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Abstract

Combinatorial auctions provide a vauable mecha-
nism for the allocation of goods in settings where
buyer valuations exhibit complex structure with re-
spect to substitutability and complementarity. Most
algorithmsare designed to work with explicit “flat”
bidsfor concrete bundles of goods. However, logi-
cal biddinglanguages allow the expression of com-
plex utility functionsin a natural and concise way,
and have recently attracted considerable attention.

Despite the power of logical languages, no current
winner determination agorithms exploit the spe-
cific structure of logically specified bids to solve
problems more effectively. In this paper, we de-
scribe techniques to do just this. Specificaly, we
propose a direct integer program (1P) formulation
of thewinner determination problem for bidsin the
Lgg logical language. Thisformulationislinear in
thesize of theproblem and can be solved effectively
using standard optimization packages. We compare
thisformul ation and its solution timeto those of the
corresponding set of flat bids, demonstratingtheim-
mense utility of exploitingthe structure of logically
expressed bids. We aso consider an extension of
Les and show that these can aso be solved using
linear constraints.

1 Introduction

Combinatorial auctions (CAs) generalize traditional market
mechanismsto allow the direct specification of bidsover bun-
dlesof items[10; 11; 16]. When abidder’ spreferences exhibit
complex structurewith respect to complementarity and substi-
tutability, such combinatorial (or bundl€) bidsallow biddersto
avoid therisk of abtaining incomplete bundles. Given aset of
combinatorid bids, theseller then decides how best toalocate
individua goodsto those bundlesfor which bidswere placed,
with the aim of maximizing revenue. Because bundles gen-
erally overlap, thisis—conceptual ly—astraightforward opti-
mization problem, equivalent to weighted set packing. As a
result, winner determination for CAsis NP-complete [11].
By expressing her preferences, or prices, directly over bun-
dles, a potentia buyer can, in principle, very accurately re-

flect her utility function, regardless of its structure. In prac-
tice, however, specifying explicit “flat” bids over al relevant
bundles may be difficult: many utility functions will require
the specification of anumber of bundlebidsthat isexponentia
in the number of goods of interest to the bidder. Thisisespe-
cialy true for utility functionsinvolving the complementari-
tiesand substitutability for which CAsare best-suited. To cir-
cumvent this, several researchers have proposed logical bid-
ding languages that allow might allow complex utility func-
tions to be expressed relatively concisely in a suitable lan-
guage [12; 13; 5; 8; 2]. The recent L language of Boutilier
and Hoos [2], for example, allows goods to be “joined” us-
ing logical connectives, and pricesto be attached to arbitrary
subformulae. Despite their attractiveness, the computational
aspects of logical bidding languages have received little at-
tention. Indeed, no studies of which we are aware exploit the
structure of logically specified bids in winner determination.
Instead, aset of logical bidsisusually converted to an equiva-
lent set of flat bidsand solved using methods designed for flat
bids.

In this paper, we solve the winner determination problem
for £ problems without conversion to flat bids. Rather we
directly formulate the optimization problem in away that ex-
ploitsthe structure of underlying bids. More precisdaly, we de-
scribe avery concise integer program (IP) formulation of the
winner determination problem for £ ¢g that makes the logical
structure explicit. The well-documented fact that the number
of flat bidsrequired to capture aparticular problem may be ex-
ponentially larger than the set of logical bids suggeststhat this
strategy could be useful. However, it could be that standard
optimization techniques can discover the “lost” structurein a
set of flat bids(and hence solvetheflat problem effectively) or
that thestructure cannot be expl oited (and hencethe structured
problem cannot be solved effectively). Our results show that
neither isthe case: the direct solution of structured problems
offers immense computational savings in winner determina
tion. Sincelogical languages generaly, and £ Specificaly,
offer advantages both in terms of the expression of bidsand in
winner determination, we expect that thisapproach will prove
vital for handling large CAs.

