Rewarding Behaviors

Fahiem Bacchus
Dept. Computer Science
University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1
fbacchus@l ogos.uwaterloo.ca

Abstract

Markov decision processes (MDPs) are avery popular tool for
decision theoretic planning (DTP), partly because of thewell-
developed, expressive theory that includes effective solution
techniques. But the Markov assumption—that dynamics and
rewards depend on the current state only, and not on history—
is often inappropriate. This is especidly true of rewards:
we frequently wish to associate rewards with behaviors that
extend over time. Of course, such reward processes can be
encoded in an MDP should we have arich enough state space
(where states encode enough history). However it is often
difficult to “hand craft” suitable state spaces that encode an
appropriate amount of history.

We consider this probleminthe casewhere non-Markovian re-
wards are encoded by assigning valuesto formulas of atempo-
ral logic. These formulas characterize the value of temporally
extended behaviors. We argue that this alows a natural rep-
resentation of many commonly encountered non-Markovian
rewards. The main result is an algorithm which, given a de-
cision process with non-Markovian rewards expressed in this
manner, automatically constructs an equivalent MDP (with
Markovian reward structure), alowing optimal policy con-
struction using standard techniques.

1 Introduction

Recent years have seen a tremendous interest in extending
theclassical planning paradigm to deal with domainsinvolv-
ing uncertain information, actionswith uncertain effects, and
problems with competing objectives. Much work in deci-
sion theoretic planning (DTP), generally aimed at address-
ing these issues, has adopted the theory of Markov decision
processes (MDPs) as the underlying conceptual and compu-
tational model [DKKN93, TR94, BD94, BDG95]. MDPs
alow one to formulate problems in which an agent is in-
volved in an on-going, process-oriented interaction with the
environment and receives rewards at various system states.
This generalizes the classical goal-oriented view of plan-
ning [BP95]. Instead of classical plans, one considers the
more flexible concept of a policy, namely a mapping from
each state to the action that should be executed in that state.
Effective optimization methods exist for computing policies
such that an agent executing the policy will maximize its
accumulated reward over time [Put94].

Craig Boutilier
Dept. Computer Science
University of British Columbia
Vancouver, B.C.
Canada, V6T 124
cebly@cs.ubc.cs

Adam Grove
NEC Research Institute
4 Independence Way
Princeton NJ 08540, USA
grove@research.nj.nec.com

The fundamental assumption underling the formulation of
aplanning problem as an MDP is that the system dynamics
and rewardsare Markovian. That is, the manner in which the
system behaves when an action is executed, and the rewards
received, depend only on the system’s current state, not on
states previoudy visited. For example, if we wish to control
arobot it isusualy not difficult to find a state space in which
therobot’ sactions can be described asMarkovian (stochastic)
state transitions. In fact, thisis often the most natural way to
represent the effectsof actions. Assigning natural Markovian
rewards can be more problematic.

Although it is sometimes easy to associate rewards with
individual states(e.g., inanavigation problemwhererewards
are associated with locations), often a reward is most natu-
rally assigned to some behavior that occurs over an extended
period. Insuch cases, it can be difficult to encode the reward
asafunction of state. For instance, we may reward an agent
in stateswhere coffee has just been delivered, but only if this
state was preceded by a state (perhaps within & steps) where
a coffee request was issued, withholding reward for spurious
delivery. This reward is properly a function of the system
trajectory or history, and not of the state alone. Typical forms
of desirabletemporally extended behaviorsinclude response
to requests, bounded response, lack of response, maintaining
safety constraints, and so on. Temporally extended goals of
this nature have been examined to some extent in the litera-
ture[HH92, Dru89, Kah90, GK91], but not in the context of
generating effective policies.

The key difficulty with non-Markovian rewards is that
standard optimization techniques, most based on Bellman's
[Bel57] dynamic programming principle, cannot be used.
One way of dealing with this predicament is to formulate
an equivalent decision problem in which the rewards are
Markovian. In particular, one can augment the state space
of the underlying system by adding variablesthat keep track
of the history relevant to the reward function. For instance,
Boutilier and Puterman [BP95] suggest straightforward ways
of encoding reward functions that involve simple requests.
This approach has the advantage that existing optimization
methods for MDPs can be used.

Unfortunately, in general, finding a good way to augment
the state space requires considerable cleverness—especially
if we are concerned with minimizing the size of the resulting

augmented space for computational reasons. In this paper,
we examine the problem of rewarding temporally extended
behaviors. We provideanatural, and quite expressive, means
for specifying rewards attached to behaviors extended over
time. Furthermore, we solve the problem of computing poli-
ciesin the face of these non-Markovian rewards by devel op-
ing an algorithm that automatically constructs a Markovian
reward process and associated MDP. Our algorithm auto-
mates the process of generating an appropriate augmentation
of the state space, and, when coupled with traditional pol-
icy construction techniques, provides a way of computing
policiesfor amuch richer range of reward functions.

In Section 2 we introduce NMRDPs, essentialy MDPs
with non-Markovian reward. System dynamics are specified
as with MDPs, but rewards are associated with formulasin
a suitable temporal logic. We define temporally-extended
reward functions (TERFs) by requiring that the reward as-
sociated with a formula be given at any state in which the
formulais satisfied. We note that the decision to reward an
agent in a given state should depend only on past states, not
onfuturestates. For thisreason, it will be morenatural to en-
code our reward formulas using a past or backward-looking
temporal logic rather than the usual future or forward logics
like LTL, CTL [Eme90] or MTL [AH90]. In Section 3, we
describe a number of interesting and useful classes of target
behaviors and show how they can be encoded by TERFs.

