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Abstract

In order to generate plans for agents with multiple actuators or
agent teams, we must be able to represent and plan using con-
current actions with interacting effects. Historically, this has
been considered a challenging task that could require a tem-
poral planner. We show that, with simple modifications, the
STRIPS action representation language can be used to repre-
sent concurrent interacting actions. Moreover, current algo-
rithms for partial-order planning require only small modifica-
tions in order to handle this language and produce coordinated
multiagent plans. These results open the way to partial order
planners for cooperative multiagent systems.

1 Introduction
In order to construct plans for agent teams or agents with mul-
tiple actuators, such as multi-armed robots, we must be able
to model the effects and interactions of multiple actions ex-
ecuted concurrently, and generate plans that take these in-
teractions into account. A viable solution to the multiagent
planning (MAP) problem must include economical action de-
scriptions that are convenient to specify and are easily manip-
ulable by planning algorithms, as well as planning methods
that can deal with the interactions generally associated with
concurrent actions.

Surprisingly, despite the recent interest in multiagent
applications—for instance, in robotics [7, 10] and distributed
AI [8]—very little research addresses the MAP problem.2
Some authors (see, e.g., [15]) have considered the represen-
tation of concurrent actions and a number of contemporary
planners can handle concurrent noninteracting actions to a
certain degree. However, the prevailing wisdom seems to
suggest that temporal planners are required to adequately
deal with general MAP problems (see, e.g., Knoblock’s dis-
cussion of this in [11]). Certainly time plays a role in
planning—in any planner, the idea that sequences of actions
occur embodies an implicit notion of time. However, we dis-
agree that time in multiagent planning must be dealt with in
a more explicit fashion than in single-agent planning. The
main aim of this paper is to demonstrate that a form of the1Copyright c
1997, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.2Lansky’s work is one exception, but it does not build on con-
ventional planning techniques [12].

MAP problem can be solved using very simple extensions to
existing STRIPS representations and (single-agent) planners
like UCPOP [14]. We provide a representation for interact-
ing actions and a MAP algorithm that requires no explicit rep-
resentation of time.

The central issue in multiagent planning lies in the fact that
individual agent actions do interact. Consider the following
example: two agents must move a large set of blocks from
one room to another. While they could pick up each block
separately, a better solution would be to use an existing table
in the following manner. First, the agents put all blocks on
the table, then they each lift one side of the table. However,
they must lift the table simultaneously; otherwise, if only one
side of the table is lifted, all the blocks will fall off. Having
lifted the table, they must move it to the other room. There,
they put the table down. In fact, depending on the precise
goal, it may be better for one agent to drop its side of the ta-
ble first, causing the blocks to fall off. They might then re-
turn the table. Notice how this plan requires the agents to
coordinate in two different ways: First, they must lift the ta-
ble together so that the blocks do not fall; later, one of them
(and only one) must drop its side of the table to let the blocks
fall. An action representation that makes such interactions
explicit and a planning algorithm that can, as result of these
interactions, prescribe that certain actions must or must not
be executed concurrently are the main features of any multi-
agent planner—temporal representations are not the central
problem. Certainly, in multiagent domains the need to ex-
plicitly model continuous processes or time constraints may
be more urgent. These issues, however, also arise in single-
agent planning.

Since the actions of distinct agents interact, we cannot, in
general, specify the effects of an individual’s actions without
taking into account what other actions might be performed
by other agents at the same time. One possible solution to
this problem is to specify the effects of all joint actions di-
rectly. More specifically, letAi be the set of actions available
to agent i (assumingn agents labeled 1 : : :n), and let the joint
action space be A1�A2 � � � ��An. We treat each element
of this space as a separate action, and specify its effects using
our favorite action representation.3 This approach has a num-3Our discussion will center on the STRIPS action representa-
tion, but similar considerations apply to other representations such
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ber of drawbacks. First, the number of joint actions increases
exponentially with the number of agents. Second, this fails to
exploit the fact that a number of individual actions may not
interact at all, or at least not interact under certain conditions.
We would like a representation of actions in multiagent set-
tings that exploits the independence of individual action ef-
fects to whatever extent possible. For instance, while the lift
actions of the two agents may interact, many other actions
will not (e.g., one agent lifting the table and another picking
up a block). Hence, we do not need to explicitly consider all
combinations of these actions, and can specify certain indi-
vidual effects separately, combining the effects “as needed.”
Finally, the use of joint actions in the context of most plan-
ners forces what seems to be an excessive amount of com-
mitment. Whenever, the individual action of some agent can
accomplish a desired effect, we must insert into our plan a
joint action, thereby committing all other agents to specific
actions to be executed concurrently, even though the actual
choices may be irrelevant. For these reasons, we desire a
more “distributed” representation of actions, as in the multi-
entity model of [13].