The paper is organized as follows. We describe relevant
background on CAs, winner determination, and bidding lan-
guages in Section 2. Wefocus on the £gg language sinceitis
fully expressive, and strictly more compact than any other lan-



guageintheliterature. In Section 3 we describethe |Pformu-
lation of the winner determination problemfor £gz. Through
the introduction of several auxiliary variables, this formula-
tion can be made very compact, linear in the size of the set of
logical bids. We describe an extension of £z and how it also
can be modeled using a concise set of constraints. We aso
show how an equivalent set of flat bids can be constructed and
solved using the “standard” IP formulation. We present em-
pirical resultsin Section 4 showing that conversiontoflat bids
cannot be competitivefor problems of even moderate size.

2 CAsand Bidding Languages

Inthissection, we briefly review CAsand logical biddinglan-
guages.

2.1 Combinatorial Auctions

Wesupposeasdler hasaset of goodsG = {g1, ... , 9.} tobe
auctioned. Potential buyersval ue different subsets or bundles
of goods, b C (G, and offer bids of the form (b, p) where p is
the amount the buyer iswilling to pay for bundle b. We often
use the term “flat bid” for such a bundle bid, to distinguishit
from the structured bids we consider below. Given a collec-
tionof bids B = {(b;,p;) : i < m}, thesdler must find an
allocation of goodsto bidsthat maximizesrevenue. We define
anallocationtobeany . = {(b;, p;)} C B suchthat thebun-
dles b; making up L are digoint. The value of an alocation
v(L) isgivenby > {p; : (b;, p;) € L}. Anoptimal allocation
isany dlocation I with maximal value (taken over the space
of alocations). The winner determination problem is that of
finding an optimal alocation given abid set B. We sometimes
consider assignments A : G — B of goodsto bids. Assign-
ment A inducesdlocation L 4 whose bids are those that have
been assigned all required goods (i.e., b; C A=1({b;, p;)))-
The winner determination problem is a straightforward
combinatorial optimization problem, and can be formulated
quitedirectly asan IP. Let z; beaboolean variableindicating
whether bid b; is satisfied. Then we wish to solvethe IP:

Maximize: Epia?i (1)
Subjectto: > {zi:gk €bi} <1,Vk<n 2

This formulation has m variables (one per bid) and n con-
straints (one per good), with constraintshaving = termson av-
erage, where z isthe average number of bidsin which agood
occurs. Winner determination is equivalent to the weighted
set packing problem [11] and as such isNP-complete. Despite
this, generic combinatorial optimization techniques seem to
work quite well in practice. For example, results reported in
[1; 15] suggest that using generic CPLEX |P solution tech-
niques is reasonably competitive with recent algorithms de-
signed specifically for CAs. Recent search a gorithms—both
complete methods [4; 12; 14] aswel| as stochastic techniques
[5]—have been proposed in the Al literature and have also
proven quite successful solving problems of reasonable size,
often running faster than CPLEX.

2.2 Logical Bidding Languages

Most work on combinatorial auctions assumes that a bid is
expressed using a simple bundle of goods associated with a
price for that bundle. However, a buyer with a complex util-
ity function will generaly need to express multiple flat bids
in order to accurately reflect her utility function. Logical bid-
ding languages overcome thisby allowing abidder to express
asingle bid in which the logical structure of the utility func-
tionis captured. A number of different types of bidding lan-
guages have been proposed in theliterature, among these lan-
guages that allow flat bids to be combined logically [12; 13;
8], and that allow goods to be combined logically [5].

The recent £gg language of Boutilier and Hoos [2] gener-
alizestheselanguages by alowing goodsto be“joined” using
logical connectives, and pricesto be attached to arbitrary sub-
formulae. Lgp isfully expressive (i.e., can express any utility
function over goods) and is strictly more compact than exist-
inglanguages (i.e., any bid expressiblein these languages can
be expressed at least as concisaly in Lgg). Indeed, for certain
natural classes of utility functions, £gg can express bids ex-
ponentially more compactly than any proposed |anguages [2].
For thisreason, we focus on Lag.