In Section 4, we consider the problem of constructing
optimal policiesfor NMRDPs. As mentioned, dynamic pro-
gramming cannot be used to construct policiesin this setting.
Nominally, this requires one to resort to optimization over
a policy space that maps histories (rather than states) into
actions, a process that would incur great computational ex-
pense. We present a procedure that, instead, expands the
original state space by attaching atemporal formulato each
state. Thisformulakeeps track of an appropriate amount of
relevant history. By constructing a state-based (Markovian)
reward function for the extended state space, we convert the
NMRDP into an equivalent MDP; in particular, optimal poli-
ciesfor this MDP determine optimal policiesfor the origina
NMRDP in a natural way. In this way, we obtain a com-
pact representation of the required history-dependent policy
by considering only relevant history, and can produce this
policy using computationally-effective MDP agorithms.

2 Non-Markovian Rewards

2.1 Markov Decision Processes

Much recent work in DTP considers planning problems that
can be modeled by completely observable Markov Decision
Processes [How60, Put94]. In this model, we assume that
thereisalfinite set of system states S, aset of actions A, and a
reward function R. Theeffectsof actionscannot be predicted
with certainty; hencewewrite Pr(s1,a, s2) = p (or s1—28.55)
to denotethat s, is reached with probability p when action a
is performed in state s;. Complete observability entails that
the agent always knows what state it isin. We assume that
the state spaceis characterized by a set of features, or logical
propositions. This allows actions to be described compactly

using probabilistic STRIPS rules [KHW94, BD94], Bayes
nets [DK89, BDG95] or other action representations.

A real-valued reward function R reflects the objectives,
tasks and goals to be accomplished by the agent, with R(s)
denoting the (immediate) utility of being in state s. For our
purposes, then, an MDP consists of S, A, R and the set of
transition distributions {Pr(-,a,-) : a € A}.

A stationary Markovian policy isamapping 7 : S — A,
where 7(s) denotes the action an agent should perform
whenever it is in state s. One might think of such poli-
cies as reactive or universal plans [Sch87]. Given an MDP,
an agent ought to adopt a policy that maximizes the ex-
pected value over its (potentially infinite) trajectory through
the state space. The most common value criterion in DTP
for infinite-horizon problemsis discounted total reward: the
current value of future rewards is discounted by some factor
B (0 < 8 < 1), and we maximize the expected accumu-
lated discounted rewards over an infinite time period. The
expected value of afixed policy 7 at any given state s can be
shown to satisfy [How60]:

Va(s) = R(s) + B _ Pr(s,m(s),t) - Va(t)

tesS

The value of 7 at any initial state s can be computed by
solving this system of linear equations. A policy 7 isoptimal
if Vi(s) >V (s)foral s € S andpoliciesn'.

Techniques for constructing optimal policies in the case
of discounted rewards have been well-studied, and include
algorithms such as value iteration [Bel57] and policy itera-
tion [How60]. It should be noted that each of these algo-
rithms exploits the Markovian nature of the reward process.
We refer to [Put94] for an excellent treatment of MDPs and
associated computational methods.

2.2 A Temporal Logic of the Past

To reward agents for (temporally extended) behaviors, as
opposed to simply reaching certain states, we need a means
to specify rewards for specific tragjectories through the state
space. Generaly, we want to associate rewards with prop-
erties of trgjectories rather than rewarding individual trajec-
tories. For example, we might reward an agent whenever
condition @ is achieved within & steps of condition P, with-
out regard for the particular trajectory the agent istraversing.
Therefore, we associate rewards (or penalties) with desirable
(or undesirable) formulas in a suitable temporal logic that
describes such tragjectory properties.

The logic we consider is “backward”, or past looking.
That is, the truth of a temporal formula depends on prior
states only, not on what will happen in the future. This
accords well with our view of reward processes because, in
most contexts, rewards should be earned based on what has
actually happened.

We present a past version of LTL [Eme90] called PLTL.
We assume an underlyingfinite set of propositional constants
P, the usual truth functional connectives, and the following
temporal operators. S (since), & (aways in the past), ©
(once, or sometime in the past) and © (previously).! The

These are the backward analogs of the LTL operators until,

formulas ¢1 S ¢, B¢, ©¢p1 and ©¢; are well-formed when
¢1 and ¢, are? We use T and L to denote truth and falsity,
respectively. The semantics of PLTL is described with re-
spect to models of theform T = (so, - - -, s,,), n > 0, where

each s; is a state or valuation over P (i.e, s; € ZP). Such
aT iscaled a (finite) trajectory, or partial history. For any
trajectory T' = (s, - +,sp), and any 0 < i < n, let T'(3)
denote theinitial segment 7°(:) = (so, - - -, Si)-

Intuitively, atemporal formulaistrueof T' = (sg, - -, sn)
if it istrue at the last (or current state) with respect to the
history reflected in the trajectory. We define the truth of
formulasinductively asfollows:

TEPIiffPes,, forPeP

TEWAGITT =EprandT = ¢,
Tl=-¢iff T ¢

T |= ¢1 S ¢ iff thereissomei < n st. T'(i) E ¢ and

forali <j <n,T(j) E ¢1 (intuitively, ¢1 has been
true since the last time ¢, held)

T Eggiffforal 0<i <n,T(i) E ¢ (¢hasbeentrue
at each point in the past)
T = ©¢iffforsome0<i<n,T(i)|=¢ (¢wastrue
at some point in the past)

TEOo¢iffn>0andT(n—1) = ¢ (¢wastrueat the
previous state)

One notable consequence of this semantics is the fact that
while {©¢, ©—¢} isunsatisfiable, {~©¢, ~©-¢} is satisfi-
able: any model of theform (s) satisfiesthe latter.