We are therefore faced with the following two problems:
(1) The representation problem: how do we naturally and
concisely represent the effects of actions that may be influ-
enced (positively or negatively) by the concurrent perfor-
mance of other actions (or exogenous events for that mat-
ter); (2) The planning problem: how do we plan for multiple
agents using such a representation.

In this paper, we show how the STRIPS action represen-
tation can be augmented to handle concurrent interacting ac-
tions and how existing nonlinear planners can be adapted
to handle such actions. In fact, it might come as a surprise
that solving both problems requires only a small number
of changes to existing nonlinear planners, such as UCPOP
[14].4 The main addition to the STRIPS representation for
action a is a concurrent action list: this describes restrictions
on the actions that can (or cannot) be executed concurrently
in order for a to have the specified effect (indeed, a can have
a number of different conditional effects depending on which
concurrent actions are applied). In order to handle this richer
language, we must make a number of modifications to “stan-
dard” partial-order planners: (a) we add equality (inequality)
constraints on action orderings to enforce concurrency (non-
concurrency) constraints; and (b) we expand the definition of
threats to cover concurrent actions that could prevent an in-
tended action effect.

In the following section we describe our STRIPS-style
representation for concurrent, interacting actions. This is fol-
lowed by a semantics for concurrent plans in Section 3. In
Section 4 we describe the Partial Order Multiagent Planning
algorithm (POMP), a modified version of the UCPOP algo-
rithm that can be used to generate multiagent plans. Sec-
tion 5 concludes the paper. A longer version of this paper
[3] contains an examination of the use of dynamic Bayes nets
for representing (possiblyprobabilistic) actions in multiagent

as the situation calculus [16] and dynamic Bayes nets [6, 4].4Moreover, other planning algorithms, (e.g., [1, 9]) should prove
amenable to extension to multiagent planning using similar ideas.

(define (operator pickup)
:params (?a1 ?x)
:pre (and (inroom ?a1 ?r1) (inroom block ?r1)

(handempty ?a1) (onfloor ?x))
:conc (not (= ?a1 ?a2)):(not (pickup ?a2 ?x))
:eff (and (not (handempty ?a1)

(not (onfloor ?x))
(holding ?a1 Block))))

Figure 1: The PickUp action

domains, as well as an extensive example.

2 Representing Concurrent Action
We assume a basic familiarity with the STRIPS action repre-
sentation: states are represented using sets (conjunctions) of
positive literals, and actions are represented using effect lists,
summarizing the effect of the action on a state. In this paper,
we use a standard variant of STRIPS in which the domain
theory is defined using a set � of action schemata with typed
variables.5 This allows for a more concise description of the
set of actions, and it can be exploited by least commitment
planners. By convention, each action schema will have as its
first argument a free variable denoting the acting agent (this is
typically not needed in single-agent domains). The STRIPS
representation can be enhanced using a more expressive lan-
guage. For instance, UCPOP [14] allows a form of univer-
sal quantification in the action description and conditional ef-
fects. We do not discuss quantification here, but we will con-
sider conditional effects.

We consider a simple extension of STRIPS for actions
whose effects can be influenced by the concurrent execution
of other actions. To each action description we add a (pos-
sibly empty) concurrent list: this contains a list of action
schemata, each of which may be prefixed by negations and
certain codesignation and non-codesignation constraints. In-
tuitively, this list specifies which actions can co-occur or can-
not co-occur with the given action in order to produce the
effect so described. This list is treated much like a set of
preconditions, although it refers to concurrently executed ac-
tions rather than conditions that must hold prior to execution.

