Abstraction and Approximate Decision Theoretic
Planning”

Richard Dearden and Craig Boutilier!
Department of Computer Science
University of British Columbia
Vancouver, British Columbia

CANADA, V6T 174

email: dearden,cebly@cs.ubc.ca

Abstract

Markov decision processes (MDPs) have recently been proposed as
useful conceptual models for understanding decision-theoretic planning.
However, the utility of the associated computational methods remains
open to question: most algorithms for computing optimal policies require
explicit enumeration of the state space of the planning problem. We
propose an abstraction technique for MDPs that allows approximately
optimal solutions to be computed quickly. Abstractions are generated au-
tomatically, using an intensional representation of the planning problem
(probabilistic sTRIPS rules) to determine the most relevant problem fea-
tures and optimally solving a reduced problem based on these relevant
features. The key features of our method are: abstractions can be gener-
ated quickly; the abstract solution can be applied directly to the original
problem; and the loss of optimality can be bounded. We also describe
methods by which the abstract solution can be viewed as a set of default
reactions that can be improved incrementally, and used as a heuristic for
search-based planning or other MDP methods. Finally, we discuss certain
difficulties that point toward other forms of aggregation for MDPs.

Keywords: Planning, decision theory, abstraction, approximation, search,
heuristics, execution, Markov decision processes

*Some parts of this report appeared in preliminary form in “Using Abstractions for
Decision-Theoretic Planning with Time Constraints,” Proc. of Twelfth National Conf. on
Artificial Intelligence (AAAI-94), Seattle, pp.1016—1022 (1994); and in “Integrating Planning
and Execution in Stochastic Domains,” Proc. of Tenth Conf. on Uncertainty in Artificial
Intelligence (UAI-94), Seattle, pp.162—169 (1994).

tCorresponding author: Craig Boutilier



1 Introduction

The classical planning problem is that of producing a sequence of actions that
guarantees the achievement of certain goal conditions when applied to a spec-
ified starting state. The unrealistic assumptions embodied in much classical
planning research, such as complete knowledge of the initial state and com-
pletely predictable action effects, have been challenged in, for instance, work
on conditional planning [50, 43] and probabilistic planning [32]. The problem
of decision-theoretic planning (DTP) involves the design of plans or policies in
situations where the initial conditions and the effects of actions are not known
with certainty, and in which multiple, potentially conflicting objectives must
be traded against one another to determine an optimal course of action. For
this reason, one can view a DTP problem as a problem of optimal stochastic
control. Recently, Markov decision processes (MDPs) [26, 54, 45] have been pro-
posed as a semantic and computational framework in which to formulate DTP
problems [15, 2, 56, 10, 8, 13, 11]. This model allows the formulation of actions
with stochastic effects and the specification of states or objectives of differing
value. It can also be applied to settings without obvious termination conditions,
such as on-going processes [12], which cannot easily be dealt with by current
goal-based planning algorithms.

While MDPs provide firm semantic foundations for much of DTP, the ques-
tion of their computational utility for Al remains. Many robust methods for
optimal policy construction have been developed in the operations research (OR)
community, but most of these methods require explicit enumeration of the un-
derlying state space of the planning problem, which grows exponentially with
the number of variables relevant to the problem at hand. This severely affects
the computational performance of these methods, the storage required to rep-
resent the problem, and (potentially) the amount of effort required by the user
to specify the problem. Much emphasis in DTP research has been placed on
the issue of speeding up computation by means of approzimation. One class of
methods involves restricting search or dynamic programming to local regions or
envelopes of the state space [15, 2, 56]. This approach reduces the state space to
locally accessible regions and allows OR methods to be used on reduced prob-
lems. While optimality is sacrificed, judicious choice of relevant states can lead
to good approximations.

In this paper, we explore a different way of coping with the computational
difficulties involved in optimal policy generation for large state spaces. First, we
present a particular structured representation of MDPs using a variant of the
probabilistic STRIPS operators used in [32] to describe actions and rewards. This
representation is a syntactic variant of certain types of “two-stage” Bayesian
networks or influence diagrams [16, 10, 8]. This in itself allows large problems
to be specified and represented in a concise and natural fashion.

The key aim of this paper is the exploitation of structured representations to
quickly identify appropriate dimensions for abstraction. We generate an abstract



state space in which (concrete) states are clustered together, and construct an
abstract MDP. This abstract MDP has a state space (potentially exponentially)
smaller than that of the original MDP, and can be solved much more quickly.
Crucial features of the aggregation process are:

(a) the construction of the abstract MDP is reasonably fast (i.e., the
time required does not grow with the state space); and

(b) the abstract process is constructed in such a way that standard so-
lution techniques may be used in this reduced space to produce an
abstract policy.

Our approach has several advantages over the envelope method. Foremost
among these is the fact that no states are ignored in abstract policy generation
— each state may have some influence on the constructed policy by membership
in an abstract state.! This allows us to prove bounds on the value of abstract
policies (with respect to an optimal policy). Furthermore, finer-grained abstrac-
tions are guaranteed to increase the value of policies. Finally, abstractions can
be generated quickly. These factors allow abstract policies of varying degrees of
accuracy to be constructed in an anytime fashion (in particular, in the style of
contract anytime algorithms [47, 48]).

While the abstraction method of approximating optimal policies i1s orthog-
onal to the envelope approach, the model we propose actually illustrates that
the two approaches complement one another quite nicely. Off-line computation
of the optimal abstract policy provides one with a set of appropriate actions,
though perhaps not optimal in the concrete space. In addition, it produces an
abstract value function that characterizes the estimated long-term value of every
(abstract) state. However, even with a good policy in hand, an agent may find
itself in a situation where computation time is available to improve its action
choice. To integrate abstraction into a more online model of planning, one can
treat an abstract policy as a set of default reactions to be executed by an agent
when an action must be performed. However, local search through the con-
crete state space (i.e., the construction of a decision tree) can be used to refine
these reactions when additional computation time is available. Such a model is
reminiscent of reaction-first search [18] or real-time dynamic programming [2].
A crucial difference is the existence of an abstract value function to guide this
search. This gives us two ways to view abstraction: the abstraction process is
used to generate default reactions and heuristics (or static-evaluation functions)
to guide and prune an online search for good actions; or the abstraction process
provides a fast means for building approximately optimal plans in an off-line
planning system.

!The envelope method of [15] in fact uses a heuristic function to estimate the value of
falling out of the current envelope; but it is not clear how to construct such functions for a
desired level of accuracy.



The main aims of this paper are: to present a compact and natural represen-
tation of MDPs; to describe how such a representation can be used to construct
abstract MDPs that can be solved quickly to produce approximately optimal
policies, and to show how such abstract solutions can be used in online planning
algorithms. In Section 2, we briefly describe the aims of decision-theoretic plan-
ning and the suitability of Markov decision processes as a foundational model for
DTP. We describe MDPs and various methods for constructing optimal policies,
such as value iteration and policy iteration, based on the dynamic programming
principle [3]. We discuss compact representations for MDPs; in particular, we
adopt a variant of the probabilistic STRIPS operators used in [32] that captures
independence of action effects in a manner similar to Bayes nets [41]. Such a
representation allows MDPs to be specified concisely and naturally by exploiting
structural regularities in the domain and in the effects of actions.

In Section 3, we begin to address the computational difficulties associated
with solving MDPs optimally. Solution methods such as policy iteration tend
to converge well in practice, but each iteration requires computation that is
polynomial in the size of the state space. Since the state space itself grows
exponentially with the number of variables present in the problem description,
such methods are only feasible for reasonably small problems. We present an
approximation method for MDPs based on the construction and solution of a
smaller abstract MDP. Our method for generating abstract MDPs is based on
Knoblock’s [29] abstraction generation technique for classical planning: certain
literals are deleted from the problem description. These literals are, roughly
speaking, those whose impact on the value of a state or policy is “negligible.”
However, there are some critical differences in our model. First, care must be
taken to ensure that the reduced problem is indeed an MDP; this guarantees
that existing solution methods can be used. Second, the solution to the abstract
problem can be used directly in our model. In contrast to classical abstraction,
where abstract solutions can only be used to guide the search for solutions at
a concrete level, in our model the abstract solution is executable. Of course,
the solution may not be optimal. We therefore require that abstract MDPs
be generated in such a way that the error, or divergence from optimality, can
be bounded and that different abstractions can be quickly compared for value
before they are solved. The key contribution of Section 3 is an algorithm to
generate abstract MDPs and the derivation of an easily computed upper bound
on the error of the abstract solution. We also discuss the generation of appro-
priate abstractions in terms of value of information, and show that the bounds
on less abstract policies are always closer to optimal than those of more abstract
policies. As such, the chosen degree of abstraction provides a parameter that
can be set 1n a contract-anytime fashion.

In Section 4, we describe how abstract MDPs and their solutions can be ex-
ploited and improved in the planning process, in both off-line and online models
of plan construction. We first describe levels of abstraction, or abstraction hi-
erarchies [29]. In classical abstraction, hierarchies are generally constructed so



that various refinement properties are satisfied; that is, the solution at a given
abstraction level can be refined (without changing any of its components) to
provide a solution at a less abstract level. Such properties are generally impos-
sible to ensure in our model, since the aim is the production of optimal, useful
solutions at each level. However, we demonstrate empirically that abstract solu-
tions can sometimes be used to speed up the computation for their less abstract
counterparts by “seeding” the policy iteration algorithm with abstract initial
policies.

We then consider refinement of abstract solutions in an online model by
using search to improve the choice of action for the actual state in which an
agent finds itself. In contrast with methods such as policy and value iteration,
which consider the appropriate action choice and value of all states, local search
can be used to focus computational effort on only those states that directly
impact the value of the current state.? This view is reminiscent of the enve-
lope method of Dean et al. [15], but is most closely related to the real-time
dynamic programming model of Barto, Bradtke and Singh [2]. There are two
key advantages to integrating our abstraction method with this model: first,
if action is required at any time, an abstract policy generated off-line provides
useful default reactions (whose value is roughly known); second, the abstract
value function generated in the solution of the abstract policy can be used to
guide the local search process.

In Section 5, we consider a generalization of our abstraction model. While
the original algorithm for generating abstractions will not delete any literal that
can influence the probability of another literal that is deemed relevant, our
method of inezact abstraction ignores effects with little (in contrast to no) influ-
ence in the abstract problem (e.g., effects with small probability of occurrence).
We provide an algorithm and error bounds for this approach, and point out the
difficulties in constructing inexact abstractions with predictable, tight bounds.

Finally, in Section 6, we conclude with a discussion of open problems and
directions for future research, and describe how some existing work might be
integrated with our model of abstraction. In particular, we describe other forms
of state aggregation that can be used to solve MDPs more quickly. We view
the work presented here as a starting point for the use of Al-style, intensional
representations of DTP problems to determine irrelevant details and appropriate
aggregations and abstractions that allow the reasonably fast construction of
good plans.

?Indeed, as we elaborate below, the rollback procedure for a decision tree rooted at a given
state can be viewed as a form of value iteration directed toward that state.



2 Markov Decision Processes and their Repre-
sentation

Decision-theoretic planning generalizes classical Al planning to deal with sit-
uations of uncertainty and multiple, possibly competing objectives of different
utility. The tools of decision theory should be used to determine a plan with
maximum expected utility. Because one generally does not know a priori which
final state the system should end up in (e.g., a high utility state may be achiev-
able with only low probability and thus should be eschewed), classical goal-based
techniques such as regression or partial-order planning are of little value.> For
example, an agent required to deliver two packages before a certain deadline,
but unable to do so, must decide which (if either) of the packages to pick up
first. Goal-based methods require one of these objectives first be chosen; but
the objective to be chosen cannot generally be known until possible plans have
been considered.

The articulation of explicit goals is also frequently absent in DTP problems,
which often have a process-oriented flavor. For example, our agent above may
be acting in a constant loop of anticipating and performing routine tasks and
achieving certain requests without consideration of termination conditions [12].
Manufacturing processes are often best viewed this way as well: the aim is not
to reach some final state where a certain number of units have been produced,
rather one wishes to maximize throughput subject to other considerations of
importance (such as safety, labor and maintenance constraints). Each aspect of
the manufacturing process is an action (whether joining two parts together, or
checking a part for faults); the objectives are to fill specific orders, to operate as
inexpensively as possible, to minimize the number of faulty parts produced, etc.
Actions are stochastic (e.g., they may introduce faults on occasion) and there
i1s uncertainty in the state of knowledge. A decision-theoretic planner should
produce a plan of operation that includes a sequence of manufacturing steps for
parts of specific types, as well as certain test and repair actions designed to deal
with faulty parts. Note that as a matter of course, an optimal plan may not
test for certain faults if their cost and probability of occurrence is sufficiently
small. The role of decision theory in such a process is to decide which tests are
“worth 1t”; thus a priori goal states such as “Part X should be free of faults
with probability 0.995” are useful only in specific structured settings (see, e.g.,
[32, 17] where this view is pursued).

Features such as these make Markov decision processes an ideal model for
modeling DTP problems. MDPs can be viewed as stochastic automata in which
actions have uncertain effects, inducing stochastic transitions between states,
and the precise state of the system is known only with a certain probability. In
addition, the expected value of a certain course of action is a function of the

3At least, as currently formulated: there is some possibility that regression methods may
prove useful in approximation methods for DTP [8].



transitions it induces, allowing rewards to be associated with different aspects
of the problem rather than with all-or-nothing goal propositions. Finally, plans
can be optimized over a fixed finite period of time, or over an infinite horizon,
suitable for ongoing processes.

We describe MDPs in detail below; however, we do not present them in full
generality. Certain simplifying assumptions are made that restrict the class of
problems we address. The most restrictive assumption is that of complete 0b-
servability: although actions may have uncertain effects, we assume that once
the agent has performed an action, it can observe its actual outcome. In other
words, the agent has full access to the state of the system being controlled. Thus,
the planning algorithm need not deal with uncertainty in its knowledge of the
world. While unrealistic in many domains, fully observable MDPs (FOMDPs)
capture an interesting and useful class of problems. In addition, the compu-
tational methods for optimal policy construction for the fully observable case
are much better studied and more powerful than those for partially observable
MDPs (POMDPs). Indeed, while special purpose code for FOMDPs can often
handle systems with hundreds of thousands of states, dealing with twenty-state
systems is often problematic for POMDP algorithms [35, 13]. Our initial investi-
gations of representational and abstraction methods for MDPs, described in this
paper, are therefore directed toward FOMDPs. However, we fully expect these
and related methods will be adaptable to POMDPs (see [11] for investigations
of this point).

Primarily for reasons of presentation, we do not consider action costs in
our formulation of MDPs. All utilities are associated with states (or proposi-
tions). This assumption is not especially restrictive, for our algorithms can be
augmented to deal with more general reward specifications. However, explicit
consideration of action costs would detract from the main points of this pa-
per. Finally, we note that our examples are primarily goal-based, again for ease
of presentation. However, our algorithms can be applied directly to process-
oriented problems (see, e.g., [12] for process-oriented problems that extend the
types of examples we present here).

