which a fixe

set of choices (e.g., actions, policies, recommendations) a L .

available to the system, and the (possibly stochastic) effecUETY types can be captured yv|th|n our generic model.

of these choices are known. The system’s task is to take the 0" Standard gamble queries we have a binary response

decision with maximum expected utility with respect to the SPaC€:£(q) = {yes, no}. The responses to a query may be

user’s utility function over outcomes, or some approximation0iSy: We assume @sponse modedf the formPr(r g, u)

thereof. The system may have little information about theVhich denotes the probability of any respongec R, to

user’s utility function, so to achieve this aim it must find out questiong by a user with true utilityx. To keep the presen-

enough information to enable a good decision to be made. Wtion simple, we assume fixed false positive and false nega-

assume that the system has available to it a set of queries it céiie probabilities for each query type soPr(yes|qi(l), ui <

ask of the user that provide such informatfon. 1) = py,, while Pr(nolg;(1),u; > 1) = pj,. We letpy, =
Formally, assumedecision scenarigonsists of a finite set 1 — p}n andp!, = 1 — p}p be the probabilities of “correct”

of possibledecisionsD, a finite set o, possible outcomes (or positive and negative responses.

states)S, and a distribution functio®r,; € A(S), for each Finally, each questiophas a cost(q). This reflects the dif-

d € D.2 The termPr,(s) denotes the probability of outcome ficulty the user is expected to have in answering the question

s being realized if the system takes decisibrA utility func-  due to the mental burden in imposes on the user, the compu-

tionwu : S — [0, 1] associates utility:(s) with each outcome tational costs associated with computing an answer, the time

s. We often viewu as an-dimensional vector whoseith  required to process the question, or many other faétors.

componentu; is simply u(s;). We assume that utilities are ~ Given a responseto a questior, the updated conditional

normalized in the rang@, 1] for convenience. Thexpected densityP,. can be determined by application of Bayes rule:

utility of decisiond with respect to utility functionu is: Pr(r|q, u)P(u)

EU(d,u) = pgu =Y Pra(s;)u; Brlw) = Plulr) = 5 o pwan Y
€S

The (myopic)expected value of information (EVO®f a
Note thatEU (d, u) is linear inu. The optimal decisior* guery can be defined by considering the difference between
w.r.t.  is that withmaximum expected utility (MEU) MEU(P) and the expectation (w.r.t) of MEU(P,). A

In general, the utility functiom will not be knownwith cer-  query can be deemed worthwhile if its EVOI outweighs its
tainty at the start of the elicitation process (nor at its end). Foleost, and a myopically optimal elicitation strategy involves
lowing [6], we model this uncertainty using a densityover  asking queries with maximal EVOI at each pdi6.
the set of possibly utility functions

U={u:0<u<1}=10,1]" 3 Preference Elicitation as a POMDP

Value of information plays an important role in good elicita-
tion strategies, as proposed ). We take a different, though
similarly motivated, approach by formulating the elicitation
problem as a POMDP. This view makes the sequential na-
_ ture of the elicitation problem clear and avoids problems fac-
EU(d,P) = P(u)d . - ,
(d, P) /pdu (u)du ing myopic EVOI. Furthermore, by posing the problem as a

If a system makes a decisiahunder such conditions of un-
certainty, the expected utility efmust reflect this. We define
the expected utility ofl given densityP overU as follows:

We use the term “queries” for concreteness; any interaction with  “Taking the expectation w.r.2(U) is not unproblematic: certain
a user can provide (noisy) information about her utility function.  “calibration assumptions” of the elementdofs necessary to ensure
2The extension of our elicitation methods to a set of possible dethat this expectation makes sefide We do not discuss this subtlety
cision scenarios is straightforward. further, but the disquieted reader can tr&aas expected monetary
3If wis represented using some more concise model, such as a liwalue or some other surrogate.
ear utility model[11] or a graphical modd#],  is simply the vector 5To keep the model simple, we assume questions have a constant
of parameters required for that model. All results below apply. cost, though costs depending arare often reasonable.



POMDP we have access to solution techniques for construct-
ing a policy that covers all possible initial belief states (as
opposed to one policy designed for a fixed prior agal).

Of course, many computational difficulties must be overcome
(see the next section); but if these can be surmounted, the ad”
vantages of a full POMDP formulation are clear.