Let G denotethe set of goods, forming the atomic elements
of the language. The syntax of L isdefined asfollows:

e (g,p) € Lgg, forany good g € G and any non-negative
pricep € R
o If bi,by € Lag, then <b1 A bz,p>, <b1 \Y bz,p>,
and (b1 @ by, p) areall in Lgp for any non-negetiveprice
P
Bids so-defined correspond to arbitrary propositional formu-
lae over the goods, using connectives A (conjunction), v (dis-
junction) and @ (XOR), where each subformulais annotated
with a price. We often don’t mention the price for a subfor-
mulaif p = 0, and loosdly say that no priceis associated with
such a subformula. Examples of sentences include

(@a:1Ab:2):5 ad (aVb):2@c:3.

A sentence b € Lgg isageneralized logical bid (GLB). The
formula associated with &, denoted ®(b), is the logica for-
mula obtained by removing all prices from subformul ae.

The semantics of GLBs defines the price to be paid by a
bidder given a particular assignment of goods to her GLB.
Roughly, the underlying ideais that the value of aGLB b is
given by summing the prices associated with al satisfied sub-
formulae (with one exception). We first define what it means
for an assignment to satisfy a (priceless) formula

Let A be an assignment A G — B of goods to
GLBs. Let ®(b) be the formula associated with b. We write
o(®(b), A) = 1to denotethat A satisfiesb, and o(b, A) = 0
to denotethat A does not satisfy b. Therelation is defined as
follows:

o If &(b) = g forsomeg € G then
a(®(b), A) = 1iff A(g) = b.

o If (b(b) =®o;,Vd,yor (b(b) =& P Py then
o(®(b), A) = max(c (P, A), o(Pq, A))
a(®(b), A) = min(c (1, A), (P2, A))



Givenabid b and assignment A of goodsto bids, we define
the value of b under A, denoted ¥ (b, A), recursively. If g isa
good, b4, b, are bids, and p isaprice:

Y((g,p),A) =p-olg, A)
W({by Aby,p), A) =

W(bi, A) + (b2, A) +p - a(®(b1) A ®(b2), A)
W((by Vby,p), A) =

Wby, A)+ ¥(by, A) +p-o(®(b1) V ®(b2), A)
U({by ®ba,p), A) =

max{W¥(by, A), ¥(by, A)} + p-o(P(b1) V P(b2), A)

Intuitively, the value of a bid is the value of its components,
together with the additional price p if certain logical condi-
tions are met. (b1 A ba, p) pays price p if the formulae as-
sociated with both 4, and b, are both satisfied; (b1 V ba, p)
and (b1 @ b4, p) both pay pricep if either (or both) of b, or b,
are satisfied. The semantics of v and & differ in how subfor-
mulavaueisused. Specifically, thevalue of adigunctivebid
given an assignment isthe sum of the val ues of the subformu-
lae: in thissense, both subformul ae are of valueto the bidder.
In contrast, a“vauative XOR” bid allows only the maximum
value of its subformulae to be paid: thusthe subformulae are
viewed as substitutes.® It isimportant to realize that the valu-
ative XOR connective does not have alogica XOR interpre-
tation; rather it refers to the valuation of the formula, stating
that the bidder iswilling to pay for the satisfaction of at most
one subformula. Notice that an assumption of free disposal is
builtin to the semantics.

Werefer to [2] for further detail sof thelanguage and exam-
ples of its expressive power. We give three examples hereto
illustrate the intuitions. Consider the bid

({a, 1) A (b, 1) A (e, 3) A (d, 5, 50).

Thismight reflect that a, b, ¢, and d are complementary goods
with joint value 50, and that the individual goods have some
intrinsic (e.g., salvage) value over and above that of their role
withinthe group. As a second example, consider

(a, 1)V (b,1) V (3, ¢) V (d, 5), 50).

Here the individual goods are substitutes: they provide a ba-
sic functionaity of value 50, but perhaps do so with differing
quality (or each has different intrinsic value) reflected in the
“bonus’ associated with each good.