2.1 Markov Decision Processes

For our purposes, a Markov decision process can be defined as a tuple (S, A, T, R)
where S is a finite set of states or possible worlds, A is a finite set of actions, T' is
a state transition function, and R is a reward function. A state i1s a description
of the system of interest that captures all information about the system relevant
to the problem at hand. In typical planning applications, the state is a possible
world, or truth assignment to the logical propositions with which the system is
described. The agent can control the state of the system to some extent by per-
forming actions a € A that cause state transitions, movement from the current
state to some new state. Actions are stochastic in that the actual transition
caused cannot be predicted with certainty. The transition function 7" describes



the effects of each action at each state. T'(s, a) is a probability distribution over
S: T(s,a)(t) is the probability of ending up in state ¢ € § when action a is
performed at state s. We will write this quantity as Pr(t|a,s).* We require
that 0 < Pr(t|a,s) < 1 for all s,¢, and that for all s, ), s Pr(t|a,s) = 1. The
components S, A and T" determine the dynamics of the system being controlled.
We assume that each action can be performed at each state. In general models,
cach state can have a different feasible action set, but this is not crucial here.®

The states that the system passes through as actions are performed corre-
spond to the stages of the process. The system starts in a state sg at stage 0.
After m actions are performed, the system is at stage m. Given a fixed “course
of action”, the state of the system at stage m can be viewed as a random vari-
able S™. Stages provide a very rough notion of time for MDPs. The system is
Markovian due to the nature of the transition function; that is,

Pr(Sm|am—1’Sm—l’am—Z’Sm—Z’ . ~a0,50) — Pr(Sm|am—1’Sm—1)

(where @’ corresponds to the action taken at stage i). The fact that the system
is fully observable means that the agent knows the true state at each stage m
(once that stageis reached), and its decisions can be based on this knowledge.

A policy m : & — A describes a course of action to be adopted by an agent
controlling the system and plays the same role as a plan in classical planning.
An agent adopting such a policy performs action 7(s) whenever it finds itself
in state s.° In a sense, 7 is a conditional and universal plan [51], specifying
an action to perform in every possible circumstance. An agent following policy
m can also be thought of as a reactive system. From a given start state sg, a
fixed policy induces a distribution over possible system trajectories. An m-stage
trajectory 1s a sequence of states sy through s,, corresponding to the states of
the system at stages 0 through m.

Given an MDP, an agent ought to adopt a policy that maximizes the ex-
pected value of the trajectories 1t admits. A number of different value mea-
sures or optimality criteria have been studied in the literature, most based on
a bounded, real-valued, history-independent reward function R : & — R. R(s)
is the instantaneous reward an agent receives for entering state s. We take a
Markov decision problem to be an MDP together with a specific optimality cri-
terion. Optimality criteria vary with the horizon of the process being controlled

4This notation is merely suggestive. The term T'(s,a)(t) cannot be formally interpreted as
a conditional probability.

5We could model the applicability conditions for actions using preconditions in a way that
fits within our framework below. However, we prefer to think of actions as action attempts,
which the agent can execute (possibly without effect or success) at any state. Preconditions
may be useful to restrict the planning agent’s attention to potentially “useful” actions, and
thus can be viewed as a form of heuristic guidance (e.g., don’t bother considering attempting
to open a locked door). This will not impact what follows.

In fact, such policies are stationary (and Markovian), the action choice depending only
on the state of the system, not on the stage of the process or its history. For the problems we
consider, optimal stationary policies always exist.



and the manner in which future reward is valued. For finite-horizon problems,
the aim is typically to construct a policy that maximizes the expected total
reward gained over some fixed number of stages m. The total reward for a finite
trajectory is simply the sum of the rewards ) ;- R(s;). For infinite-horizon
problems total expected reward will typically diverge, and other criteria are
necessary. One criterion is average reward per stage of the process. While well-
studied, and perhaps ideally suited for planning problems, such measures are
often difficult to compute. In this paper, we focus on discounted infinite hori-
zon problems: the current value of a reward received n stages in the future is
discounted by some factor 5" (0 < 3 < 1). This allows simple computations to
be used, as discounted total reward will be finite. The infinite-horizon model 1s
important because, even if a planning problem does not proceed for an infinite
number of stages, the horizon is usually ndefinite, and can only be bounded
loosely. Furthermore, solving an infinite-horizon problem is typically more com-
putationally tractable than a very long finite-horizon problem. Discounting has
certain other attractive features, such as encouraging plans that achieve goals
quickly, and can sometimes be justified on economic grounds, or can be justified
as modeling expected total reward in a setting where the process has probability
1 — 3 of terminating (e.g., the agent breaks down) at each stage. We refer to
[45] for further discussion of MDPs and different optimality criteria.

The expected sum of discounted future rewards for a fixed policy m depends
on the state in which the process starts and is denoted by the function V., where
Vr(s) is the ezpected value when 7 is executed beginning in state s. There are
several algorithms that can be used to determine V. (see [5, 45] for details). A
straightforward iterative algorithm, called successive approzimation, proceeds
by constructing the sequence of n-stage-to-go value functions V*. The quantity
V7 (s) is the expected discounted future reward received when 7 is executed for
n stages starting at state s. We set V,?(s) = R(s) and inductively compute

V(s) = R(s)+ 83 Pr(tln(s), s)V L 0) 1)
tes

As n — oo, VI — Vi; and the convergence rate and error for a fixed n can
be bounded easily [45]. We note that the right-hand side of this equation de-
termines a contraction operator so that: a) the algorithm converges for any
starting estimate V,?; and b) if we set V,? = V,, then the computed V* for any
n is equal to Vi (i.e., V; is a fixed-point of this operator). We can also exactly
compute the value V; using the following formula due to Howard [25]:

Vi(s) = R(s) + 8 Y_ Pr(t|n(s), s)Vx (1) (2)
tes
We can find the value of 7 for all states by solving this set of linear equations
Ve(s), ¥s € S.
A policy 7* is optimal if, for all s € § and all policies 7, we have V. (s) >
Vr(s). We say the (optimal) value of a state V*(s) is its value under any optimal



policy (Vi (s)). We take the problem of decision-theoretic planning to be that
of determining an optimal policy (or an approximately optimal or satisficing
policy). An incremental approximation method for policy construction known
as value wteration proceeds much like successive approximation, except that a
random value function V° is initially chosen and at each stage we choose the
action that maximizes the right-hand side of Equation 1:

V7 (s) = R(s) +I;1€%§<{52Pr(tla,8)‘/"_l(t)} (3)

The sequence of value functions V" converges to V*, and for some finite n the
actions @ that maximize the right-hand side of Equation 3 form an optimal
policy. As with successive approximation, VV* is a fixed point of Equation 3
and, if used as an initial value estimate, results in immediate convergence.

Policy iteration is an ingenious algorithm proposed by Howard [25] for opti-
mal policy construction. It proceeds as follows:

1. Let @’ be any policy on 8
2. While 7 # 7' do

(a) m=7'

(b) Forall s € 8, calculate V; (s) by solving the set of |S| linear equations
given by Equation 2.

(c) For all s € S, if there is some action a € A such that

R(s)+ 8> _ Pr(tla, s)Va(t) > Vi(s)

tes
then 7'(s) = a; otherwise n’(s) = m(s)
3. Return 7

The algorithm begins with an arbitrary policy and alternates repeatedly (in
Step 2) between an evaluation phase (Step b) in which the current policy is
evaluated, and an improvement phase (Step ¢) in which local improvements
are made to the policy. This continues until no local policy improvement is
possible. The algorithm is guaranteed to converge [25] and in practice tends
to do so in relatively few iterations [45]. The evaluation phase requires solving
the set of |S| linear equations. Algorithms for solving linear equations of this
kind are typically O(n®) where n is the number of variables (here n = |S|). The
improvement phase uses these values in a local computation to find an action
that, if executed once at state s, followed by execution of the current policy ,
results in improved value.

The main cost per iteration in the policy iteration is clearly policy evaluation.
Puterman and Shin [46] have observed that the exact value of the current policy

10



is typically not needed to check for improvement. Their modified policy iteration
algorithm is exactly like policy iteration except that the evaluation phase uses
some number of successive approximation steps instead of the exact solution
method. This algorithm tends to work extremely well in practice and can be
tuned so that both policy iteration and value iteration are special cases [46, 45].
We note that all three policy construction methods produce the value function
V* as well as an optimal policy. In addition, the algorithms are incremental
in the sense that a sequence of improving (or roughly improving) intermediate
policies is produced.

2.2 Compact Representation of MDPs

Most planning problems are described by a set of features or propositions that
characterize the domain of interest, and problems typically “grow” by the ad-
dition of atomic propositions reflecting relevant features of the domain. We
assume that the system to be controlled is described by some logical proposi-
tional language £, generated by a set P of atomic propositions. The state space
S is the set of all valuations over this language containing |S| = 2/PI possible
states, and grows exponentially with the number of variables. This poses some
difficulty for the specification and computational methods for MDPs described
above, for the problem formulation requires explicit enumeration of the state
space.

Focusing on representation for the moment, we notice that the transition
function T requires a set of |S| x |S| matrices, one matrix representing the tran-
sition probabilities for each action. For a large planning problem the storage
requirements for these action descriptions (as well as the reward function) can
be prohibitive. For a problem with ten propositions (roughly 1000 states), a
1,000,000 element matrix may be needed to represent the effects of each ac-
tion. Even though the probability matrices are typically quite sparse, (and
storage methods may exploit this), the specification of a problem in this for-
mat is unattractive. In Al planning, actions are rarely described explicitly as
state transitions. Natural representations such as sTRIPS rules or the situation
calculus specify the effects of actions on propositions rather than states. Such
representations are extremely compact in normal circumstances because actions
exhibit a number of regularities that can be exploited.

To represent stochastic actions compactly, we adopt a probabilistic variant
of STRIPS rules very similar to that used in BURIDAN [32]. In the classical
STRIPS representation [19], an action is represented using a list of effects, or a
set of literals that become true when the action 1s executed. When an action
1s executed at a state, the effect 13 “applied” to the current state to determine
the new state that results. More precisely, let E be the effect (a consistent set
of literals) associated with action a, and let s be a state (represented as the set
of literals true in that state). The state that results when a is executed at s

11



(denoted a(s)) is simply the result of applying the effect to s:
Bs)= (s\ {p: ~p € B UE

Note that any literal unmentioned in the effect persists in truth value and that
a single effect changes many states in similar ways. Thus large classes of state
transitions can be represented using a single effect. As an example, consider the
action a with effect {P,—Q}. When applied to state s = {=P,=Q, R, S}, the
resulting state is a(s) = {P,~Q, R, S}.

Pednault [42] generalizes these descriptions somewhat by allowing actions to
have conditional effects, or context-dependent effects that vary with the initial
state. Following [32] we assume that the conditions under which an action
can have different effects are described by a finite set of discriminants D =
{d',---d™}. This is a set of mutually exclusive and exhaustive logical formulae
that partitions the state space. We typically assume each d' to be a conjunction
of literals, and often treat d’ as the set of literals occurring in the conjunction.
We denote by atoms(d?) the set of atoms occurring in d* (when viewed as a set).
A conditional action description associates an effect E? with each discriminant
d'. The state a(s) that results from a conditional action a is given by E(s),
where d is the (unique) action discriminant such that s |= d*. For example,
suppose action a is described using two discriminants, d* = {R} and d* = {=~R},
with associated effects B! = {P,—~Q} and E? = {P,Q}. When a is applied
to state s = {=P,—=Q, R, S}, the resulting state is a(s) = {P,~Q, R, S} (as
above) since s |= d*. But when applied to t = {=P,—Q,—R, S}, the result is
a(t) ={P,Q,—R,S}.

To these conditional effects;, we add nondeterminism by supposing that un-
der each condition a number of possible effects might occur with a specified
probability, following the BURIDAN representation. That is, with each d' we
associate a stochastic effects list of the form (E% pt;... B pt), where each E;
i1s an effect and each pé» is the probability that effect will occur; we require
only that Z;zl pé» = 1. An action now induces a probability distribution over
possible resulting states. The semantics of an action of this type is as follows:

Pr(t|a,s) = Z{p§ L Ei(s) =t}

where s = d’. It should be clear that this determines a well-defined stochastic
transition function for each action, and that any transition function can be so
represented (though perhaps not compactly).

To illustrate this representation, as well as our algorithms below, consider
the following simple planning problem. We have a robot whose main objective
is to deliver coffee to a user. It can move between the user’s office and a coffee
shop across the street, buy coffee at the coffee shop, and deliver coffee to the
user in the office. If it is raining outside the robot gets wet if it moves between
the two locations, unless it has an umbrella (which it can obtain in the user’s

12



Action | Discriminant | FEffect | Prob. |

Move Office = Office 0.9
0 0.1

= Office Office 0.9

0 0.1

Move Rain, = Umb Wet 0.9
0 0.1

= Rain v Umb [] 1.0

BuyC = Office HRC 0.8
0 0.2

Office [} 1.0

GetU Office Umb 0.9
0 0.1

= Office [} 1.0

DelC Office, HRC HUC,-HRC 0.8
-HRC 0.1

0 0.1

= Office, HRC —HRC 0.8

0 0.2

-HRC [} 1.0

Figure 1: Stochastic STRIPS-style action representation

office). The robot is penalized for getting wet, but it is penalized more if the user
does not have coffee. The COFFEE domain is characterized by six propositions:
Office (the robot is in the office, otherwise at the coffee shop); HRC (the robot
has coffee); HUC (the user has coffee); Rain (it is raining); Umb (the robot has
the umbrella); and Wet (the robot is wet). The robot has four actions at its
disposal, all of which may fail: Move (to the opposite location); BuyC (buy
coffee if it is in the coffee shop); DelC (deliver coffee in its possession to the
user in the office); GetU (get the umbrella if it is in the office). The effects of
these actions and their probabilities are listed in Figure 1. Worth noting is that
the DelC action can fail in two different ways: ten per cent of the time the user
simply fails to get the coffee and the robot retains possession (simple failure),
and ten per cent of the time the the robot loses the coffee (coffee spill).

We extend the BURIDAN representation by adding action aspects. These are
intended to represent the fact that some effects of an action only depend on cer-
tain features distinguished by the discriminant set. For example, in Figure 1,
the Move action has two aspects. The first represents the fact that when the
agent performs a Move, the resulting location depends on the agent’s current
location only. It 1s independent of the values of Rain and Umb. The second as-
pect deals with whether the agent becomes wet or not. Since this is independent
of where the agent is, the discriminant only contains Rain and Umb.

Actions with multiple action aspects can be translated into actions with a
single aspect by forming the “cross-product” of their effects. Figure 2 shows

13



| Action | Discriminant | FEffect | Prob. |

Move Office, Rain, -~ Umb = Office, Wet 0.81
Wet 0.09

= Office 0.09

0 0.01

Office, mRain Vv Umb = Office 0.9
0 0.1

= Office, Rain, = Umb Office, Wet 0.81
Wet 0.09

Office 0.09

0 0.01

= Office,mRain vV Umb Office 0.9
0 0.1

Figure 2: Expansion of action aspects

the translated form of the Move action for this example. More precisely, an
action can be specified using different aspects, each of which has the form of an
action as described above (i.e., each aspect has its own discriminant set). The
actual effect of an action at a state is determined by applying the effects list of
the relevant discriminant for each aspect of that action. Let w be some state
to which we apply an action with & aspects. Since each aspect has a proper
discriminant set associated with it, w satisfies exactly one discriminant for each
aspect. Assume the discriminants for the jth aspect are d}, cee d;j and that

each d; has an associated effects list <E§»’1,p§f1; .. .E;’nj,p;’nj>. An effect from
each applicable list will occur with the specified probability, these probabilities
being independent. Intuitively, action aspects capture the kind of independence
assumptions one might find in a Bayesian network or influence diagram (as we
show below). Thus, the net effect of an action A at w is the union of these
effects (sets of literals), one chosen from each aspect. The probability of this
combined effect i1s determined by multiplying these probabilities. Thus, we have

Pr(v|A, w) = Z{pilyjl 'pZ;’]é . .ka,jk L E(w) = v}
where F is an effect such that
= Eilyjl U E;2’j2 U..-U Elik,jk

To ensure that actions are well-formed we impose the following consistency
condition: if df and d;, are mutually consistent discriminants taken from distinct
aspects ¢ and j of a given action, then their effects lists must contain no atoms
in common (thus, the union above is consistent).

