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Abstract

Utility elicitation is a critical function of any au-
tomated decision aid, allowing decisions to be tai-
lored to the preferences of a specific user. How-
ever, the size and complexity of utility functions
often precludes full elicitation, requiring that de-
cisions be made without full utility information.
Adopting theminimax regretcriterion for decision
making with incomplete utility information, we de-
scribe and empirically compare several new pro-
cedures for incremental elicitation of utility func-
tions that attempt to reduce minimax regret with as
few questions as possible. Specifically, using the
(continuous) space of standard gamble queries, we
show that myopically optimal queries can be com-
puted effectively (in polynomial time) for several
different improvement criteria. One such criterion,
in particular, empirically outperforms the others we
examine considerably, and has provable improve-
ment guarantees.
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new decision criteria are needed. In addition, methods
for the automatic generation of queries have been devel-
oped that reduce uncertainty or incompleteness in the util-
ity function with minimal effort. Within Al, probabilistic
models of utility function uncertainty have been uded

2]. By assuming a density over possible utility functions,
expectations over this density can be taken to determine the
value of a decision; and standard Bayesian updating tech-
niques can be used to account for the responses to queries.
A different perspective is taken in work on imprecisely spec-
ified multiattribute utility theory (ISMAUT)[8; 7] in which
linear constraints on multiattribute utility functions are re-
fined, allowing the set of Pareto optimal decisions to be iden-
tified; these constraints are often refined until one action can
be proven optimal. Boutilier, Bacchus and Brafni8@hand
Blythe[1] adopt a somewhat related perspective, also reason-
ing with linear constraints on utility functions.

In this work, we adopt a distribution-free model, work-
ing with linear constraints on utility functions, much like
ISMAUT. Unlike ISMAUT, we allow for decisions to be
made (or recommended) even when the incompleteness in
utility knowledge prevents us from proving a decision is op-
timal. In such circumstances, we adopt thenimax regret

As software for decision making under uncertainty become&ecision criterion. We also propose and examine several
increasingly common, the process of utility elicitation takesmethods for generating queries that reduce regret quickly,
on added importance. Tailoring decisions to a specific uselft contrast to work on ISMAUT (where quergeneration
requires knowledge of the user’s utility function, information Strategies have not been studied in depth). In this sense,
that generally cannot be built into software in advance. Inour model more closely resembles probabilistic modéls
domains as varied as travel planning, product configuration2l, which rely on the fact that decisions of goespected
and resource allocation, to name but a few, assessing a useftgality can be made with uncertain utility information. Using
utility function is an integral part of interactive decision mak- the minimax regret criterion, we generate decisions whose
ing.  Unfortunately, as is well-known among decision ana-quality (difference from optimal) can be bounded in the face
lysts, utility functions are unwieldy, complex, and difficult of incomplete utility information. These bounds can be traded
for users to articulatgs]. To mitigate these difficulties, ana- Off against query cost or minimum error requirements to
lysts have developed many techniques for easing the burdéh!ide the query process.
of elicitation. For example, structuring of multiattribute util-  The paper is organized as follows. We outline relevant
ity functions reduces the number of parameters that need to Heckground in Section 2 and define the minimax regret crite-
assesselb]; and the use aftandard gamble queriemnd sen-  rion for decision making with incomplete utility information.
sitivity analysis allows users to calibrate utilities more easilyWe show how decisions of minimax regret can be computed
[5]. using simple linear programs (LPs) if utility constraints are
More recently, emphasis has been placed on decision maknear. We also discuss incremental elicitation, focusing on
ing with incomplete utility information. The principle of standard gamble queries (SGJS§], the responses to which
maximum expected utility (MEU) cannot be used directlyimpose one-dimensional, linear utility constraints that can be
in such cases, since the utility function is unknown; thuseasily handled using LPs. Our key contribution is described



in Section 3, where we develop several myopic elicitationover unknown utility values:; are linear. We us€' C U to
strategies. Assuming linear constraints in each utility dimendenote the subspace GfsatisfyingC.

sion (an assumption consistent with the use of SGQs), we If a system makes a decisiehunder such conditions of
show that the minimax regret improvement offered by anyincomplete utility information, some new decision criterion

response to a SGQ, as a function of the (continuous) que
parameter, is piecewise linear (PWL) and weakly monotoni

mnust be adopted to rank decisions. Follow[3} we adopt
¢he minimax regret decision criteriof Define the optimal

(decreasing or increasing, depending on the response). Thiecisiond;, with respect to utility vectot to be

fact allows optimal queries under each query strategy to be

computed efficiently, in time linear in the number of utility

dy = arg max EU(d;, ).

attributes, despite the fact that query space is continuous. We - )
present empirical results comparing the different strategies iff the utility function were knowndy, would be the correct
Section 4, demonstrating the effectiveness, in particular, off€cision. Theegretof decisiond; with respect tau is

themaximum expected improvemetrategy.