An example action schema for the Pickup action is de-
scribed in Figure 1. This action can be executed if: the agent
and the block are in the same room; the agent’s hand is empty;
the block is on the floor; and no other agent is attempting
to pickup the block concurrently. If these preconditions and
concurrency conditions hold, then the block will successfully
be picked up by the agent.

Using this representation, we can represent actions whose
effects are modified by the concurrent execution of other ac-
tions. For example, suppose an agent a1 can pick up one
side of a table, with the effect of dumping blocks onto the
floor if no agent a2 picks up the other side, and with the ef-
fect of simply raising the table if a2 picks up the other side.
Clearly, the concurrency conditions (not (pickup ?a2
?s)) and (pickup ?a2 ?s) can be used to distinguish5The general concepts and notation to follow, apart from specific
multiagent extensions, draws heavily on Weld’s excellent survey of
partial order planning [17].
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(define (operator lower)
:params (?a1 ?s1)
:prec (and (holding ?a1 ?s1) (up ?s1))
:conc (and (not (lift ?a2 ?s2)) (not (= ?a1 ?a2))

(not (= ?s1 ?s2)))
:eff (and (not (up ?s1))(down ?s1)(not (holding ?a1 ?s1))

(forall ((object ?x))
(when (ontable ?x)(up ?s2)(not (= ?s1 ?s2))
(and (not (lower ?a3 ?s2))(not (= ?a3 ?a1)))
(and (onfloor ?x)(not (ontable x))))))

Figure 2: The Lower action

the two cases; but treating them as preconditions essentially
splits the action into two separate actions with similar effects.
As in single-agent representations, we can treat such “modi-
fiers” using a when clause, essentially specifying the condi-
tional effects of an action. The distinction in our case is sim-
ply that, in addition to state conditions, the antecedent of a
when clause can refer to the concurrent execution of actions
(or their negation). The syntax of concurrency constraints in
when clauses will be like that of the concurrency list; but in-
stead of treating them as preconditions, they will designate
conditions under which the action has the effect given by the
consequent. The general form of the when clause is (when
antecedent effect), where antecedent itself consists of two
parts: (conditions conc-constraints). The table lowering ac-
tion schema is described in Figure 2. Its preconditions are
that the agent is holding side ?s1 of the table which is raised.
It has a non-concurrency condition stating that no other agent
is simultaneously raising the other side of the table. (Notice
non-concurrency conditions are implicitly universally quan-
tified). Its primary effect is to cause ?s1 to be “down.” In ad-
dition, the conditional effect states that when there is no con-
current lower action of the other side of the table, and there
is some object on the table, that object falls to the floor.

An action description can have no when clause, one when
clause, or multiple when clauses. In the latter case, the pre-
conditions of all the when clauses must be disjoint.6

The semantics of individual actions is, of course, differ-
ent in our multiagent setting than in the single-agent case. It
is not individual actions that transform an initial state of the
world into a new state of the world. Rather, it is joint actions
(i.e., n-tuples of individual actions, possibly including no-
ops, one for each agent) that define state transitions. Given
a state s and a joint action a = ha1; � � � ; ani, the state t that
results from performing a at s is such that all atoms in the
add lists of each ai are true in t, all atoms in the delete lists
of each ai are false in t, and all unmentioned atoms are un-
changed from s. Under this semantics, an action description
can be inconsistent if some individual action a causes Q to be
true, and another action b causes Q to be false. If this is the
case, it is the responsibility of the axiomatizer to recognize
the conflict and state the true effect if a and b are performed
concurrently (by imposing conditional effects with concur-6In the case of multiple clauses, the disjointness restriction can
be relaxed if the effects are independent, much like in a Bayes net
action description [4]. We discuss the use of dynamic Bayes nets
and the advantages they offer as an action representation method for
multiagent systems in [3].

rent action conditions) or to disallow concurrent execution
(by imposing non-concurrency conditions). We assume all
action descriptions are consistent in the sequel.

Several interesting issues arise in the specification of ac-
tions for multiple agents. First, we assume throughout that
each agent can perform only one action at a time, so any
possible concurrent actions must be performed by distinct
agents. This allows our actions descriptions to be simpler
than they otherwise might. If we allowed a single agent
to perform certain actions concurrently, but not others, we
would have to add extra concurrency constraints that pre-
clude actions that might be executable by another agent from
being performed by the acting agent.