Asafina example, consider a scenario in which we have
anumber of goods {ry, - - - , 7} whose utilities/pricesp; are
conditionally dependent on the presence of another good m
but are (conditional ly) additiveindependent of each other [2].
For instance, think of the r; asresources or raw materias, and
of m as a machine used for processing those resources. This
situation can be captured using asingle GLB of the form:

(mAr,p1)V{m APy, pa) V-V {(mArg, pg)

To express the same utility function using other languages
would require a number of bids exponential in k (essentialy

1This semantics of XOR is just one of several natural interpreta-
tions. The practical use of XOR may determine other semantics.

requiring the enumeration of all subsetsof resources). For ex-

ample, with one machine m and four resources ry, ro, r3, 74

(worth 1, 2, 3, and 4, respectively), we' d need the following
bid:

(mry, 1)V {mre,2) V (mrs, 3) V (mry, 4)

V{mrire, 3y V (mrars, 5)

V (mrara, 6) V (mrsry, ) V {(mrirars, 6) V (mrirary, 7)

(mrirs,4) V (mrirs, 5) V

V (mrirars, 8) V (mrarary, 9) V (mryrarsry, 10)

We note that each of the connectives is commutative and
associative, so we can safely treat them as having more than
two operands (e.g., it islegitimate to refer to the conjunction
of k£ > 2 bids).

The notion of a k-of bid, explored in the context of logical
bids without priced subformulae [5], can be extended to Lgg
quitereadily. Let £ denote the extension of Lgg with the
k-of operator. Intuitively, (k-of(b1, b2, . .. , bq), p) issatisfied
if any k£ of thed bidsb,, ..., by issatisfied (and a price of p
isassociated with its satisfaction). Asin the semantics above,
thevalue of ak-of bidisdetermined by the price p aswell as
the values of any satisfied subformulae.?

Sincecombinatoria auctionsarestill relatively rarein prac-
tice, it is difficult to say whether £ can naturally and con-
cisely express utility functionsthat are likely to arisein prac-
tice. However, the examples above suggest that it does cap-
turealot of the natural structurein utility functions. In addi-
tion, since it can directly “emulate” any existing bidding lan-
guage, it should be considered state of the art at this point.

3 Winner Determination for LGB

The expressive advantages of logica bidding languages are
readily apparent. One might also hope that such languages
permit CAsto be solved more effectively aswell. If one can
express bids concisely, there must be structurein the underly-
ing utility function. If thisis so, we should be able to exploit
this structure computationally in winner determination. Un-
fortunately, to date there has been no serious investigation of
this possibility.

There are severa waysto exploit logical structure compu-
tationally. First, one might convert the logical bidsto a set of
flat bids and hope that existing a gorithms discover the * hid-
den” structure. Evidence that this might work was described
in [5], but we will show that for realigtic sized problems this
approach is doomed. Second, one might devise specia pur-
pose procedures for winner determinationthat exploit thelog-
ica structure, such as the stochastic local search procedure
suggested in [2].

Finally, one could simply formul ate the optimization prob-
lemdirectly in termsof £ g bidsand use generic IP solversto
solve the problem. It isthisfinal approach that we now con-
sider. Expressing logical relationships among goods directly
inan IPisreminiscent of theuse of optimizationtechniquesto
solve problemsin logical inference, as proposed by Chandru
and Hooker [3].

°This extends the treatment of k-of bidsin [5], which allowed
choosing any & of n goods rather than bids.



3.1 A Direct |P Formulation for LGB

Our aimisto formulate an I P that directly expresses thewin-
ner determination problem for aset of £ g bids. Wefirst con-
sider the objective function and then the constraints. We as-
sume a set of n goods {g; : ¢ < n} and m bids {; : i < m}
expressed in Lgz. We usethe following variables:

e z;; € {0,1} for each good g; that occursin bid b;: true
(1) if g; isassigned to b;.

e s3 € {0, 1} for each subformula g of any bid: true(1) if
G issatisfied by the optimal assignment.

e vg for each subformula @ of any bid: this denotes the
value of # under the optimal assignment.3

e t3 € {0,1} for each subformula g of any bid that is
an immediate subformulaof an XOR: true (1) if 3 isthe
(unique) formula that contributes value to the encom-
passing XOR.