3.1 A POMDP Formulation

The POMDP formulation is quite direct. The set of system
states id/, the set of possibly utility functions. The set of be-
lief states of the POMDP is simply the set of densities over
U. Since our state space isalimensional continuous space,
we will require some parameterized representation of belief
states. The system dynamics are trivial: the underlying utility ~ Figure 1. Update of Gaussian after quer{0.5).
functionw never changes, so at each tima: is exactly as
it was at timet — 1. The actions available to the system are
queries) and decision®; we letA = QUD. Queriesinduce belief state update using standard gamble quérigpecifi-
no change in the underlying system statéut do provide in-  cally, under our model, if? is Gaussian, the®®, is a mix-
formation about it. Each decisiahis a terminal action. The ture of twotruncatedGaussians, as shown in Figure 1. For in-
coste(q) of questiony is state-independent; but the terminal stance, given the answeg#s to queryg; (1), we havepP, (u) =
reward associated with a decisiédoes depend on the state: o~ P(u) if u; < landP,(u) = ot P(u) if u; > [, where
Rew(d,w) = EU(d,u). The sensor modelforthe POMDPis « = pj, [, _, P(u) +pj, [, -, P(u) is a normalizing con-
the response modek(r,|¢, u). Assuming standard gamble stant,a~ = pi,/a anda™ = p /a. The relative weights of
gueries, we have_acontlnuous action space: for each outcome. 1o components is given by,~ — a- P(u) and
si, we have queries of the forgy(!) for any! € [0, 1]. We as- N N
sume an infinite horizon model (since the process terminated” = @ >, P(w)-
at an unspecified time) with discount factar While Gaussian mixtures aren't closed under update, after
We can formulate the optimal value function and policy us-conditioning on a response, this “truncated” mixture model
ing the standard Bellman equations over the fully-observabléan be sampled and refit using a standard method such as EM
belief state MDF{14]. We define the optimal value function 12]- This technique is adopted i6]. An alternative we con-

u; <l

V*, ranging over belief stateB, as: sider here is to use mixtures of truncated Gaussians directly as
a belief state representation. This has two advantages. First,
V*(P) = max Q,(P) one needn'trefit the belief state using computationally expen-
acA sive procedures like EM—given an initial mixture, we sim-

where the Q-function®* are defined for each query and de- ply retair_1 the truncated mixtures that result from updating_ af-
cision. For decisiong, we haveQ(P) = EU(d, P). For ter a series of queries. Second, because the truncated mixture

queriesy; (1) we parameteriz&* by the lottery probability: is exact with respect to the initial belief state, no belief state
! approximation is needed. A drawback is that the number of
* — _ * truncated components doubles with each update. A suitable
Qi P) = ela:(1)) +VZ Pr(rla(), PYV(Pr) compromise involves maintaining a truncated mixture until
the number of components becomes unwieldy, then refitting
Finally, the optimal (stationary) policy* is given by the ac- this model to a new mixture using EM.

rER

tion, decision or query, maximizing the value function. We also consider the use of uniform distributions, a para-
metric form that meshes well with the queries at hand. We use
3.2 Belief State Representation a prior consisting of a mixture @f uniform distributions. Up-

) ) o ] dating a uniform after query; ({) results in a mixture of two
Because the underlying state space is a multidimensional COpnjforms identical to the original except with the upper and
tinuous space, solving a POMDP of this type, as well as pefwer bounds in dimensioirevised. Again, EM can be used

forming belief state maintenance for policy implementation ;s reduce the number of components periodically.
requires a reasonable belief state representation. In such cir-

cumstances, some parametric formis often used; for instancg,3 Difficulties Facing the Formulation
ann-dimensional Gaussian might be used to represent be“Even with good belief representation, standard methods for

states (perhaps truncated at the utility boundaries). Particle fi “olving a POMDP cannot be used. Methods for finite spaces
ter models can also be used to solve continuous state POMD rély on the fact that the optimal value function is (approxi-

[15]. mately) piecewise linear and convex (PWLIE¥]. Contin-

One difficulty with parametric models is their inflexibility. ;5 state problems require some form of special structure
A mixture of Gaussians offers considerably more flexibility

in this regard—this representation is adoptefigh A diffi- ®For certain forms of queries, Kalman filter-like techniques can
culty with Gaussian mixtures is that they are not closed undelse used for updating Gaussians however.