Another issue that must be addressed is the precise effect
of a joint action, one of whose individual actions negates
some precondition of a concurrently executed individual ac-
tion. We make no special allowances for this, simply retain-
ing the semantics described above. While this does not com-
plicate the definition of joint actions, some such combina-
tions may not make sense. Again, we could treat these in
several ways: we can allow the specification of such actions
and design the planner so that it excludes such combinations
when forming concurrent plans, unless an explicit concur-
rency condition is given (this means the axiomatizer need not
think about such interactions); or we can allow such combi-
nations, in general, but explicitly exclude problematic cases
by adding non-concurrency constraints.

Finally, an undesirable (though theoretically unproblem-
atic) situation can arise if we provide “inconsistent” concur-
rency lists. For example, we may require action a to be con-
current with b in order to have a particular effect, while bmay
be required to be non-concurrent with a (this can span a set
of actions with more than two elements, naturally). This sim-
ply means that we cannot really achieve the intended effect
of a, and the planner will recognize this; but such a specifi-
cation can lead to unnecessary backtracking during the plan-
ning process. We will generally assume that concurrency
lists are consistent.

3 Representing Concurrent Plans
Before moving on to discuss the planning process, we de-
scribe our representation for multiagent plans, which is rather
straightforward extension of standard single-agent partially
ordered plan representations. A (single-agent) nonlinear plan
consists of a set of action instances, together with various
strict ordering constraints (i.e., using the relations < and >)
on the ordering of these actions, as well as codesignation and
non-codesignation constraints on the values of variables ap-
pearing in these actions, forcing them to have the same or
different values, respectively [17, 14]. A nonlinear plan of
this sort represents its set of possible linearizations, the set
of totally ordered plans formed from its action instances that
do not violate any of the ordering, codesignation and non-
codesignation constraints.7 We say a nonlinear plan is con-
sistent if it has some linearization. The set of linearizations
can be seen as the “semantics” of a nonlinear plan in some7Concurrent execution has also been considered in this context
for non-interacting actions; see [11] for a discussion.
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sense; a (consistent) nonlinear plan satisfies a goal set G,
given starting state s, if any linearization is guaranteed to sat-
isfy G.

A concurrent nonlinear plan for n agents (labeled 1; : : :n)
is similar: it consists of a set of action instances (with
agent arguments, though not necessarily instantiated) to-
gether with a set of arbitrary ordering constraints over the ac-
tions (i.e., <;>;= and 6=) and the usual codesignation and
non-codesignation constraints. Unlike single-agent nonlin-
ear plans, we allow equality and inequality ordering con-
straints so that concurrent or non-concurrent execution of a
pair of actions can be imposed. Our semantics must allow
for the concurrent execution of actions by our n agents. To
this end we extend the notion of a linearization:

Definition Let P be a concurrent nonlinear plan for agents1; : : :n. An n-linearization of P is a sequence of joint ac-
tions A1; � � �Ak for agents 1; : : :n such that

1. each individual action instance in P is a member of
some joint action Ai;

2. no individual action occurs in A1; � � �Ak other than
those in P or individual No-op actions;

3. the codesignation and non-codesignation constraints inP are respected; and
4. the ordering constraints in P are respected. More pre-

cisely, for any individual action instances a and b in P ,
and joint actionsAj and Ak in which a and b occur, any
ordering constraints between a and b are true of Aj andAk; that is, if af<;>;=; 6=gb, then jf<;>;=; 6=gk.

In other words, the actions in P are arranged in a set of joint
actions such that the ordering of individual actions satisfies
the constraints, with “synchronization” ensured by no-ops. If
we have a set of k actions (which are allowed to be executed
by distinct agents) with no ordering constraints, the set of lin-
earizations includes the “short” plan with a single joint ac-
tion where all k actions are executed concurrently by differ-
ent agents (assuming k � n), a “strung out” plan where the k
actions are executed one at a time by a single agent, with all
others doing nothing (or where different agents take turns),
“longer” plans stretched out even further by joint no-ops, or
anything in between.

