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Abstract

We present a technique for computing approximately optimal
solutions to stochastic resource allocation problems eode
as Markov decision processesdps). We exploit two key
properties to avoid explicitly enumerating the very lartpes
and action spaces associated with these problems. Fiest, th
problems are composed of multiple tasks whose utilities are
independent. Second, the actions taken with respect to (or
resources allocated to) a task do not influence the status/of a
other task. We can therefore view each task agzm How-
ever, thesa1DPs are weakly coupled by resource constraints:
actions selected for onedp restrict the actions available to
others. We describe heuristic techniques for dealing véth s
eral classes of constraints that use the solutions for iithatat
MDPS to construct an approximate global solution. We demon-
strate this technique on problems involving thousandssida
approximating the solution to problems that are far beybedt
reach of standard methods.
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which the state space of theop is divided into regions to
form subvDPs, so that th&DP is the union (in a loose sense)
of the sulmbps [10, 15]; and those in which the gubps are
treated as concurrent processes, with their (looselyseros
product forming the globakpp. In this paper, we focus on
the latter form of decomposition: it offers great promise by
allowing one to solve sWDPs that are exponentially smaller
than the globalipp. If these solutions can be pieced together
effectively, or used to guide the search for a global sofutio
directly, dramatic improvements in the overall solutianei
can be obtained.

The problems we address here are sequential stochastic
resource allocation problems. A number of differenttasks,
objectives, must be addressed and actions consist of aggign
various resources at differenttimes to each of these tag&s.
assume that each of these taskadditive utility independent
[13]: the utility of achieving any collection of tasks is the
sum of rewards associated with each task. In addition, we
assume that state space of thee is formed from a number
of features that, apart from resources, are relevant ordy to

Markov decision processes [12, 16] have proven tremengpecific task. Furthermore, an assignment of resourcesto on
dously useful as models of stochastic planning and decisiogysk has no bearing on the features relevant to any other task
problems. However, the computational difficulty of applyin - Thjs means that each task can be viewed as an independent
classic dynamic programming algorithms to realistic prob-gpprocess whose rewards and transitions are independent

lems has spurred much research into techniques to deal wit

the others, given a fixed action or policy (assignment of

large state and action spaces. These include function&pproresources)_l

imation [4], reachability considerations [8] and aggrémat
techniques [11, 6, 7].

One general method for tackling largeps isdecomposi-
tion[10, 15,17, 5]. AmnDPis either specified interms of a set
of “pseudo-independent” subprocesses [17] or autométical
decomposed into such subprocesses [5]. Theserssare
then solved and the solutions to thesensoibs are merged,

Even this degree of independence, however, does not gen-
erally make it easy to find an optimal policy. Resources are
usually constrained, so the allocation of resources toasle t
atagiven pointintimerestricts the actions available foeos
at every pointintime. Thus, a complex optimization problem
remains. If there are no resource constraints, the pragesse
are completely independent. They can be solved individu-

or used to construct an approximate global solution. Thesgy and an optimal global solution determined by conautrre
techniques can be divided into two broad classes: those igyecytion of the optimal local policies; solution time isete
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mined by the size of the smppPs. With resource constraints,
local optimal solutions can be computed, but merging them
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1This model can be applied more generally to processes where
the action can be broken into several components, eachtiaffec
a different process independently; resource allocati@ndpecific
example of this.



this paper. We note that in resource allocation problenes, thfor MTD’s success and future work.

action space is extremely large (every possible assignment

of resources to tasks), making other standard approximatio

2 Markov Task Sets

methods such as neurodynamic progrgmming [4] unsuitabley (finite) Markov decision procesis a tuple(S, A, T, R)
~ Singh and Cohn [17] treat a version of this problem,where: S is a finite set of states{ is a finite set of actiongf
in which there are constraints on the feasible joint actions g transition distributioff : S x 4 x S — [0, 1], such that
choi_ces. As they observe, the value functions produced i[p(s, a,-) is a probability distribution oves for anys € S
solving the sulibPs can be used to obtain upper and lowergnda ¢ A: andR : S x A x S — Ris a bounded reward
bounds on the global value function. These bounds are us&@nction. Intuitively, 7'(s, a, w) denotes the probability of
to improve the convergence of value iteration (via a form ofmoving to states when actior: is performed at state while

action eliminatior[16]) for the globalvbp. Unfortunately,
their algorithm requires explicit state-space and actipaee

