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Abstract

In order to generate plansfor agentswith multiple actuators or
agent teams, we must be able to represent and plan using con-
current actions with interacting effects. Historically, this has
been considered a challenging task that could require a tem-
poral planner. We show that, with simple modifications, the
STRIPS action representation language can be used to repre-
sent concurrent interacting actions. Moreover, current algo-
rithms for partial-order planning require only small modifica-
tionsin order to handlethislanguage and produce coordinated
multiagent plans. These results open the way to partial order
plannersfor cooperative multiagent systems.

1 Introduction

In order to construct plansfor agent teams or agentswithmul-
tiple actuators, such as multi-armed robots, we must be able
to model the effects and interactions of multiple actions ex-
ecuted concurrently, and generate plans that take these in-
teractions into account. A viable solution to the multiagent
planning (MAP) problem must include economical action de-
scriptionsthat are convenient to specify and are easily manip-
ulable by planning algorithms, as well as planning methods
that can deal with the interactions generally associated with
concurrent actions.

Surprisingly, despite the recent interest in multiagent
applications—for instance, in robotics[7, 10] and distributed
Al [8]—very little research addresses the MAP problem.?
Some authors (see, e.g., [15]) have considered the represen-
tation of concurrent actions and a number of contemporary
planners can handle concurrent noninteracting actions to a
certain degree. However, the prevailing wisdom seems to
suggest that temporal planners are required to adequately
deal with genera MAP problems (see, e.g., Knoblock’sdis-
cussion of thisin [11]). Certainly time plays a role in
planning—in any planner, the ideathat sequences of actions
occur embodies an implicit notion of time. However, wedis-
agree that time in multiagent planning must be dealt with in
a more explicit fashion than in single-agent planning. The
main aim of this paper is to demonstrate that a form of the
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2Lansky’s work is one exception, but it does not build on con-
ventional planning techniques[12].

MAP problem can be solved using very simple extensionsto
existing STRIPS representations and (single-agent) planners
like UCPOP [14]. We provide a representation for interact-
ing actionsand aM AP algorithmthat requiresno explicit rep-
resentation of time.

Thecentra issueinmultiagent planningliesinthefact that
individual agent actions do interact. Consider the following
example: two agents must move a large set of blocks from
one room to another. While they could pick up each block
separately, a better solutionwould be to use an existing table
in the following manner. First, the agents put all blocks on
thetable, then they each lift one side of the table. However,
they must lift thetable simultaneoudly; otherwise, if only one
side of the table islifted, al the blocks will fall off. Having
lifted the table, they must move it to the other room. There,
they put the table down. In fact, depending on the precise
goal, it may be better for one agent to drop its side of the ta-
blefirst, causing the blocks to fall off. They might then re-
turn the table. Notice how this plan reguires the agents to
coordinatein two different ways: First, they must lift the ta
ble together so that the blocks do not fall; later, one of them
(and only one) must drop itsside of thetableto | et the blocks
fal. An action representation that makes such interactions
explicit and a planning algorithm that can, as result of these
interactions, prescribe that certain actions must or must not
be executed concurrently are the main features of any multi-
agent planner—tempora representations are not the central
problem. Certainly, in multiagent domains the need to ex-
plicitly model continuous processes or time constraints may
be more urgent. These issues, however, aso arisein single-
agent planning.

Since the actions of distinct agents interact, we cannot, in
general, specify the effects of an individual’sactions without
taking into account what other actions might be performed
by other agents at the same time. One possible solution to
this problem is to specify the effects of al joint actions di-
rectly. More specificaly, let A; betheset of actionsavailable
toagent ¢ (assuming »n agentslabeled 1 . . . n), and let thejoint
actionspacebe A; x A; x -+ x A, . Wetreat each element
of this space as a separate action, and specify itseffects using
our favoriteaction representation.® Thisapproach hasanum-