The definition ofn-linearization requires that no agent per-
form more than one action at a time. This conforms with
the assumption we made in the last section, though the defi-
nition could quite easily be relaxed in this regard. Because
of no-ops, our n-linearizations do not correspond to short-
est plans, either in the concurrently or non-concurrently exe-
cuted senses of the term. However, it is a relatively easy mat-
ter to “sweep through” a concurrent nonlinear plan and con-
struct some shortestn-linearization,one with the fewest joint
actions, or taking the least amount of “time.” Though we do
not have an explicit notion of time, the sequence of joint ac-
tions in an n-linearization implicitly determines a time line
along which each agent must execute its individual actions.
The fact that concurrency and non-concurrency constraints
are enforced in the linearizations ensures that the plan is co-
ordinated and synchronized. We note that in order to execute

such a plan in a coordinated fashion the agents will need some
synchronization mechanism. This issue is not dealt with in
this paper.

4 Planning with Concurrent Actions
The POMP algorithm, a version of Weld’s POP algorithm

[17] modified to handle concurrent actions, is shown in Fig-
ure 3.8 To keep the discussion brief, we first describe POMP
without considering conditional effects.

We assume the existence of a function MGU(Q;R;B)
which returns the most general unifier of the literals Q andR with respect to the codesignation constraints in B. The
algorithm has a number of input variables: the set A con-
tains all action instances inserted into the plan so far; the setO contains ordering constraints on elements of A; the set L
contains causal links; the set NC contains non-concurrency
constraints; and the set B contains the current codesignation
constraints. The set NC does not appear in Weld’s POP al-
gorithm and contains elements of the form A 6= a, where A
is an action schema and a is an action instance from A. In-
tuitively, a non-concurrency constraint of this form requires
that no action instance a0 that matches the schema A, subject
to the (non) codesignation constraints, appear concurrently
with a in the plan.

The agenda is a set of pairs of the form hQ;Ai, each list-
ing a precondition Q that has not yet been achieved and the
action A that requires it. Initially, the sets L, NC, and B
are empty, whileA contains the two fictitious actions A0 andA1, where A0 has the initial state propositions as its effects
andA1 has the goal state conjuncts as its preconditions. The
agenda initially contains all pairs hQ;A1i such that Q is a
goal state conjunct. This specification of the initial agenda is
identical to that used in POP [17]. Finally, we note that the
choose operator, which appears in the Action Selection and
Concurrent Action Selection steps, denotes nondeterminis-
tic choice. Again, this device is just that used in POP to make
algorithmspecification independent of the search strategy ac-
tually used for planning.

Many of the structures and algorithmic steps of POMP cor-
respond exactly to those used in POP. Rather than describe
these in detail, we focus our discussion on the elements of
POMP that differ from POP. Apart from the additional data
structure NC mentioned above, one key difference is the ad-
ditional Concurrent Action Selection step in POMP, which
takes care of the concurrency requirements of each newly in-
stantiated action.

One final key distinction is the notion of a threat used in
POMP, which is more general than that used by POP. Much
like POP, given a plan hA;O;L;NCi, we say that At threat-

ens the causal link Ap Q! Ac when O [ fAp � At < Acg is
consistent, and At has :Q as an effect. Threats are handled
using demotion (much like in POP), or weak promotion. The
latter differs from the standard promotion technique used in
POP: it allowsAt to be ordered concurrently withAc, not just
after Ac.98A treatment of the more general UCPOP algorithm appears in
[3], but is essentially similar.9If we wish to exclude actions that negate some precondition of
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POMP(hA;O; L;NC; Bi,agenda)
Termination: If agenda is empty, return hA;O; L;NC; Bi.
Goal Selection: Let hQ;Aneedi be a pair on the agenda. (Aneed

is an action andQ is a conjunct from its precondition list.)

Action Selection: Let Aadd = Choose an action (newly instanti-
ated or from A), one of whose effects unifies with Q subject to
the constraints in B. If no such action exists, then return failure.

Let L0 = L [ fAadd Q! Aneedg. Form B0 by adding to B any
codesignation constraints that are needed in order to force Aadd
to have the desired effect. Let O0 = O [ fAadd < Aneedg. IfAadd is newly instantiated, then A0 = A [ fAaddg and O0 =O0 [ fA0 < Aadd < A1g (otherwise, letA0 = A).