It iswell-known that the modalitiesin LTL can be decom-
posed into present and future components [Eme90]. Simi-
larly, modalitiesof PLTL can bedecomposedinto present and
past components. For example, El¢ isequivalentto ©E1 @A ¢.
Thatis, B¢ istrueiff ¢ istrue of the current state and B¢ is
true of the previous state. Using these equival ences we can
determine, for any formula ¢, what must have been true in
the previous state in order that ¢ be true now. We call this
the regression of ¢ through the current state. Notethat if the
current component of ¢ is falsified by the current state, then
nothing about the previous state can make ¢ truenow. Inthis
casetheregression of ¢ is L.

Definition 2.1 The regression of ¢ through s, denoted
Regr(¢, s), is a formula in PLTL such that, for all trajec-
tories 7" of length n > 1 with final state s, we have
T¢ iff T(n-1)F Regr(,s) |

Regr(¢, s) can be computed recursively:
o If p € P,Regr(¢,s) =Tif s = ¢, and L otherwise
* Regr(¢1 A ¢2,s) = Regr(¢s, s) A Regr(¢z, s)
o Regr(~¢;,s) = ~Regr(¢1, 5)
o Regr(©¢,s) = ¢
aways, eventually and next, respectively.

2\We use the abbreviation ©F for k iterations of the © modality

(e.g., ©%p = ©00¢), and ©=F to stand for the disjunction of ©*
for1<i <k, (eg,90%%p =094V O0g).

o Regr(¢1Spa, s) = Regr(¢z, s)V (Regr(ga, s) A (1S ¢2))
e Regr(©¢1,s) = Regr(¢s,s) V ©¢1
e Regr(H¢1,s) = Regr(¢,s) A B

Finally, we define some useful notation. For an MDP
(or NMRDP) with actions A and transition probabilities
Pr, atrgectory (so,-- -, s,) is feasible iff there are actions
ai,---,a, € A suchthat Pr(s;,a;,s;y1) > 0. If ¢1 and
¢2 are PLTL formulas, ¢, determines ¢- iff either ¢1 |= ¢2
or ¢1 |= —¢2 hold. Given any PLTL formula ¢, we define
Subformulas(¢) to be the set of al subformulasof ¢ (includ-
ing ¢ itself). Note that |Subformulas(¢)| < length(¢).

2.3 Rewarding Temporally-Extended Behaviors

To reward behaviors, we must adopt a generalization of
MDPs that allows the reward given at any stage of the pro-
cess to depend on past history. A decision process with
non-Markovian reward, or NMRDP, is similar to an MDP
with the exception that the reward function R takes asits do-
main histories of the form (so, - - -, s,,) for al n. Intuitively,
the agent receives reward R((so,-- -, s,)) @ stage n if the
process has passed through state s; at stage ¢ for al i < n.
Clearly, the explicit specification of such a reward function
is impossible since there are an infinite number of different
histories. Instead, we assume that the reward function of an
NMRDP can be specified more compactly. In particular, we
assume that the reward function is defined by a finite set ®©
of reward formulas expressed in PLTL, together with areal-
valued reward r; associated with each ¢; € ® (we sometimes
writethis ¢; : r;). Thetemporally extended reward function
(TERF) R isthen defined asfollows:

R({s0, - s0)) = S {re : (s0,- -, a) = 6}

This formulation gives a reward of r; at each state that sat-
isfies formula ¢;; if ¢; has a nontrivial temporal component
then the reward is history-dependent. Because reward for-
mulas are expressed in PLTL, rewards depend only on past
states, and the TERF can be unambiguously evaluated at each
stage of the process.®

Consideration should not be restricted to Markovian poli-
cies when dealing with NMRDPs. The value, and hence the
choice, of action at any stage may depend on history. We
thus take policies to be mappings from histories to actions.
As usual, the value of a given policy 7 is taken to be the
expectation of the discounted accumulated reward:

VTI'(SO) = E{Z ﬁnR“SO, 81,77, Sn>)|7r}-
n=0

Since TERFs are finitely specified, we can find good ways
of encoding and computing optimal policies (see Section 4).
But first we examine the expressive power of TERFs.

3The r; are assumed to be additive and independent (thisis not
restrictive). Any (history independent) MDP can be expressed this
way by restricting ® to contain no temporal operators.

3 Encoding Typical Forms of Behavior

To demonstrate that TERFs provide an appropriate and use-
ful language in which to specify rewards for NMRDPs, we
examine several common examples to see how they can be
encoded in PLTL. We make no claim that all interesting re-
wards can be encoded in this way, but the evidence suggests
that PLTL and TERFs can capture a very large and useful
class of reward functions.

Among the common types of behaviors, simple goal
achievement has retained a special place in classical plan-
ning. However, in a process-oriented model, like an MDP or
NMRDP, anumber of subtletiesarisein giving“ goal achieve-
ment” apreciseinterpretation. We describe several possibili-
ties. Assume one such goal istheproposition G: wewishthe
agent toreach astatein which G holdsand will reward it with
r if it doesso. Thesimplest reward formulafor thisgoa isG.
AsaTEREF, thisrewardsthe agent at every state satisfying G,
and hence the agent is more highly rewarded (roughly) the
larger fraction of itstimeit spendsin G-states. Thisprovides
incentivefor the agent to constantly maintain G if r isgreater
than rewards it may receive for other behaviors.