Compact representation of the reward function can use the same techniques
used for action representation. We assume a set of mutually exclusive and ex-
haustive reward discriminants d’ to each of which is assigned an immediate

14



| Discriminant | Value || Discriminant | Value |

HUC, = Wet 1.0 || —HUC, ~Wet | 0.2
HUC, Wet 0.8 ~HUC, Wet | 0.0

Figure 3: sTRIPS-style reward function representation

reward 7°. As usual, R(s) = ' for any s |= d'. Such a representation is com-
pletely general. Figure 3 describes the reward function for our example: the
robot is given a reward of 0.8 for ensuring the user has coffee, and a reward
of 0.2 for staying dry. An alternative representation, which we do not pursue
but which could exploited by our algorithms below, i1s the association of in-
dependent, additive rewards with a number of propositions in the manner of
multi-attribute utility theory [28], and to sum the individual rewards of each
proposition satisfied by s to determine R(s). This would provide a very direct
encoding of the reward function we adopt in this example.

A related action representation uses “two-stage” Bayes nets [16, 38, 10], in
which each action is modeled with a Bayesian network with two “slices” or
sets of variables. The first slice represents the values of (possibly multi-valued)
variables before the action is performed while the second slice represents the
value after the action. Arcs in the diagram represent probabilistic dependence
between variables.” As with conventional Bayesian networks, each post-action
node contains a table of conditional probabilities given the values of its parent
variables. The Bayes net representation of the action Move in our example 1s
illustrated in Figure 4, with three of its probability tables.

The dashed arcs indicate persistence relations: the value of the variable after
the action 1s identical to its value prior to the action. Unlike STRIPS rules, such
persistence must be expressed explicitly in the network (though they can be
constructed automatically, having the prototypical form shown for the variable
HRC). In addition, the locally exponential probability tables in the network
fail to capture some of the regularities in transition probabilities that allow the
STRIPS model to be specified more compactly (e.g., the table for Wet could be
represented more compactly [21, 10, 44]). Notice however that the independence
of the effect of Move on Office and Wet is captured naturally in the network,
while standard (stochastic) STRIPS rules cannot express this independence. Our
action aspects provide the means to represent such independent effects con-
cisely and are intended to perform precisely this role. The expressiveness of
stochastic STRIPS rules (with or without aspects) and two-stage Bayes nets are
identical in this propositional setting, both able to express arbitrary transition
relations. The relative advantages of both representations wvis-d-vis compactness

"Typically, arcs from pre-action nodes can point only to post-action nodes, while arcs
between post-action nodes (correlated action effects) must not induce directed cycles in the
graph.

15



=
=

mAMm AT ATH D
mTMmAATMT A HAlC
b e e e o B I I IR |

-~ HRC, | HRC,,.

10
F 00

Figure 4: The influence diagram representation for Move

H w WURWURWUR WUR

HUC DelC — 16.0 DelC — 20.0
m7 HRC,0 DelC — 14.73 DelC — 18.73 DelC — 18.66
[ — Move — 13.92 Move — 17.92 Move — 14.46
HUC,HRC,O
e — BuyC — 13.05 BuyC — 17.06 BuyC — 13.81
HUC,HRC,O
HUC.HRC.O Move — 12.34 Move — 16.34 GetU — 15.66

Table 1: Optimal policy for the COFFEE domain

and naturalness are described in some detail in [8].

The optimal policy and the corresponding value function V* for this example
are shown in Table 1, as computed by policy iteration using a discounting factor
of 0.95. While policy iteration explicitly computes an action and value for each
of the 64 states, the policy and value function exhibit regularities that permit
the compact expression shown in the table.®

8This fact itself suggests that more reasonable implementations of policy iteration might
exploit such structure — see Section 6.

16



3 Constructing and Solving Abstract MDPs

Even though sTRIPS-style representations allow problems with large state spaces
to be specified concisely, algorithms such as policy iteration still require enumer-
ation of the exponential state space to produce optimal policies.® In classical
planning, one technique for dealing with large problems is abstraction. In tradi-
tional abstraction planners, a complex problem is decomposed into a hierarchy
of progressively simpler problems. The simplest problem is then solved, this
solution is used to solve the next simplest problem, and so on, until the original
problem is solved. While the solutions to these simpler problems are not gen-
erally executable plans, they reduce the complexity of the problem by guiding
the search for a solution at less abstract levels [49, 29, 30].

We describe an abstraction method, similar in spirit to those used in classical
planning, for dealing with large state spaces in solving MDPs. In particular,
we adopt a method similar to ABSTRIPS [49, 29] in which an abstract problem
is one where certain details of the original problem, in this case propositional
atoms, are ignored. However, in contrast to this traditional work, the solutions
to our abstract problems will be directly executable. Thus, an abstract policy
(an optimal solution to an abstract problem) will be an approximately optimal
solution to the original problem.'°

To perform abstraction, we construct an abstract MDP that has (possibly
exponentially) fewer states, but the same set of actions as the original problem.
To reduce the number of states, the propositional description of the problem
(i.e., actions and reward structure) is used to choose some subset of the variables
that are judged less relevant than the rest, and the irrelevant variables are
deleted from the problem description. The idea is to construct a problem that
only captures the most important parts of the concrete MDP, find an optimal
policy for this abstract MDP using standard algorithms, and apply this policy
in the original problem. The key to the approach is the automatic construction
of the abstract MDP.

The algorithm used is described in broad outlines in Figure 5. Automatic
construction of an abstract MDP requires first that we identify the set of relevant
atoms that must be retained in the abstract problem description. The procedure
that makes this identification uses a form of value of information as well as a
variant of Knoblock’s [29] algorithm for constructing abstractions in a classical
setting. The abstract state space S is the set of states induced by the language
obtained by deleting the set of irrelevant atoms. An alternative view of the
abstract state space is as an aggregation of states: each abstract state 5 € S is
a collection of concrete states such that each s € s is indistinguishable in the
reduced language. Finally, a set of actions and a reward function suitable for

9For large problems, sparse matrix methods alleviate this problem to some extent, but will
only reduce computation by relatively small factors.

100Qur abstract solutions can be used in the traditional way, to guide search for a concrete
solution, as well (see Section 4).

17



1. Using the probabilistic STRIPS representation of the domain, decide which atoms
are most important for constructing a good policy. (This defines an abstract

state space S.)

2. For each action, build an abstract transition function T by deleting all reference
to unimportant atoms from the action description and translating the extended
STRIPS representation of the action into an MDP transition function. Note that
an explicit transition matrix need not be built for each action as the extended
STRIPS rules can be used to generate the linear equations required for policy
iteration directly.

3. Construct E, the reward function for the abstract problem.

4. Use policy iteration to find the optimal policy 7 for the MDP (g,A, T, E)

5. Construct the policy 7 such that for each state s € s € g, 7(s) = 7(5). 7 is an
approximately optimal policy for the original MDP.

Figure 5: Constructing an approximately optimal policy using abstraction

the new state space S must be constructed. A key feature of our model is that
the set of abstract actions is the same as the action set for the original problem,
though each action description may be simplified somewhat.

With this abstract MDP in place, standard methods such as policy iteration
can be used to produce an abstract policy T associating an action with each
abstract state s € §. Finally, the abstract policy determines a concrete policy
7 such that m(s) = 7(8) for each s € 5 the action associated with a cluster is
applied to each constituent state. (We note that Step 5 need never be performed
explicitly; the abstract policy 7 is itself a good representation of the concrete
policy .)

We describe each of the components of the algorithm below. There are sev-
eral key points that ensure the usefulness of our abstraction framework. First,
the identification of relevant atoms and the construction of the abstract MDP
must be very quick — the time taken must be negligible compared to the time
required to solve the MDP. In particular, we require that the time grow poly-
nomially with the size of the problem description rather than with the size of
the state space. Second, the abstract MDP must be well-defined, so that pol-
icy construction algorithms applied to the abstract MDP produce meaningful
policies. Third, we should be able to bound the error of the abstract policy, or
characterize how much worse than optimal the abstract policy might be.

3.1 Constructing an Abstract MDP

In order to construct an abstract MDP, we need to select some subset of the
atoms that will form the basis of the abstraction. The quality of the policy and
the effectiveness of the abstraction process depend closely on the atoms chosen.

18



If too many atoms are selected, the policy created may be very close to optimal,
but the computational savings may not be large enough to justify the loss of
optimality. On the other hand, if the set of atoms chosen is too small, then the
computation required to produce the approximate policy will be minimal, but
the policy may be quite poor.

As well as choosing an appropriate “number” of atoms for the abstract MDP
(e.g., determined by available computation time), we must consider which atoms
should be selected. Obviously, if the reward for each state depends solely on the
value of a single atom, it would be foolish to ignore that atom when constructing
the abstract state space. However, this is not the only consideration — atoms
that have relatively little effect on the reward for a state may be ignorable,
while atoms that have no direct impact on the reward function (i.e., that are
not mentioned in the description of R) may not.

In order to construct a set of atoms which meets the criteria described above,
we first identify a set IR of immediately relevant atoms. IR is formed by
examining the propositional model of the reward structure and selecting only
those atoms which have the greatest impact on the reward for each state. The
larger this set is, the more fine-grained the abstraction will be, so by varying
the size of TR, we can strike a balance between the quality of the abstraction
and the computation time required.

To construct ZR we examine each atom which appears in the reward function
and calculate the maximum range of the reward function for each of its values.
In general, atoms with smaller ranges have greater effect on reward than atoms
with larger ranges, and should be placed in ZR first. For example, in the COFFEE
domain of Figure 1, HUC has range 0.8 — 1.0 when true, and range 0.0 — 0.2
when false, so it’s maximum range is 0.2. This makes it a better candidate for
inclusion in ZR than Wet which has maximum range 0.8. We discuss the choice
of immediately relevant atoms further in Section 3.3.

Although the set ZR contains some of the relevant atoms needed for ab-
straction, it does not yet include all relevant atoms. For example, in a domain
where the reward is large if atom A is true and small otherwise, ZR would be
{A}. But if an action that makes A true requires B to be true to achieve the
desired effect, then clearly B is a relevant atom as well: ignoring B may not
give the agent the ability to affect A as it should.!! The set R is defined as the
smallest set satisfying the following conditions (as before, d’ is the discriminant
associated with the action effect E;)

1. IR CR.
2. if ¢ € R and for some effect E}, q € atoms(E;:), then atoms(d’) C R.

Only the atoms in a discriminant that might probabilistically lead to a relevant
effect are deemed relevant; we will call this a relevant discriminant. Other

'n fact, if the impact of B on the control of A is marginal, we may do well to ignore B
after all. We address this issue in Section 5.

19



Initialize Rog < IR; R < 0; Rpew < 0
while Roq # 0 do
for each P € R4 do
for each action aspect A do
for each discriminant D® € A do
if P € E]’ for some j then
Rypew ¢ Rnew U atoms(D")
end if
end for
end for
end for
R +— RU R4
Rold — Rnew - R

end while
Figure 6: Algorithm to generate set R of relevant atoms

conditions associated with the same action aspect are ignored (unless these are
relevant for other reasons).

The only decision required from the user of the system 1s that of which atoms
should be placed in ZR. As we shall see, this fact allows the user to specify the
degree of accuracy required of the abstraction, and to have an abstract policy
calculated automatically. (The set ZR may be chosen automatically as well; see
Section 3.3.)

The algorithm we use to generate the set of relevant atoms is based on
Knoblock’s [29] algorithm for determining constraints for problem-specific ab-
stractions. Intuitively, the algorithm backchains through action descriptions
to see what atoms influence immediately relevant atoms, what atoms influence
those, and so on, until a fixed point is reached. The algorithm is described in
Figure 6 and takes as input a set of action (aspect) descriptions, as described
above, and a set ZR of immediately relevant atoms. The output is a set R
of relevant atoms. The complexity of this algorithm is O(r - a - €), where r is
the number of relevant atoms produced, a is the number of action aspects, and
e is the average number of effect literals per action aspect (that is, e is the
product of the number of discriminants per action, the number of effects per
discriminant and the size of the effects lists). It is reasonable to assume that
the “branching factor” and number of effects of a given action is bounded by
some reasonably small constant, so we can take e to be constant and state the
complexity to be O(r - a). In the worst case, each atom in the language will be
considered relevant and the algorithm will take roughly |P| - a steps. However,
even in this worst case, this term is not significant compared to solving an MDP
(whose state space is of size 2/P).

20



Having calculated R, the abstract state space S is that induced by clustering
together all the states in the original MDP that agree on the values of the atoms
in R. By treating each cluster as a state in the abstract MDP, we ignore the
irrelevant details of atoms that do not appear in R.

Definition 3.1 The abstract state space generated by R is & = {51,...,5,},
where:

1.5 CS.

2 UE) = 8.

3.5Ns;=0if i # 5.

4. s, €35 iff s = P impliest | P for all P € R.

Note that there is no need to actually group together states in the algorithm;
the construction of & is merely conceptual.

To 1illustrate the construction of an abstract state space, we consider the
COFFEE example shown in Figures 1 and 3. There are two atoms that influence
the reward assigned to a state, HUC and Wet; but the influence of Wet is
relatively small while that of HUC is more substantive. Thus, we will set TR =
{HUC}. To construct R, we notice that only the action DelC affects HUC, and
that the variables Office and HRC influence its truth; so Office and HRC are
added to R. When examining discriminants of actions that affect these two
atoms, we see that no further atoms are deemed relevant. We end up with
R = {HUC, Office, HRC}. The abstract state space S8 consists of those subsets
of eight states that agree on the truth assignment to these three atoms, but
disagree on the values of the remaining irrelevant atoms Rain, Wet and Umb.
A portion of the abstract state space is shown in Figure 7. Note that |S| = 8
(in contrast, |S| = 64).

We note that by breaking up the action Move into two independent aspects,
the set R remains small. Had we used the expanded action effect shown in
Figure 2, the atoms Rain and Umb would have been added to the relevant
set although they have no impact on the probability of other relevant atoms
becoming true or false. We also note that had we chosen ZR to include Wet,
then Rain and Umb would have been added to R due to the second aspect of
the Move action, so all the atoms from the original problem would appear in R
(and the abstract state space would be identical in size to the original).

Apart from the abstract state space, we require actions and a reward func-
tion compatible with these abstract states. In general, we can imagine that
computing the transition probabilities for actions associated with an arbitrary
clustering of states is computationally prohibitive, demanding that one consider
the effect of each action on each state in the cluster. Furthermore, computing
the probability of moving from one cluster to another requires, in general, some
prior distribution over the states in the initial cluster. This cannot be realized
in our setting, since such information depends on the distribution over initial

21



HCU HCRO WR U
HCU HCROWR U
HCU HCR

Q DelC (0.1)

o
=
o
c

HCU HCR O WRU
DelC (0.8) HCU HCR O W
HCU HCR OLN
ow
DeC (0.1) ow

\_ 7\ Move(09)
\

[=3]

\

Move (0.1) w

HCU HCR O W R U
HCU HCR O W R'U
HCU HCR O WR U
HCU HCR O WR'U

HCU HCRO WR U

HCU HCR O W R U

HCU HCR O W R U

<1
I
|8
e
I
o]
2
ol
=
E
lc

I
Q
c

HCROWRU

T
Q
c
I
(e}
o
o
2
o
c

T
e}
c
I
o
bl
[e]
=

Iz
O‘O
clc
II
o0
PP

[e]

I|T
[elke}
cle
I
Q0
bl
ololo!

Figure 7: Portion of the abstract state space

states of the system, and knowledge of the policy adopted by the agent (which
is what we wish to compute).

The clustering mechanism we have described is designed to avoid exactly
these problems. The definition of R (in particular, the requirement that all
atoms of a discriminant be added to R whenever part of the corresponding effect
is in R) ensures that the states in any given cluster have the same transition
probabilities for each action. More accurately, each state in a fixed cluster s has
the same probability of moving to a given cluster t. Therefore, we may assign
the (unique) transition probability for some state in the cluster to the cluster
itself. For instance, in Figure 7, assigning probability 0.8 to the transition from
cluster 5 to ¢ (under the action DelC) is perfectly reasonable, since each s € §
will move to some state in ¢ with probability 0.8. The following results illustrate
the significant characteristics of the abstraction mechanism more formally.