Concurrent Action Selection: If Aadd is newly instantiated then
apply the following steps to every positive action�conc inAadd’s
concurrent list: Let Aconc = Choose a newly instantiated action
from � or an action that is already in A and can be ordered con-
sistently concurrently with Aadd. Make sure that there is a free
agent that can perform this action concurrently with Aadd and
any other concurrently scheduledactions. If no such action exists
then return failure. LetO0 = O[fAconc = Aneedg. IfAconc is
newly instantiated, thenA0 = A[fAaddg andO0 = O0[fA0 <Aconc < A1g (otherwise, letA0 = A). If aadd is the agent vari-
able in Aadd and aconc is the agent variable in Aconc , then addaadd 6= aconc toB0, as well as all similar non-codesignationcon-
straints for actionsA such that A = Aadd 2 O.
Re-apply this step to Aconc, if needed.

For every negative action schema A:conc in Aadd’s concurrent
list let NC0 = NC[ fA:conc 6= Aaddg. Add toB0 any codesig-
nation constraints associated with A:conc.

Updating of Goal State: Let agenda’ = agenda� fhQ;Aneedig.
IfAadd is newly instantiated, then add fhQj ; Aaddig to agenda’
for everyQj that is a logical precondition ofAadd. Add the other
preconditions toB0. If additional concurrent actions were added,
add their preconditions as well.

Causal Link Protection: For every action At that might threaten

a causal link Ap R! Ac perform one of

(a) Demotion: AddAt < Ap to O0.
(b) Weak Promotion: Add At � Ac to O0 . If no agent can per-

form At concurrently with Ac, addAt > Ac, instead.

If neither constraint is consistent, then return failure.

Non-concurrency enforcement For every actionAt that threatens
a non-concurrency constraint A 6= A (i.e., At is an instance of
the schema A that does not violate any constraint in B0) add a
consistent constraint, either

(a) Demotion: AddAt < A to O0.
(b) Promotion: Add At > A to O0 .

If neither constraint is consistent, then return failure.

Recursive Invocation: POMP(hA0; O0; L0;NC0; B0i,agenda’)

Figure 3: The POMP algorithm

Apart from handling conventional threats in a different
manner, we have another form of threat in concurrent plans,
namely, NC-threats. We say that action instanceAt threatens
the non-concurrency constraint A 6= Ac if O[fAt = Acg is
consistent andAt is an instantiation of A that does not violate
any of the codesignation constraints. Demotion and promo-
tion can be used to handle NC-threats much like they han-
dle more conventional threats. Notice that although the set
NC contains negative (inequality) constraints, they will ul-
timately be grounded in the set of positive constraints in O.
Following the approach of [17], we do not consider an action
to be a threat if some of its variables can be consistently in-
stantiated in a manner that would remove the threat.

We can prove the following:

Theorem POMP is sound and complete.

That is, when POMP returns a plan for a particular goal and
initial state, any n-linearization of that plan will reach the
goal state from the initial state. Moreover, if there is a plan,
POMP will generate it.10 More specifically, if there exists a
sequence of joint actions that achieves all goals, POMP will
find a plan whose linearizations also ensure goal satisfaction.

When we compare POMP to POP (as applied to the joint
action space) we see that POMP sometimes must make sev-
eral more choices at a particular iteration of the algorithm—
it must choose how to instantiate actions that must occur
concurrently with a newly added action, and it must choose
a threat resolution strategy for NC-threats, should the need
arise. However, POP will have an exponentially larger
branching factor in its action selection phase because it must
choose among the set of joint actions.

We now sketch how POMP would solve the block moving
problem mentioned in the introduction. In the initial state of
our planning problem, a single block B is in on the floor in
Room1, both sides of the table are down, and the two agents
are in Room1. The goal is to have B on the floor of Room2
and both sides of the table down. The agents can pick up and
put down the block, they can lift and lower each side of the
table, and they can move the table. Precise action descrip-
tions appear in a longer version of this paper, but their intu-
itive meaning should be clear.