2 Minimax Regret with Incomplete Utility
Information

R(d;,uw) = EU(dy,u) — EU(d;, u).

i.e., the loss associated with executifiginstead of acting
optimally. LetC C U be the feasible utility set. Define the

maximum regredf decisiond; with respect ta_' to be
We assume a system charged with making a decision on be-

half of a user in a specifidecision scenarioBy a decision MR(d;, C) = US%(R(d“ u)

scenario, we refer to a setting in which a fixed set of choices . ) - .

(e.g., actions, policies, recommendations) are available to th@"d the decisiod¢, with minimax regrewith respect ta’"
system, and the (possibly stochast_iq) effects of these choices d, = arg min MR(d;, C).

are known. For example, the decisions could be courses of d;

medical treatment with known probabilities for specific out-
comed4]. The system’s task is to take the optimal decision
with respect to the user’s utility function over outcomes, or
some approximation thereof. The system may have little in-

formation about the user’s utility function, so to achieve this, If the only information we have about a user’s utility function
it must find out enough information about this utility function is that it lies in the seC, thendy; is a reasonable decision.
to enable a good decision to be made. We assume that TH&Pecifically, without distributional information over the set
system has available to it a set of queries it can ask of the us@f possible utility functions, choosing (or recommendidg)

that provide such information. We make these concepts mor@inimizes the worst case loss with respect to possible real-
precise below. izations of the utility function (e.qg., if the true were chosen

by an adversary).

If C is defined by a sef of linear constraints, thedy,
as well asMMR(C) can be computed using a set of linear
programd3]. We can compute thpairwise max regretfor
any pair of decisiond; andd;,

PMR(di, d;, ) = max EU(d;, u) — BU (d;, u)

The (minimax) regret levebf feasible utility setC is
MMR(C) = MR(d¢,, C).

2.1 The Minimax Criterion

Formally, adecision scenarigonsists of a finite set of possi-
bledecisionsD, a finite set of» possible outcomes (or states)
S, and a distribution functioi*r, € A(S), for eachd € D.
The termPr,(s) denotes the probability of outcomebe-
ing realized if the system takes decisi®nA utility function

u : S — [0,1] associates utilityu(s) with each outcome
s. We often viewu as an-dimensional vectot, whoseith
componentu; is simply u(s;). We assume that utilities are
normalized in the rang@®, 1] for convenience. Thexpected
utility of decisiond with respect to utility function is:

EU(d,u) = Z Pra(s;)u;.
i€S

using an LP (i.e., maximizing a linear function of the un-
known outcome utilities subject ). SolvingO(|D|?) such
LPs, one for each ordered pair of actions, allows us to iden-
tify the decisiondy, that achieves minimax regret and to de-
termine the minimax regret levé{MR(C).

2.2 Incremental Elicitation

Given partial knowledge of a utility function in the form of
constraint set, the optimal decisio§, may have an unac-
ceptable level in regret. In such a case, a user could be queried
in order to reduce this level of uncertainty, thus generally im-
Jproving decision quality.

Note thatEU(d, u) is linear inu. The optimal decisior*
w.r.t. » is that withmaximum expected utility (MEU)

In general the utility functiom will not be known with cer-
tainty at the start of the elicitation process, nor at its end. A
in ISMAUT [8; 7], we model this uncertainty by assuminga  2Minimax regret is often used for decision making undict
set of linear constraintd over the set of possibly utility func- or unquantified uncertaint}s], but its application to imprecisely
tionsU = [07 1]”_ More precisely, we assume that constraintsknown utility functions appears not to have been considered in the
- decision analysis literature.

1The extension of our elicitation methods to a set of possible 3Note that max regret cannot increase with additional utility in-
decision scenarios is straightforward. formation: ifC C C’, then MMR(C) < MMR(C").