Asatrivid example, consider two bids:

by = ({{a, 1)V (b,2),3)® (¢, 3),7) (3
by = (({a, 1) A(b,2) A(d,1),3) V (c,4),8) 4

Thereare seven variablesz;; correspondingto the assignment
of (relevant) goods to each bid. b, has five s-variables, one
per subformula(a, b, a V b, ¢, (a V b) @ ¢), while b, aso has
five s-variables (note that we view A as aternary connective
inthisexample). Thereisalso acorresponding v-variable for
each subformulaof each bid. Finaly, b; hastwo ¢-variables,
one for subformula a Vv & and one for ¢, since these are the
immediate subformulae of an XOR. The number of variables
in linear inthe size of thelogica formulation of the bids.
The objective function is straightforward:

Maximize: Z{”ﬁ : B corresponds to a top-level bid}

Inour example, theobjectivefunctionisvg, +wvg,, wherevg,
is the v-variable for b;’sformula, (a V b) @ ¢, and similarly
for b,. There isoneterm in the objective for each bid.

A set of constraintsisimposed for each subformulaof each
bid. The constraintswill vary with the main connective. The
consgtraints place upper bounds on the values of all variables,
since the objective value can only increase with increasing
variable values. For each atomic subformula 5 of the form
(g, p) inbid b;, we impose two constraints:

s < Tij; Vg SPp-sp
Thus the formulais satisfied only if g; isassigned to b; (and
valueisdetermined correspondingly).

For each subformulag = (81 V- - -V B4, p), weimposetwo
constraints:

55 < Z%; vg S P-Sp +Zvﬁl
i<d i<d

Thisensures 3 isconsidered satisfied if any subformulais, and
gnsvalue as dictated by our semantics.

3For simplicity, we treat this as an integer, which is valid if all
pricesareintegral. Allowingamixed formulation isnot problematic.

For each subformulag = (81 A- - -A B4, p), Weimpose two
congtraints:

d-ss <> sp;  vs<p-sgt+y, vs
i<d i<d

Thisensures 3 isconsidered satisfied if al subformulaare.
Finaly, for each subformulag = (31 @ - - ® B4, p), We
impose four constraints:

s5p SZS@A Ug SP'S,@JFZ%

i<d i<d

D tp <1

i<d

vg, < maxval - tg,, Vi < d

The penultimate constraint ensures that only one subformula
of the XOR is selected for contribution of value to the XOR
asawhole, whilethefinal constraint ensures that only the se-
lected subformula has positive value. maxval is alarge con-
stant assured to be larger than the value of any formula.®

The number of constraintsislinear inthe number of subfor-
mulae (hence in the size of the bid specification), and the size
of each constraint isbounded by the“actua” arity of the con-
nective involved. Thus, the IP formulation isveré/ compact.

The IP formulation also extends naturally to £S5 Let 3 be
asubformulaof theform (k-of(51, B2, . .. , B4), p). Weintro-
duce anew variablen g for each k-of bid denoting the number
of satisfied subformulae. We then impose the following three
linear constraints:

n,@gzsﬁ,; sg -k <ng
i<d
vp <p-ss+ Y v,
i<d

Thefirst constraint ensures that number = 4 of subbidscounted
as satisfied islegitimate, whilethe second ensures the k-of bid
issatisfied only if at least & of the subbids are satisfied.

3.2 Converting LGB to Flat Bids

The utility function represented by a GLB b can be captured
using an equivalent set of flat bids. Let G(b) denote the set of
goodsoccurringin b. Therequired set of flat bids f(5) can be
generated using avery simple strategy: since each good men-
tioned in & may contribute to value, every subset s C G(b)
can beviewed as apotentia flat bid having some utility to the
customer, and thisutility can be determined by cal culating the
valueof theassignment s tob. Of course, only one such subset
isof interest, so weinsert a single dummy good into each flat
bid (subset) to ensure that only one such bid can be satisfied.
More precisdly:

F(8) = {{s U {dy}, (b, 5)) 5 C G(b)}

where d;, is adummy good associated with GLB b. Thewin-
ner determination problem for £z can be solved by convert-
ing each GLB b into a set of flat bids, and solving the corre-
sponding “flat” problem using these.