(such as Gaussian belief states, linear dynamics, etc.) or thalue, we then train our approximat@s with inputs! and@

use of function approximation. The value function for the and output,,c.,.

elicitation POMDP has no convenient closed form, so func- Unfortunately, the computation of Eq. 2 is not straightfor-
tion approximationis needed. Let our belief state have a paraward. First, the resulting densities are mixtures of the un-
metric form with parameter vectd@ (e.g., the weights of a derlying components. For instancefifs a truncated Gaus-
Gaussian mixture together with the mean and covariance paian, therf),.; is a mixture of two truncated Gaussiambgs

ran"neters~of each compgnent). Our goa! is then to construct aéhdef,es: with mixing weightsa; andas. Unfortunately, the

estimatel’ () of the optimal value function. ~ value function (via the Q-functions) is only defined for single

~ Several general approaches to value function approximaomponents. Furthermore, determiniri¢f ) from the Q-

tion for POMDPs have been proposed. Those motivated bjinction approximators requires the solution of:

the PWLC nature of the value functi¢n; 13 are not appro-

priate here. More general approximators, such as feedforward (0 yes) = max[max Qa(6yes ), max max Qi(0yes, )] (3)

neural networks, seem more promisiag]. Grid-based mod- o o . .

els[10] can also used, but require computationally demandin?"""x”'n'zatIon over decisiong and query typeg; is straight-

projections (refitting) of updated belief states for each DP upiorward, butmaximizing over the continuous inpig less so.

date. Policy search methofi and clustering to discretize (Similar remarks obviously apply t6(6..).)

utility spacel5] might also be used. We deal with the first problerr_l by taking advantage of
We'll also require a method for dealing with the continuousthe fact that we construct Q-functions—rather than the value

action space. Again, unless there is some special structurinction directly—to determine Q-values of the necessary

special techniques will be required to handle the large actiofixtures. Specifically, suppose we have belief sthte=

space. Fortunately, our action space is well-parameterize@161 + 20> that is the mixture of two components. Then

specifically, we have a finite number of query typeswith the expected value of a decisidrior the mixture is:

each type parameterized by a lottery probability Qa(0) = Qa(a101 + a202)

4 An Approximation Technique for PE = 1Qu(61) + 2Qa(6>) ()

To deal with the difficulties described above we propose éA‘ similar fact holds for queries:
technique for solving the PE POMDP using a suitable func- "
tion a;?proximation grchitecture. We assun?e our belief statEOPOSIION 1 Qi(@161 + a262,0) = a1Qi(61,1) +
is captured by a mixture model with an unspecified number of)‘QQi (62,1)

components (recall that generally the number of componentsroof: Let # denote the mixture;8; + a,68,. We observe
increases over time). Our aim will be to compute the valuehat the update & given responsges to queryg; (1) is a mix-
function only for a single parametric component rather thanyrev¢* = ¥ 0Y* + al*° 0y, where

for the entire mixture. Online policy implementation will re-

quire that we use this “single component” value function to al® = M7 al® = a2 Pr(yes|02) (5)
determine the value of a mixture density. Pr(yes|0) Pr(yes|0)

— . and@?** is the update of the componefit given ayes re-
4.1 Approximating the Value Function sponse. Similar expressions hold #t°.

We usef to denote the parameter vector for a single be- Letting ¢ denote the query cost and suppressing the query
lief state component. Rather than approximating the value;(I) on the righthand side of the conditioning bars, we have:
function directly, we will compute Q-functions, one for each . _ yes no

query typeg;. The approximatof), (i, 6) is parameterized (1) = ¢+ Pr(yes|)V(677) 4 Pr(nol0)V(6™)]

by the lottery probabilityl. We don't approximate), for = c+7lar” Pr(yes|@)V(677) + a3™ Pr(yes|0)V (057)
decisionsi, since their exact computation is straightforward. + ai’ Pr(no|@)V(01°) + a3’ Pr(no|0)V (65°)]