A common type of query is a standard gamble w.r.t. out-soning, myopic approximations tend to be used frequently in
comes;, where the user is asked if she preferso a gam-  practicel5; 4.
ble in which the best outcomer occurs with probability
and the worst , occurs with probabilityt — 7 [6]. We will 3 Myopic Elicitation Strategies
designate this query;(!) and focus our attention on such

standard gamble queriesr SGQs! Given a responsges In this section we describe three myopic strategies for query

to queryq;(1), the constraint; > [ can be imposed on the selection under the minimax regret criterion. Throughout this
k2 1 T

user's utility function, thus (in general) refining our knowl- S€ction we make the following assumptions:

edge; similarly, ano response corresponds to the constraint(a) The initial constraints have the form of upper and lower
u; < . A response to any standard gamble query imposes bounds in each utility dimension (these may be trivial
a one-dimensional (i.e., axis parallel) linear constraint on the bounds, 0, 1).

utility set. Thus if our initial constraint s€tis linear, comput- éb) SGQs are asked, assuming some known best and worst
ing the minimax optimal decision after a sequence of SGQS * ;icome. These ensure that each constraint set (after any
can be accomplished using the LP method above. Further- query) has the same form as the initial set (i.e., a hyper-

more, ifC consists of a set of bounds on utility values in each rectangle). We denote hyb; and!b; the current bounds
dimension—i.e. forms a hyper-rectangle withif, 1]"— on the utili.tyu- of oUtCOMEs: . !

then after any sequence of SGQs, the feasible utility set re- o . )

tains this form. (c) For simplicity, we assume a threshelds used to imple-
The interactive decision making context we consideris one ~ Ment termination; that is, when the predicted improve-

in which queries are asked repeatedly until the minimax re- mentof a query falls below, we terminate the process.

gret level falls to some acceptable value. At that point thewe discuss the impact of relaxing these assumptions later.

“optimal” decision, that with minimax regret given the cur-

rent constraints, is recommended. Termination can be bas&il Characterization of Regret Reduction

on simple thresholding, or can take into account the cost ofyyery selection is complicated by the fact that, in general,
a query (which can be weighed against the predicted imthere aren typesof SGQs that can be asked—one per out-
provement in decision quaht?).Ge_neraI!y, gueries W|I_I be comes;—and a continuous set of instances of each type
asked that offer the greatest predicted improvement in demqi(l) for eachl € [Ib;, ub;]. Whatever criterion is used to
sion quality. select queries, it must distinguish among queries in this

Both query selection and termination rely critically on the dimensional continuous space.
way in which “predicted improvement in decision quality”  Before describing the three strategies, we characterize the
is defined for a query. For example, when asking a queryeduction in minimax regret offered by a response to a SGQ.
q:(1) with respect to current constraint gtwe obtain two  Assume current constraint &t with boundsub; andib; in
constraint sets’,, andC,.,, respectively, given responses, dimensioni. Given queryg; (1), with Ib; < [ < ub;, a nega-
no andyes. We might then define the improvement in de- tive response will provide us with a refined set of constraints
cision quality associated with the query as some function o = — ¢ {u; < I}—i.e., it reduces the upper bound, on
MMR(Cp,) and MMR(Cyes). Such a method of evaluating ,,,—with (ideally) reduced regret. A positive response gives
gueries imyopic the query is evaluated in isolation, without ;5 g similarly refined constraint s@j...
consideration of its impact on the value or choice of future Focusing on the negative response, note that we'll end up
queries. ) o with differentC,,, sets depending on the query pointNat-

It is important to note that optimal query choice is inher- yrally, the closer the query pointis to ib;, the more infor-
ently nonmyopic—in general, a sequence of several queriegative a negative response is (since it constrajn® be in
may offer much more value than the aggregate myopic valuege interval[lb;, I]). Intuitively, we'd expect minimax regret
of the component queries. Unfortunately, nonmyopic meth+g be smaller given a tighter query. In fact, we can say more.