In many cases, thisis not the intended effect of specifying
agoa G. If weonly carethat G is achieved once, there are
severa different interpretations that can be provided. The
strictest offers reward r only to the first state at which G
holds,; that is, (G A —©<©G) : r. A more generous formula,
©G : r, revards every state that follows the achievement of
G. Findly, wemay reward G periodicaly, but not encourage
constant maintenance of G, by rewarding G' at most once ev-
ery k stages: formulaG A ~(©<k@G) : r will reward G-states
that have not occurred within k-stages of aprevious G-state.
Yet another option rewards any G-state that occurs within
k-stages of some —G-state (allowing up to k£ consecutive
G-rewards), using G A ©<F-G : 7.

In addition, PLTL allows oneto formulate temporally ex-
tended goal sequences. For instance, if the agent is to be
rewarded for achieving G, followed immediately by H and
then by I, the reward formula©?G' A ©H A I can be used.
Periodic reward of such behavior, or the similar behavior in
which other steps are allowed to intervene between G, H,
and I, can aso be prescribed in a straightforward fashion.

The formulations above assume that there is some goal
G that is constantly desirable, a vestige of the classical in-
terpretation of goals. Such behaviors are more suited to
background, maintenance goals. In a process-oriented set-
ting, we arelikely to want the agent to respond to requests or
commands to bring about some goal. In these settings, goals
are not constant: they arise periodically, can befulfilled, for-
gotten, preempted, and might even expire. We model these
in PLTL using response formulas which specify a relation
between a command C' and rewarded goal achievement G.

The most basic response formula is that of eventual re-
sponse, G A ©C—the agent is rewarded at any G-state that
follows a C-state in which the command is given (or is out-
standing). As usual, we may only wish to reward the first
state at which G holdsfollowing the command, in which case
G NO(-G S () suffices.

Many requests must be achieved in a timely fashion.
Immediate response formulas have the form G A ©C, re-
warding a goal achieved at the state following a command.
More generally, we have bounded response formulas of the
type G A ©<FC which reward goal achievement within %
steps of a request. This formula does not preclude multi-
ple rewards for a single request, so we might instead pre-
fer G A ©SFC A ©(-G S C), which rewards only the first
goal state. Finally, a graded reward can be given for faster
achievement of G (within limits). For instance, the set

{G/\@C 1Ty, GANO=(: T2, GAOS3(C 7'3}

rewardsgoal achievementinonestepwithrewardri+rp+rs3,
in two steps with r, + r3, and in three steps with 3.

In alonger version of this paper, we describe additional
types of behaviors, as well as the possibility of using other
logicsto express different kinds of reward.

4 Modeling NMRDPswith MDPs

As has been pointed out, constructing optimal policies in
settings of non-Markovian reward can be computationally
prohibitive. In this section, we describe a method of state-
space expansion that determinesthe aspectsof history that are
relevant to an NMRDP (i.e., which must be recorded so that
we can verify the truth of the temporal reward formulas), and
encodesthishistory withinthe state. A straightforwardtrans-
formation of the reward function, so that rewardsare attached
to such extended states rather than trgjectories, restores the
Markovian reward property. Together with an adjustment in
action descriptionsto deal with the new state space, we then
have a (fully-observable) MDP that accurately reflects the
NMRDP, that can be solved by standard (relatively efficient)
methods. We begin by discussing the basic properties that
such a transformation should satisfy, and then specialize to
the case of rewardsthat are given by TERFs.

4.1 Markovian Transfor mations

To transform an NMRDP into an equivalent MDP requires
that we expand the state space S of the NMRDP so that each
new state in the expanded state space ES carries not just the
origina stateinformation, but also any additional information
required to render reward ascription independent of history.*
Asweshall see, we can think of expanded statesas consisting
of a base state annotated with a label that summarizes rele-
vant history. If Gs = (S, A, R) isthe NMRDP in question,
then we wish to produce an MDP Ges = (ES, A, Res) with
expanded space ES. The actions A available to the agent
remain unchanged (since the aim is to produce a policy suit-
able for the original NMRDP), but the reward function Rgs
isnow Markovian: it assigns rewards to (expanded) states.

For the new MDP to be useful, we would expect it to
bear a strong relationship to the NMRDP from which it was
constructed. In particular, we define astrong correspondence
between the two as follows:

“Here we are concerned only with reward ascription; the system
dynamics are already Markovian.

Definition 4.1 AnMDP Ges = (ES A, Res) isanexpansion
ofanNMRDP Gs = (S, A, R) iftherearefunctionst : ES—
S ando : S — ESsuch that:

1 ForalsesS, r(o(s)) =s,

2. Forall s,s' € Sandes e ES if Pr(s,a,s') =p > 0and
T(es) = s, then thereisa unique es, 7(es') = s', such
that Pr(es, a,es) = p.

3. For any feasible trajectories (so,---,s,) in Gs and
(e, - - -, €S,) inGes, Wherer(es;) = s; and o (sg) = €%,
we have R((so, - -, sn)) = Res(€s,). 1

Intuitively, 7(es) is the base state for es, the state in S
extended by es. For this reason, we will often speak of
extended states being labeled or annotated: each extended
state can be written sol, where s € S is the base state, and
l is alabd that distinguishes es from other extensions of s.
However, among the extensions of s, we must pick out a
unique o(s) € ESasthe “start state” correspondingto s. In
other words, o (s) should be thought of asthat annotation of s
with an “empty” history; i.e., correspondingto an occurrence
of s at the very start of atrgjectory. We will see below why
it is important to distinguish this extension of s from other
extensions.