We assume an approximation architecture with parameters or = ¢ + v[a1 Pr(yes|01)V (0Y*) + az Pr(yes|@2)V (05%)
weightsw, that can be trained in some standard fashion. We + a1 Pr(no|01)V(07°) + a2 Pr(no|62)V (63°)]

also assume that th@; are differentiable with respect td _ P ves) 4 p no

We solve the PE POMDP using a form of asynchronous B C+7[QIP( r(ye‘zol‘)/vg(gi )41; r(ngol‘)/vézf )
approximate value iteratidid]. At each iteration we sample + aa(Pr(yes|62)V(6;7) + Pr(no|62)V(63"))]

a (non-mixture) belief stat@ and a queryy; (1) according to = a1Qi(01,1) + 22Qi(02,1)

some sampling schedule. We compute the backed up Q-valugpe third equality is obtained using the expressions in Eq. 5
of queryg;(1) at stated using the current approximations:  (and analogous expressions for theresponse)=

(0,1) = clg; P i(1),0)V (0 yes i ) L
Qi(0.1) =cla) + ’Y[Pr(yeé"ql( )0 2/ ‘(9 ves) + 5 We deal with the second issue, maximization, as follows.
r(nolgi(l), )V (o] (2)  Maximization over the decisions € D is straightforward.
(heref,.. denotes the updated belief state given respgase For a given query;, the maximization over lottery probabili-

and similarly forno). Letting gn.., denote the backed up ties!is achieved using some suitable optimization technique.
For certain function approximators, this optimization may be

"We discuss approximation architectures below. computed analytically. Otherwise, since the approximator is



differentiable with respect to inpdt(which is true for most 084
common approximators), we can—given a fixed single com-

imum value of a query of the for for eachi, and then max-
imizing over thesgS U D| values. The value givenao re- R o
sponse is determined analogously. These are combined using ““c or 02 o3 e s oeT o7 oa a1
Eq. 2 to get an backed up estimatef( 0, [).

ponent belief state—approximate the valuexofx; Q;(0,1) osal
using gradient ascent. Specifically, sin%%g(f’—’” is defined,
we can find a local maximum readftyOf course B, is a 052}
mixture of two truncated Gaussians. But we can still use gra-
dient ascent by noting that: 3. ‘ ‘
0Qi(Byes ) 0Qu(OL ) DQi(6%,,1) ” 1 1
a M e Ty © | |
Consequently}(8,.s) can be determined by computing w w
the value of each decisieh using Eqg. 6 to determine the max- 0as| ! :

4.2 Online Policy Execution Figure 2: A 1-D View of a 2-stage Q-function.

The procedure above produces a collection of Q-functions,

one for each query typg. With this in hand, we can de- ; ; -

termine the optimal action for a single component belief5 Practical Tricks and Empirical Results
state @ as follows: computel,(0) for eachd, compute In this section we describe some preliminary empirical results
max; Q;(0,1) for eachg; using gradient ascent, then chooseusing the elicitation method described. In our experiments
the actiong or ¢;(1), with maximum value. The resulting be- we use mixtures of uniform distributions as our belief state
lief state is, however, a mixture. But even though we havenodel since updating and computing the required expecta-
computed Q-functions explicitly only for single components, tions is quite simple (as the model fits very well with the form
we can use these to directly determine the optimal action foof the queries we use).

a mixture using the ideas described above. Optimizing bver

for a mixture ofk components can be accomplished using the5.1  Practical Enhancements

same technique as optimizing for a 2-mixture (using the obvi-

ous extension of Eq. 6). We describe practical enhancemenfch Q-function approximator has as input the parameters of
to this scheme in the next section an n-dimensional uniform (i.e., upper and lower bounds in

Online policy implementation then consists of two basiceaCh d|men5|9n) as \_/vell as a query painall of our resylts
steps per stage: (a) if belief state= {6'[i], w'[i]} denotes usea_quadratlcfu_nctlon approximator. We have experimented
the mixture belief state at stagave choose the optimal action with linear approximators and feedforward neural networks as

for b, and execute it (either asking a query or recommendin ell. 'Linear apprqximators cllearly d(.) quite poorly, as the Q-
a decision); (b) if the action is a query, we update our belie unctions are o_bwously nonlinear. Figure 2_|Ilustrate_s al-D
state W.rt t,he response to produbée! afnd continue slice of the optimal two-stage-to-go Q-function at a fixed be-