ods require some form of lookahead, and thus often imposgefine MMR,,, (C, i, ) to be MMR(C,.,) where theno is in
severe computational costs on the process of query selegesponse to quenry, (1). We have:

tion. For this reason, we focus on the development of several

myopic query selection strategies in the next section. ThiSheorem 1 For anyi < n, MMR,,,(C.i,1) is a PWL, non-

is analogous to the use of myopic methods for the apProXgecreasing function df ' T ’

imation of value of information in cases where uncertainty

is quantified probabilistically; while the computation of true Proof: For space reasons, we provide only an intuitive proof
value of information requires some form of sequential reasketch. DefinePMR(d,d’,C,i,1) = PMR(d,d’,C U {u; =
. [}); thatis, PMR(d,d’,C,1,1) is the pairwise max regret of

40ther types of queries could be considered, though we rely on . ;
. . : w.r.t. d’ given the current constrainpus knowledge that
the special nature of SGQs in some of our results. SGQs are usecél_ Z 7. Itis not hard to see thaPMR(d,d’,C,i,1) is a

widely in decision analysigb], and have been the main query type Ui = . o .
studié,d in recent Bayegiar[:st]alicitation scherfted]. Y BPE Jinear function ofi: maximizing the regret ofl w.r.t. d’ is

50f course, elicitation can continue until a zero-regret (i.e., opti-effécted by setting each component of the utility func-
mal) decision is identified: this occurs wheneg@ic R, for some  tion to either its upper bound (Prq(s;) < Pra(s;)) or
decisiond, the region of utility space for whichi is optimal. The lower bound (ifPrg(s;) > Pra(s;)). Since this max is
regionsR, are convex polytopes withity. achieved independently in each dimension, the contribution
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Figure 1: Structure of various functions in dimensienas a function of: (a) The PMR for d; (w.rt. di, dz, ds) are shown; as is
MR(d,C,1,1), the max (thin solid line) of pairwise max regret functiodgR,., (thick solid upper line) is obtained by replacing tRa/R
line d2 — d1 (with negative slope) by the constant line, and again taking the max/{6R .., (dashed line) is the min of th&/R,,, functions
for each decision; (c) Intersection 8fMR,,, and MMR ., gives maximin improvement in MMR.

to max regret in dimensions other thais constant, while improvement of query;(1):

the contribution to regret in dimensiargivenw,; = [ is lin-

ear inl, with coefficientPry (s;) — Prq(s;). It follows that MI(qi(1),C) =

MR(d,C,i,l) = maxy PMR(d,d’,C,1,1) is a PWL convex MMR(C) — max{ MMR,.s(C,i,1), MMR,,(C,1,1)}.

function ofi, since it is the max of these pairwise regret func- . - .
tions (see Figure 1(a)). At each stage, the query(!) is asked whose minimum im-

Now defineMR . (d,C,i,1) = MR(d,C U {u; < I}), the provement with respect to the current constraint set is max-
no b Y - ) T = H

max regret ofd after obtaining a negative response to query!M4mM- The process stops when no query has minimum im-

.(1). (Note that this differs fromR(d, C, i, 1), which is de- _Provementgreater than threshod . .
?in(e)d E)y assuming; = I, notu; < (l.) MRio(d7C,iJ) is To compute the optimal MMI query point, we find the

also a PWL convex function, obtained from the set of lin-OPtimal query point in each dimensianand ask the SGQ
ear PMR-functions that make up/R(d,C,i,1) as follows: corresponding to the d|menS|on_W|th greatest’ MMI. The
we replace any linear components with negative slope by th WL representation .Of the fUﬂCtIOWMRyES(C', 1) a'?d :
constant lineMR(d,C, i, Ib;). Intuitively, if the regret ofd MR,,,(C, i, 1) described above allows the optimal point in
w.rt. d’ after learningu; — | decreases with, then simply each dimension to be computed readily. The poitat of-

learning that,; < [ cannot reduce pairwise max regret, since.fers MM in dimensioni can b? determmed by computing the
ptersectlon of the two functions: since one is nondecreas-

this weaker constraint does not rule out the maximum regre' 4 the oth , ing. th . int of th
at! = Ib; (see Figure 1(a) for this intuitive flattening of the N9 @nd the othér nonincreasing, theé maximum point or the

: i N function max{ MMR,.s, MMR,,} must lie at the intersec-
regret line ford, — dy). This ensures tha¥/R ., (d,C, 4,1) is . vyes» . no Lo
also nondecreasing inas illustrated in Figure 1(a). tion. Note that the IFE]?;]%:“(?” musth_smst S|1nce§ eFachlras the
Finally, note that, by definition of minimax regret, Some Maximum vai (C) (see Figure 1(c)). Finally,