The important parts of this definition are clauses (2) and
(3), which assert that Ges and G's are equivalent (with respect
to base states) in both their dynamics and reward structure.
In particular, clause (2) ensures, for any trgjectory in G's

50%31 Tt Snflan—l))nsn
and extended state esy with base state sq, that there is a
trajectory in Ggs of similar structure
esp—es - - es, 1 “Hes,

where 7(es;) = s; for al i. We call (esp,---,es,) and
(so, - - -, sn) Weakly corresponding trajectories in this case.
Clause (3) imposes strong requirements on the reward as-
signed to the individual states in Ggs. In particular, if
(eso,---,es,) and (so,---,s,) are weakly corresponding,
and o(sp) = e (i.e, e is a start state), we say these tra-
jectories are strongly corresponding. It is not hard to see
that this relationship is one-to-one: each (sg, -, s,) hasa
unique strongly corresponding trajectory, and (eso, - - - , €S,,)
has a unique strongly corresponding trajectory iff es is a
start state. Clause (3) requires that Res assign rewards to
extended states in such a manner that strongly correspond-
ing trajectories receive the same reward. This need not be
the case for weakly corresponding trajectories since, intu-
itively, different annotations (extensions) of sq correspond to
different possible histories.

If we can produce an MDP GEs that is an expansion of
an NMRDP G's as specified by Defn. 4.1, then we can find
optimal policiesfor Gs by solving Ggs instead.

Definition 4.2 Let «' be a policy for MDP Ggs. The
corresponding policy 7 for the NMRDP G5 is defined as
7T(<80,) Sn>) = W’(eSn), where <eSo, T 7es’b> is the
strongly corresponding trajectory for (so, - - -, s,,). 11

Proposition 4.3 For any policy ' for MDP Ggs, corre-
sponding policy = for G's, and s € S, we have V;(s) =

Var (0(5)).

Corollary 4.4 Let 7' be an optimal policy for MDP GEs.
Then the corresponding policy 7 is optimal for NMRDP G's.

Thus, given a suitable expanded MDP and an optimal policy
w', one can produce an optimal policy = for the NMRDP
quite easily. In practice, the agent need not construct = ex-
plicitly. Instead, it can run " over the expanded MDP. Once
the agent knowswhat base state it startsin, it determinesthe
corresponding extended state using the function o. Further-
more, the dynamics of the expanded MDP ensuresthat it can
keep track of the current extended state simply by observing
the base state to which each transition is made.

Finally, we should consider the size of the expanded MDP.
Often, we can fulfill the requirements of Defn. 4.1 with a
trivial MDP, that has states encoding compl ete trajectory in-
formation over some finite horizon. But such an expanded
space grows exponentially with the horizon. Furthermore,
even simple rewards—like ©G, which only require oneitem
of history (a bit indicating if a G state has been passed
through)—can require in infinite amount of complete trajec-
tory history using thisnaive approach. |f possible, wewant to
encode only the relevant history, and find an MDP which has
afew statesaspossible (subject to Defn. 4.1). Notethat state-
space size tends to be the dominant complexity-determining
factor in standard MDP solution techniques, especialy as
applied to planning problems.®

4.2 Transformationsusing TERFs

The problem of finding a small MDP that expands a given
NMRDP is made easier if the latter’'s rewards are given by a
TERF. Inthiscasg, itisnatural to label stateswith PLTL for-
mulas that summarize history. More precisaly, the new state
space ESconsists of annotated states, of theform so f where
s € Sand fisaformulain PLTL. These annotationswill be
meaningful and correct assertions about history, in asenseto
be made precise below. We give an algorithm that constructs
an expansion of the state space by producing labelings of
states that are sufficient to determine future reward.

We begin with a simple example to illustrate the essential
ideas. Consider a single reward formula¢r = Q A ©OP.
Recall that our goal is to encode al relevant history in a
state’s annotation. Thus, for each state s in which ¢ might
possibly be true, we need at least two distinct labels, one
implying the truth of ¢z and oneits fasity.

Next, imagine that we have an extended state es = so1),
where(@ istrueins andy = ©©P. (Thusesimpliesthat pr
istrue.)) Next, suppose that s is reachable from some other
state s~ (i.e., thereissometransitionintheNMRDPfrom s~
to s). Since we must ensure that es's label ¢ is a correct as-
sertion about its history, in the expanded MDP any transition
from an extended version of s~ (es™, say) to es must satisfy

5See [LDK95] on the complexity of solving MDPs. Generally,
the state spaceis problematic in planning problems because it grows
exponentially with the number of atomic propositions. Adding his-
tory “naively” to the domain exacerbates this problem considerably.

the “historical” constraints imposed by . In this example,
if there is a transition from es™ to es it must be the case
that es— satisfies © P (otherwise, esmight not satisfy ©© P).
In general, we can use the regression operator to determine
what must have been true at earlier states. A reward for-
mula ¢ istrue of atrajectory terminating in esiff Regr(¢, s)
holds at es's predecessor. Thus, the formula Regr(¢, s)—
or a stronger formulaimplying Regr(¢, s)—must be part of
any label attached to states that reach es = so¢ in one step.
Thisprocessis, naturally, repeated (statesreaching es— must
satisfy P, etc.).

To quickly summarize this example, suppose that every
state is reachable from any other, and that P and () are the
only propositions (hence, there are exactly 4 base states).
Then 12 extended states are necessary. For each base state
where @ isfase (i.e.,, P A —=Q and =P A =Q) we need one
extension labeled with -© P and another with ©P. For
each of the two base states in which @ is true, we need 4
extended states, with the labels©P A ©©P, -©P A ©0P,
OPA-©OP,and-OP A-©OOP. Notethat every extended
state has the property that we can easily tell whether the
reward formula Q) A ©@OP is true there. Furthermore, the
regression constraintsdiscussed abovehold. For example, let
sTEPAQandes =s o(~©P AQOP), and consider
the transition to the base state s wheres = =P A Q. Itis
necessary that there be some labeling of s, es = sot, such
that Regr(v, s) isimplied by es~. But this is so, because
we can take ¢ to be © P A -©©P. Note that if we had not
been able to find such), this would mean that es’s label
did not encode enough history (because we would be unable
to determine the correct subsequent label after amoveto s).