4This constraint can be formulated without such a constant
through the introduction of additional variables.
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Figure 1: Flat vs. structured solution times with varying number of goods

A number of flat bidsgenerated in thisway may be“redun-
dant,” in the sense that some smaller subset could generate
equivalent value. In our experiments below, we in fact use a
more sophisticated, bottom-up strategy for generating equiv-
alent flat bid setsfrom a GLB to ensure that the set of flat bids
isinfact aminimal representation of the utility function.

4 Empirical Results

In this section we report on experiments run to compare the
relative effectiveness of solving the direct |P formulation of
an Lgg problemwiththe |Pformul ation for the corresponding
set of flat bids. In al experiments, the CPLEX optimization
package (Version 7.1.0) was used to solvethe IP. CPLEX has
a number of strategies for solving IPs, and algorithm choice
was |eft to the software. Running times reported include pre-
solve times, but do not include read times (which would put
the large flat bid formulations at a disadvantage). All experi-
mentswererun under Linux witha933MHz, PI1I, 512Mb PC.

A number of researchers have proposed candidate prob-
lem distributions for CAsin order to fecilitate the compari-
son of different evaluation techniques. Many of these prob-
lems are very abstract and it is unclear how these might arise
in practice. In an effort to aleviate this problem, a suite of
test problems—or more precisely a suite of schemes for gen-
erating random test problems—has been proposed that draws
on somewhat more redistic intuitions [7]. This collection of
problems, CATS, arguably reflects structurethatismorelikely
to arisein practical problems. Unfortunately, the problemsin
thissuitearelargely designed to generate structured “ subsets’
of goods, and hence reflect little of the natural structure suited
toalogical language such as L. For thisreason, we consider
the generation of logical bidsdirectly. We first consider some
abstract problems, and then consider a class of problems that
exhibit the same type of “natural” structurethat motivated the
development of CATS. The development of asuiteof redlistic
“logica” test problemsisan important future god .

Our first set of experiments focus on randomly generated

GLBs with conjunction and diunction.® Bids are gener-
ated using randomly constructed parse trees of a given depth
and branching factor. One parameterized distributionwe con-
siderisRandAO-d-b-m-n-p: these problemshave m bidsover
n goods, with each bid having a parse tree of depth d and
branching factor 4. At each interior node a connective A or
Vv isinserted (with equal probability), whileat each leaf aran-
dom good is inserted (drawn uniformly). At each node (in-
terior or leaf), a price isincluded, drawn uniformly from the
range [0, p]. For example, the bid

({{a,2) A (b,3),0) A {{a,2) A{c,0),1),20)

isabid with depth d = 2 and branching factor 6 = 2. We
also consider variants AItAO-d-b-m-n-p and AltOA-d-b-m-
n-p, where the connectives A and V strictly alternate at each
level of thetree (starting with A at the root of AO-trees, and
V at theroot of OA-trees).

We start with the RandA O distributionswithm = n = 30.°
Onvery small GLBs, withb = 2 and d = 2 (thusinducing a
tree with four leaves, and a most 15 flat bids), the IP solu-
tion of theflat bidsdominatesthat of the structured bids, with
mean times of 0.02s and 0.06s, respectively. However, if we
increasethe branching factor to 3 (thuseach GLB corresponds
toasmany as 511 flat bids), structured sol utionsdominate flat
solutions, with mean times of 0.15s and 0.99s, respectively.
The scatterplot of solution times shown in Figure 1(a) shows
that thethe structured solutiontimeislessthan theflat timeon
each problem instance. Figures 1(b) and (c) show therelative
solution times with larger numbers of goods: with n = 60,
the average solution times are 0.24s and 1.47s, respectively,
whilewith n = 100, average times are 0.19s and 1.24s, re-
spectively.