MMR,y(C,,1) = ming MRy, (d,C,4,1). The minimum of ' the value of the improvement in regret is the difference be-

a collection of PWL, convex, nhondecreasing functions is alsé[Ween the or_|g|nal minimax regret level and this value_. .
Computation of the intersection of these functions is

Ei\évul_r: ri(gbr;g)rldecreasmg (though not necessarily convex) (Ses?raightforward, requiring only the computation of the inter-

Note that this proof sketch shows how to construct a finiteseCtlon of the linear segments whose bounds overlap. As

epresentaton ofhe uncto 7, (C. 1) as e co- 2467, 1S C20 e Sccomprinecin near me n e
lection of linear functions and inflection points. By entirely 9 X 9

. X . 7
analogous reasoning, we also have: ments in these functions is (very_loc_)s_ely) bc_)undedlBV. _
Since we must compute the optimizing point for each util-

ity dimension, the complexity of this algorithm@(n|D|?).
Theorem 2 For any: < n, MMR,.(C,i,1) isa PWL, non-  The algorithm thus scales linearly in the number of outcomes
increasing function of. and quadratically with the number of decisions.

3.2 Maximin Improvement 3.3 Average and Expected Improvement

One difficulty with the MMI criterion for query selection is
hat, due to its worst-case nature, we can often find situations
fh which no query offers positive (minimum) improvement
(we will see evidence of this in the next section), despite the

One goal of any query strategy is to determine utility informa-
tion that reduces regret as quickly as possible. Unfortunatel
for any given SGQy; (), the exact reduction in regret can-
not typically be predicted in advance, since it differs depend
ing on whether aes or no response is obtained. Timeax- 8If the intersection occurs where both functions are “flat,” any
imin improvement (MMIuery strategy myopically selects query point in the intersection can be used.

queries with the besworst-caseresponse. More precisely, ’In practice, the number of segments appears to grow sublinearly
let C be our current constraint set. We define the minimumin the number of decision®].



fact that the current regret level is positive. This occurs wher ¢

T T T
-+ Predicted MMR by MEI

at least one of the responses for every query offers no im ol — Actual MMR by MEI i
provement, thus stalling the query process. Intuitively, just | _* = True Regret by ME|
because one response to a qug(y) offers no improvement osb | N -+ Actual MMR by Random Queries ||
is no reason not to ask the query: the opposite response m: \ - True Regret by Random Queries
still offer immediate improvemertThis suggests an alterna- g °7[ N )
tive criterion calledmaximum average improvement (MAI) & | \| |
SGQs are ranked according to the average improvement o & 1 RN
fered by both positive and negative responses. 'é os |\ RN 1

Computing the optimal query point according to MAI can % oal N N |
also exploit the PWL nature of the functioh&V/R ., (C, i, 1) £ TNT RN

= N

andMMR,,(C,1,1). As with MMI, we compute the optimal ol Ny N 7
guery point in each dimensiohindependently. It is not hard A+ ,

to see that the point of maximum average improvement mus  °2[ |\ ey }

occur at an inflection point of one of the two functions. Thus, | S |

each dimension can be optimized in time linear in the numbe %%

of segments in the two functions. o = L - = . = et
The MAI criterion is not subject to stalling in the sense that Number of Queries

MMlis: if MMR(C) is positive, then there exists some query
with positive MAI (this will follow from a result discussed Figure 2:Performance of MEI on three-good problems (40 runs).
below). However, it is subject to a different form of stalling:
it may well be the case that the quegy!) with MAI occurs
at one of the boundary point&; or [b;. In such a case, only
one (consistent) response is possible, imposing no addition&lroposition 1 If MMR(C) > 0, then there exists some query
constraints on the utility function. As such, the constraintg;(!) with positive expected improvement; and at least one
setC will remain unchanged, meaning that the same queryesponse to the MEI-optimal query reduces minimax regret.
remains MAI-optimal at the next stage.