#Our discussion will center on the STRIPS action representa-
tion, but similar considerations apply to other representations such
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ber of drawbacks. First, thenumber of joint actionsincreases
exponentially with the number of agents. Second, thisfailsto
exploit the fact that a number of individual actions may not
interact at al, or at least not interact under certain conditions.
We would like a representation of actions in multiagent set-
tings that exploits the independence of individual action ef-
fects to whatever extent possible. For instance, whilethe lift
actions of the two agents may interact, many other actions
will not (e.g., one agent lifting the table and another picking
up ablock). Hence, we do not need to explicitly consider all
combinations of these actions, and can specify certain indi-
vidua effects separately, combining the effects “as needed.”
Finally, the use of joint actions in the context of most plan-
ners forces what seems to be an excessive amount of com-
mitment. Whenever, theindividual action of some agent can
accomplish a desired effect, we must insert into our plan a
joint action, thereby committing all other agents to specific
actions to be executed concurrently, even though the actual
choices may be irrelevant. For these reasons, we desire a
more “distributed” representation of actions, asin the multi-
entity model of [13].

We are therefore faced with the following two problems:
(1) The representation problem: how do we naturally and
concisely represent the effects of actions that may be influ-
enced (positively or negatively) by the concurrent perfor-
mance of other actions (or exogenous events for that mat-
ter); (2) The planning problem: how do we plan for multiple
agents using such a representation.

In this paper, we show how the STRIPS action represen-
tation can be augmented to handle concurrent interacting ac-
tions and how existing nonlinear planners can be adapted
to handle such actions. In fact, it might come as a surprise
that solving both problems requires only a small number
of changes to existing nonlinear planners, such as UCPOP
[14].* The main addition to the STRIPS representation for
action a isaconcurrent action list: thisdescribesrestrictions
on the actions that can (or cannot) be executed concurrently
in order for « to have the specified effect (indeed, « can have
anumber of different conditional effects depending on which
concurrent actionsare applied). In order to handlethisricher
language, we must make anumber of modificationsto “ stan-
dard” partial-order planners: (a) we add equality (inequality)
constraints on action orderingsto enforce concurrency (non-
concurrency) constraints; and (b) we expand the definition of
threats to cover concurrent actions that could prevent an in-
tended action effect.

In the following section we describe our STRIPS-style
representation for concurrent, interacting actions. Thisisfol-
lowed by a semantics for concurrent plans in Section 3. In
Section 4 wedescribethePartial Order Multiagent Planning
algorithm (POMP), a modified version of the UCPOP ago-
rithm that can be used to generate multiagent plans. Sec-
tion 5 concludes the paper. A longer version of this paper
[3] contains an examination of the use of dynamic Bayes nets
for representing (possibly probabilistic) actionsin multiagent

asthe situation calculus[16] and dynamic Bayesnets [6, 4].
*Moreover, other planning algorithms, (e.g., [1, 9]) should prove
amenable to extension to multiagent planning using similar ideas.

(define (operator pickup)
cparans (?al ?x)

ipre (and (inroom ?al ?r1) (inroom block ?r1)

(handenpty ?al) (onfloor ?x))
:conc (not (= ?al ?a2)):(not (pickup ?a2 ?x))
ceff (and (not (handenpty ?al)

(not (onfloor ?x))
(hol ding ?al Block))))

Figure 1: The PickUp action

domains, as well as an extensive example.

2 Representing Concurrent Action

Weassume abasic familiarity withthe STRIPS action repre-
sentation: states are represented using sets (conjunctions) of
positiveliteras, and actionsare represented using effect lists,
summarizing the effect of the action on astate. In this paper,
we use a standard variant of STRIPS in which the domain
theory isdefined usinga set A of action schemata with typed
variables.® Thisallowsfor amore concise description of the
set of actions, and it can be exploited by least commitment
planners. By convention, each action schemawill have asits
first argument afree variabledenoting theacting agent (thisis
typically not needed in single-agent domains). The STRIPS
representation can be enhanced using a more expressive lan-
guage. For instance, UCPOP [14] allows aform of univer-
sal quantification in theaction descriptionand conditional ef-
fects. We do not discuss quantification here, but we will con-
sider conditional effects.

We consider a simple extension of STRIPS for actions
whose effects can be influenced by the concurrent execution
of other actions. To each action description we add a (pos-
sibly empty) concurrent list: this contains a list of action
schemata, each of which may be prefixed by negations and
certain codesignation and non-codesignation constraints. In-
tuitively, thislist specifies which actions can co-occur or can-
not co-occur with the given action in order to produce the
effect so described. This list is treated much like a set of
preconditions, althoughit refersto concurrently executed ac-
tionsrather than conditionsthat must hold prior to execution.