R(s,a, w) denotes the immediate utility associated with the
transitions ~» w under actiomm. More generally, both the

enumeration, rendering it impractical for all but moderate probabilities and rewards maylen-stationary depending

sizedMDPS.

also on the time at which the action is performed or the

We take a different approach in this paper: we are willing totransition is made.

sacrifice optimality (assured in Singh and Cohn’s algorjthm

Given anMmbpP, the objective is to construct golicy that

for computational feasibility. To do this, we develop asale Mmaximizes expected accumulated reward over some horizon
greedy techniques to deal with variants of this problem (in0f interest. We focus ofiinite horizondecision problems.
which the types of resource constraints differ). A hallmark-€t #/ be our horizon: the aim is construct a non-stationary

of these heuristic algorithms is their division into two pha.
An off-line phasecomputes the optimal solutions and value
functions for the sulabps associated with individual tasks.
Inanon-linephase, these value functions are used to compute
a gradient for a heuristic search to assign resources to eac

resource assignments are reconsidered in light of the n
state entered by the system.
This problem formulation was motivated by a military air

policy 7 = (x%,---
value

, 771y, wherer® : § — A, whose

Vi (s)= B()_ R(s',7'(s"),sTY)

E maximum. Standard dynamic-programming methods [2,

ef6] can be used to compute a sequence of optinsdhge-to-

eﬂo value functions up to the horizon of interest, from which
an optimal policy can be derived.

We consider a special form efpp suitable for modeling

campaign planning problem in which the tasks correspond tgna stochastic resource allocation problems describeldein t
targets, and in which there are global constraints on tfa tot jhroduction. AMarkov task sefmMTs) of n tasks is defined

number of weapons available as well as instantaneous Copy

straints (induced by the number of available aircraft) am th
number of weapons that may be deployed on any single tim&

step. Actions have inherently stochastic outcomes and the

problem is fully observable. This type of problem structure®
is fairly general, though, and can also be seen in domains
such as stochastic job shop scheduling, allocation of repai
crews to different jobs, disaster relief scheduling, anddew e
variety of bandit-type problems [3].

We are able to solve problems of this type involving hun-
dreds of tasks (with a state space exponential in this number

and thousands of resources (with an action space factorial 7 is a vector of state transition distributiorf, . . .

in this number). Such problems are far beyond the reach
of classic dynamic programming techniques and typical ap-
proximation methods such as neurodynamic programming.
In Section 2 we discuss some relevant backgrouneims e
and define our specific problem class formally. In Section 34
we describeMarkov task decompositiofTD) as a means
of breaking down large, loosely coupled decision processeg
and describe, in very general terms, how solutions for the
subvbpPs might be used to construct a global solution in the
presence of various types of action constraints. In Sedtjon
we describe the air campaign planning problem in some de?
tail, and show how particular characteristics of this peotl
make it especially well-suited to botimd and our heuristic
policy construction methods. Section 5 demonstrates the re
sults ofMTD applied to very large instances of this problem.

atuple(S, A, R,T,¢, My, M), where

S is a vector of state spacesy, . . ., S,, where eactp; is

the set of primitive states of Markov task

A is avector of action spacedy, . . ., 4, where eachi;

is a set of integers from 0 to some limit, describing the
allocation of an amount of resource to tagk

‘R is a vector of reward function$,,..., R,, where
R; 1 5; x A; x S; x Time — R, specifying the reward
conditional on the starting state, resulting state anaacti
at each time,

k) Tnn
whereT; : 5; x A; x.5; — [0, 1], specifying the probability
of atask entering a state given the previous state of the task
and the action;

c is the cost for using a single unit of the resource;

M; is the instantaneous (local) resource constraint on the
amount of resource that may be used on a single step;

M, is the global resource constraint on the amount of the
resource that may be used in total.