Suppose that InRoom(B;Room2) is the first goal se-
lected. This can be achieved by performing A1 =
MoveTable(a1;Room2) via its conditional effect (note thata1 is an agent variable, so there is no commitment to
which agent performs this action).11 We must add both
Holding(a1; Table) and OnTable(B) to the agenda and insert

another concurrent action (see discussion in Section 2), we must useO [ fAp � At � Acg in the definition of threat, and we must
change weak promotion to standard promotion.10Of course, in practice an appropriate search mechanism must
“implement” the non-deterministic choice.11We do not pursue the notion of heuristics for action selection
here; but we do note that this action is a plausible candidate for se-
lection in the multi-block setting. If the goal list asserts that a num-
ber of blocks should be in the secondroom, the single action of mov-
ing the table will achieve all of these under the appropriate condi-
tions (i.e., all the blocks are on the table). If action selection favors
(conditional) actions that achieve more goals or subgoals, this ac-
tion will be considered before the actions needed for “one by one”
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the appropriate causal links. In addition, the concurrent list
(appearing in the conditional effect of the MoveTable action)
forces us to add the action A2 = MoveTable(a2;Room2) to
the plan together with the non-codesignation constraint a1 6=a2. The ordering constraintA1 = A2 is added as well. When
we add A2, we must add its precondition Holding(a2; Table)
to the agenda as well. The structure of the partially con-
structed plan might be viewed as follows:

movetable(a2,R2)

GOAL

inroom(Block, R2)

movetable(a1,R2)

2

1

A

A

C

Next, we choose the just-added subgoal OnTable(B) from
the agenda. We add action A3 = PutDown(a3; B) to the
plan with appropriate ordering constraint A3 < A1; its pre-
conditions are added to the agenda and a causal link is added
to L. In addition, we must add to NC the non-concurrency
constraint notLift(a; s): no agent can lift any side of the ta-
ble while the block is being placed on it if the desired effect
is to be achieved. The new plan is shown below (we use left-
to-right ordering of actions to denote temporal ordering of ac-
tions):

C

movetable(a1,R2)

movetable(a2,R2)

GOAL

inroom(Block, R2)

putdown(a3,Block)

ontable(Block)

A1

A2

A3

Now, we choose the subgoal Holding(a1; Table). This can
be achieved using A4 = Lift(a1; s1), with the ordering con-
straint A4 < A1. All the preconditions are added to the
agenda, but no concurrency conditions are added (yet!), since
we do not yet need to invoke the conditional effects of that ac-
tion induced by simultaneous lifting of the other side of the
table:

C

movetable(a1,R2)

movetable(a2,R2)

GOAL

inroom(Block, R2)

putdown(a1,Block)

ontable(Block)

holding(a1,Table)

movetable(a1,R2)

movetable(a2,R2)

GOAL

inroom(Block, R2)

putdown(a3,Block)

ontable(Block)

A1

A2

A3

A4
lift(a1,LS)

NC

We now note that the conditional effect ofA4 poses a threat

to the causal link A3 ontable! A1; this is because lifting a sin-

transport of the blocks by the individual agents. So this choice is not
as silly as it might seem in the single-block setting.

gle side of the table will dump the block from the table. In
addition, the non-concurrency constraint associated withA3,
that no lifting be performed concurrently with A3, is threat-
ened by A4 (an NC-threat), as indicated in the plan diagram
above. The confrontation strategy is used to handle the first
threat, and action A5 = Lift(a4; s2) scheduled concurrently
withA4.12 The constraints s1 6= s2 and a4 6= a1 are also im-
posed. This ensures that the undesirable effect will not occur.
We resolve the NC-threat by ordering A3 before A4.13 The
resulting partially completed plan is now free of threats:

C

C movetable(a1,R2)

movetable(a2,R2)

GOAL

inroom(Block, R2)ontable(Block)

holding(a1,Table)

movetable(a1,R2)

movetable(a2,R2)

GOAL

inroom(Block, R2)ontable(Block)

A1

A2

A4

movetable(a1,R2)

movetable(a2,R2)

GOAL

inroom(Block, R2)ontable(Block)

holding(a1,Table)

A5

putdown(a3,Block)
3A

lift(a1,LS)

lift(a2,RS)

After a number of additional steps, we obtain the final, suc-
cessful plan represented in Figure 4. (We have ignored the
initial picking up of the block by agent a3). One possible
(compact) linearization of this plan is as follows: some agenta3 puts the block on the table (actionA3), which is then lifted
concurrently by two agents (a1 and a2 perform A4; A5).
Then these agents move the table concurrently (A1; A2) to
Room2. One of them lowers its side of the table (A6) result-
ing in the block falling to the floor. Then the other agent low-
ers its side as well (A7).