One difficulty with this online policy implementation tech- lief state, which is uniform (in the dimension shown) on in-

nique lies in the fact that the number of mixture componentée%""I [g:?_‘f’ 0.7]. Th% Q'gj?ﬁtion is concav?h'vhand _quadfratic .
may quickly become unmanageable. If the prior is a singld" the difference of and the mean (over the region of posi-

component mixture, we will have (up t®) components after ive density)? Quadratic approximators seem to provide good

t queries. Note that this fragmentation is purely a function ofduality solutions over the range of the belief state. Given an
belief state update, and not due to policy implementapien n-d|mer_1$|onal belief sgace,. the quadratic approximator has
se But belief state maintenance is much more tractable if the” T 1 inputs, andO(n”) weights to be tuned. Tuning was
number of components s reduced periodically. One way to d§¢¢0mPlished using simple gradient descent in weight space
this is to prune components with low weight. This is compu-With momentum. Optimization over lottery probabilitiés
tationally feasible, but must be done with some care to ensur@/Nen C(_)f_mputlrgjg B?I_Ir?an br;t_ckups) )(Nazal\jl:ctt)lmbplgshed using
that important parts of “total belief space” are notignored. Anl© SPecific gradient information (instead MatlablNBND

alternative is to simply fit the current belief state to a smallefunction was used). The training schedule we used was as fol-
mixture model using EM. This is more computationally de- lows: we first trained the approximators with 2-stage-to-go Q-

manding, but will provide more accurate results if dramaticldNctions. The reason for this was that these backups require
0 “bootstrapping” since the one-stage function can be com-

reduction in model size is desired. Computation is a critical’ A e L X
uted exactly (since it involves only decisions not queries).

c_og_side;at_ion sincg refitting nzgds }lo be (Ijone online; but péJfhis helped quickly capture the quadratic dependence of Q-
riodic refitting can be managed intefligently. functions on the difference between the inpanhd the mean

8We can show that the optimal Q-function for queiig concave
in , thus if our approximator reflects this fact, we can be reasonably °In general, the optimatstage Q-function is a degrée polyno-
confident that a global maximum will be found. mial for a uniform distribution.



vector. After a fixed number of 2-stage backups at systemati °°*
cally chosen belief points, we generated random belief state
and queries and applied the backup procedure described intt  oos- 8
previous sectiod?
We exploit certain properties of value of informationto re- oot .
strict training and overcome approximator deficiencies. Foi
example, given a density with upper and lower boumdsnd
l; indimension;, a queryy; (¢) with c outside that range has no
value (i.e., will not alter the belief state). We restrict training
to queries that lie within the range of the belief state. Since***| ]
approximators generalize, they tend to assign value to querie
outside the range that dmverthan their true value, duetothe %% 7
nature of VOI (see Figure 2). For this reason, we restrict the
value of a query outside the range of the belief state to be equi o.ozs;- 8
to the value at its boundary. Although asking queries outside
the range of a single mixture component needn’t be consid ., w w w s w w w w
ered in unmixed models, assigning values to such queriesi ™ Goimanackps thousandy
necessary when computing VOI w.r.trraxture
Online policy implementation reflects the considerations Figure 3: Bellman Error (over 10 runs): Four outcomes.
described above. Our currentimplementation uses some sim-
ple pruning strategies to keep the number of mixture compo-
nents manageable (pruning components of low weight), but
no sophisticated refitting of mixtures. Because of the crude-

X . - when gradient information is used to do optimization. We
ness of the Q-function approximators, some heuristics are aI%

liman Error

dt . de. F I | ote, however, that: (a) the expense of this computation is
used 1o ensure progress Is made. For example, We only agt e offline; and (b) this level of Bellman error is approached
gueries such that the mass of the belief state on either side

L ng before all backups are completed.
the query point is greater than some threstdold 9 up P
o The value of offline value function construction is borne
5.2 Empirical Results out: determining the optimal action online takes minimal time

Our first example is reasonably small, involving a decision(several hundredths of a second) and scales linearly with the
problem with four outcomes, with six decisions. For each outnumber of mixture components. We report on a systematic
come, there is one decision that achieves that outcome witBvaluation of the number of queries in a longer version of
probability 0.7 (and each other outcome with probability 0.1).the paper, including a comparison to the greedy query strat-
The other two decisions achieve two of the outcomes witgy - Generally, the implementation asks few queries; but we
moderate probability 0.4, and the remaining two decision withd0 notice that frequently the procedure will become stuck in
low probability (0.1). Each query has a cosbdi8 and noise Ioop_s orask nonse_nsmal queriesdue tothe Ioose_ness ofthe ap-
parameter (i.e., false positive and false negative raxes)  Proximate Q-functions. We are currently exploring more re-
Recall that utilities lie in the rang@, 1]. fined approximators, including feedforward NNs, and piece-
Figure 3 shows a plot of the sampled Bellman error as dVise linear approximators.