We again assume a finite horizéh* An MTS induces

nMDP in the obvious way: the state space consists of the

2It may be possible to extend this work to apply to real-valued
amounts of resources and to multiple resource types.

%If reward values are stationary the time index may be omitted
40ur techniques may be extended to other optimality criteria

We conclude in Section 6 with some remarks on the reasonsich as infinite-horizon discounted or average reward.



cross product of the individual state spaces and the alilab3.1 Global Constraints Only

resources; the action space is the set of resource assiggimenye will first consider the case in which there is only a global

with an assignment being feasible at a state only if its Sumesource constraint, but no limit on the total number of re-
exceeds neitheb/; nor the total resources available at that soyrces applied on a single step.

state; rewards are determined by summing the original com- |n the off-line phase, we compute ttemponent value
ponent rewards and action costs; and transition probigsilit functionsV; (s,, ¢, m) wheres; is the current state of task
are given by multiplying the (independent) individual task 0 < ¢ < H is the time step, and is the number of resources
probabilities (with the change in resources being detegthin remaining:

by the action). , ,
Instead of formulating this “flatiMbp explicitly, we retain Vi(siytym) =max »  Ti(si,a,8:)[Ri(si,a,si,t) +
the factored form as much as possible. The goal, then, is to T sles;
find an optimal non-stationary poliey* = (0, ..., 7#-1), Vi(sit+Lm—a)]—c-a (1)
wherer® = (x},---,«!) and eachr! : S — A, is alocal . _
policy for taski, that maximizes whereV;(s;, H,m) = 0. This is the expected cumulative
reward of the optimal policy for task starting in states;
gzl on e b e C e o at timet using at mostn resources. In other words, if we
E N T(stwi(s"), s R(si, wi(sT), 0) — e wi(s") ignored all other tasks and hadresources to allocate to task
=0 i=1 i, we would expect this value. It is useful to note that, even
subject to the constraints at the last stage, it may be suboptimal to spend all (or even
any) of the remaining resources.
i H-ol » It is relatively simple to comput&; using dynamic pro-
Vi< H, Z mi(s') < M and Z Z mi(s') < M, gramming as long as we have some way of tightly bounding
i=1 t=0 i=1 the values ofn andt that must be considered. In Section 4,

o ) ) ) we describe a domain for which tight bounds on these quan-

For simplicity, we have describedTss involving only a tjties are available.
single resource type. In general, there may be multiple re- \wjth theseV; in hand, we proceed to the on-line phase.
sources, each of which has a cost and may be subject to loc@fe are faced with a particular situation, described by the
and global constraints. In Section 4 we present a problergyrrent states = (s, ..., s,), remaining global resources
with two resources with interrelated constraints. Notd thamg’ and time-step. We must calculate = (a1, ..., a,),
MTss allow one to model both reusable resources, such as mghe action to be taken (i.e., the resources to be spent) at the
chines on a shop floor (with local but no global constraints,)eyrrent time step (where; is applied to task). Since we
and consumable resources, such as raw materials (that hagge ignoring instantaneous constraints, we require ol th
global and possibly induced local constraints). >, a; < m,. However, allocating all resources at the current