The advantages of solving structured CAs directly is
even more apparent with only dightly larger problems.

SWe report on XOR and k-of bidsin the longer version of the pa-
per. Resultsare similar.

8In all experiments, p = 50. All results are averages over 100
random instances except where noted.
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The following table shows the solution times (in sec-
onds) for five random instances withd = 2,6 = 4 (each
GLB correspondsto 65535 flat bids), 20 goods and 40 bids:

Instance 11 12 13 14 15 Mean
Structured 0.14 0.10 0.12 0.22 0.14 0.14
Flat 3649 | 1722 | 2183 | 1848 | 169.4 | 221.9

Even though these structured bids are of fairly smal size
(with only 16 leavesin the parse tree), solving theflat version
of the problemtakes at | east three orders of magnitudelonger.

The next results illustrate run times on larger problems,
for which solving flat versions of the problem proved infea
sible. Figure 2 shows the change in runtime distributions as
the good:bid ratio varies. Inthese problemsd = 3,6 = 4
(each GLB thus corresponds to as many as 254 flat bids). In
each instance, 30 bids are present. Each line shows the cu-
mulative runtime distribution for a different number of goods
(hence the z-axis shows the run time, while the y-axis shows
the probability that an instance will be solved by that time).
Note that asthe number of goodsincreases, random problems
become | ess constrained and hence somewhat easier to solve.
Figure 3 shows the runtime distribution for similar problems
but withamuch larger number of bids(200) and goods(1000).
The mean solutiontimeof 35.21sisvery encouraging for such
large problems, where the corresponding flat bids sets could
scarcely be enumerated.

Finally, Figure 4 shows the runtime distribution for 10
problem instances for GLBswithd = 4 and b = 4: the set
of flat bidsfor each such GLB could be aslarge as 2256 (if we
have at least 256 goods from which to draw). Each problem
has 30 GLBsover 100goods. Themean solutiontimeis472.9
seconds. It scarcely needs to be mentioned that using flat bids
can't even be contemplated for problems of this magnitude.
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Figure 3: Cumulativeruntime distributionfor large problems
(d =3,b=4,n = 1000,m = 200). Generated from 100
problem instances.

Further empirica study isneeded of different structured bid
distributions. While for problems involving GLBs of more
than depth 2 and branching factor 3, flat solution methodswill
unlikely be feasible for any distribution, for “small” GLBs,
the specific problem distributionsmay prove more or less ad-
vantageous for flat formulations. Studies of AItAO and Al-
tOA distributions, for instance, withd = 2 and b = 3 (these
bidsarethesame“size” asthoseevaluated in Figure 1), reved
that theflat IPiscompetitivewiththe structured IPfor AltOA:
over 100 instances, theflat mean solutiontimeis 1.08s, while
thestructured mean is1.07s; furthermoretheflat solutiontime
has much lower variance. In contrast, the advantage of the
structured over theflat 1P is even greater in AItAO problems
than for RandAO: the structured technique takes on average
0.15s, whileflat takes 1.07s.

We have not reported on XOR or k-of bids. The structured
IP retains its extreme advantage over the flat 1P, naturaly;
but it is worth pointing out that different semantics for XOR
have fairly dramatic impact on the structured solution times,
while seeming to have less impact on the flat technique. We
have done only preliminary experimentation with k-of bids,
but these suggest that the structured IP can handle problems
of the same order of magnitude reported above.

Other variants of these problem distributions need to be
considered as well. The abstract distributions above assign
prices randomly to subformulae, without regard to the num-
ber of items required to satisfy them. We plan to study more
biased (and realistic) price distributionsin the future.