Our agorithm constructsthe set of extended phases some-
what indirectly, using a two phase approach. Phase | of our
algorithm constructs label sets for each state, Is(s), contain-
ing PLTL formulas that might be relevant to future reward.
The elementsof 15(s) will not necessarily bethe labelsthem-
selves, but are the ingredients out of which labels are con-
structed. 1n acertain sense (to be discussed in Section 4.3) it
doesnot matter if weadd “too many” (or too strong) formulas
tols(s), so there arein fact several distinct implementations
of Phase |. But as we have just seen, regression should be
used to impose constraints on label sets. If ¢ € 1s(s), so
that ¢ might be (part of) the label of a extension es, then
Regr(¢, s) must be implied by the annotation of any state
es~ fromwhich esis reachable.

Given that Phase | is correct (i.e., it finds al formulas
that might be relevant), we can restrict attention to extended
states whose label s are combinationsof theformulasin|s(s),
asserting that some are true and othersfalse. Formally:

Definition 4.5 If Wisa set of PLTL formulas, the atoms of
Y, denoted ATOMS(W), isthe set of all conjunctionsthat can
be formed from the members of W and their negations. E.g.,
if W= {qgAOSp,p}, thenaToMs(W) = {(¢AOp) Ap,—(g A
©p) Ap, (g ASp) A—p,=(qgASp) A=p}. 1

Thus, the labels extending s will belong to ATOMS(1S(s)).
Ingeneral, however, many of theseatomswill beinconsistent,
or simply not reachable given the set of feasible trgjectories
in the original NMRDP. Rather than performing theorem

proving to check consistency, we will generate the extended
states we requirein a constructive fashion, by explicitly con-
sidering which states are reachable from a start state. Thisis
Phase Il of our algorithm.

To illustrate, suppose that we have determined 1s(s1) =
{Q ANOOP, T AOP, L AOP, P}, and that s; = ~Q A P.
There is only one atom over Is(s1) that can be true at s1 in
the (length 1) trajectory (s1), namely:

f=-(QAN9OP)A=(T AOP)A~(LAOP)AP.

We thus include s10 f in ES. (Note that sy0 f can be logi-
cally simplified, to s10-©P.) >From this extended state we
consider, for each successor state s, of s1, which atom over
sp'slabel setistrueinthetrgjectory (s1, s2). Again, thiswill
be unique: for instance, if s; can succeed itself, we obtain a
new extended state s1 0 f’ where

[f==(QANSOP)A(TASOP)A-~(LAOP)AP

(This aso can be simplified, in this case to s,0©P.) For
any action a such that Pr(s1, a, s2) = p > 0, we assert that
Pr(siof,a, sz0 f') = p. By adding extended statesto ESin
thisway, we will only add extended states that are reachable
and whose history is meaningful. For instance, we see that
while ¢ = Q A ©OP isin Is(s1), no label that makes ¢
true at s; will be reachable (recall s; makes () false). This
effectively eliminates ¢ from consideration at s.

The agorithm is described in Figure 1. We defer a dis-
cussion of Phases | and |11 until Section 4.3. Note, however,
that an easy implementation of Phase | isto set Is(s), for all
s, equal to J,,co Subformulas(¢;) where @ is the set of
reward formulas. All the resultsin this section apply to any
suitable choice of 1s(+), including this one.

The MDP Ges generated by the algorithm is an expansion
of Gs. To show this, it is useful to define a more genera
concept of which Ggsis an instance:

Definition 4.6 Ges = (ES A, Res) isa sound annotation of
Gs = (S, A, R) if each state es € ESis of the form so f for
s € S and some PLTL formula f, and:

1. Fixing 7(sof) = s, there exists o : S — ES such that
clauses[1] and [2] of Definition 4.1 hold.

2. Let (soofo,s10f1,-.-,8p0fn), n > 0, be such that
U(So) = Soofo. Then:

<30,51v"'78n> |: fn I

This definition is similar to our definition of expansion
(Defn. 4.1), except that we give the extended states a partic-
ular form: annotationsusing PLTL formulas. Furthermore,
instead of requiring that annotations summarize enough his-
tory for the purposes of determining rewards, we no longer
care why Ggs has the annotationsit does; we only insist that
whatever history isrecorded in these annotationsbe accurate.

Because of its generality, the notion of sound annotation
may have other applications. However, for our purposes
we must make one more assumption: that Ges's labels are
informative enough to determine rewards.

Definition 4.7 Ges determinesrewards over a set of reward
formulas @ iff, for all es = sof € ESand all ¢; € ®, f
determines ¢;.

Phasel Find label sets:
Choose any Is: S +— subsets of PLTL, such that:

Forall s € S, dl f € AToms(ls(s)), and al formulas ¢:
If ¢ € D, the set of reward formulas for G, then:
f determines ¢
If ¢ € 15(s"), where Pr(s,a, s") > O0for somea € A, then:
f determines Regr (¢, s')

Note. See text for more discussion of this phase. However,
Isun(s) = Ug; co Subformulas(¢;) isalways suitable.