An example action schema for the Pickup action is de-
scribed in Figure 1. This action can be executed if: the agent
and theblock areinthe sameroom; theagent’ shandisempty;
the block is on the floor; and no other agent is attempting
to pickup the block concurrently. If these preconditions and
concurrency conditionshold, then the block will successfully
be picked up by the agent.

Using thisrepresentation, we can represent actions whose
effects are modified by the concurrent execution of other ac-
tions. For example, suppose an agent a; can pick up one
side of atable, with the effect of dumping blocks onto the
floor if no agent a- picks up the other side, and with the ef-
fect of smply raising the tableif a- picks up the other side.
Clearly, the concurrency conditions( not ( pi ckup ?a2
?s)) and (pi ckup ?a2 ?s) can beused to distinguish

®Thegeneral conceptsand notation to follow, apart from specific
multiagent extensions, draws heavily on Weld’s excellent survey of
partial order planning [17].
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(define (operator |ower)

cparans (?al ?s1)

i prec (and (holding ?al ?sl) (up ?sl))

:conc (and (not (lift ?a2 ?s2)) (not (= ?al ?a2))
(not (= ?s1 ?s2)))

ceff (and (not (up ?sl))(down ?sl)(not (holding ?al ?sl))
(forall ((object ?x))
(when (ontable ?x)(up ?s2)(not (= ?sl ?s2))

(and (not (lower 7?a3 ?s2))(
(and (onfloor ?x)(not (ontable x))))))

Figure 2: The Lower action

the two cases; but treating them as preconditions essentially
splitstheactioninto two separate actionswith similar effects.
Asin single-agent representations, we can treat such “modi-
fiers” using a when clause, essentially specifying the condi-
tional effects of an action. The distinctionin our caseissim-
ply that, in addition to state conditions, the antecedent of a
when clause can refer to the concurrent execution of actions
(or their negation). The syntax of concurrency constraintsin
when clauses will belike that of the concurrency list; but in-
stead of treating them as preconditions, they will designate
conditionsunder which the action has the effect given by the
consequent. The general form of the when clauseis ( when
antecedent effect), where antecedent itself consists of two
parts: (conditions conc-constraints). The table lowering ac-
tion schema is described in Figure 2. Its preconditions are
that the agent isholdingside 7s1 of thetablewhich israised.
It hasanon-concurrency condition stating that no other agent
is simultaneoudy raising the other side of thetable. (Notice
non-concurrency conditionsare implicitly universally quan-
tified). Itsprimary effect isto cause 7s1 to be“down.” Inad-
dition, the conditional effect states that when thereisno con-
current lower action of the other side of the table, and there
is some object on the table, that object fallsto the floor.

An action description can have no when clause, one when
clause, or multiplewhen clauses. In the latter case, the pre-
conditions of all the when clauses must be disjoint.®

The semantics of individua actions is, of course, differ-
ent in our multiagent setting than in the single-agent case. It
isnot individua actions that transform an initial state of the
world into anew state of theworld. Rather, itisjoint actions
(i.e., n-tuples of individua actions, possibly including no-
ops, one for each agent) that define state transitions. Given
astate s and ajointactiona = {(ay, - - -, a,), the state ¢t that
results from performing a a s is such that all atomsin the
add lists of each «; aretrueint, al atomsin the delete lists
of each a; are falseint, and al unmentioned atoms are un-
changed from s. Under this semantics, an action description
can beinconsistent if someindividual action a causes () tobe
true, and another action b causes () to be false. If thisisthe
case, it is the responsibility of the axiomatizer to recognize
the conflict and state the true effect if « and b are performed
concurrently (by imposing conditiona effects with concur-

%In the case of multiple clauses, the disjointness restriction can
be relaxed if the effects are independent, much like in a Bayes net
action description [4]. We discuss the use of dynamic Bayes nets
and the advantagesthey offer as an action representation method for
multiagent systemsin [3].

not (= ?a3 ?al)))

rent action conditions) or to disallow concurrent execution
(by imposing non-concurrency conditions). We assume all
action descriptions are consistent in the sequel.