Finding an optimal policy is a very hard problem even for time step will generally not be optimal. Optimal allocation
smallmTss, because the equivalembpis very large. Itis, for  would be required to take into account future contingencies
all practical purposes, impossible to solve exactly unllees their probabilities and the value of holding back resources
number of tasks, the individual state spaces and the ai&ilabfor these future contingencies.
resources are very small. The major source of difficulty is  Rather than solve this complex optimization problem, we
that the decision to apply a resource to a given task inflleencerely on the fact that the local value functiorisgive us some
the availability of that resource (either now or in the fefur jdea of the value of assigning; < m, resources to task
for other tasks. Thus, the tasks, while exhibiting tremersdo ; at time¢. Furthermore}; implicitly determines a policy
mdepend_ence, still have strongly mteractmg solutios.  for task i, telling us how many of the resources < m;
“local policy” for each task must take into account the stdte  should be used at the current stefThus,mMTD works in the
each of the other tasks, precluding any state-space reducti following loop, executed once per decision stage:

in general. We now turn our attention to approximation . . . .
strgtegies that limit the scope of these interacr'zir())ns () Using the functions; (s;, £, -), heuristically assign re-
' sourcesn; to taski such thab ~, ., m; < my.

3 Markov Task Decomposition (b) UseV; andm; to determinez;, the action to be taken
o . currently w.r.t. task; that is
Our approximation strategy fontss is calledMarkov task

decompositioiMTD). a; = arg max Ti(si,a,50)[Ri(si,a, si,t) +
ThemTD method is divided into two phases. Inthe ficf; agm; ¢ s,

line phase value functions are calculated for the individual

tasks using dynamic programming. In the secomadkline

phase these value functions are used to calculate the nextc) Execute action: = (ag,---,ay), observe resulting

action as a function of the current state of all processes. states = (s1,---,s,), and compute remaining re-

[ .
sourcesny = mg — 3, ., di.

V,'(s;»,t—l— Lmi—a)l—c-a

5f there are no resource constraint, the sub-processesecan b )
solved individually and the local policies can be defined appings The one component aTD that has been left open is
w8 — Al the heuristic allocation of resources to tasks. Doing this



well will generally require specific domain knowledge. We a single “hit” is sufficient to damage the target and indiatiu
describe a greedy approach in Section 4 below that workeeapons' hit probabilities are independent. That is,
extremely well in the air campaign planning domain, though

i i o
the fundamental characteristics of this problem hold triue o 2 :; Zf _ Zgﬂgjz _ Z
a wide class of problem domains. Ti(si,ai,si) = a; P i
q; if s; =wuands; = u

This approach is plausible, but even if the are chosen
optimally with respect to the criteria described above, the
policy produced will generally be suboptimal for the follow  whereq; = 1 — p; is the probability of a weapon missing
ing reason$. We estimate the utility of an allocation; to  the target. There is a cosi, per weapon uset Each plane
taski usingV;, which is exactly the utility of solving task  has a capacityk, (which we take to be fixed for simplicity)

1—q¢ ifsi=uands;=d

with m; resources; clearly, and can carry only up tdi, weapons. A plane loaded
R n with @ weapons and assigned to a target will deliveraall
Vs, t,m) = Z Vi(si, t,m;) weapons. We will consider a variety of different constraint

i=1 In Section 4.3 we treat the case in which the only constraint

is alower bound oty *; itis the value we would achieve ifwe 1S @ global constraint on the total number of weapaify,
made the allocations at stemnd never re-evaluated them. In Section 4.4 we treat the case in which the only constraint
In particular, givenm; resources for task, MTD allocates IS @ local constraint on the number of plands,, that can

a; resources to the task at the current stage based only dif used at a single stage. Since each plane can only carry a
V;. The optimal Bellman equations indicate that an optimallimited number of weapons, any constrainton planes induces
allocationz; must not only take into account the future course@ constraint on weapons. This is a more sophisticated type
of taski, but also reason about future contingencies regardingf l0cal constraint than previously. Now, each action must
other tasks, and assess the value of reallocating somesef theSatisfy:
resources to other tasks in the future.

n

> lai/K,] < M,

3.2 Adding Instantaneous Constraints _ =t _ _

It is quite difficult to incorporate local constraints in a-sa Finally, we combine global weapon constraints with local
isfying way. An obvious strategy is to simply enforce the Plane constraints in Section 4.5.