Phasell Generate Ggs:

1. Fordl s € S do:
(8 Find f € AToms(Is(s)) suchthat (s) = f.
Note. Such an atom exists and is unique.
(b) Add sof toES
Note. Thiswill be the start state corresponding to s.
() Mark so f unvisited.
2. Whilethere exists an unvisited state es € ES es = so f do:
(@) Foradll s’ suchthat Pr(s,a,s’) > Ofor somea do:
i. Find f' € aToms(Is(s")) such that f = Regr(f',s').
ii. If s'of’ ¢ ESthenadd s'o f to ESand mark it unvisited.
iii. SetPr(sof,a,s’ of")equa toPr(s,a,s"), foral a.
3. Fores=sof iNESset Res(es)t0), of{ri i f ¢}
4. Set Pr(sof,a,s of) = 0for dl transition probabilities not
previoudly assigned.
Phaselll Minimization: See Section 4.3 for discussion.
Note. This phase is not aways necessary.

Figure 1: Algorithm to find Annotated Expansion of G's

Proposition 4.8 If Ges = (ES, A, Res) is sound annotation
of Gs that determines rewards over @, and Res(sof) =
Y sicoiri 1 [E ¢i}, then Gesisan expansion of Gs.

The key to understanding our algorithm isrealizing that it
is designed to generate a M DP that satisfies the conditions of
this proposition. Thus, by the results of Section 4.1, we have
succeeded in our goal of finding an equivalent MDP Ggs for
any NMRDP G's whose rewards are given using a TERF. In
particular, we have the following key result:

Theorem 4.9 Let Gs be an NMRDP whose reward function
isgiven by a TERF, over a set of formulas ®. The Expansion
Algorithm of Figure 1 constructs an MDP Ggs that is an
expansion of Gs.

Oncethis expansion Ggs is constructed, an optimal policy
for the M DP G'es can be computed using standard techniques.
The correspondence presented in Section 4.1 shows that an
agent executing this policy will behave optimally with re-
spect to the original NMRDP. We note that the labelsin Ges
determinethe history that must be kept track of during policy
execution. In particular, suppose we are given a policy =’
defined on the extended space to apply to the NMRDP, and
the process startsin state so. We take the extended state to be
S0'S Unique start state esy and perform 7' (esp) = a. An ob-
servation of the resulting state s; is made. The dynamics of
the extended MDP ensurethat thereisauniquees; extending

s1 that is reachable from esy under action a. Thus, we next
execute action 7’ (esy), and proceed as before. Note that we
can keep track of the extended state that we are currently in
even though we only get to directly observe base states.

4.3 Other Propertiesof the Algorithm

In this section, we very briefly discuss some of the other
interesting issues raised by the expansion agorithm.

We begin by examining Phase |. As already noted, one
possible implementation is IS(s) = Isyp(s); i.e., the label
sets consisting of all subformulasof ®. An advantage of this
choiceisthat Phase | becomestrivial, with complexity O(L),
where L = 3, o length(¢;) is a bound on the number of
subformulas we generate. Furthermore, we can bound the
sizeof Ges. Sincethereareat most 2~ atomsover Is(s), each
base state can receive at most this number of distinct 1abels.
Thus Ggs can be at most this factor larger than G (although
Phase Il does not usually generate all conceivable labels.)
The exponential here may seem discouraging, but there are
simple, natural examples in which this number of historical
digtinctions is required for implementing an optimal policy.
For instance, for the reward formula ©™ P, we need to keep
track of when P wastrueamong the previousn steps, leading
to 2" distinct annotations.

Nevertheless, the main disadvantage of Isy(-) is that it
can lead to unnecessarily fine distinctions among histories,
50 that Ges as produced by Phase Il is not guaranteed to
be minimal (in the sense of having as few states as possible
among vaid expansions of G's). If minimality is important,
a separate step after Phase 1l is required. Fortunately, min-
imizing Ges can be performed using a variant of standard
algorithmsfor minimizing finite state automata [HU79]. We
defer discussion to thefull paper, but notethat the complexity
of doing thisis only polynomial in the size of Ggs. Thus,
s0 long as the intermediate Gies produced by Phase Il is of
manageable size, minimization is fairly straightforward.®

A second implementation of Phase | constructs label sets
Isy with “weaker” formulas, subject to the stated require-
ments. More precisely, we initidly set Isy(s) = &, for
al s. Then, so long as we can find s, s', such that s’ is
reachable from s and {Regr(¢, s") : ¢ € Isy(s")} € Isu(s),
we add {Regr(¢, s') : ¢ € Isy(s')} tolsy(s). Weiterate un-
til this terminates—which it will, so long as we are careful
not to add different (but logically equivalent) formulastwice
to Isy(s). This procedure ensures the necessary properties
of Is(-). For many natural examples of reward formula, this
process terminates quickly, generating small label sets.

The major reason for considering Isy(+) is that Ges, as
constructed subsequently by Phase I, is then guaranteed to
haveminimal size. But s, () hasaseriousdrawback aswell:
Phase | can potentially become very complex. The number
of iterations until termination can be exponential (in the size
of thereward formulas) and the size of thelabel setscan grow
double-exponentially. Perhaps the optimal strategy, then, is
to begin to implement Phase | using Is, (), but if any reward

8If GEs is much larger than necessary, Phase I1’s complexity
could cause difficulties.

formulaprovestroublesome, to then revert to the subformula
technique at that point.