Lemma 3.1 If5 is an abstract state, s,t €5, and d is a relevant discriminant
for some action aspect, then s satisfies d iff t does.

Proof Let s,t € s and d be some relevant discriminant. Since s and t are in
the same cluster, they must assign the same truth value to each atom in

R. Since d is relevant, atoms(d) CR. Sos =difft =d. R

Lemma 3.2 If E; is a possible effect of some action and s,t €5, then: i) If F;
is associated with an irrelevant discriminant, then E;(s) € §; and 1) Fy(s) € u

off B; (t) € u.

22



Proof i) If E; is associated with an irrelevant discriminant, then F; "R = {§
(otherwise the discriminant would be relevant). F;(s) must therefore agree
with s on the truth value of all atoms in R, and hence F;(s) € 5.
ii) Since s and ¢ agree on the values of all atoms in R, F;(s) and E;(t)
must also (because F; changes the same literals in both). So E;(s) € w iff
AEAt)E'ﬁ. |

Theorem 3.3 Let s and u be clusters such that s,t € 5. Then for any action a

2Pr(u|a, s) = 2Pr(u|a,t)

UEU UEU

Proof Since s and ¢ are in the same cluster, they either satisfy the same relevant
discriminant d for action a or neither satisfies a relevant discriminant for
a (by Lemma 3.1). In the former case, for each effect E; associated with
d, we have E;(s) € uw iff E;(t) € @ (by Lemma 3.2). Since Pr(u|a,s) =
S {pi : Ei(s) = u} for each u (and similarly for ¢), the result holds. In
the latter case, let s = d/ and t = d*, where d’ and d* are irrelevant
discriminants for a. By Lemma 3.2, each possible effect EY is such that
E‘Z(s) €5, s0 Zueﬂ Pr(u|a, s) equals 1 if § = @ and 0 otherwise. Similarly,
> _~Pr(ula,t) equals 1 if § = @ and 0 otherwise. Thus the result holds

4 uEu
in the latter case as well. W

Theorem 3.3 provides justification for associating a unique transition prob-
ability Pr(t|a, ) with the abstract MDP, namely ZtE?Pr(ﬂa, s). Figure 8 illus-
trates how the abstraction mechanism works when concrete states map to more
than one state within a given cluster (in this case for the action Move). The
bold type indicates the abstract version of the concrete transitions (in smaller
type).

The results above permit a simple syntactic procedure to construct abstract
action descriptions: we simply delete all reference to irrelevant atoms from the
actions in the original problem. This may subsequently permit simplification of
the action specification, as discriminants and effects that were different in the
original problem potentially become the same in the abstract problem. For ex-
ample, consider the action shown in Figure 9, where atom ) is deemed relevant
and as a result so is A, leaving B and P to be irrelevant. The abstract action
is created by deleting P and B from the action description. We note that this
leaves the two possible effects associated with each of the first two discriminants
identical (both become @). So the first stage of the simplification is to collapse
identical action effects within a discriminant into one effect with the sum of the
original probabilities. In this case, the effect becomes @) and is given probability
1.0. We also note that action discriminants may also become non-disjoint or

23



HCU HCR O WR U
HCU HCR O WRU
HCU HCR O WR U
HCU HCR O WR U
HCU HCROWR U
HCU HCR O W R U

HCU HCR OW R U=/

HCROWRU

Move (0.09)

Move (0.01)

@,

Move (0.1)

Figure 8: Summing transition probabilities for the abstract MDP

Move (0.09)

| Discriminant | FEffect | Prob. |

A,B P 0.9
0 0.1

A,-B -P 0.9
0 0.1

—A Q 0.9

0 0.1

Figure 9: An action that simplifies when abstracted

24




| Action | Discriminant | FEffect | Prob. |

Move Office = Office 0.9
0 0.1

= Office Office 0.9

0 0.1

BuyC = Office HRC 0.8
0 0.2

Office [} 1.0

GetU True [] 1.0
DelC Office, HRC HUC,-HRC 0.8
-HRC 0.1

0 0.1

= Office, HRC' -HRC 0.8

0 0.2

-HRC [ 1.0

Figure 10: Abstract actions for the COFFEE domain

even identical; however, by construction (see, e.g., Lemma 3.2) this can only be
the case when the discriminants in question are irrelevant (i.e., have no rele-
vant effects), thus only when the reduced effect is § with probability 1. We can
therefore collapse overlapping or identical reduced discriminants into a set of
well-formed discriminants or into a single discriminant in the abstract action,
this being well-defined since they must have the same “abstract” effect. The re-
duced action description in this small example has two discriminants, A : §, 1.0
and —A : @Q,0.9;0,0.1. In simple outline, the algorithm for constructing an
abstract action description, given the set of relevant atoms R is:

1. Delete irrelevant atoms from each d' and E; (call these the reduced dis-
criminants and effects).

2. For each discriminant d’, collapse any reduced effects E}, Ei . ete. that
have become identical into a single reduced effect with probability equal
to Zp; of the participating reduced effects

3. For any non-disjoint reduced discriminant (which must thus have a col-
lapsed effect of the form @), simplify the action description as needed.

The set of abstract actions for the COFFEE domain (Figure 1) is shown in
Figure 10. We denote by 7T the new transition function constructed in this way
for the abstract MDP (the set of actions A remains unchanged). Tt is easy to
see by construction that:

Proposition 3.4 For any s € 5 and action a

Pr(t]a,3) = Z Pr(t|a, s)
tet

25



| Sentence | Value |

HUC 0.9
-HUC 0.1

Figure 11: Abstract reward function for the COFFEE domain

A simple corollary of Theorem 3.3 and Proposition 3.4 is the fact that the
abstract process is indeed Markovian. Let S™ be a random variable denoting
the state of the abstract process at stage m. Then we have

Corollary 3.5

Pr(§m|am—1’ gm—l’ am—Z’ gm—Z’ . §0) — Pr(§m|am—1’ §m—1)

The system dynamics for the abstract system is truly history-independent.

The reward function for the abstract MDP is denoted R and must associate
an immediate reward with each abstract state or cluster 5 € §. We choose
to assign the midpoint of the range of (concrete) rewards for the states in 5.
Formally, let min(s) and max(s) denote the minimum and maximum values of
the set {R(s) : s € 5}, respectively. The abstract reward function is:

E(:‘?j _ max(5s) —2|—min(§j

This choice of ]SL(Z;') minimizes the maximum difference between R(s) and ]SL(Z;')
for any s € s, and is adopted because it allows the tightest error bounds to be
derived (below). Although using the average of the rewards in a cluster might
result in better average-case behavior, it can lead to much worse bounds on
the difference between the abstract and optimal policies. The abstract reward
function for our example problem is shown in Figure 11. The general method for
constructing this representation is identical to that used for creating abstract
action descriptions, with the simple addition of choosing a midpoint reward for
any collapsible reward discriminants.

3.2 Solution of Abstract MDPs

Once we have constructed an abstract MDP <§,A,i §>, we can compute an

optimal abstract policy 7 as well as an optimal abstract value function V* using
standard policy construction techniques. For example, the optimal abstract
policy and value function (computed using policy iteration) for the abstract

26



| || HUC | Val. | -HUC | Val. |

HRC, Office DelC | 18.0 DelC 16.7
HRC, = Office DelC | 18.0 Move 15.9
- HRC, Office DelC | 18.0 Move 14.3
- HRC, = Office DelC | 18.0 BuyC | 15.1

Table 2: The policy computed using the abstract MDP

version of the coffee problem is described in Table 2, which shows the action
and value for each of the eight abstract states. When compared to the optimal
policy for the original problem (Table 1), we see that an “optimal” action is
chosen at all but one of the 64 states. As we would expect given the method
of construction, the policy is optimal except in the state where it is raining and
the robot can pick up the umbrella before going to the coffee shop — in the
abstract policy the robot immediately heads for coffee ignoring the umbrella.!?
The abstract value for each cluster according to the abstract policy is close to
the midpoint of the range of true (optimal) values for the states in the cluster.
Moreover, the time required to compute the abstract policy is only 2 percent
of that required for optimal policy construction in the original problem (both
using policy iteration).

In general, the utility of a particular abstraction is a function of the time
required to compute the abstract policy and the quality of the abstract policy
(both relative to the same properties for the original problem). Since the time
required for policy iteration is a function of the size of the state space, and
the size of the state space is exponential in the number of underlying atoms,
any reduction in the size of R will result in an exponential reduction in the
size of the state space and hence in computation time. Even reducing the
domain by a single atom will halve the size of the state space, and produce
a large computational saving when performing policy iteration or other policy
construction methods.3

This speed-up comes at the cost of generating possibly less-than-optimal
policies. However, we can estimate the solution quality of an abstract policy by
bounding the error associated with this policy. In particular, we are interested in
two quantities, the difference between the computed value of an abstract policy
and its true value in the original MDP, and the difference between this true

12The fact that the abstract policy agrees with the optimal policy in states where the goal
has been achieved is an artifact of the robot choosing the “harmless” action DelC arbitrarily.
Had the robot chosen the “harmless” action Move as something to do once coffee has been
successfully delivered, the robot would get wet if it is raining, making the abstract policy
suboptimal in all states where Rain and HUC hold, losing the small reward for —=W.

13The number of iterations required by policy iteration can be hard to predict for a given
problem, but is polynomial in |S|. Aside from the number of iterations, the time per iteration
is generally O(|S|?). See [34] for a survey of complexity results regarding the solution of
MDPs.

27



value and the value of an optimal policy for the original MDP. More precisely,
let @ be the optimal policy computed for the abstract MDP and let V~ be the
abstract value function computed for this policy. Let 7 be the concrete policy
induced by 7 (i.e., m(s) = 7(5) for each s € §) and let V; be the value of
this concrete policy. Finally, let V* denote the optimal value function for the
concrete MDP. The quality of an abstract policy will be characterized in terms
of two quantities, the discounting factor § and the maximum reward span of the
abstract MDP.

Definition 3.2 The reward span of a cluster s € S is the maximum range of
possible rewards for that cluster, that is

span(s) = max(5) — min(s)

The reward span for a cluster is twice the maximum degree to which the estimate
R(5) of the immediate reward associated with a state s € § differs from the true
reward R(s) for that state.!?

Let  denote the maximum reward span over all the clusters in g; that is:

Definition 3.3 The mazimum reward span for an abstract MDP is

d = max{span(s)}
ses

Proposition 3.6 For any s €5

Theorem 3.7 For any s €5 € g,

J

V=(3) = Ve (s)| < =3

Proof We prove inductively that for all n

V2(3) = V7 (s)

<> gﬁi
i=0

14The use of utility spans to generate abstractions is proposed by Horvitz and Klein [24], who
use the notion in single-step decision making. Our analysis can be applied to their framework

to establish bounds on the degree to which an “abstract decision” can be less than optimal.
Furthermore, the notion is useful in more general circumstances, as our results illustrate.

28



Since Vi (s) = limpe0 V7 (s) and ‘7;(5') = lim, o ‘77? (), this suffices to

prove the result.

The base of the induction is immediate: since ‘7%9(3;) = R(5) and V?(s) =
R(s), by Proposition 3.6 we have

ﬁO

N | &

72) - v2(s)| <

Now assume that for all s and s € 5, for some fixed k,

Z

‘v’“ ) = V(s

1\3|°')

Then

= || RG) + 85 Pr(iFG), 5D -

Tes

VETI(E) - VEI(s)

tes

IN

|R(5) - R(s)

+31> 0 |Pr(HlF(3), 35)VE () ZPr (t|7(s)

tes tEt

By Proposition 3.6, Theorem 3.3 and Proposition 3.4, this term is no
greater than

S ~
S+ B|EE) - VE(s)

Therefore, by the inductive hypothesis,

B
+
=
N | ©

VEFL(E) - VA (s)

) k5
< - —g <
< 2+6;26 <

-
I
=)

This result shows the maximum difference between the computed value of the
abstract policy and the actual value of that policy when implemented in the
original decision problem. In effect, this determines the confidence we may
adopt in this computed value. Intuitively, this result shows that the value of
the policy differs from the computed value by no more that & 5 per stage of the
process.

Of use in determining the loss of value one might expect by focusing on the

abstract problem is the following result (where V* denotes the optimal value
function for the abstract MDP):

29

s)+ 8 Pr(t(

8) 3 8) V?Tk

Vi (1)



Lemma 3.8 For any s € 5,

Proof We prove inductively that for all n
n n . 6 7
76 - Vil <3 50
i=0
Since V*(s) = limy 00 V" (s) and V= (8) = limp 00 yn (), this suffices to

prove the result.

The base of the induction Is immediate: since ‘70(3;) = ]SL(Z;) and VO(s) =
R(s), by Proposition 3.6 we have

7°6) ~ VO(s)| < 3

Now assume that for all s and s € 5, for some fixed k,

6i

N | &

VEE) = VEE) < X

Let a be any action that maximizes the value of ‘~/k+1(§j in its definition
(see Equation 3); i.e.,

VR E) = RG) +3 Pr(lla, 57D

Similarly, let b be a maximizing action for V*¥*1(s), so that

VY (s) = R(s) + 8 Pr(t|b, )V (1)

Thus, we have

Vs (8) = V(0

= || RE) + 8 X Pr(lla.5) 74

tes

R(s)+ 8 Pr(t]b, s)V*(t)

tes

IN

|R(5) - R(s)

18 Zpr(ﬂa’g’)f?k(ﬂ — ZPr(ﬂb, s)VE (1)

ftvES tes

30



We introduce the following defined terms; let

A = D Pt s)VE()

tes

B = > Pr(tla,s)V*(1)

C = 3 Prfile )P
D = 3 P HTHQ

and let f = Zf:o %ﬁl Now, by Theorem 3.3 and Proposition 3.4, and
the inductive hypothesis, it is easy to verify that both |B — C| < f and
|A — D| < f. Furthermore, by the choice of actions a and b (which
maximize their value respective functions), we have both A > B, and
C > D. Reasoning with these inequalities, we obtain that: a) if C > B,
we have C — A < f, and (since C > D and |A — D| < f) we have
A—-C< f—thus, |JA-C| < f; b)if C < B, we have A > C, and
(since C > D and A — D < f), we have |A — C| < f. In either case,
|[A-C| < f= Zf:o %BZ Plugging these quantities into the inequality
above, we obtain

Vo (8) = V(0

IN

|R(5) - R(s)
§ L
< 5-1-5;55

k+1

62’
57

+4|C - A

IN

The true bound of solution quality is given by the following result:
Theorem 3.9 For any s € S,

36
Vs (5) = Ve (s)] < -3

Proof This follows immediately from Theorem 3.7 and Lemma 3.8, with the
combined error reduced by the added term $ due to the fact that the
initial reward received at stage 0 will be identical in both cases. W

31



This is the main result regarding our abstraction mechanism. By adopting an
abstract version of the original decision problem, we can guarantee that an
agent implementing the abstract policy will lose no more than a reward of § per
stage of the process — the error introduced by abstraction is simply additive
over time. In addition, the smaller the reward span of the clusters used in
the abstract process, the better the performance guarantees on the abstract
solution. Clearly, if the abstraction is such that no atoms that impact on the
reward function are deleted, the abstract solution will be optimal (since § = 0).

Of course, the error bound here is absolute, not relative. While the most one
could lose is § per stage, there is a possibility that thisis “all the value” we could
have obtained by behaving optimally. For instance, in our example it might have
been that case that getting coffee turned out to be impossible, in which case
staying dry is the best the robot could have done; yet the abstraction prevented
even this. The relative error in this case may be unacceptable. However, tight
relative error bounds, while not computable a priori can be determined once
the value function has been computed.