constraint thaE?zl a; < M; to the on-line phase afiTD. . .
This will result in the generation of admissible policiest b 4.1 Calculating Component Value Functions

they may be of poor quality- s likely to be a serious over- 1he following discussion is somewhat brief and informal; a
estimate of the value function. This is because the allonati formal discussion with detailed derivations will be proett
m; determined by th&; in step (a) above may be based on in @ forthcoming technical report. .
the assumption that more thad, resources can be used in __ Withinthis problem, the component value functions can be
parallel considerably simplified. First, since every state in whiof t
. . target has been damaged has value 0, we need only compute

Despite the potential drawbacks, we pursue a strategy Qe functions for the state in which the target is undardage
this type in the application described in Section 4. Thi®typ Second, since there is only a restricted window of oppotyuni
of strategy has the appeal of computational simplicity andor each target, we need only compute the value function for
leads to reasonably good results in our domain. Howevera horizon equal to the number of time stegsn the target’s
more complex strategies for dealing with instantaneous corwindow of opportunity. Since window lengths are typically
straints can easily be accommodated withiniite frame- ~ much shorter than the horizon for the entire problem, this

work. Such strategies will be the subject of future study. ~ considerably simplifies the dynamic programming problem:
we need only comput®; («, m, t) for ¢ <t < t¢, and then

4 Example: Air Campaign Planning we apply:
In the simplified air campaign planning problem, tasks cor- Vi(u,m, ¢8) if ¢t < ¢
respond to targets and there are two resource types: weapons Vilu,m, t) =1 if £ > ¢F

and planes. The status of a targetis either damaged or undam-
aged:S; = {d, u}. Each target has a window of availability . p ”
[?, 5], whose length is denoted; — ¢¢ — ¢¢ + 1, and a re- Another factor that strongly influences the “shape” of the

ward;; if it is damaged during the window, then the reward local value functions (and ultimately, our heuristic aligfom)

r: is received: is the noisy-or transition model. Because of this, the prob-
L . ) ability of damaging the target of any policy that uses
Ri(si,ai, s 1) = { ri if &7 <t <tiands; =uands; =d weapons in no more thansteps, depends only an (not on
0 otherwise when the weapons are used) and is equalto;¥*. Policies

With probabilityp;, a single weapon will damage targea. ~ May differ in expected utility, however,_ depen(_jlng on how

“noisy-or” model is assumed for multiple weapons, in which they choose to allocate weapons over time, which affects the

- - expected number of weapons usedujf> mthenitis never
®Note that the policy produced yrp is constructed incremen-  optimal to send more than one weapon at a time. Otherwise,

tally; indeed, itisn't a policyper sesince it only plans for statesthat

are actually reached. "We ignore the cost per plane in the present paper.



12 damaged target):
mi(u) = argmaxl—g)ri —cwai+qi Vi(u, m{ q1, t4+1) (2)

10~
(for anyt within i's window). This requires a simple search

o over values ofi;, bounded by:; < m; .
. 4.3 Weapon (Global) Constraints Only
§ With constraints on the number of weapons available, the on-

" line phase is crucial. We have the component value functions
V; at our disposal, and are given the current statd all
targets, the number of weapons remaining, and the time

t. Our goal is to choose;—the weapons to assign to each

OJ \ \ \ \ target: with states; = « and such that < t{ —according
1o to step (a) of the on-line algorithm in Section 3.1; thatas, t
maximize)_ Vi (u, m;, t).