This second type of stalling can be prevented. Suppose

ﬂ%}gyﬂfﬁgﬁj%f gpﬁ{}"ﬁ}%ﬁ?gf{ u—bi;dﬁ‘.el\fvifer;ogvﬁg}gt The MEI criterion could be adopted using other distri-
greater improvement at the poinb;); but sinceu; cannot  butional assumptions, though the optimization required by
exceedub;, the probability of receiving ajes response is query selection could become more complicated. It is worth
zero, so thges-improvement cannot be realized. We can thusnoting that the manner in which we use distributional in-
make the query; (I) appear to be less desirable by accountingformation is consistent with the worst-case perspective im-
for the odds of receiving a specific response. W@ximum posed by the minimax criterion. With some distribution
expected improvement (MHjiterion does just this. We de- gyer utility functions, we could adopt the perspective4f
fine the expected improvement of a query: 2], and make decisions by taking expectations with respect
to this distribution. However, even in this case, minimax re-
gret allows one to offeguarantee®n decision quality that a
Bayesian approach does not address. The MEI criterion ex-
At each stage, we ask the query with maximum EI. ploits distribu_tional informatiomnly to gui(_je the querying
X . . . process, hoping to reach a point more quickly where accept-
_Computation of expected improvement requires some disgp o o jarantees can be provided: the distribution is not used
tribution over responses. For simplicity, we assume a uniz, oy ajuate decisionser se
form distribution over utility functions and noise-free re-
sponses: thu®r(yes|qi(1),C) = (ub; —1)/(ub; — Ib;) (with While other prior distributions will generally require a dif-
the negative probability defined similarly). This assumptionferent approach to the optimization problem for query selec-
also allows for the ready computation of the MEI-optimal tion, it is interesting to observe that queries associated with a
query. Again, we optimize each dimension separately. Thénixture of uniform distributionsan be determined in exactly
optimization in dimensiori can be effected by doing sep- the same manner. The derivation of the optimal query given
arate optimizations in the regions defined by the union ofsuch a mixture is straightforward, and these models have the
the inflection points in the function8/MR,.(C,i,l) and  desirable property (like uniform priors) that they are closed
MMR,,,(C,i,1). We defer the details, but note that the func- under update by query responses. Thus, if our prior beliefs
tion being optimized within each region is a simple quadraticcan be approximated well using a mixture of uniforms with
function ofl that can be solved analytically. Thus the compu-a small number of components, MEI-querying can be used
tational complexity of this criterion is similar to that of MMI directly as described here, without distribution-specific opti-
and MALl. Fortunately, MEI is not subject to stalling: mization. It is important to note, however, that, even if the
approximate priors are used, the decision quality of the MEI
®Note that, since MMI is myopic, even a nonimproving responsestrategy is unaffected—only the number of queries required
may offer information that can be exploited in the future. may be adversely impacted.

EI(q:(1),C) = MMR(C) — [Pr(yes|qi(1),C) MMRyes(C,,1)
+ Pr(no|q¢i(1),C) MMR,.,(C,3,1)].



4 Empirical Results 1

We evaluated the MMI, MAI, and MEI query criteria on oo\ TT7F
a number of elicitation problems in two different domains.

With the MEI criterion, we have also tested its robustness tc  **[ ~1 T |
different assumptions about the prior over utility functions. ;|

We first tested our methods in two bidding scenarios in-5 | = -
volving simultaneous auctions and combinatorial preference § °6r = =41 T ]
[2]. In the first scenario, a bidding agent must offer bids fore | =~ L
four different goods auctioned simultaneously in four differ- §
ent markets. To discretize the decision space, we assume tt & oa- :
the agent can offer three distinct bids—low, medium, and$
high—for each good. Each of these bid levels correspond °%f
to a precise cost: should the bid win, the user pays the pric
associated with each bid (with, of course, higher prices as
sociated with higher bid levels). To suppress the need fo o1
strategic reasoning, the agent has a fixed, known probabilit ‘ T
of winning a good associated with each of the three bid lev- % 5 10 15 0 30 3 40
els. The probabilities of winning each good are independent, Number of Queries
and increasing in the bid level. With four goods and three _
bid levels, there are 81 possible decisions (mappings fronfigure 3:Performance of MAI on three-good problems (40 runs).
markets to bids) and 16 outcomes (subsets of goods the user
might obtain). The user’s utility function need not be addi- . ) . ) . .
tive with respect to the goods obtained. For instance, the us%’t“gar‘;’:]ete%ie{éegéa}gzmrf‘% gpt!'mé:%de_cr:fé?ggt%%i “?:?)tr rg@f](;?t
might value goodsg; andg, in conjunction, but may value 94 DE iaentimed with Tew | 1ons. -
negcher indivi%uallg. Thusg utility is] associated withyeach of €nce, we also include the performance of randomly selected
the 16 outcomes. We assume that the overall utility functiorlY€es (where both dimensie@and query point are chosen
(accounting for price paid) is quasi-linear; so the price p{j\ioumformly_ at rando'm from thg feaS|pIe region). Becquse the
is subtracted from the utility of the subset of goods obtainedProblem is of relatively low dimension, random queries per-
A smaller scenario with three goods was also run: this has Zzgpetr?gsz’zrr‘gbg];vgg, ntgfgggggtegv\?ﬁ/iﬁ (Iizllff(lqcuueltr)i/erseducmg
decisions and 8 outcomes. : ' y .