Several interesting issues arise in the specification of ac-
tions for multiple agents. First, we assume throughout that
each agent can perform only one action a atime, so any
possible concurrent actions must be performed by distinct
agents. This alows our actions descriptions to be simpler
than they otherwise might. If we alowed a single agent
to perform certain actions concurrently, but not others, we
would have to add extra concurrency constraints that pre-
clude actions that might be executabl e by another agent from
being performed by the acting agent.

Another issue that must be addressed is the precise effect
of a joint action, one of whose individual actions negates
some precondition of a concurrently executed individual ac-
tion. We make no special alowances for this, simply retain-
ing the semantics described above. Whilethis does not com-
plicate the definition of joint actions, some such combina
tions may not make sense. Again, we could treat these in
several ways. we can allow the specification of such actions
and design the planner so that it excludes such combinations
when forming concurrent plans, unless an explicit concur-
rency conditionisgiven (thismeans the axiomatizer need not
think about such interactions); or we can allow such combi-
nations, in general, but explicitly exclude problematic cases
by adding non-concurrency constraints.

Finally, an undesirable (though theoretically unproblem-
atic) situation can arise if we provide “inconsistent” concur-
rency lists. For example, we may require action a to be con-
current with » inorder to have aparticular effect, whileb may
be required to be non-concurrent with a (this can span a set
of actionswith morethan two e ements, naturally). Thissim-
ply means that we cannot really achieve the intended effect
of a, and the planner will recognize this; but such a specifi-
cation can lead to unnecessary backtracking during the plan-
ning process. We will generaly assume that concurrency
lists are consistent.

3 Representing Concurrent Plans

Before moving on to discuss the planning process, we de-
scribe our representation for multiagent plans, whichisrather
straightforward extension of standard single-agent partially
ordered plan representations. A (single-agent) nonlinear plan
consists of a set of action instances, together with various
strict ordering congtraints (i.e., using the relations < and >)
onthe ordering of these actions, aswell as codesignationand
non-codesi gnation constraints on the val ues of variables ap-
pearing in these actions, forcing them to have the same or
different values, respectively [17, 14]. A nonlinear plan of
this sort represents its set of possible linearizations, the set
of totally ordered plans formed from its action instances that
do not violate any of the ordering, codesignation and non-
codesignation constraints.” We say anonlinear plan is con-
sistent if it has some linearization. The set of linearizations
can be seen as the “semantics’ of a nonlinear plan in some

7 Concurrent execution has also been considered in this context
for non-interacting actions; see [11] for a discussion.
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sense; a (consistent) nonlinear plan satisfies a goal set G,
given starting state s, if any linearizationisguaranteed to sat-
isfy G.

A concurrent nonlinear planfor n agents(labeled 1, . . . n)
is similar: it consists of a set of action instances (with
agent arguments, though not necessarily instantiated) to-
gether with aset of arbitrary ordering constraints over the ac-
tions (i.e, <, >, = and #) and the usua codesignation and
non-codesignation constraints. Unlike single-agent nonlin-
ear plans, we alow equality and inequality ordering con-
straints so that concurrent or non-concurrent execution of a
pair of actions can be imposed. Our semantics must allow
for the concurrent execution of actions by our n agents. To
this end we extend the notion of alinearization:

Definition Let P be a concurrent nonlinear plan for agents
1,...n. Ann-linearizationof P isasequence of joint ac-
tions Ay, - - - A; foragents 1, .. .n such that

1. each individua action instance in P is a member of
somejoint action A;;

2. no individual action occurs in Ay, ---A; other than
thosein P or individual No-op actions;

3. the codesignation and non-codesignation constraintsin
P are respected; and

4. the ordering constraints in P are respected. More pre-
cisely, for any individual action instances a and b in P,
andjoint actions A; and A inwhich « and & occur, any
ordering constraints between a and b are true of A; and
Ay; thetis, if a{<,>, =, #}b, then j{<, >, =, £}k,

In other words, the actionsin P are arranged in a set of joint
actions such that the ordering of individual actions satisfies
the constraints, with “ synchronization” ensured by no-ops. If
we have a set of k actions (which are allowed to be executed
by distinct agents) with no ordering constraints, the set of lin-
earizations includes the “short” plan with a single joint ac-
tion where al k actions are executed concurrently by differ-
ent agents (assuming k < n), a“strungout” plan wherethe k&
actions are executed one at atime by a single agent, with all
others doing nothing (or where different agents take turns),
“longer” plans stretched out even further by joint no-ops, or
anything in between.