e 1 An . o volicv for sindl To do this, we adopt a greedy strategy. Define

igure 1: An instance of optimal policy for single-target

pr?)blem: number of Weaponpsent ifl'?he tgrget is s?ill und%m- AVitu, 7?1’ ) __‘_/i(u’ mt _1’ t)_ —Vilw, m’_t_) ®

aged attime, as a function of (p; = 0.25, ; = 90, w; = 10 to be the marginal utility of assigning an additional weapon

andc = 1). to target, given thatn weapons have already been assigned
to it. We assign weapons one by one to the target that has
the highest valuAV; (u, m, t) given its current assignment of

the optimal policy sends an increasing number of weapons aveapons (i.e., gradient ascent phV;). This proceeds until

each step, in the case that the weapons on the previous stalym, weapons have been assigned\bf(u, m,t) < 0 for

failed to damage the target. all i. The concavity of the local value functions assures:

Figure 1 shows an example of such a single target policyProposition 1 The process described above chookeso
with a given window, reward and hit probability (itis optilma maximize_ V; (u, m;, t).

for any allocation of weapons greater than the cumulativebespite this, as we argued above, this does not necessarily

total shown). result in an optimal policy. However, in this domain, the

Furthermore, we can show thaf;(u,m,t) increases empjrical results are impressive, as we discuss in Section 5
monotonically withm until a pointm},, at which point it

remains constantn; , is the point at which marginal utility 4.4 Plane (Instantaneous) Constraints Only

of resource allocation becomes zero, and where the margingh,an with an unlimited number of weapons (or as many as

utility of resource use is negative (the cost of a Weapon xteqjired to reach zero marginal utility), we generally have

%% deal with constraints on the number of simultaneously
deliverable weapons (i.e., number of planes availableg Th
strategy we adopt is similar to the one above, except we
greedily allocate planes instead of weapons. The one subtle
lies in the fact that it may not be optimal to load a plane to
capacity (recall, that all weapons on a plane are delivered)
We proceed at timeé by allocating planes one by one to

active targets. We assume (optimistically) that all tegget

H_
o]
o]
N
o
o
]
o]
o

time

so even if it is allocated, it will not be used). This implies
that we need only computé (u, m, ) for m < m?,, again
significantly reducing the effort needed to complite

For each target eacht € [t},¢], and eachn < m;,, we
will computeV; (u, m, t) and store these results in a table to
be used in the on-line phase @fD. We can do this using
the dynamic programming equation

Vi(u, m, £) = the future can be allocated their optimal number of weapons
A (this is optimistic because of future plane constraintd, no
,max [(1 —qi)ri — cwa + ¢ Vi(u,m —a,t + 1)] . because of weapon availability); in other words, for com-

putational reasons, we deal with plane constraints only at
whereV;(u, m, ¢ + 1) = Vi(u,0,t) = 0. The value of the current stage. Assume we have assigneplanes and
spending’ weapons can be described using three terms: th& < ni- kK Wezi\ponsto targatso far. For each active target
firstis the expected reward due to damaging the target on the we Compmw the number of bombs that the new plane
current time step, the second is the cost of usimgeapons, Would carry:

and the third is the future value of trying to damage the targe ai = min{ K, wi(u) — K, n;}

with m — a weapons left. wherer!(u) is given by (2). This can be used to compute

the marginal expected utility of assigning a new plane to any

4.2 No Resource Constraints active target:

If there are no resource constraints, the on-line phasgof . ol ,

is not required. The tasks are completely decoupled and AV =g (1— qi’) i = Cwly +

the optimal policyr! is described by the component value v .
functions (recall that!(d) = 0; no action is required for a 4" (qi’ - 1) Vi(u, miey1,t + 1)



As in the case of global constraints only, we assign planes The quantitiesV; will be used to determine which target
to active targets greedily unfil, n, = M; orAV; < Oforall  will have a plane deallocated. For any active taigetefine

i. Note that marginal utility is associated with increasing t wid { a ,

number of planes, not weapons as in the previous section. VVi = ¢ (qi’ - 1) ri + cwa; +