We first discuss the smaller (3-good) scenario. For each Figure 3 shows the same measurements for the MAI crite-
query criterion, we run elicitation using that criterion for 40 Mon. We note that this query strategy does not reduce regret
steps (or until no query has positive value). For each criounds nearly as quickly as the MEI strategy, reaching only
terion, 40 trials using random utility functions drawn from &N average regret guarantee of 0.18 after 40 queries. True re-
[0, 1] were run, with elicitation simulated using responsesgret is generally much better, but still does not approach the
based on that function. For each query in a run, we record?€rformance of MEI (or even random queries). We note that
(a) predicted MMR—the MMR level that is predicted to hold g:aet;vlveiltﬁ%ee:l?ans?frtneizi?rthLI)I(S:relzg rseutcvha?u%aslgi,n\l;ﬁ;c?tmigI\?\}grme
after asking the optimal query(b) actual MMR—the MMR ¢ Lo ’ !
level realizgd oncg the a?:tuaflyt(qu)ery response is obtained; af}pting that the MMI criterion performs extremely badly. We
(c) thetrue regret—the difference in utility between the mini- 90Nt plot its performance, but note that in all runs, it stalls
max decision and the true optimal decision for the underlyingtter @ maximum of five queries; its average minimax regret
utility function. While our algorithms don’t have access to P0Undis 0.8, and average true regretlevelis 0.3 when it stalls.
true regret, this measure gives an indication of true decision 1h€ MEI criterion appears to offer much better perfor-
quality, not just the quality guarantees the algorithms provide™ance than MAI, MMI, or random querying. Figure 4 shows

Figure 2 shows the performance of the MEI criterion (std.tN€ Performance of MEI, MAI and random querying strate-
error bars are shown on actual MMR and true regret, but arg1€S on the larger four-good (16-outcome, 81-decision) sce-

excluded from predicted MMR for legibility). We see that Nari0. Again we see that MEI converges quickly and outper-

the algorithm quickly converges to a point where the mmi_forms the other strategies. With the increase in dimensional-

max regret guarantees are quite tight: within 20 queries, thilY: random queries fare worse than MAI-optimal queries. We
average regret guarantee falls below 0.1 (less than 10%); afipte thatin all experiments, the optimal query (regardless of
within forty queries, decision quality is guaranteed to be withC'Iterion) can be computed very quickly.

4% of optimal. More interesting, we see thatie regret We have also tested the MEI criterion on a travel plan-
' ; ithin 20MiNg domain (as in the previous tests, MEI seems to domi-

queries. Thus the actual decision quality associated with acRate the other criteria, so we focus on it). In this domain,

ing according the decision with MMR is generally far better 21 @gént must choose a collection of flight segments from

than the MMR guarantee. The MEI criterion seems to selecf fight database to take a user from a source to a destina-
tion city [1]. To make the elicitation problem interesting, we

°For example, MMI predicts the maximum regret over all re- added the following information to the DB: the probability of
sponses, while MEI predicts the expected regret. any flight arrival being delayed by specific amount of time;
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Figure 4:Performance on four-good problems (40 runs). Figure 5:Performance on YYZ-SFO, with utility functions drawn
from uniform (40 runs).