Thedefinition of »-linearization requiresthat no agent per-
form more than one action at atime. This conforms with
the assumption we made in the last section, though the defi-
nition could quite easily be relaxed in thisregard. Because
of no-ops, our n-linearizations do not correspond to short-
est plans, either inthe concurrently or non-concurrently exe-
cuted senses of theterm. However, itisarelatively easy mat-
ter to “sweep through” a concurrent nonlinear plan and con-
struct some shortest n-linearization, onewiththefewest joint
actions, or taking the least amount of “time.” Though we do
not have an explicit notion of time, the sequence of joint ac-
tionsin an n-linearization implicitly determines a time line
along which each agent must execute itsindividual actions.
The fact that concurrency and non-concurrency constraints
are enforced in the linearizations ensures that the plan is co-
ordinated and synchronized. We notethat in order to execute

such aplanin acoordinated fashionthe agentswill need some
synchronization mechanism. Thisissue is not dealt with in
this paper.

4 Planning with Concurrent Actions

The POMP adgorithm, aversion of Weld's POP agorithm
[17] modified to handle concurrent actions, is shown in Fig-
ure 3.8 To keep the discussion brief, we first describe POMP
without considering conditiona effects.

We assume the existence of a function MGU(Q, R, B)
which returns the most general unifier of the literals () and
R with respect to the codesignation constraints in B. The
algorithm has a number of input variables: the set A con-
tainsall action instances inserted into the plan so far; the set
O contains ordering constraints on elements of A; the set L
contains causa links; the set NC contains non-concurrency
congtraints; and the set B contains the current codesignation
congtraints. The set NC does not appear in Weld's POP al-
gorithm and contains e ements of theform A # «, where A
isan action schema and « is an action instance from A. In-
tuitively, a non-concurrency constraint of this form requires
that no action instance a’ that matches the schema A, subject
to the (non) codesignation constraints, appear concurrently
with « in the plan.

The agendaisa set of pairs of the form (@, A), each list-
ing a precondition () that has not yet been achieved and the
action A that requires it. Initidly, the sets ., NC, and B
areempty, while A containsthetwo fictitiousactions A, and
Ao, Where Ay hastheinitial state propositionsasits effects
and A, hasthegoal state conjunctsasitspreconditions. The
agenda initialy contains al pairs (@, A.,) such that @ isa
goal state conjunct. This specification of theinitial agendais
identical to that used in POP [17]. Finally, we note that the
choose operator, which appears in the Action Selection and
Concurrent Action Selection steps, denotes nondeterminis-
ticchoice. Again, thisdeviceisjust that used in POPto make
algorithm specification independent of the search strategy ac-
tually used for planning.

Many of the structuresand algorithmic steps of POMP cor-
respond exactly to those used in POP. Rather than describe
these in detail, we focus our discussion on the elements of
POMP that differ from POP. Apart from the additional data
structure NC mentioned above, one key difference isthe ad-
ditional Concurrent Action Selection step in POMP, which
takes care of the concurrency requirements of each newly in-
stantiated action.

One fina key distinction is the notion of a threat used in
POMP, which is more general than that used by POP. Much
like POPR, givenaplan (A, O, L, NC), we say that A, threat-

ensthe causal link 4, 3 A. when O U {4, < A, < A.} is
consistent, and A; has —() as an effect. Threats are handled
using demotion (much likein POP), or weak promotion. The
latter differs from the standard promotion technique used in
POP: it allows A, to beordered concurrently with A., not just
after A..°

8 A treatment of the more general UCPOP algorithm appearsin
[3], but is essentially similar.
?If wewish to exclude actionsthat negate some precondition of
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POMP({A, O, L,NC, B),agenda)
Termination: If agendaisempty, return (A, O, L,NC, B).

Goal Selection: Let (@}, Anccq) be apair on the agenda. (Aneea
isan action and @) is a conjunct from its precondition list.)