We note that should a more refined abstraction be used, the generated policy
will have tighter error bounds. Although one cannot guarantee improvement of
the abstract policy at each state (with respect to the performance of its concrete
counterpart) when moving to a less abstract version of an MDP, the bound on
the maximum possible error will be tighter and we can typically expect better
policies as a result.

Finally, we point out that the reliance of the error term on the discounting
factor 8 1s of little import. As mentioned, this simply indicates that value
loss accumulates over time. Since value itself accumulates over time, it is the
relative value loss that is crucial. If the problem is undiscounted (i.e., § = 1),
then the error is unbounded, but generally so is value for the types of problems
we consider. In such a case, an average reward analysis could be performed. We
do not pursue this here, but expect that our ideas can be extended this way in
a relatively straightforward fashion.

3.3 Choosing an Abstraction

We have described how an abstract MDP is generated and solved given some
set ZR of immediately relevant atoms. The time required to solve the abstract
MDP and the accuracy of the policy produced will both depend on the cho-
sen IR, or more directly on the size of the induced set R of relevant atoms.
A smaller relevant set is desirable since computation time grows exponentially
with the number of relevant atoms (in fact, in a polynomial of this exponential
factor), but a larger relevant set is desirable since the error bound will be tighter.
This produces the tension between computation time and solution quality char-
acteristic of most Al problems, especially those for which anytime algorithms
are designed. The key question then arises: what is the “right” set of relevant
atoms to use given this tradeoff?

32



The answer to this question depends of course on the time pressure under
which a planning agent finds itself and the relative values of quick solutions
versus good solutions. This type of issue 1s addressed in the work of Boddy and
Dean [6, 7], Horvitz [23], Russell and Wefald [47] and other work on anytime
methods. It is important that we provide techniques for estimating solution
time and solution quality as well as methods for improving solution quality in
a way that can interact with a module assessing the time-quality tradeoffs. We
briefly sketch ways to compute the error bound associated with a particular
abstraction as well as improve this bound through judicious selection of new
relevant atoms.

Deciding which atoms to add to the set ZR is essentially a value of infor-
mation calculation [27, 41]. We could imagine for example being given a time
bound and wanting the best possible solution computable within that time.
Since a time bound restricts the number of atoms that can be considered, we
want a set of relevant atoms that satisfies the size restriction and has the lowest
possible error bound. Thus we want a set ZR that has the largest value of infor-
mation for our decision problem among all sets of atoms of the appropriate size.
Alternatively, we may simply want a solution of fixed quality (whose error is
under some threshold). In this case, we want the smallest set of relevant atoms
whose error bound is under threshold.

To estimate the computation time associated with a given set ZR, we must
first generate the set R induced by ZR. As described above, this operation is
relatively efficient.’® The maximum span span(ZR) provides an estimate of the
value of information associated with ZR: the smaller span(ZR) is, the better we
expect the solution of the abstract MDP to be. Given a set IR, let Val(ZR) be
the set of 2IZRI truth valuations over this set of atoms (i.e., the set of clusters
induced by ZTR). Assume that the reward function is represented using a set D
of reward discriminants. We compute span(ZR) as follows:

1. For each v € Val(ZR), compute span(v) to be

max{R(d) : v [ ~d) ~ min{R(d) : v [£ ~d)

2. Let span(ZR) = max{span(v) : v € Val(IR)}.

Testing the span of any cluster v requires |D| satisfiability tests (i.e., testing
whether v intersects each utility discriminant). The satisfiability tests them-
selves will be O(|v| - |d|) when each discriminant d € D is represented as a set
of literals (as v is). Assuming the size of the reward description to be bounded,
this becomes essentially linear in the number of immediately relevant atoms.
This ensures that computing span(ZR) is exponential in |[ZR|, but linear in the

15We note that appropriate preprocessing of actions — e.g., constructing an operator graph
as described in [55] — can make this much more efficient.

33



size of the induced (abstract) state space.®

To determine the best set of immediately relevant atoms, say, of a given size
is equivalent to determining the subset of atoms of that size with the greatest
value of information. Value of information has certain nice properties such as
monotonicity: the value of knowing the assignments of a set of variables S D 5’
is at least as great as that of knowing S’. In our setting, this is reflected in
the fact that adding new relevant atoms will not worsen (and will generally
improve) bounds on solution quality. Unfortunately, value of information (and
span) have other less desirable features. For example, the atom with the best
single value may not be an element of the set of two atoms with highest value.
Thus we cannot guarantee that determining the most important single atom
will aid in constructing the most valuable set of two (or more) atoms.

Determining a set of variables of fixed size with greatest information value
generally requires exhaustive search through the space of possible sets [27]. If
time restrictions require a set IR of size k, we potentially have to enumerate
all size k subsets of the set of atoms P and determine their span, choosing a set
with smallest span. Of course, atoms not mentioned in the reward discriminant
can have no impact on span, so we can restrict attention to subsets of the atoms
mentioned in D (i.e., to U{d € D}). If we want to find the smallest set ZR
with an error bound under some threshold, this may require exhaustive search
through all subsets of the atoms in D. In either case, constructing optimal
approximations is computationally prohibitive, and grows exponentially with
the number of immediately relevant atoms one is willing to consider.

One may alleviate this problem by adopting a greedy approach to abstraction
selection. Techniques of this type are the norm when value of information 1is
involved. For each atom p € U{d € D}, one can estimate its value by computing
span({p}) as above. For each atom p, this is an O(|D|) operation. This captures
the rough value of abstracting based on p only and provides an ordering of all
atoms that might potentially be added to ZR. We can then add atoms to ZR
incrementally based on this ordering, adding atoms with smaller span first.

If we are attempting to find the set of k£ atoms with the lowest error bound,
we can simply add the best k& atoms (considered individually) to the set ZR
and solve the problem. This greedy strategy will not generally guarantee that
it is indeed the best set of k& atoms (considered collectively), but may work well
in practice.!” In addition, under certain conditions, such a greedy strategy can
produce optimal abstractions — for instance, when the reward function encodes

16The estimated span(IR) may in fact be too liberal. When determining the set of relevant
atoms R based on TR, additional atoms may be added to R that impact reward, and may in
fact reduce the span further. In this case, the error bounds on solution quality will be even
tighter than indicated by span(ZR). One could, when adding atoms to ZR, compute the span
of the induced set R if one is willing to construct R for the different candidate sets ZR. All
the methods for choosing TR described here can be applied using Val(R) instead of Val(ZR).

17We again emphasize that we are ignoring the fact that the set R may have a tighter span
than ZR. In general, one can use span(R) to get more accurate estimates if one is willing to
compute R repeatedly.

34



additive independent rewards for certain atoms or sets of atoms. If we want to
find the smallest set of atoms within a certain error threshold, we can construct
IR incrementally. We add atoms to ZR according to their span, at each stage
testing the span of the current set ZR. If the error is below threshold we use ZR
as 1t stands; if not, we add the next best atom to ZR and test again. Similar
remarks apply here: under certain conditions this may guarantee an optimal
(smallest) abstraction, but not generally.

We note that if the size of U{d € D} is relatively small (in relation to the
problem size |P]), then the computation involved in determining an optimal
(or roughly optimal) abstraction that satisfies the time or solution quality con-
straints imposed by the problem is relatively trivial compared with the time
to solve the abstract MDP itself. We expect that computation time spent in
careful abstraction selection using value of information considerations will be
time well spent in typical domains.

3.4 Experimental Results

The error bounds described in Section 3.2 are worst-case bounds described in
terms of the maximum reward span. However, if certain clusters have smaller
span than maximum we can expect better performance. In addition, unless
we visit states at each stage whose reward actually differs maximally from the
abstract reward, we will generally not achieve these worst case results. In this
section we relate some initial experimental results that examine the performance
of our abstraction mechanism.

The COFFEE domain is an extension of the running COFFEE example we have
been using. It contains 2048 states described by ten variables, and seven actions
(see Appendix A for a description of the problem). There are three possible
abstractions for this domain, with 32, 64 and 256 abstract states respectively.
Policy iteration on the 2048-state complete problem required 1588 seconds and
113 iterations. The optimal values for this problem range from 22.4 to 42.0.
The results of the abstractions are summarized in Table 3 which compares the
computed abstract policy value with its true value, as well as this true value
with the optimal value for the original problem.'® As the table shows, the more
fine-grained the abstraction, the better the resulting policy is. The number
of “correct” actions chosen by the abstract policies improves until over 93 per
cent of states agree with the optimal policy using the 256 state abstraction. Of
course, this measure is less crucial'® than the loss in expected value accrued

18 Number of errors refers to the number of (concrete) states at which the true value differs
from the optimal (or computed) value. The average, deviation and maximums refer to the
magnitudes of these differences (and percentage of the range of optimal state values). Time
and number of iterations refers to the time taken by policy iteration to compute the optimal
policy for each of the abstractions (and percentage of time compared to optimal solution).

19Indeed, the extent to which an “approximate” policy agrees with the optimal policy may
not measure anything like the quality of the approximate policy; even changing one action
in the optimal policy may require drastic changes in the rest of the policy for it to retain

35



Abstract value vs. 32 state 64 state 256 state

true policy value domain domain domain
Average error 6.96 3.14 0.99
Standard Deviation 3.28 1.00 0.19
Maximum Error 11.0 4.0 1.0
Predicted Bound 11.0 4.0 1.0
Time required to 0.34s 1.03s 9.74s
compute policy (0.021%) | (0.065%) (0.61%)
Iterations 5 9 13

true abstract policy
value vs. optimal policy

No. of errors in 879 425 136
action to choose 42.9% 20.8% 6.6%
Average error in 8.26 3.27 0.22
value of state (42.1%) (16.7%) (1.1%)
Standard Deviation 5.21 1.92 0.21
Maximum Error 19.6 7.39 1.9
Predicted Bound 20.9 7.6 1.9

Table 3: Results of abstraction for the COFFEE domain.

by adopting the abstract policy rather than the optimal policy. As we see, the
average loss in value per state is quite good, dropping to 0.22 (with possible
optimal values ranging from 22.4 to 42.0) in the finest-grained abstraction, with
a maximum error of 1.9. The 32-state and 64-state abstractions also produce
reasonable policies, and require trivial amounts of computation time (0.34 and
1.07 seconds, respectively) compared to the 1588 seconds required to solve the
full problem.

The second domain, the BUILDER domain, involves an agent that must join
two objects together and is adapted from standard job-shop scheduling prob-
lems used to test partial-order planners like SNLP [36] and BURIDAN [32]. Tt
is not designed with the ability to construct good abstractions in mind. For
maximum reward, the objects must be machined to the correct shape, clean,
painted, and joined together. The reward for any given state is simply the sum
of the individual rewards for all of these attributes. The state contains nine
propositions (512 states) and ten actions (see Appendix A for a description of
the problem). Policy iteration on the entire state space required 27.1 seconds
and eight iterations. State values range from 0.0 to 20.0. The results of the sin-
gle possible abstraction are summarized in Table 4. The abstraction was again
good, especially considering the small size of the abstraction (only 32 states).
The average error in the value of a state is 5.99, which is quite large, spanning
30 per cent of the possible range of optimal values; but the abstract policy re-

reasonable value. However, in this domain the measure is of some interest since many of the
same tasks must be performed at different levels of abstraction.

36



Abstract value vs. true policy value

Average error in state value 2.69
Standard Deviation 1.86
Maximum Error 6.0
Predicted Bound 6.0
Time required to compute policy 0.355 = 1.29%
Iterations required 4
true abstract policy value vs. optimal policy
No. of errors in action 309 = 60.4%
Average error 5.99
Standard Deviation 2.16
Maximum Error 10.00
Predicted Bound 11.40

Table 4: Results of abstraction for the BUILDER domain.

quired only about one percent of the computation time required for the optimal
policy. For this domain, since the abstract state space is so much smaller than
the concrete one, some local way of improving the policy, such as the search
procedure described in the next section, may be very valuable. Since there is
no abstraction that is more fine-grained than this, we cannot choose another
abstraction if the bound on the difference between the abstract and optimal
policies of 11.4 is unacceptable.

4 Using Abstract Policies and Value Functions

Many problems may prove amenable to our abstraction procedure, and allow
approximately optimal policies to be computed much more quickly than one
could construct an optimal policy. Problem characteristics that will give rise
to good abstractions include the existence of variables that are irrelevant to
the objectives at hand (or only marginally relevant — see Section 5); a multi-
attribute utility function in which the various attributes (subgoals) may be
achieved or maintained relatively independently; and especially the existence
of subgoals whose contributions to the value function are considerably larger
than those of other subgoals. However, we expect that for many problems,
abstractions of the type described here may not produce abstract policies with
acceptable error bounds. In such cases, our abstraction mechanism may still
prove useful, for it can be integrated with a number of other planning strategies.
One way to take advantage of the abstraction procedure is to use multiple
levels of abstraction to produce an optimal policy in a way analogous to clas-
sical abstraction planners: a solution to an abstact problem is used to find the
solution to a less abstract problem more efficiently, perhaps proceeding through
a hierarchy of more and more fine-grained abstractions. This can prove useful,
even when good abstract solutions exist, if an optimal solution is required.

37



| MDP to solve | Initial policy | Time | Iterations

32 state Greedy 0.34s 5
64 state Greedy 1.03s 9
32 state 1.29s 9
256 state Greedy 9.75s 13
32 state 10.40s 12
64 state 8.37s 9
2048 state Greedy 1588.62s 113
32 state 1401.72s 81
64 state 588.23s 20
256 state 1106.32s 71

Table 5: Abstraction sequences for optimal solution

Another way to exploit the information generated by our abstraction mech-
anism 18 to use the abstract value function as a heuristic estimate of the true
(long-term) value of individual states. This is an invaluable source of informa-
tion when planning is viewed as forward or progressive search through the state
space. In addition, should real-time constraints force actions to be selected and
executed at different intervals, the abstract policy provides a reasonable set of
default reactions. We discuss each of these uses of the abstraction mechanism
in turn.

4.1 Levels of Abstraction

The performance of the policy iteration algorithm tends to be very sensitive to
the initial (seed) policy that is used. We can take advantage of this by using
the solution for an abstract MDP to seed the application of policy iteration to
a more concrete problem, which should then require fewer iterations to solve.??
The results of performing this experiment in the COFFEE domain described
above, compared with using a one-step greedy policy as the initial seed, are
given in Table 5. As the table shows, considerable savings can be gained by
using a series of abstractions to solve the concrete problem. The fastest way to
compute the optimal value for the concrete domain is to compute the optimal
value for the 64 state abstraction, and then use that to find the optimal policy.
This requires only 37 percent of the computation time of computing the optimal
policy directly. Perhaps surprisingly, computing the optimal policy using the 256
state policy 1s less effective than using the 64 state policy. At present, we have no
way of predicting which abstractions to use for the best possible performance. If
multiple processors are available, a number of different sequences of abstractions

20Similar remarks apply to value iteration, where the initial value estimate adopted, typ-
ically the immediate reward function, can have a dramatic impact on convergence. In this
case, the abstract value function can be used as the initial estimate. We elaborate on this
point in the section on state-space search below.

38



could be run in parallel, and computation halted as soon as any processor returns
an optimal policy. This method guarantees that computing the optimal policy
using a series of abstractions will be no worse than computing it directly, should
the original problem be included as a (trivial) abstraction sequence.

4.2 Abstract Value Function as a Heuristic Function

Perhaps the most straightforward planning algorithm is forward search through
the state space, or progression planning. In a decision-theoretic setting such as
ours, state space search amounts to the construction of a decision tree, familiar
from decision analysis [27, 20, 41]. The value of taking an action a at a state s
is the (discounted) weighted average of the value of all possible states that may
result from a. The action selected for s 1s that with the highest expected value.
Of course, determining the value of the outcome states requires the evaluation
of actions that may be taken at those states, and so on, until terminal states
are reached, and the values at these leaves are propagated through the tree via
the familiar rollback procedure.