the probability of missing a connecting flight as a function of ) o ) o
connection time and airport; a distribution over ground travelconsiderably from strong prior information. Indeed, minimax
times to a hotel in the destination city as a function of arrival'egretis reduced very quickly when a reasonable prior is used
time (reflecting, e.g., arrival in rush hour or off-peak); and thet0 select queries; and true regret is reduced to zero in every
probability of losing a hotel room as a function of arrival time instance of this scenario within four queries. Random query-
at the hotel. As a result, for any specific flight combinationing does very poorly, indicating that this problem is not easy
(decision), a joint distribution over these variables (outcome}0 solve without sufficient utility information. The robustness
is obtained. A user's utility function is quasi-linear, given of_l\/_IEI to inaccurate priors is also in evidence. We see _that
by her utility for a specific outcome over these four attributesMinimax regret and true regret are also reduced very quickly
less the flight price. The specific formulation discretizes thes@/hen an uniformative uniform prior is used to guide the MEI-
attributes, so the outcome space is of size 64. In our expefUerying process.
iments, the flight DB was designed to allow 20 flights (both
direct and indirect) between pairs of cities. 5 Concluding Remarks

We tested the MEI strategy using a uniform prior over util- . ) )
ity space to select queries, with user utility functions drawn¥Ve have presented a new procedure for decision making with
from the same uniform distribution. The results for a specificncomplete utility information which recommends decisions
source-destination pair (Toronto-San Francisco) are shown fat minimize maximum regret. We defined several different
Figure 5. As before, we see that the MEI strategy easily outtYOpic query selection criteria, and showed that myopically
performs random querying, both in terms of the regret guar®Ptimal queries under each criterion can be computed effec-
antees, and the true regret of the decisions it would recondively, in polynomial time. The empirical performance of one
mend at each stage. These results are representative of thGeh criterion, maximum expected improvement, proved to
obtained in other decision scenarios. be rather attractive: not only did it provide strong guarantees

We also explored the use of strong prior knowledge to2fter few queries, b_ut true decision quality tended to exceed
guide the querying process. We repeated the test above, drafff€S€ guarantees significantly.
ing user utility functions from a strongly peaked (truncated) Our work differs from existing approaches to preference
Gaussian distribution over utility space (with diagonal covari-€licitation in several important ways. Like recent Bayesian
ance matrix, and varian€e03 in each dimension). We tested approachebt; 2], our approach identifies a concrete decision
the MEI-criterion using a (hand-chosen) mixture of three uni-N the face of utility function uncertainty. Unlike these meth-
form distributions over subregions of utility space that very0ds, for the purposes of decision making, we assume only
roughly approximated the GaussihTo test the robustness  constraints on po_ssmle utility fl.!nCt.I0n§, not dlstrlbut|ons. As
of MEI to inaccurate priors, we also used MEI using a single? result, the minimax regret criterion is used to identify de-
uniform prior over all of utility space (despite the fact that Cisions with guaranteed error bounds on quality. Our use of
the true utility function is drawn from the Gaussian). The re-constraints on utility functions is more closely related to work

sults illustrated in Figure 6 demonstrate that MEI can benefien ISMAUT [8; 7]. However, the focus in ISMAUT is the
identification of Pareto optimal decisions in the face of utility

9n principle, this mixture could have been fit to the actual prior function uncertainty, as opposed to the choice of a specific de-
using, say, EM; but our goal is not accurate modeling of the prior. cision that maximizes some decision criterion. Furthermore,
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from a strongly peaked Gaussian. MEI querying using both a uni-
form prior and a 3-component mixture are shown (40 runs).

8
little attention has been paid to query strategies in ISMAUT,[ ]

which, in contrast, is our main focus.

There are a number of directions in which this work can
be extended. Obviously, scaling issues are of paramount
importance. We are currently exploring pruning techniques
for removing decisions from consideration that can never be
minimax optimal, thus reducing the quadratic dependence
on the number of decisions. We are also exploring meth-
ods for dealing with more general linear constraints (apart
from one-dimensional bounds), as well as more expressive
query types. Also of interest are methods for dealing with
noisy/inconsistent query responses, and visualization tech-
niques. Finally, we are developing heuristics that simulate
some of the effects of nonmyopic elicitation without explicit
lookahead. One such technique involves enumerating the ver-
tices of the region® ; of utility space in which each decision
d is optimal (the regions are convex polytopes). Queries at
those points can quickly help rule out suboptimal actions. We
hope to combine the computationally attractive methods de-
vised in this paper with more intensive techniques like this to
help reduce the number of required queries even further.
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