Action Selection: Let A,qq = Choose an action (newly instanti-
ated or from A), one of whose effects unifieswith @ subject to
the constraints in B. If no such action exists, then return failure.
Let L) = LU{Aqaa g Aneea}. Form B’ by adding to B any
codesignation constraints that are needed in order to force Aqqq
to have the desired effect. Let O’ = O U {Aqaa < Apeea}- If
Aqdq isnewly instantiated, then A’ = A U {Aqqq} and O’ =
O U{Ao < Agaa < A} (Otherwise, let A = A).

Concurrent Action Selection: If A,qq IS newly instantiated then
apply the following stepsto every positiveaction aconc iN Agqq’s
concurrent list: Let A..,. = Choose a newly instantiated action
from A or an action that is already in A and can be ordered con-
sistently concurrently with A,q4q. Make sure that there is afree
agent that can perform this action concurrently with A,4q and
any other concurrently scheduledactions. If no such action exists
thenreturn failure. Let O’ = OU{Aconec = Aneea}. If Aconcis
newly instantiated, then A’ = AU{A,qq4} andO’ = O'U{ A, <
Acone < Ao} (otherwise, let A" = A). If aqqq isthe agent vari-
ablein Aqqq and aconc is the agent variable in Acon., then add
Gadd 7 Aconc 10 B, aswell asall similar non-codesignation con-
straints for actions A suchthat A = Aqqq € O.

Re-apply this stepto A.on., if needed.

For every negative action schema A-¢on. iN Aqqq’S CONCUrrent
list Iet NC' = NCU {A-conc # Aqaa}. Addto B’ any codesig-
nation constraints associated with A-conc.

Updating of Goal State: Letagenda’ = agenda— {{Q, Anceca)}.
If Aaqa isnewly instantiated, then add {{@;, Aaaa)} to agenda’
for every O, thatisalogical precondition of A,q4. Addtheother

preconditionsto B’. If additional concurrent actionswere added,
add their preconditions aswell.

Causal Link Protection: For every action A, that might threaten
acausal link A, 5 A, perform one of

(@) Demotion: Add A, < A, to O".

(b) Weak Promotion: Add A; > A, to O'. If no agent can per-
form A, concurrently with A., add A; > A., instead.

If neither constraint is consistent, then return failure.

Non-concur rency enforcement For every action A, that threatens
a non-concurrency constraint A # A (i.e.,, A; is an instance of

the schema A that does not violate any constraint in B’) add a
consistent constraint, either

(a) Demotion: Add A: < AtoO’.
(b) Promotion: Add A; > AtoO’.

If neither constraint is consistent, then return failure.
Recursivelnvocation: POMP({A’, O', L',NC', B'},agenda’)

Figure 3: The POMP agorithm

Apart from handling conventional threats in a different
manner, we have another form of threat in concurrent plans,
namely, NC-threats. We say that actioninstance A, threatens
thenon-concurrency constraint A # A. if OU{A; = A.}is
consistent and A; isan instantiation of A that doesnot violate
any of the codesignation constraints. Demotion and promo-
tion can be used to handle NC-threats much like they han-
dle more conventiona threats. Notice that although the set
NC contains negative (inequality) constraints, they will ul-
timately be grounded in the set of positive constraintsin O.
Followingthe approach of [17], we do not consider an action
to be athreat if some of its variables can be consistently in-
stantiated in amanner that would remove the threat.

We can provethe following:

Theorem POMP issound and complete.

That is, when POMP returns a plan for a particular goa and
initial state, any n-linearization of that plan will reach the
goa state from theinitial state. Moreovey, if thereisa plan,
POMP will generateit.'® More specificaly, if there exists a
sequence of joint actions that achieves al goa's, POMP will
find aplan whoselinearizations a so ensure goa satisfaction.

When we compare POMP to POP (as applied to thejoint
action space) we see that POM P sometimes must make sev-
eral more choices at a particular iteration of the algorithm—
it must choose how to instantiate actions that must occur
concurrently with a newly added action, and it must choose
athreat resolution strategy for NC-threats, should the need
arise.  However, POP will have an exponentialy larger
branching factor in its action selection phase because it must
choose among the set of joint actions.