We note that this plan does not commit particular agents
to particular roles; e.g., the agent who puts the block on the
table can be the one who picks up the right side or the left
side of the table. Nor does the plan commit to the particu-
lar linearization described above (though any other lineariza-
tion requires more “time”). Recall that a linearization con-
sists of a sequence of joint actions. In the linearization de-
scribed above, we assume an agent that is involved in no ac-
tion from plan P at a particular point in time “executes” a no-
op. Notice, however, that such no-ops simply serve as formal
“placeholders” in the linearization; they do not appear in the
plan, nor do they play a role in the planning process.

5 Concluding Remarks
Historically, planning with interacting actions was thought
to be an inherently problematic affair. Thus, it is somewhat
surprising that only minor changes are needed to enable the
STRIPS action representation language to capture interact-
ing actions, and that relatively small modifications to existing
nonlinear planners are required to generate concurrent plans.

Our solution involves the addition of a concurrent action
list to the standard action description, specifying which ac-12Confrontation is a threat removal strategy used in the context
of conditional actions (see [17]).13In anticipation of a subsequent step, we use variable a2 in the
plan diagram instead of a4, since they will soon be unified. To keep
things concrete, we have also replaced s1 and s2 with particular
sides of the table, LeftSide and RightSide, to make the discussion
a bit less convoluted.
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lower(a1,LS)
A 6

C

lower(a2,RS)
A7

C movetable(a1,R2)movetable(a1,R2)
A1

movetable(a1,R2)movetable(a1,R2)movetable(a1,R2)
A1

holding(a1,Table)

holding(a1,LS)

up(a1,LS)

inroom(Block, R2)ontable(Block)

ontable(Block)

down(LS)
onfloor(Block)

up(a2,RS)

holding(a2,RS)

GOAL

down(RS)

A3

lift(a1,LS)

lift(a2,RS)

A4

A5

putdown(a3,Block)

A
movetable(a2,R2)

2holding(a2,Table)

Figure 4: A Concurrent Nonlinear Plan

tions should or should not be scheduled concurrently with
the current action in order to achieve a desired effect. There
is a close connection between this type of specification and
Knoblock’s approach to generating parallel execution plans
[11]. Knoblock adds a list to the action description that de-
scribes the resources used by the action: actions that re-
quire the same resource (e.g., access to a database) cannot be
scheduled at the same time. Hence, Knoblock’s resource list
actually characterizes a form of non-concurrency constraints.
In fact, certain non-concurrency constraints are more natu-
rally described using such resource lists than with the general
method proposed here. Augmenting our language with such
lists is straightforward.

Apart from traditional nonlinear planners like UCPOP,
newer planning algorithms, such as Graphplan [1] or Kautz
and Selman’s stochastic planning approach [9], can also be
readily adapted to handle our multiagent representation lan-
guage. In particular, Kautz and Selman’s stochastic plan-
ner [9] can be viewed as using a one step planner as a sub-
routine. Such a planner is simple to construct whether one
uses the standard STRIPS representation or our richer lan-
guage. Once this planner exists, the algorithm behaves the
same whatever the underlying language.

The approach we have considered is suitable for a team of
agents with a common set of goals. It assumes that some cen-
tral entity generates the plan, and that the agents have access
to a global clock or some other synchronization mechanism
(this is typically the case for a single agent with multiple ef-
fectors, and applies in certain cases to more truly distributed
systems). An important research issue is how such plans can
be generated and executed in a distributed fashion. This is an
important question, addressed to some extent in the DAI lit-
erature, but for which adequate answers are still at large. Cer-
tain related issues are addressed in [2, 5]. The integration of
classical planning with the more challenging aspects of mul-
tiagent systems (coordination, bargaining, etc.) should prove
especially interesting [8].
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