4.5 Weapon and Plane Constraints g " (1 - q?’) Vi(m; — a;, t+ 1) 4+ 6V;
Our approach in this case will necessarily be more compli-_, . . : :
cated.pQNe begin by assigning weapons %/0 targets usingpth-Eh'S,IS the (nega_twe) change in expecteq value by dealiocat
greedy strategy outlined in Section 4.3; no plane congiain mggﬁ(\),\(l)es?npo?ﬁe(lt:r” g:,\‘;‘i\tﬁl?hn:?;:ogg;g@%igesﬂ:gggg

are accounted for. The result is an assignment of resourcgy >INg 9 . 9 ;o '

m; to each target. An action= (ay, - - -, a,,) is determined aplane is d_eallocated froimand thez; weapons are reall_o-
for the current stage, and we assignplanes to each target cated greedily. In fact, thé; values used in the computation
at the current stage that will suffice to carry theweapons. of §V; can be stored and used for this purpose (the simulated
This action may be infeasible howevedit n; > M; (more

reallocation can now be imposed).
planes are required to carry out actiothan are available). We note that if any weapons are reallocated to an active
We thus begin a greedy deallocation-reallocation process.

targetyj, it may causej to require an additional plane (in
Deallocation requires that we remove certain Weapon%

act, this can occur for several active targets). To death wit
from the current assignmeat We do this by greedily remov- his we simply allocate new planes. While the deallocation
ing the assigned planes one by one uhii; = M; (note

of one plane may cause the allocation of more planes, this
thati need only range over active targets). Intuitively, we process will eventually terminate, since no deallocategeta
proceed as follows: first we compute the number of weapon

gan ever be reallocated weaponsdarrentuse!®

a; that would be removed from targétf we deallocated a 5 Empirical R |
single plane; we compute the change in utility that would mpirical Results
accompany this deallocation if we were to “optimally” real- To validate our heuristics, we tried them on several rangem|
locate these weapons to a new target (or possibly the san@€nerated instances of the air campaign problem, and com-
target, but forced to be used at a later stage); and then weared them to:
deallocate the plane and perform the reallocation thatteesu o the optimal policy calculated by flat DP
in the smallest decrease in utility. However, we will sed tha . . . S
this requires some care. e the greedy policy that applies the action with highest ex-

At any point in time, we have a list of (active) targets pected immediate reward
which have had planes deallocated. For any such target e a “semi-greedy” policy that applies the actiof{«) given
we may consider assigning new weapons to it that have been by (2) to each active targét without regard to potential
deallocated from some targgtBut since we do not want to interactions
consider providing a new plane foat thecurrentstage (one

has just been taken away), we compifé, the marginal The calculation of the optimal policy by DP is infeasible
utility of adding a weapon tﬂi as follows: for problems of moderate size. For instance, the solution

u time for a problem with 5 targets and 50 weapons is on the
AV =g [Vi(mi —ai + 1,6+ 1) = Vi(mi —ai,t+ D] 4 grder of 10 minutes; for 6 targets and 60 weapons, up to 6
That is, we consider that this weapon must be used at sontgours; and beyond that was not practically computable. In
time after the current stage. For any target that has not hadontrast, the execution time foTD is shown in Figure 2.
a plane deallocatedyV; is computed as in (3). We Ié, V; Without instantaneous constraints;D can solve a problem
denote the change in utility if we assignnew weapons with thousands of targets and tens of thousands of weapons

(instead of 1). in under 15 minutes. A problem of 1000 targets, 10,000
Let a} = a; — (m; — 1)K, be the number of weapons weapons and 100 planes (imposing such constraints) can be
that will be removed from (active) targétif one of its n; solved in about 35 minutes.

planes is deallocated to satisfy the instantaneous camistra  \We compare the quality of solutions produceddry with

Then computéV;, the value of reallocating the€ weapons  the optimal solutions produced by DP in Figure 3, though we

optimally: we do this by adding to the deallocated list are restricted to very small problems (5 tasks, with no in-

(temporarily) and simulating the greedy algorithm desenlib  stantaneous constraints; and 7 task, with instantaneaus co

in Section 4.3 The only difference is that we use (4) as the straints) because of the computational demands of DP. We

measure of marginal utility for any target on the deallodate also compared the greedy and semi-greedy stratéhiise

list. Notice that weapons taken froigan be reallocated ©9  performance ofvTD is encouraging, closely tracking opti-

but the value of this reallocation is derived from using thes mal, though the performance of the greedy and semi-greedy

atlater stages. It/; weapons are assigned to targetvhere ~———— )

S d; = df, thendV; = 3. Ay, V. lONote thatvV; is notequal 0V (u, m; — a;, ;) — Vi(u, m, ;).