function of the_n_u_mber of random backups, starting immedi- We also ran an example with 20 outcomes and 30 deci-
ately after the initial systematic sweep of belief space (6400Q;,,g * computation time per Bellman backup increases sub-
backups). Bellman error is determined by sampling 2000 ra stantially because of the need to optimize over 20 queries at

n
dom belief-state query pairs and evaluating Bellman error agach backup (and the increase in the number of approximator
each. Results are averaged over 10 runs (error bars Show stgfiza meters). Average backup time for 139000 2-stage back-
dard deviation w.r.t. these runs). Average error is on the Orhps is 0.002s, while for the 240000 full backups shown is

der of 2.5 per cent. Computation time for the initial baCk'O.57s. The quadratic approximator does a reasonable job of

gﬁfg i?hrgri]r;i(rengg gi;t?rﬁé;itgr?%\?gcgﬂgfyrsgmg_ngnbgssrt;g%'apturing the value function: average Bellman error for one
. I isill in Fi 4.
these 64000 these took 83s. For the other backups, computaa—lmp e runis illustrated in Figure

tion time is more intensive: the 160000 backups shown take To illustrate the difficulty with the myopic approach, we
on average 11899s (about 3.3 hours), or .074s per backup. Teempare the myopic strategy (8] to the sequential model
70-fold increase in time per backup is almost exclusively duejeveloped here on the following simple example. We have
to the optimization of the query probabilities when assessingeven outcomes, . .. , s7, and seven decisions, - - - , dr.

the max Q-value of a query type. This is largely due to theThe decisionsl; (i < 5) each have &.5 chance of causing
fact that our preliminary implementation relies on a genericoutcomes; ands; 1, while d causes eithes; or s;. Deci-
optimization procedure. We expect much better performancsionds, in contrast, is guaranteed to realize outcame

10All experiments were implemented in Matlab, under Linux, us- Suppose our prior over utility functions is
ing a PlIl 933MHz, 512Mb PC. given by the mixture of uniforms with the fol-



016 ; ; ; : : Is U(s6) < 0.9?
0.14 - -
yes no

012 A
% 008l i Is U(s4) < 0.9? Is U(s5) < 0.9?
° 0.06 i yes % no

0.04 8

002 ; i i i i Is U(s3) < 0.9? Best decision is d5

1 15 2 25 3 35 4
Bellman Backups x 10° yes %

Figure 4: Bellman Error: 20 outcomes, 30 decisions. L
Best decision is d1

Figure 5: Example Query Paths: Myopic Problem.
lowing six components (each weighted equally): g ple Query yop

S S S S S S S
b1 | [.911] [.921] [0 ?1] [0 4.11] [0 5.1] [0 6.1] [.77,8] agent can offer three distinct bids—Ilow, medium, and high—
b | [0.1] [.91] [91] [0.4] [0.1] [0.1] [.7.8] for each good. Each of these bid levels corresponds to a pre-
b3 | [0.1] [0.1] [91] [91] [0.1] [0.1] [.7.8] cise cost: should the bid win, the user pays the price associ-
by | [0.1] [0.1] [0.1] [91] [91] [0.1] [7.9] ated with each bid (with, of course, higher prices associated
bs | [0.1] [0.1] [0.1] [0.1] [91] [91] [7.8] with higher bid levels). To suppress the need for strategic rea-
bs | [91] [0.1] [0.1] [0.1] [0.1] [91] [7.8] soning, the agent has a fixed, known probability of winning a

. . good associated with each of the three bid levels. The proba-
For each belief componehitand stats;, this table shows the - pjjities of winning each good are independent, and increasing

range for whiclb; assigns positive (uniform) densitydds; ). in the bid level
Intuitively, this prior reflects the fact that the user prefers some  \with four gobds and three bid levels, there are 81 possible
pair of (adjacent) outcomes from the seti,... ,s6}, but  yecisions (mappings from markets to bids) and 16 outcomes

which exact pair is unknownsy is considered to be a safe (g, hsets of goods the user might obtain). The user’s utility
alternative. With this prior, myopic VOI associates no valuégnction need not be additive with respect to the goods ob-
to any query: a (noise-free) query can restrict the belief statgyi g For instance, the user might value gogdandgs in

to fewer than two components; but that will not be enough 0., pjynction, but may value neither individually. Thus utility
change the optimal decision w.r.t. the prior (whichi§. In s ass0ciated with each of the 16 outcomes. We assume that
contrast, the POMDP approach recognizes that the answers Qs oy eral| utility function (accounting for the price paid for

a sequence of (properly chosen) queries can ensure that a bglic, good) is quasi-linear; so the price paid is subtracted from
ter d‘?C'S'O” Is made. _ . . . the utility of the subset of goods obtain&d.