The second set of problems we consider are motivated by
more redlistic considerations. The parameterized distribu-
tion Mach-n-m-r-b-p captures the resource alocation prob-
lems discussed in Section 2.2. Thisdistribution assumes a set
of m machines and  resources available for auction. Each of
the b bidders wants one (specific) machine from this collec-
tionand n of ther resources. Theform of thebidisexactly as
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Figure 4: Runtimes for very large problems (d = 4,6 =
4,n = 100, m = 30), over 10 instances.
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Figure 5: Flat vs. structured solution times for small Mach
problems(n = 12,m = 7, = 30, b = 20).

specified in Section 2.2: abidder iswillingto pay some price
p; fortheconjunctionmAr; for each of itsrequested resources
r;. The price p; isdrawn uniformly from therange [0, p]. The
machine and resources needed by each bidder are aso drawn
uniformly from the set of machines and resources.

We first compare the structured and flat solution methods
ontheMach distributionwithm = 7, r = 30, each bidder re-
questingn = 12 distinct resources, and b = 20 bidders.” The
scatterplot of solution times shown in Figure 5 showsthat the
structured solutiontime is considerably less than the flat time
on each of 20 problem instances, even for such small prob-
lems® The mean solution times are 4.2s and 27.2s for the
structured and flat methods, respectively.

For even dlightly larger problems, solving the set of flat in-

“In all Mach-distribution experiments, p = 50.
80ne outlying point is removed: for this problem, the structured
solution time was 10.9s, while the flat solution time was 325.4s.
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Figure 6: Cumulative runtime distribution for medium sized
Mach problems (n = 20, m = 10,7 = 50,5 = 20). Gener-
ated from 100 problem instances.

stances becomes infeasible. A systematic test of the Mach-
15-8-50-20-50 distribution on flat bids is impractical. For
onetypical instance, the solution time was 1933.14s (approx-
imately haf an hour). By contrast, the runtime distribution
based on 100 random problem instances for the harder prob-
lem distribution Mach-20-10-50-20-50 is shown in Figure 6.
The mean solution time over these instances is 7.55s. Note
that in each instance, 20 bidders are competing for 10 ma
chines. Furthermore, since each bidder requests 20 resources
from the set of 50, each of the 20 GLBs in these instances
would correspond to 220 flat bids.

Finally, the following table shows the structured
solution times (in seconds) for five random in-
stances with drawn from Mach-30-10-200-100-50:

Instance

11

12

13

14

15

Mean

Time

1140

253

85.9

148.6

157.2

106.2

Again we see that the structured formulation offers consid-
erable advantages, alowing very large resource alocation
problemsto be solved effectively.

5 Concluding Remarks

We have described atechniquefor producingacompact |Pre-
flecting the winner determination problem for CAsinvolving
the Ugeneralized logical biddinglanguage £ gg and itsextension
LY. Apart fromtheexpressive advantages of £ g, our empir-
ical results demonstrate the unequivocal superiority of com-
putational methods that directly exploit the logical structure
of these bidsin winner determination. We have provided evi-
dencefor several representative problem distributions, though
the combinatorics alone imply that these advantages will ob-
tain for any distribution over GLBs of moderate size.

A number of extensions of this work are being pursued.
Oneisthe extension of Lgz and the IP formulation to multi-



unit CAs. This extension is straightforward; we expect the
same computationa advantages to persist. We are also cur-
rently exploring the use of stochastic loca search techniques
for solving CAs expressed using Lqs. Specifically, the pro-
cedure proposed in [2] seems to provide a useful anytime
method for solving bids expressed in Lqg in away that ex-
ploitstheir logicd structure.

The development of realistic problem distributionsfor log-
ically structured utility functions remains an important task.
The Mach distributions proposed here seem to reflect natura
intuitionsabout certain types of resource all ocation problems,
but additional problem classes are needed to fully verify the
usefulness of our technique. A test suite for logically speci-
fied CAs, similar to CATS [7], would be a great step in this
direction.

Finally, the problem of sharing partial solutions across re-
lated CAs might be one that can readily exploit logical struc-
ture. Related CAs arise, for instance, in the implementa-
tion of generalized Vickrey-Clarke-Groves mechanisms [9;
6], where multiple CAs are solved with different bidders re-
moved. Logica structurein utility functions could be used to
facilitate the “transfer” of partial solutions.
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