We now sketch how POM P would solve the block moving
problem mentioned in the introduction. In theinitia state of
our planning problem, asingle block B isin on the floor in
Room1, both sides of the table are down, and the two agents
arein Rooml. The goa isto have B on the floor of Room2
and both sides of the table down. The agents can pick up and
put down the block, they can lift and lower each side of the
table, and they can move the table. Precise action descrip-
tions appear in alonger version of this paper, but their intu-
itive meaning should be clear.

Suppose that InRoom(B, Room2) is the first goa se-
lected. This can be achieved by performing A; =
MoveTable(a1, Room2) via its conditional effect (note that
al is an agent variable, so there is no commitment to
which agent performs this action).!* We must add both
Holding(«1, Table) and OnTable( B) to theagendaand insert

another concurrent action (see discussionin Section 2), we must use
O uU{A, < Ay < A.}inthe definition of threat, and we must
change weak promotion to standard promotion.

1°0f course, in practice an appropriate search mechanism must
“implement” the non-deterministic choice.

1\We do not pursue the notion of heuristics for action selection
here; but we do note that this action is a plausible candidate for se-
lection in the multi-block setting. If the goal list asserts that a num-
ber of blocksshould bein the secondroom, the single action of mov-
ing the table will achieve all of these under the appropriate condi-
tions (i.e., all the blocks are on the table). If action selection favors
(conditional) actions that achieve more goals or subgoals, this ac-
tion will be considered before the actions needed for “ one by one”
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the appropriate causal links. In addition, the concurrent list
(appearing in the conditional effect of the MoveTabl e action)
forces usto add the action A, = MoveTable(a2, Room2) to
the plan together with the non-codesignationconstraint a1 #
a?2. Theorderingconstraint A; = A, isadded aswell. When
we add A, we must add its precondition Holding(a2, Table)
to the agenda as well. The structure of the partialy con-
structed plan might be viewed as follows:

inroom(Block, R2)

Al
movetable(al,R2 GOAL

C
A2
movetable(a2,R2)

Next, we choose the just-added subgoal OnTable( B) from
the agenda. We add action A; = PutDown(a3, B) to the
plan with appropriate ordering constraint A5 < Ay ; itspre-
conditionsare added to the agenda and a causal link isadded
to L. In addition, we must add to NC the non-concurrency
constraint notLift(a, s): no agent can lift any side of the ta-
ble while the block isbeing placed on it if the desired effect
isto be achieved. The new planisshown below (we use left-
to-right ordering of actionsto denotetempora ordering of ac-
tions):

ontable(Block) inroom(Block, R2)

A3 A1l
putdown(a3,Block) movetable(al,R2 GOAL
C
A
movetable(a2,R2)

Now, we choosethe subgoal Holding(a1, Table). Thiscan
be achieved using A, = Lift(a1, s1), with the ordering con-
straint A4 < Al. All the preconditions are added to the
agenda, but no concurrency conditionsare added (yet!), since
wedo not yet need toinvokethe conditional effects of that ac-
tion induced by simultaneous lifting of the other side of the
table:

Ay holding(al,Table)

lift(al,LS)

@ NC  ontable(Block) inroom(Block, R2)

A3 A1
putdown(a3,Block) movetable(al,R2 GOAL
@ ¢
Ao
movetable(a2,R2)

We now notethat theconditional effect of A, posesathreat

to the causal link A5 "4 A, thisis because liftinga sin-

transport of the blocksby the individual agents. Sothischoiceisnot
assilly asit might seem in the single-block setting.

gle side of the table will dump the block from the table. In
addition, the non-concurrency constraint associated with As,
that no lifting be performed concurrently with As, is threat-
ened by A4 (an NC-threat), asindicated in the plan diagram
above. The confrontation strategy is used to handle the first
threat, and action A5 = Lift(a4, s2) scheduled concurrently
with A4.12 Theconstraintss1 # s2 and a4 # al areasoim-
posed. Thisensuresthat the undesirabl e effect will not occur.
We resolve the NC-threat by ordering Az before A,.'3 The
resulting partially completed plan is now free of threats:

Ag holding(al,Table)

lift(al,LS)

ontable(Block) inroom(Block, R2)
A3 A1l
putdown(a3,Block) movetable(al,R2 GOAL
C
o As Az
lift(a2,RS) movétable(a2,R2)

After anumber of additional steps, we obtainthefinal, suc-
cessful plan represented in Figure 4. (We have ignored the
initial picking up of the block by agent ¢3). One possible
(compact) linearization of thisplanisasfollows: some agent
a3 putstheblock on thetable (action As), whichisthenlifted
concurrently by two agents (a1 and a2 perform A4, As).
Then these agents move the table concurrently (A, A,) to
Room2. One of them lowersitsside of thetable (A¢) result-
ingintheblock falling to thefloor. Then the other agent ow-
ersitssideaswel (A7).