Unfortunately, discounted infinite-horizon problems do not have terminal
states, so the rollback procedure cannot be applied to true terminal values.?! In
this sense, every branch of the actual decision tree is infinite and search becomes
more like Al problem-solving or game-tree search: the tree must be cut off at
some finite-horizon and an estimated or heuristic value must be assigned to the
leaves. The only difference from standard game tree search is the existence of
chance nodes, at which expectations are taken, instead of adversary nodes, at
which minimum values are backed up. This is the basis of, for instance, Ballard’s
*-minimax search [1].

We discuss the relationship of our abstraction mechanism and decision tree
search below, but we first describe the search mechanism in slightly more detail.
The search algorithm constructs a partial decision tree rooted at the current
state to determine the best action to perform. The decision tree is built to
a fixed depth, and a heuristic function i1s used to estimate the value of the
leaf nodes. Although fixed-depth search is not necessary for the algorithm to
function, i1t allows the use of depth-first search, which tends to perform well in
practice. Using breadth-first search (or one of its variations) would make some
of the pruning methods we describe below more efficient, but these techniques
often require considerable extra book-keeping costs.

Let s and t be states, let 5 be the discounting factor as before, and let V(¢)
be the value of the heuristic function at state £. Then the estimated expected
utility of action a; in state s is:

Ulagls) = Pr(t|a;, )V (t)

tes

210ne exception might be when a goal state s, or other absorbing state is reached, for which
the optimal value function can be determined analytically as R(s)/(1 — 8).

39



Initial First First Second Second State Utility of 2nd act. Action and value Best action

State Action State Action State Value given 1st state of first state and value
® xp=0.9,V=2
o yp=0.,V= 3} u=21 —
t Act.A V(t)=2.39
(p=0.8) p=0.7,V=0 =
. p=03, V=1 } U=03
\A\ ® p07,v=0 u=223
u=1.2
u(p=0.2) ® p=03,Vv=4
2 ® p-05v- TS AdtAV(U=LE8
p=0.9, V=0 =
=0.2
° ® poiv=2S U0 ActB V(9=2.64
® p=09,V=2
s U=18
® p=01,V=0
® p=06,V=1 TS aaa V(v)=262
p‘ " Us1a — \
® p=04,V=2 -
4 _® poLv=4 U=2.94
- _ — uU=04 /
w (p=0.5) ® p=09, V=0 ~
® - _ Act.B V(w)=3.25
p=0.5,V=3 _—
® p=05V=2 } u=2s

R(t) =R(u) =05, R(v) =R(w) =1, R(x) =0, R(y) =1
Figure 12: An example of a two-level search for the best action from state s.

where V(s), the value (estimated by the search process) of a state is:

Vis) = V(s) if 5 1s a leaf node
() R(s) + f(max{U(a;|s) : a; € A}) otherwise

Figure 12 illustrates the search process with a partial tree of actions two
levels deep, and a discounting factor 7 of 0.9. As the figure shows, the value of
action A in state s is based on the values of states ¢ and u, which have values of
2.39 and 1.58 respectively (each has A as its best action). The weighted average
of these is less than that of action B, so B would be chosen as the best action
to perform in state s.

As available computation time varies, the depth of the search tree can also
vary. In practice, an interruptible search using an iterative deepening technique
may well be used, so that at any time the algorithm can be interrupted and the
current best action performed. We cannot guarantee that deeper search will
produce better results [40]; however, the deeper the tree is expanded, the more
accurate the estimates of action utility will tend to be, and the more confidence
we should have that the action selected approaches optimality.

One can view this search process as a form of “directed” value iteration: if
one uses the immediate reward function R as the heuristic V, it is easy to see
that the computed value V(s) for the state at the root of a tree of depth n is
precisely V"(s) defined in Equation 3 (the optimal n-stage-to-go value for s).
This is the basis for the known relationships between heuristic search techniques
and stochastic dynamic programming [5, 2]. The advantage of forward search
over dynamic programming (at least for short horizon problems) lies in the fact
that we need only compute the relevant n-stage value for states reachable from

40



the initial state s (at the appropriate stage n). This can provide a significant
advantage should a plan be needed only for a specific start state (or small set
of start states), as much of the state space may remain unexplored.

Our abstraction mechanism is relevant to off-line decision-tree search for
two reasons. First, an abstract MDP can generally be solved off-line relatively
quickly, but may not produce a policy whose performance is acceptable. One
by-product of this process is the abstract value function that provides an esti-
mate of the value of each state. The values V(s) can then be used as heuristic
estimates for the leaves of the search tree. This is especially important when
the connection to value iteration is taken into account. A reasonable heuristic
function (or more accurately, a static evaluation function) can cause a dramatic
performance increase in a state-space search planner. On this view, our ab-
straction mechanism can be thought of as a method of automatically generating
heuristic functions for decision tree evaluation. In addition, the amount of time
spent on the construction of this heuristic and its accuracy can be controlled,
to some extent, by adopting an abstraction at a particular level of granularity.

The second advantage of using an abstract value function V' as a heuristic
function is that we have considerable knowledge of its range of values and its
accuracy. This allows the deployment of several pruning strategies in decision
tree construction. Utidity pruning is very similar to a- and f-cuts in minimax
search, and requires knowledge of the maximum and minimum values of the
heuristic function. For heuristics produced by the abstraction algorithm de-
scribed in Section 3, these can be bounded as follows. Define the quantities M T
and M~ as follows:

max{R(s):s € S} and M- — min{R(s) : s € S}
1-75 1-75
These quantities are quickly computable (assuming R is represented compactly)

and it is easy to see [5, 45] that M~ < V*(s) < MT for all states s. In
addition, the value function V* must also satisfy the same relation (since the

Mt =

range of the abstract reward function R can only be tighter than that of R).
For the second type of pruning, ezpectation pruning, we require bounds on the
error associated with the heuristic function. Again, for heuristics based on our
abstraction algorithm, these bounds can be computed using Lemma 3.8.

Utility Pruning We can prune the search at an AVERAGE step if we know
that no matter what the value of the remaining outcomes of this action,
we can never exceed the utility of some other action at the preceding MAX
step. For example, consider the search tree in Figure 13 (a). We assume
that the maximum value that the heuristic function can take is 10. When
evaluating action b, since we know that the value of the subtree rooted at
T is 5, and the best that the subtrees below U and V could be is 10, the
expanded value of action b cannot be larger than 6.5 (= 5 x 0.7410 x 0.3),
so neither of nodes U and V need be expanded. This type of pruning

41



States

MAX step

States

Figure 13: (a) Utility pruning; and (b) Expectation pruning

requires knowledge of the maximum value of the heuristic. We can use
the minimum value in a more restricted fashion. If, for example, the value
of action a was 3, and the minimum value of the heuristic was 0, then the
value of b must be at least 3.5, so we can tell that b is the best action
without searching nodes U and V. This process will only work if b is
the last action to be evaluated, and we are at the topmost level of the
search tree. For the maximum amount of pruning to be performed, the
possible action outcomes should be searched in order of their probability
of occurrence, with high probability outcomes expanded first.

Expectation Pruning For this type of pruning we need to know the maximum
error associated with the heuristic function. Suppose that, at a maximiz-
ing node in the search tree, the action we are investigating cannot have as
high a utility as some other action for which the utility 1s already known
(even taking into account the error in the heuristic function). Then we
do not need to expand this action further. For example, consider Figure
13 (b), where we assume that for all states s, V(s) is within +1 of the
true (optimal) value of s. Having determined that U(a|S) = 7, we know
that any potentially better action must have a heuristic value of at least
6. Since Pr(T'|b, SYV(T) + Pr(U|b, S)V(U) < 4, b cannot be better than a,

so there 1s no need to search the subtrees below states T and U.

The formal details of the pruning strategies are straightforward and we omit
them here. For a depth-first search algorithm, utility pruning is simple to imple-
ment as it requires very little extra computation. Expectation pruning requires
a more significant modification of the search algorithm to check all the outcomes
of an action to see if they require searching, but in domains where the heuristic
function is quite accurate, it can still offer a performance improvement, as the
results below show. Expectation pruning is quite closely related to what Korf
[31] calls alpha-pruning. The difference is that while Korf relies on a property

42



of the heuristic that it is always increasing, we rely on an estimate of the actual
error in the heuristic. Using iterative deepening rather than depth-first search
seriously limits the applicability of utility pruning since the final value of an ac-
tion 1s only known when the last round of deepening is performed. On the other
hand, iterative deepening removes the additional computation requirements that
make expectation pruning more expensive to perform.

The advantage of planning via search is that the complexity of the algorithm
does not depend on the size of the state space. If n is the number of actions, and
b is the maximum number of possible outcomes for any action and state, then
for an unpruned search tree of depth d, the number of nodes (states) expanded
while calculating the best action for a single state is 1+bn+(bn)%+.. .+ (bn)? =
((bn)4*+t —1)/(bn — 1). Over a series of such calculations, the cost is slightly
less than this because we can reuse previous calculations, but the complexity 1s
O((bn)?). Thus the size of the state space has no effect on the algorithm; only
the number of states visited determines the cost. In many domains this number
may be considerably less than the total number of states. More importantly, the
complexity of the algorithm is constant (with regard to the number of states),
and execution time per action can be bounded for a fixed search depth and
branching factor.

We have performed experiments to test the effectiveness of the searching
algorithm in several domains. Table 6 summarizes the effects of search for three
different problems, where for each problem, search is performed at each state in
the MDP.

As the first and third tables show, deeper search generally leads to improved
performance. The number of states for which an optimal action has not been
found?? drops steadily as search depth increases, and the state values quickly
approach optimal even though a few high-error states remain even after four step
search. The results from the BUILDER domain also illustrate an important point;
the search procedure doesn’t always perform better as search depth increases.
The two-step search is better than searching to three or four steps, at least in
terms of the average value of a state. More detailed analysis of the policies
produced by each depth of search reveals that for almost all states the value of
the policy continues to improve as search depth increases, but there are a small
number of pathological states for which the search algorithm performs very
badly. This phenomenon is well-documented in the search literature [40]. Search
in the COFFEE domain using a heuristic derived from the 256 state abstract
MDP finds a very close to optimal policy; but even four step search is unable
to improve on 1t since the heuristic is so good.

Figure 14 shows the effects of pruning for both fine- and coarse-grained
heuristics in the COFFEE domain. It describes the number of states examined
and time required as a percentage of the same values for full (unpruned) search
to the same depth. In this case, the fine-grained heuristic was produced from

22 A non-zero error means that some reachable state has a suboptimal action.

43



COFFEE domain, heuristic from 64 state abstraction
Optimal | 1 step | 2 step 3 step 4 step

policy search | search | search search
Average state value 35.35 32.0 33.13 33.24 34.90
Percentage of optimal 100.0 90.5 93.7 94.0 98.7
Maximum error 0 7.6 5.51 5.22 4.94
Average error 0 3.35 2.22 2.11 0.45
No. of non-zero errors 0 1786 1719 1621 1451
Average non-zero error 0 3.84 2.64 2.67 0.64
Time to search for one state - 0.8ms 7.6ms | 97.2ms | 944.8ms

COFFEE domain, heuristic from 256 state abstraction
Optimal | 1 step | 2 step 3 step 4 step

policy search | search | search search
Average state value 35.35 35.31 35.34 35.34 35.34
Percentage of optimal 100.0 99.9 99.9 99.9 99.9
Maximum error 0 1.71 0.18 0.18 0.18
Average error 0 0.24 0.18 0.18 0.18
No. of non-zero errors 0 2048 2048 2048 2048
Average non-zero error 0 0.24 0.18 0.18 0.18
Time to search for one state - 0.8ms 7.6ms | 97.2ms | 944.8ms

BUILDER domain

Optimal | 1 step 2 step 3 step | 4 step
policy search | search | search | search

Average state value 18.17 12.23 18.11 18.01 18.02

Percentage of optimal 100.0 67.3 99.7 99.1 99.2
Maximum error 0 10.003 0.702 5.050 5.050
Average error 0 5.947 0.062 0.166 0.152

No. of non-zero errors 0 512 207 141 91

Average non-zero error 0 5.947 0.153 0.602 0.857
Time to search for one state - 1.4ms | 37.8ms 1.19s 31.13s

Table 6: Comparison of induced policies for various search depths for the
BUILDER domain.

44



256 state heuristic 64 state heuristic

100 -1 100 -1
percentage| percentage|

7 \;“*—;,,\ Per centage of states b
T expanded

50 7 50 ———
2 o 25
N e B R Key -
4
lsep 2step 3step Astep Uity Pruring istep 2step 3step 4step
Depth of search - - Expectation Pruring Depth of search
“° Both
150 | N 175 .
percentage| . percentage] RS

150 o
Per centage of

computation time
125 o

75 100 4 /\

1 1 — =
1step 2step 3step Astep lstep 2step 3step  Astep
Depth of search Depth of search

Figure 14: Pruning with (a) 256- and (b) 64- state abstractions

the optimal policy for the 256 state abstraction described in Section 3, while the
coarse-grained heuristic was produced from the 64 state abstraction. For the
fine-grained heuristic, both pruning algorithms result in a considerable reduction
in the number of states searched, while only utility pruning is effective with the
coarse-grained heuristic. This i1s due to the large error associated with the
heuristic which largely prevents expectation pruning from being applied. As a
general guide, expectation pruning should only be used when the heuristic is
reasonably accurate and tight bounds can be placed on the error.

As figure 14 shows, despite the large number of states pruned from the search
tree in both domains, there is little or no saving in computation time. This is
due to the additional cost of pruning, and suggests that the tree should only be
pruned if a sufficiently large subtree will be removed to justify this extra cost.
Only allowing pruning close to the root of the tree gives the desired effect, and
Table 7 shows the computational savings achieved using this method. For the
best results, we suggest allowing pruning to a depth one less than the search
tree.

4.3 Integrating Planning and Execution

The type of search described above provides an online, anytime method for plan-
ning and action selection. These types of considerations form, for instance, the
basis of Korf’s [31] RTA* algorithm. Real-time dynamic programming (RTDP)

45



Search depth | Prune depth | Percentage of | Percentage of
states pruned search time
2 1 18.6 88.2
2 55.9 138.2
3 1 13.1 70.6
2 26.3 67.2
3 59.5 112.0
4 1 5.3 101.7
2 9.5 75.2
3 24.0 84.3
4 67.1 140.2

Table 7: Effects of limiting the depth to which pruning is performed. Values
are compared with those for no pruning.

[2] generalizes RTA* to deal with MDPs, essentially adapting a form of asyn-
chronous value iteration [5] to a real-time setting. The search procedure de-
scribed above can be viewed as a form of RTDP, where a search tree is used
determine which backups are to be performed. The key difference in our algo-
rithm is the existence of a heuristic function that will cause faster convergence
of the search and will generally cause better actions to be chosen using the same
amount of search.

Time-critical domains provide a minimum of computation time in which to
plan, hence it is important to restrict the space to be searched as much as pos-
sible. This suggests another advantage to integrating planning and execution in
stochastic domains (apart from the real-time aspect). By executing the current
best action, the agent resolves any uncertainty about the next state. We note
that the presence of a heuristic function with error bounds may cause search
to terminate quickly (through pruning), or cause fairly rapid convergence. To
this end, the agent should execute each action as soon as it has been selected.
This may result in considerable computational savings. Performing an action
in a certain state can leave the system in a number of different states, so a
planning algorithm that constructs a sequence of actions would need to find an
action to perform for each of the possible outcomes of the action it selects first.
By executing actions as soon as they are selected, we know (since the MDP is
completely observable) which of the possible outcomes actually occurred, and
need only search for the next action to perform from a single state rather than
from many.