This problem was run using a similar training regime 10 pjot of the Bellman error as a function of the backups for
those described above, with 98000 2-stage backups followeg,q bidding problem is shown in Figure 6 for a single run of
by 160000 full backups. Bellman error quickly falls to the e problem.

0.025 range (i.e., about 2.5%) after the two stage backups o results are certainly preliminary, but do suggest that
and hovers in that range for the remainder of the trainingpjs approach to elicitation is feasible; since the model pushes
run. Backup up times for the 2-stage backup.i¥)14s per  4jmost all of the computational burden offline, computational
backup, while for full backups the time (5173s per backup.  concerns are mitigated to a large extent. However, our results
Two sample query paths for the specific prior above are showgsg suggest the need for further study of suitable approxima-
in Figure 5. It should be noted that function approximation er-tion architectures, and integration with paramaititity mod-

ror can cause the value of queries to be overestimated on ogig wjith parametric utility, large outcome spaces can be dealt

casion. On a number of runs, the policy executed asks seyjith ysing low dimensional belief states, which will certainly
eral questions about a specific utility dimension even thoughnnhance the feasibility of the model.

the current belief state contains enough information to recom-

mend the optimal decision. We expect better function approxg Concluding Remarks

imation strategies will help alleviate this problem. Again we ] o
point out that the myopic approach on this problem asks ndVe have described an abstraqt model of preference eI|C|tat|on
questions for this prior and simply recommends the alternathat allows for a system to optimally trade off the cost of elic-

tive, dec!S|orti7. . . . - 12The specific parameter settings used are as follows. The prices
As a final example, we consider a combinatorial bidding,ssqciated with low, medium, and high bids are2, 0.05 ando.1,

scenario, in which a bidding agent must offer bids for four dif- respectively (these are normalized on the utility sdala]). The

ferent goods auctioned simultaneously in four different marprobabilities of winning given a low, medium, and high bid, ar2

kets. To discretize the decision space, we assume that thes and0.85, respectively. These parameters are the same for all four

- markets. Query cost 501 and responses hav@#3 probability of
“Query cost i€).02 and noise probabilities afe03. being incorrect. The discount rate(95.
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Figure 6: Bellman Error: Bidding Problem.

(6]
itation with the gain provided by elicited utility information.
By casting the problem as a POMDP, the sequential and noisy
nature of the process is addressed, as is the need to construct
policies for arbitrary priors. Our function approximation tech- [7]
niques allow for optimization over continuous state and ac-
tion spaces, and permit one to determine appropriate actions
for mixture belief states despite the fact that we only computéél
value functions for single components.

We have described very preliminary experiments using sp9]
cific utility, belief state, and approximation representations,
but it should be clear that the general ideas apply much more
broadly. Investigation of other instantiations of this model is
ongoing. Of particular importance is the use of this approaci10]
with more compact utility functions representations (such as
decomposed additive models), and exploiting independence
in the belief state representation as well (which in turn en{11]
hances computation by reducing the inherent dimensionality
of the Q-functions). Allowing more general queries is of ob-
vious importance. [12]

Maximizing “system utility” rather than “user utility” is an
interesting variation of this model: in this case, knowledge
of the user’s utility function is useful if it enables good pre-
diction of the user’s behavior (e.g., purchasing patterns). Thei 3]
system then wishes to maximize its own utility (e.qg., profit).
One might also consider a game-theoretic extension in which
a user wishes to conceal her preferences (to some extent) to
foil this aim. Indeed, this form of elicitation could play an [14]
important role in automated negotiation and bargaining. Fi-
nally, effectively modeling long-term interactions (e.g., cap-
turing utility functions that change over time), and learning[1g]
suitable response and dynamics models, present interesting
challenges.
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