We note that this plan does not commit particular agents
to particular roles; e.g., the agent who puts the block on the
table can be the one who picks up the right side or the left
side of the table. Nor does the plan commit to the particu-
lar linearization described above (though any other lineariza-
tion requires more “time”). Recall that a linearization con-
sists of a sequence of joint actions. In the linearization de-
scribed above, we assume an agent that isinvolved in no ac-
tionfrom plan P at aparticular pointintime*executes’ ano-
op. Notice, however, that such no-opssimply serveasformal
“placeholders’ in thelinearization; they do not appear in the
plan, nor do they play arolein the planning process.

5 Concluding Remarks

Historically, planning with interacting actions was thought
to be an inherently problematic affair. Thus, it is somewhat
surprising that only minor changes are needed to enable the
STRIPS action representation language to capture interact-
ing actions, and that rel atively small modificationsto existing
nonlinear planners are required to generate concurrent plans.

Our solution involves the addition of a concurrent action
list to the standard action description, specifying which ac-

12 Confrontation is a threat removal strategy used in the context
of conditional actions (see[17]).

131N anticipation of a subsequent step, we use variable a2 in the
plan diagraminstead of a4, sincethey will soon be unified. To keep
things concrete, we have also replaced s1 and s2 with particular
sides of the table, LeftSde and RightSde, to make the discussion
abit less convoluted.
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ontable(Block)

holding(al,LS)
up(al,Ls)

A6
Ag holding(al, Table) lower(al,LS)
lift(al,LS) down(LS)
onfloor(Block)
ontable(Block) inroom(Block, R2)

GOAL

%@)

A1l
C movetable(al,R2)

C
holding(a2,Table) A 2 @

As
lift(a2,RS) movetable(a2,R2)
A7
up(a2,RS) lower(a2,RS)
holding(a2,RS)

Figure4: A Concurrent Nonlinear Plan

tions should or should not be scheduled concurrently with
the current action in order to achieve adesired effect. There
is a close connection between this type of specification and
Knablock’s approach to generating parallel execution plans
[11]. Knoblock adds a list to the action description that de-
scribes the resources used by the action: actions that re-
quirethe same resource (e.g., access to a database) cannot be
scheduled at the same time. Hence, Knoblock’sresource list
actually characterizes aform of non-concurrency constraints.
In fact, certain non-concurrency constraints are more natu-
rally described using such resourceliststhan with the general
method proposed here. Augmenting our language with such
listsis straightforward.

Apart from traditiona nonlinear planners like UCPOP,
newer planning algorithms, such as Graphplan [1] or Kautz
and Selman’s stochastic planning approach [9], can also be
readily adapted to handle our multiagent representation lan-
guage. In particular, Kautz and Selman’s stochastic plan-
ner [9] can be viewed as using a one step planner as a sub-
routine. Such a planner is simple to construct whether one
uses the standard STRIPS representation or our richer lan-
guage. Once this planner exists, the algorithm behaves the
same whatever the underlying language.

The approach we have considered is suitablefor ateam of
agentswith acommon set of goals. It assumes that some cen-
tral entity generates the plan, and that the agents have access
to agloba clock or some other synchronization mechanism
(thisistypicaly the case for a single agent with multiple ef-
fectors, and appliesin certain cases to moretruly distributed
systems). Animportant research issueishow such planscan
be generated and executed in adistributed fashion. Thisisan
important question, addressed to some extent in the DAL lit-
erature, but for which adequate answersare ill at large. Cer-
tain related issues are addressed in [2, 5]. The integration of
classical planning with the more challenging aspects of mul-
tiagent systems (coordination, bargaining, etc.) should prove
especialy interesting [8].
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