An online search-based planning algorithm can be viewed at the highest level
as follows:

1. Calculate the best action for the current state, using the heuristic function
as needed.

2. Execute the best action when it 1s known, or the current estimated best

46



Search | Execution Interleaved No Execution
depth | Caching No cache Caching | No cache
1 0.01 0.02 5.19 26.7
2 0.04 0.06 5.41 281
3 0.42 0.51 7.14 2780
4 4.48 5.68 15.4 -
5 55.9 56.9 102 -
6 219 230 272 -

Table 8: Search time for ten actions varying caching and execution

action when required due to time pressure
3. Observe the new state of the system and return to step 1.

Although the algorithm as presented never terminates, this is consistent with
the process-like domains for which MDPs are ideally suited. If the domain
contains goal states or other terminal (e.g., absorbing) states, the algorithm
may terminate when such a state is reached. In general, however, the agent will
continue planning and acting indefinitely.

As we would expect, the saving in computation gained by interleaving execu-
tion with planning is considerable. Let & be the maximum number of outcomes
of any action. In a search for a sequence of n actions, search without execution
will require an action to be selected for Z?:_ol b' states compared with only n
states for search with execution. We have also performed experiments to inves-
tigate the value of caching previously computed best actions (similar to LRTA*
[31] or LRTDP [2]), and the value of interleaving execution with search. Ta-
ble 8 summarizes the results of the search for a sequence of ten actions in a
small version of the COFFEE domain. The columns where execution is inter-
leaved with search show the standard algorithm as described above. For search
without execution, the agent performs the standard search, determines the best
action and then, rather than executing it, searches again to find the best ac-
tion to perform for all possible outcomes of the action. Unsurprisingly, cached
search interleaved with execution is the most efficient method. The size of the
domain will have a considerable effect on the value of caching. In this case, the
domain contains 256 states but we are only performing ten actions, so caching
has relatively little effect. However, if more search is performed and space 1s
available, caching appears to be worthwhile. One surprising aspect of this table
1s how well the cached search without execution performs. This is due to the
small number of states in the example. Because the algorithm caches the best
computed action for each state, the interleaved execution algorithm will only
cache values for at most ten states. In comparison, if each action has m possible
outcomes, the no-execution algorithm can cache actions for up to m*%/2 states.
In practice this means that for a domain of this size, the algorithm quickly finds

47



| Action | Discriminant | FEffect | Prob. |

DelC | Office, HRC, Wet | HUC,—HRC | 0.7
~HRC 0.3

Office, HRC,—Wet | HUC,=HRC | 08

~HRC 0.2

—~Office, HRC ~HRC 1.0

—HRC 1.0

Figure 15: Action with marginally relevant factors

itself looking for actions for states it has already evaluated. The column for
search without caching or execution gives an idea of how badly search without
execution and with caching would perform if the state space were large enough
to prevent sufficient reuse of cached values.

5 Inexact Abstraction

The method of abstraction presented in Section 3 takes as a starting point
those propositions deemed to have the largest impact on immediate reward and
then determines the set of atoms that can, under some action choice, influence
the truth of these propositions. However, this is a very cautious approach to
generating relevant atoms for a given abstraction, since it does not account for
the degree of relevance of the atoms in question. In particular, an atom that
has only a marginal influence on the probability of an immediately relevant
proposition (under some action) should be considered less relevant than an atom
that completely determines the truth or falsity of that proposition.

A simple variant of our COFFEE example illustrates this point. Imagine that
the problem description is exactly as in Figure 1 except that the successful
delivery of coffee 1s influenced slightly by the fact Wet: if the robot is wet,
there is slightly increased chance (0.3 vs. 0.2) it will drop the coffee (the new
DelC action is shown in Figure 15 — we ignore the possibility of the nothing
happening, a possibility in the original formulation). In the original abstraction
of this problem we ignored the impact of the variable Wet on immediate reward
and generated an abstract MDP based on literals L, HRC and HUC. In this
slightly altered problem, our abstraction generation mechanism will now notice
that Wet is relevant to the achievement of HUC; subsequently, the literals Rain
and Umb will be deemed relevant (since they influence Wet) and the abstract
MDP for this slightly altered problem offers no compression of the state space
at all.

Just as we may be willing to ignore small distinctions in immediate reward,
we may accept small errors in transition probabilities if it opens up the pos-
sibility of a much smaller state space. In this example, the difference in the

48



7> HCU HCRO WR U
HCU HCR O WR U

/~ HCU HCR O W R U
HCU HCRO WR U
HCU HCRO WR U
HCU HCRO WR U

HCU HCR O WR U

HCU HCR O WR U

HCU HCROWR U

Figure 16: Abstract state space with inexact abstraction (action DelC)

probabilities of making HUC true when Wet is true or false is 0.1. The relative
impact of making the distinction Wet is roughly 0.08 unit of utility in a one-step
decision problem (since the reward for HUC is 0.8). If we can accept such an
error in the policy, then it makes sense to ignore Wet in the abstract MDP. This
allows us to also ignore Rain and Umb, generating a very small MDP (as in the
original problem) with a small increase in error.

Certain difficulties arise with this type of inexact abstraction. The first is
illustrated in Figure 16, which shows the clustering induced by the above con-
siderations over part of the state space, along with the transition probabilities
for the altered DelC action (in the lighter type). In contrast with exact abstrac-
tion (see Figure 7 and Theorem 3.3), we now have states in clusters that do not
have identical transition probabilities in the concrete model for a given action.
To deal with this, we must assign transition probabilities to these clusters that
in some sense “average” the different probabilities associated with the states
in that cluster. In the diagram, we have assigned the midpoint probabilities
0.75 and 0.25 (the heavier transition arrows) to the abstract version of DelC. A
related difficulty is the construction of the abstract action descriptions. In the
exact method, if an action discriminant had a single relevant atom, the entire
discriminant (i.e., all atoms in the discriminant) was deemed relevant. With
inexact abstraction, we may delete specific literals from a discriminant; for ex-
ample, in the abstract version of DelC the atom Wet will be deleted, resulting
in partial, non-exclusive discriminants characterizing the action effects, some of
which have contradictory probabilities. We describe an algorithm that deals
with both phenomena below.

It i1s worth pointing out that clustering of this type induces an abstract MDP

49



of a fundamentally different character than those built during exact abstraction:
by assigning a single transition probability to cluster s, our predictions are based
on less than accurate information. In particular, if we know the prior history
of the abstract process (for example, the cluster visited prior to 3), we may
gain insight into which of the states we are actually at within 5. But if we do
know this, we can make more accurate predictions about the effects of actions
performed in 5. In other words, if we keep track of the history of the abstract
process, we can generally make more informed decisions. For instance, it may
well be that Pr(ﬂa,:{) is not the same as the probability of moving from &
to ¢ under action a given that the process was in cluster U prior to cluster 5.
Therefore, the abstract stochastic process induced by inexact abstraction may
not be Markovian. By assigning history-independent probabilities Pr(ﬂa,:{) to
clusters in the abstract MDP, we are necessarily losing information relevant to
optimal decision making (information that is contained in the abstract MDP
itself). However, treating the abstract process as Markovian allows standard,
computationally feasible history-independent solution techniques to be used.
We simply have to analyze the potential loss in decision quality associated with
treating a non-Markovian model as an MDP. We describe techniques for doing
so and prove certain error bounds below.

A final difficulty associated with inexact abstraction has to do with choosing
relevant atoms. As suggested above, given a particular relevant proposition P,
we deem an atom R to be more or less relevant depending on its probabilistic
influence on P under some action. Of course, this probabilistic influence must
be traded against the relative importance of P. If R has a fairly strong impact
on P, we may consider R to be relevant; but we may decide to ignore R if the
utility of P is sufficiently small. In contrast, R may make only a small difference
in the ability to predict P accurately; but if P is extremely important, R may be
judged relevant. Unfortunately, the degree of relevance of P must be quantified
in order to make such a decision; and in general the impact of P on immediate
reward is not an appropriate measure. Consider the following example, with
two actions a; and ay. If a; is executed when R, then P becomes true with
probability 0.9 (no effect with probability 0.1), and if executed when =R, P
becomes true with probability 0.8. If a5 is executed when P, then ) becomes
true with probability 0.6 and false with probability 0.4; and if executed when
=P, @ becomes true with probability 0.1 and false with probability 0.9. Suppose
also that immediate reward depends only on whether @) is true (reward 10) or
false (reward 0). Certainly @ will be deemed relevant, and presumably P will
be deemed relevant because it has an important impact on the probability of ().
Now when deciding whether to include R among the relevant atoms, we must
determine whether the 0.1 difference in the predictability of P permitted by
distinguishing R from —R is large enough to merit an increase in the abstract
state space. This in turn depends on the relative importance of P itself. Note
that the impact of P is not a function of its impact on immediate reward (it
has none); rather it depends on the atoms it influences (in this case Q).

50



Constructing inexact abstractions requires a method of quantifying the im-
pact of atoms on the value of the optimal decision. This is a difficult issue,
exacerbated by the fact that we are dealing with infinite horizon problems. We
do not have a wholly satisfactory method for solving this problem, but we do
make some suggestions below.?3 We first describe the construction of an ab-
stract MDP and prove certain error bounds. This makes it clear just what
factors should be accounted for when assembling the set of relevant atoms.

5.1 Constructing an Abstract MDP

The algorithm for generating a set of relevant atoms in the case of inexact
abstraction 1s similar to the algorithm used for exact abstraction presented in
Section 3.1. The only difference is that atoms in discriminants with effects
containing relevant atoms are not automatically deemed relevant; rather some
criterion is used to determine relevance based on the importance of the atom in
the effect list and the “predictive power” of the atom under consideration with
respect to the affected atom. We defer discussion of possible criteria to the next
sections. We first present an algorithm that constructs a new abstract action
from an existing action description assuming the set of relevant atoms is given.

Assume a set R of relevant atoms has been determined using some method
of inexact abstraction and let a be an action of the form

d;: E;pi;Eé,p%;m
d*: B pi B pase

dm: BT, pt ER py; -

The algorithm to construct an abstract action corresponding to a proceeds by
first deleting irrelevant atoms from the action description and collapsing com-
mon effects within discriminants (as with exact abstraction). However, special
steps must be taken to combine the possibly different effects of the new partial
discriminants that are no longer completely disjoint, or have perhaps become
identical. It proceeds in four stages:

1. Delete irrelevant atoms from each d’, E; (call these the reduced discrimi-
nants and effects)

2. For each discriminant d*, collapse reduced effects E; that have become
identical into a single reduced effect with probability equal to Zp; of the
participating reduced effects

3. For any two reduced discriminants that are not mutually exclusive (i.e.,
do not have complementary literals), but that have not become identical,

231n particular, we suggest in Section 6.2.1 that dynamic aggregation methods will be better
suited to this problem.

51



split (one of) the discriminants so they become exclusive, giving each split
discriminant the same effects and probabilities as the original discriminant

4. For each (maximal) set of reduced discriminants ID = {d!,d’,---} that
are identical, collapse into a single discriminant with a unique effect list
as follows (for ease of presentation, assume [D = {d*,---d*}):

(a) Replace the set ID with the single discriminant d=d*
(b) For each d' € ID and E; associated with ¢, add the effect-probability

pair <E§, %> to the new effect list for d
(c) Collapse identical effects B associated with d in the usual way (sum-
ming probabilities — let the probability of any effect in the simplified

abstract action be denoted f)})

Steps 1 and 2 of this process proceed exactly as in exact abstraction. Steps 3 and
4 are required because discriminants need not be mutually exclusive. Note that
in exact abstraction, two discriminants can become simpler only if all possible
effects contain no relevant atoms — no conflicting effects are possible in the
abstract space — so Steps 3 and 4 were not necessary.

Step 3 is intended to deal with a situation where an atom is deleted from
an action description leaving two non-exclusive discriminants. For instance,
imagine an action of the form

AANB: €10
AAN-B: €',0.95;¢%0.05
-A: e',0.9;¢%,0.1

where B is deemed relevant for certain reasons, but the difference between effects
¢! and e? is not judged important enough to warrant the distinction between A
and —A (i.e., the probability difference of 0.1 is too small). Deleting A from the
action description results in the three non-exclusive discriminants B, =B and
T. Before combining probabilistic effects, we split discriminants such as T into
two parts B and —B so that each pair of discriminants is mutually exclusive
or identical, and copy the effect list of the original discriminant into each of its
components. This results in the new action description

B: €10
-B: e',0.95;¢%0.05
B: €',0.9;¢20.1
-B: ¢',0.9;¢%0.1

The details of such a procedure are straightforward in the case of discriminants
represented as sets of literals, so we do not elaborate here.

Step 4 captures the essence of inexact abstraction, approximating the tran-
sition probabilities for states that have become clustered despite having slightly

52



different probabilistic effects on relevant atoms. The effect of this collapsing in
the action above would be

B: ¢! 0.95;¢%,0.05
-B: e',0.925;¢% 0.075

In the case of the new DelC action in Figure 15, the abstract action produced,
should atom Wet be judged irrelevant, is given by:

Office, HRC': HUC,—HRC,0.75;-HRC,0.25
= Office, HRC: —HRC/1.0
-HRC: 0,1.0

We note that the particular procedure described in Step 4 for “blurring”
probabilities is adopted primarily for convenience. In general, any procedure
can be used to assign probabilities to effects, as long as the effect probabilities
sum to one for the combined discriminant. This particularly simple approach
has this property and works well in cases where the same effects occur in the
elements of 1D, just with different probabilities. In such a case, the effects
are assigned the average probability. Approximate midpoints might also be
assigned to each effect, so long as care is taken to ensure the effect probabilities
sum to one (e.g., a sophisticated minimization procedure might be adopted). We
leave open the possibility of more sophisticated but computationally demanding
blurring techniques. In general, we want to minimize the difference between the
new assigned probability p and the true probability of the effect under any of
the original discriminants. More precisely, as we will see below, the errors in
transition probabilities within a single discriminant can accumulate to produce
errors in the computation of value and in action selection. Thus, we want
to ensure that the total error is kept small. We will assume below (roughly)
that the accumulated error in the new transition probabilities for any action
discriminant is bounded by some factor p: that is, for any discriminant d,
Zj |ﬁ7 — p;| < p. Clearly, this factor will influence which atoms are actually
deleted from the action description.

We note without proof the following rather obvious properties of new ab-
stract actions constructed in this way:

Proposition 5.1 Let action a be an abstract action
d2: E%aﬁ%;Egaﬁ%;"'
d* . BT, Py ER P

constructed from a concrete action a by inexact abstraction as described above.
If a is well-formed (i.e., has mutually exclusive, exhaustive discriminants and
probabilities that sum to one for each discriminant), then

53



(a) The set of discriminants {gl, . J”} 1s mutually exclusive and
ezhaustive.

(b) For each j, Zl{fﬂ} =1

5.2 Error Bounds for Inexact Abstraction

Before considering means by which to construct the set of relevant atoms, it is
instructive to determine error bounds for inexact abstraction and the features
of the abstraction that affect solution quality. To begin, we consider the error
associated with determining the value of the one-stage policy DelC at the initial
cluster in the inexact abstraction depicted in Figure 16. The abstract (zero-
stage) value of the two clusters t and @ is simply the abstract reward function
— ‘70(?) = 0.9 and ‘70(6) = 0.1. The error introduced in the abstract one-
stage value function ‘71(3;') by blurring the immediate reward function is exactly
as characterized in exact abstraction. However, the fact that the transition
probabilities used to derive the abstract value function are imprecise introduces
further error in the estimated value. The true value of the policy DelC' at state
s 1s a function of the transition probabilities 0.8 and 0.2, whereas the abstract
value function adopts probabilities 0.75 and 0.25 in its calculation. Ignoring the
errors in the reward function, a simple calculation reveals that

[VL(E) - Vi(s)| < B 0.05(VO(t) — VO (u))

Here 0.05 1s the error in the probability estimates for each of the effects as-
sociated with action DelC; while intuitively the quantity V°(¢) — V°(u) is the
difference in (zero-stage) value for the states reachable from s. We could also
replace this part of the term by ‘70(?) — ‘70(6), which suggests that the possible
values of the different reachable clusters may be used to bound error as well.