- - We are currently exploring more sophisticated stratedias t
8By simulating, we mean that we compute the reallocation thatprevent this from happening.

would take place if we actually reallocated the weapons froimis YFor all but DP, whose solution has a known value, the results

won't necessarily take place if we decide to deallocate agfeom show average reward obtained over 1000 simulations of theegs,

some other target. as a function of\/, (initial global resources).
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Figure 3: Comparison of the quality of policies generatedap, optimal DP, greedy and semi-greedy strategies on small
test problems. The graph on left shows results for a 5-tasiiiem with no local constraints. The graph on the right dbssr
a 7-task problem with local constraints. Values are avetayer 1000 runs.

policies suggests these problems are not difficult enough teesults for the air campaign problem are extremely encour-
differentiate these fromuTD. aging, demonstrating the ability forTd techniques to solve
On much larger problemsTo compares much more fa- problems with thousands of tasks.
vorably to both greedy methods, with Figure 4 showing their
performance on 100 target (with instantaneous constjaints Three key insights allowed us to approximately solve large
and 300 target (no constraints) problems. The policy proMDPs in this fashion. The first is the ability to decompose
duced byvwTD performs substantially better than the greedythe process into pseudo-independent subprocesses, and con
and semi-greedy policy. Such problems are well beyond thetruct optimal policies and value functions for thesensnibs
reach of classic DP. feasibly. Often special features of the domain (in this case
the noisy-or dynamics and limited windows) can be exploited
; to solve these swopPs effectively. The second is that these
6 Conclusions value functions can offer guidance in the construction of
We have presented the method of Markov task decompospolicies that account for the interactions between prasess
tion for solving large weakly couplesibps, in particular, Again, special domain features (here, the convexity of the
stochastic resource allocation problems. We described sevalue functions) can offer guidance regarding the appropri
eral instantiations of this technique for dealing with @iff  ate heuristictechniques. The third is the use of on-linepol
ent forms of resource or action constraints. The empiricatonstruction to alleviate the need to reason about many fu-
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Figure 4: Comparison of the quality of policies generatediby, greedy and semi-greedy strategies on large test problems.
The graph on left shows results for a 200-task problem witlonal constraints. The graph on the right describes a 16l0-ta
problem with local constraints. Values are averaged overfs.

ture contingencies. While on-line methods are popular [1], [7] T. Dean and R. Givan. Model minimization in markov
crucial to the success of the on-line componentt is the decision processe®roc. AAAI-97 pp.106—-111, Prov-
ability to quickly construct good actions heuristicallyingg idence, 1997.

the component value functions. [8] T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson.
MTD is a family of algorithms that exploit specific structure Planning under time constraints in stochastic domains.
in the problem domain to make decisions effectively. It re- Artificial Intelligence 76:35-74, 1995.

quires that the problem be specified in a specific form, taking [9] T. Dean and K. Kanazawa. A model for reasoning about

advantage of utility independence and probabilistic ireep persistence and causatidBomputational Intelligence
dence in action effects. Much recent research has focussed  5(3):142-150, 1989.

on using representations femps that make some of this
structure explicit and automatically discovering apprafer
problem abstractions and decompositions [9, 6, 14, 11, 5].
The extent to which effective Markov task decompositions
can be automatically extracted from suitable problem repre
sentations remains an interesting open question.
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1127, Montreal, 1995.

[11] R. Dearden and C. Boutilier. Abstraction and approxi-
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