We conclude by noting that Phase Il is, in comparison,
unproblematic. Since each extended state is visited exactly
once the complexity is linear in the size of the final answer
(i.e., the size of Ggs.) Furthermore, none of the operations
performedin Phasell aredifficult. Steps 1.aand 2.a.i appear
to involve theorem-proving, but thisis misleading. Step 1.a
is actually just model checking (over what is, furthermore,
a very short trgjectory) and in this particular case can be
done in time proportional to E¢€,S(s) length(¢). Step 2.ai
can aso be performed quickly; the details depend on exactly
how Phase | isimplemented, but in general (and in particular,
for the two proposal s discussed above) enough book-keeping
information can be recorded during Phase | so that 2.a.i can
be performed in time proportional to |Is(s)|. Again, space
limitations prevent us from providing the details.

In conclusion, the annotation al gorithm appearsto be quite
practical. The potential exists for exponential work (relative
to the size of Gis) but thisis generally the case exactly when
we really do need to store alot of history (i.e.,, when Gesis
necessarily large).

5 Concluding Remarks

While MDPs provide a useful framework for DTP, some
of the necessary assumptions can be quite restrictive (at the
very least, requiring that some planning problemsbe encoded
in an unnatural way). We have presented a technique that
weakens the impact of one of these assumptions, namely,
the requirement of Markovian (or state-based) reward. The
main contributions of this work are a methodology for the
natural specification of temporally extended rewards, and an
algorithm that automatically constructs an equivalent MDP,
alowing standard MDP solution techniques to be used to
construct optimal policies.

There are anumber of interesting directionsin which this
work can be extended. First, similar techniques can be used
to cope with non-Markovian dynamics, and can also be used
with partially-observable processes. In addition, other tem-
poral logics (such as more standard forward-looking logics)
and processlogicscan potentially beused in asimilar fashion
to specify different classes of behaviors.

Another interesting ideais to use compact representations
of MDPs to obviate the need for computation involving in-
dividual states. For instance, Bayes net representations have
been used to specify actions for MDPs in [BDG95], and
can be exploited in policy construction. Given an NMRDP
specified in thisway, we could produce new Bayes net action
descriptionsinvolving an expanded set of variables(or propo-
sitions) that render the underlying reward processMarkovian,
rather than expanding states explicitly.

Finally, our technique does not work well if the expanded
MDP is large, which may be the case if a lot of history
is necessary (note that this is inherent in formulating such
a problem as an MDP, whether automatically constructed or
not). Thecomplexity of policy constructionistypically dom-
inated by the size of the state space. An important direction

for future work is to combine policy construction with state
space expansion. The hope is that one can avoid generating
many expanded states using dominance arguments particul ar
to the reward structure of the given NMRDP.

Acknowledgements
The work of Fahiem Bacchus and Craig Boutilier was sup-
ported by the Canadian government through their NSERC
and IRIS programes.

We thank the anonymous referees for their thoughtful re-
views. It is unfortunate that space limitations prevented us
from responding to several of their valuable suggestions.

References

[AH90] R. Alur and T. Henzinger. Real-time logics: complexity
and expressiveness. LICS-90, Philadel phia, 1990.

[BD94] C. Boutilier and R. Dearden. Using abstractions for
decision-theoretic planning with time constraints. AAAI-94,
pp.1016-1022, Sesttle, 1994.

[BDG95] C. Bottilier, R. Dearden, and M. Goldszmidt. Exploit-
ing structure in policy construction. 1JCAI-95, pp.1104-1111,
Montreal, 1995.

[Bel57] R. E. Bellman. Dynamic Programming. Princeton Univer-
sity Press, Princeton, 1957.

[BP95] C. Boutilier and M. L. Puterman. Process-oriented plan-
ning and average-reward optimality. 1JCAI-95, pp.1096-1103,
Montreal, 1995.

[DK89] T. Dean and K. Kanazawa. A model for reasoning about
persistence and causation. Comp. Intel., 5:142—-150, 1989.

[DKKN93] T.Dean, L. P. Kadbling, J. Kirman, and A. Nicholson.
Planning with deadlinesin stochastic domains. AAAI-93, pp.574—
579, Washington, D.C., 1993.

[Dru89] M. Drummond. Situated control rules. KR-89, pp.103—
113, Toronto, 1989.

[Eme90] E. A. Emerson. Temporal and moda logic. In J. van
Leeuwen, ed., Handbook Theor. Comp. i, Vol.B, pp.997-1072,
1990.

[GK91] P. Godefroid and F. Kabanza. An efficient reactive planner
for synthesizing reactive plans. AAAI-91, pp.640-645, 1991.

[HH92] P. Haddawy and S. Hanks. Representations for decision-
theoretic planning: Utility functions for deadline goals. KR-92,
pp.71-82, Cambridge, 1992.

[How60] R. A.Howard. Dynamic Programming and Markov Pro-
cesses. MIT Press, Cambridge, 1960.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.
[Kab90] F. Kabanza. Synthesis of reactive plans for multi-path

environments. AAAI-90, pp.164-169, 1990.

[KHW94] N. Kushmerick, S. Hanks and D. Weld. An algorithm
for probabilistic least-commitment planning. AAAI-94, pp.1073—
1078, Seattle, 1994.

[LDK95] M. Littman, T.L. Deanand L. P. Kaglbling. Onthe com-
plexity of solving Markov decision problems. UAI-95, pp.394—
402, Montreal, 1995.

[Put94] M. L. Puterman. Markov Decision Processes: Discrete
Sochastic Dynamic Programming. Wiley, New York, 1994.

[Sch87] M. J. Schoppers. Universa plans for reactive robots in
unpredictable environments. |JCAI-87, 1039-1046, Milan, 1987.

[TR94] J. Tash and S. Russell. Control strategies for a stochastic
planner. AAAI-94, 1079-1085, Seattle, 1994.