To determine the possible error in the abstract value function V? introduced
by inexact abstraction, we must know the possible ranges of values (at least for
reachable clusters) in the function Vi1, Not surprisingly, knowing the errors
in the abstract transition probabilities is not enough. The difficulty is that the
error bound cannot be computed directly using the local information in the
problem specification (such as the reward function). For an infinite horizon
problem, we must have estimates of the (optimal) value function before we
can compute the error bounds for possible inexact abstractions. However, the
optimal value function is one of the things we are trying to determine by solving
the abstract MDP. This circularity makes generating inexact abstractions with
(a priori) known error bounds very difficult. However, we can prove error bounds
based on certain knowledge of the abstract (or concrete) value function; this
suggests certain crude methods for bounding the error of inexact abstraction,
which we address in the next section.

As noted, the error in the value estimate of an abstract policy depends on
both the accumulated error in transition probabilities and the value differences

54



in the reachable clusters for which inexact probabilities are used. We assume
that, for a specific action @ and discriminant d associated with a in its inexact
abstraction, the total error introduced in the probability of any effect associated
with that discriminant is pg.; that is, Zj |2; — pil < pa,a for all effects E; in
the effect list for d. Characterized in terms of state transitions, we assume the
inexact abstraction is such that, for any s satisfying discriminant d of action a

and s € 3: N
S Pr(@la,5) — 37 Pr(tla, o)l <
%es tet

Of course, even small errors in prediction can be disastrous if they have
important consequences. Thus, we also assume that we have certain information
about the value function for any blurred transition probability. Let s be any
abstract state satisfying discriminant d. We assume that

[max{V (&) : Pr(f]a,5) > 0} — min{V () : Pr(i]a,3) > 0}] “pda <A

In other words, for any transition probability error introduced, the values of the
clusters to which that error applies lie within a range r such that r-pg o < A, If
we assume that an inexact abstraction is created such that, whenever a transi-
tion probability is approximated within a certain discriminant, this condition is
observed, then we can bound the errors introduced by inexact abstraction. As
usual, we take § to be the discounting factor and ¢ to be the maximum utility
span for the (inexact) abstract MDP.

Theorem 5.2 For any s € 5,

o+ BA

|‘~/¥(§j = Va(s)] < =3

Proof This result is proved in an inductive fashion similar to the proof of
Theorem 3.7. The crucial difference in the proof lies in the inductive step
where the abstract and concrete probabilities may differ. The inductive
hypothesis 1s

. ks . A
VEO -0l < D 5+ 58
i=0 i=1

which clearly holds for & = 0 (where the error is % as in the case of exact
abstraction). The induction step proceeds as follows (we assume § satisfies

discriminant d of action 7(s)).

VERE) - VI ()| = || RG) + 8D PrElF(3).9VE@) | - |R(s) + 8 Pr(tln(s), s) Vi (¢)

’t"eg tes

55



< |RG) - R(s)

tES tEt

Now we have

S [Pr(t|ﬂ' (3),3)VE (D ZPr (tlm(s), )V (t )]

%es ter

< D [Pr(t|ﬂ' 5),9)VE®D ZPr t|m(s) ] ZZPr t|m(s)

tes ter 7es tet

< ;(Pr(ﬂ%(:‘{)a:‘{)—Zpr(ﬂﬂ'(s),s)) {775(}?) +Zgﬁi+2%ﬁi

We know that, for s € 5, the following relationships hold:

Pr(ﬂfﬁ'(:‘{),:‘;{) - ZVPI'(HF(S)a 5)) S pd}(’;)a
;Pr(ﬂ%(gj,sj =1 and ;ZPr(ﬂﬂ'(s),s) =1

Each summand 1n the term

> (Prﬂ%@,a = 37 Prln(s), s>) @) (4)

has the form (p — p')V where the ps sum to 1, and the p’s sum to 1, hence

> (Prﬂ%@,a =3 Prtln(s), s>) ~0
tes tet
That is, the sum of the transition probability errors is zero. Therefore

Equation 4 takes its maximum value when the positive half of the error in
probability p, ;@/2 occurs at extreme values of V* (either its maximum or

minimum), and the negative half of the error occurs at the other extreme.
Thus we have

)y (m(ﬂ%@,a — Y Pritfn(s), s>) ED)| <

%es tet

P70 [onanc{ 7 1) - Pr(iI7(3),3) > 0} — min{7*(7) - Pr({I(5),5) > 0)

56

+3 Z [Pr(t|ﬂ' (3), )V (D ZPr (t|m(s), s)VE(2)

) (VR - Vi)



By construction, the l.h.s. of this last inequality is bounded by A/2.
Putting these components together we get

HoE -] < Saa|2eyle sty
" i -2 23 Pl
k+1 k+1
5 A
< Yot = i
< ;26 +;26
k+1
I+ BA
< {3
< Z:% 0

Taking this in the limit yields the result. B

Thus, by introducing small errors in the abstract transition function, we intro-
duce additional errors in the computed value function. However, as in the case
of errors in the abstract reward function, the contribution of this error to the
overall error in the value is additive, introducing additional error of at most
A/2 at each stage of the process. We note that similar bounds can be derived
using the concrete value function in the definition of A instead of the abstract
value function V.

Similar considerations apply to the loss in solution quality introduced by
adopting an inexact abstraction. Taking 7 to be the concrete policy induced by
solution of the abstract MDP, we have:

Theorem 5.3 For any s € S

: B+ A)
[V*(s) = Va(s)] < =5

Proof We omit details. The proof proceeds exactly like that for Theorem 3.7.
In particular, the proof of Lemma 3.8 can be adapted using considerations
identical to those described in the proof of Theorem 5.2. W

5.3 Determining Relevant Atoms

As mentioned above, the difficulty associated with inexact abstraction is that
one is required to know the value of a particular state or cluster before being
able to determine the degree of relevance of any atom when considering it for
deletion from the problem description. Naturally, this value will not generally
be known since it is usually determined by the generation of an optimal policy
(whose computation will be based on the abstraction we generate). However,

57



there are methods one can use to estimate or bound the value function in a way
that can be applied to this problem.

The simplest mechanism for bounding the error is to use the maximum and
minimum rewards to bound the maximum and minimum values of any state
which can then be plugged into the formulae above. The quantities M T and
M~ defined in Section 4, can thus be used to bound the error introduced (in
the definition of A) and can thus be used to decide when small probabilistic
influences should be ignored in the generation of the set of relevant atoms.
In particular, suppose that the error in transition probability for any abstract
action at any state is bounded by a term p. The following easily computable
error bound then holds:

Proposition 5.4 Let pg o < p for all actions a and discriminants d. Then for
any s € S
* 6 6 + 14 M+ - M~
V°(5) = Vi (o)) < A=A

This fact can be used in the generation of the relevant set whenever a small
probabilistic distinction is to be ignored. If the collapsing of a set of discrimi-
nants for a given action introduces an error in transition probability p such that
the error term above i1s acceptable, then the deletion of the distinction can be
made. In essence, considerations of this type introduce a threshold in transition
probability error that is simple from both a conceptual and implementational
standpoint.

This simple and loose error bound induces a strategy for deleting marginally
relevant atoms that depends solely on the difference in probabilities of an ac-
tion’s effects, not on the relative value of the effects. While easy to implement,
this may provide only crude estimates of degrees of relevance and will tend to be
extremely cautious (ignoring only small probability errors). In general, larger
errors in transition probability will be acceptable if the value of the target clus-
ters is reasonably close. In order to track this, one could augment the algorithm
for determining relevant atoms with additional machinery to determine degree
of relevance. This would be able to take into account the influence of atoms on
other relevant atoms by considering the degree to which they affect the control
of the relevant atoms using particular actions; it can also account for the “dis-
tance” of this influence. If the impact of a particular atom A on the value of an
immediately relevant atom B is removed through a sequence of n actions, then
the relative importance of A can be scaled down by a factor 8" to reflect this
“effect at a distance”.

A backchaining algorithm similar to the one described in Section 3 could be
adapted in this way. Unfortunately, to determine degrees of relevance with any
accuracy will no longer be an operation linear in the problem description: the
more accurate these values must be, the more such backchaining must imple-
ment the steps of the dynamic programming solution algorithms. We therefore

58



do not present any algorithm for estimating the relative importance of atoms
for use by our inexact abstraction mechanism. We feel that the appropriate
manner in which to deal with these considerations requires the integration of
the abstraction mechanism with dynamic programming solution methods. In
particular, to deal with these problems we suggest that adaptive abstraction
mechanisms must be adopted. We have begun investigations of such techniques
in [10]; we elaborate further in Section 6.2.1.

6 Concluding Remarks

6.1 Summary

We have argued that Markov decision processes provide a useful foundation for
understanding decision theoretic planning, and that computational tools for op-
timal policy construction may be adapted for DTP. In particular, we have shown
that Al representational techniques allow the compact and natural specification
of DTP problems as MDPs, and that the regularities and independencies made
explicit by the representation can be exploited to develop abstractions or aggre-
gations that allow approximately optimal policies to be developed with greatly
reduced computation time in appropriate domains. This aspect of our work
also adopts techniques from classical Al planning, in particular, work on the
generation of abstraction hierarchies. Finally, we have shown several ways in
which the solutions to abstract MDPs can be used and locally improved in both
online and off-line models of plan construction.

The keys to our approach to abstraction are the fact that abstractions can be
generated quickly (in time roughly linear in the size of the problem description
rather than in time that grows with the state space), and the fact that one can
determine upper bounds on the loss in solution quality associated with a given
abstraction (also very quickly). In addition, the trade-offs between abstractions
and their quality can be characterized in terms related to the notion of value of
information.

We consider this work to represent some first steps toward the development
of practical and theoretically-sound solution methods based on the use of inten-
sional, Al-style representations of decision and planning problems. However, we
do not claim that the particular model adopted here will prove useful in all set-
tings — it seems most appropriate when there are objectives with additive and
independent value, some of which are more important than others, and for which
some features of the domain are only (or primarily) relevant in the achievement
of less important objectives. Combined with local improvement methods (such
as search) or global improvement methods (such as abstraction hierarchies),
our abstraction model provides faster and potentially very tractable (exact or
approximate) solution methods for such domains.

There are two key weaknesses in this model. The first is the difficulty in

59



providing tight, a prior: error bounds on inexact abstractions. The second is
the fact that the aggregation method used requires the prior, uniform deletion
of literals from the problem description. Thus, the aggregation i1s fized and
uniform. Other aggregation methods will prove more useful (as we describe
below). However, this work provides the conceptual foundation and techniques
for proving error bounds for other abstraction methods based on intensional
representation.

6.2 Future Directions
6.2.1 Other Aggregation Methods

There are a number of very interesting directions in which this work can be
extended, some of which we are currently exploring. One of the most promising
avenues appears to be the use of more general forms of aggregation. While our
method of aggregation, exploiting intensional problem representations, is novel,
the notion of aggregation of states to solve MDPs has been explored previously
[4, 52]. For instance, Bertsekas and Castanon [4] propose an adaptive aggrega-
tion method that allows one to group together states in the evaluation phase of
policy iteration such that the value produced for any cluster of states approx-
imates the value for each constituent state. Unfortunately, with this method
one typically must examine properties of individual states to determine an ap-
propriate aggregation (thus, this does not preclude explicit enumeration of the
state space). However, dynamic aggregation using structured representations to
approximate the solution of MDPs should prove extremely valuable.

To elaborate, we can roughly classify aggregation methods along three di-
mensions (among others): adaptivity, uniformity and accuracy. Aggregations
can be either dynamic (adaptive) or fized, referring to whether or not the clus-
tering of states can change according the state of the computation of a solution.
They can also be uniform or nonuniform, depending on whether the distinctions
used to partition the state space are identical everywhere. Finally, they can be
exact or approrimate, where by exact aggregation we refer to a clustering in
which the states within any particular cluster are known to have the same value
or best action, in contrast to an approximate aggregation where these states
may share similar but not identical values.

Our abstraction procedure is a fixed, uniform and approximate aggregation
method. The first two characteristics are drawbacks in may cases. For example,
suppose a reward function describes two objectives 07 and o5 such that oq 1s
somewhat more important that oz, but oy is important enough to merit con-
sideration. In the course of developing a policy, a planner may notice that the
achievement of both o; and o5 is impossible and that an optimal policy ignores
05 completely in favor of o1. It often turns out that the irrelevance of 0oy can be
detected early in the development of an optimal policy [10]. More generally, the
relevance of literals can vary dramatically with the policy adopted. This means

60



that dynamic rather than fixed aggregations should be adopted: one should
often allow the aggregation to vary with the current policy in policy iteration.

The uniform deletion of literals from the problem description may also be
inappropriate: if an agent receives a reward for ensuring B whenever A is true,
but reward 1s independent of B when A is false, then a uniform aggregation
scheme requires either than B be deleted everywhere (thus ignoring the pos-
sible reward difference when A is true), or the distinction on dimension B be
made everywhere (although the distinction is irrelevant where A is false). In-
tuitively, relevance is a conditional notion: a literal may be relevant in certain
circumstances and irrelevant in others. In this example, the state space should
be aggregated into three clusters corresponding to the propositions =4, AA B
and A A —=B. In contrast to a uniform aggregation, where clusters are of the
same “size” and make the same distinctions, a nonuniform aggregation would
be appropriate here.

We have begun explorations of the use of intensional representations for
creating dynamic, nonuniform aggregation techniques for solving MDPs. In
[10] we describe an algorithm in which a decision-tree representation is used to
represent value functions and policies so that regularities in these functions can
be exploited and the functions themselves can be represented compactly. It 1s
also possible to apply of the approximation methods developed in this paper to
such dynamic, nonuniform methods [9].

An advantage of an adaptive scheme like that described in [10, 9] is that the
problem of estimating the impact of ignoring marginally relevant atoms (the
bottleneck in Section 5) is obviated. Because the aggregation being used is re-
constructed at each step of the computation, evaluating the impact of ignoring
one of these distinctions is essentially a local operation whose error bounds are
locally computable. We need not determine the global impact of such a de-
cision since the decision may be re-evaluated at a later stage of computation.
Our expectation is that combining the ideas from this paper with other aggre-
gation methods will result in very robust and tractable dynamic, nonuniform,
approximate abstraction mechanisms.

Aggregation methods and function approximation have also been studied
to a large extent in the reinforcement learning community, albeit not usually
based on intensional problem descriptions, and particular ideas in that work
can also play a crucial role in determining good abstractions [37, 14, 53]. Tt is
important to point out that many aggregation algorithms are useful for dealing
with metric state spaces, such as robot navigation domains, where states can be
clustered according to their distance from each other. For example, a grid world
may be broken into geographic regions such that the construction of a policy
may be computed separately for each region or (less commonly addressed) the
same action can be performed with good results at each state within a region.
Such clusterings cannot be developed within our approach — close locations
on a map do not share properties of the type we exploit in our method. In
particular, if locations are described by x, y-coordinates, then no two locations

61



share useful properties (having the same xz-dimension is not likely to be mean-
ingful for abstraction). Of course, such approaches cannot deal with regularity
in “propositional structure”.

In addition, good theories of action aggregation may prove useful. To some
extent, our abstraction mechanism does aggregate actions, either by collapsing
“branches” when discriminants within an action become the same, or (implic-
itly) combining actions themselves. However, this action simplification is driven
by abstraction in the state space. Considerations unique to actions themselves
may also be applied (see, e.g., [22] where hand-crafted action abstractions are
analyzed), but the automatic aggregation of (components of ) action descriptions
remains largely unexplored.

6.2.2 Other Directions

Other directions in which this work can be extended include the development
of problem-specific abstraction mechanisms. For instance, if one is generating
a policy for repeated use over finite-horizon problems, it may be possible to
take advantage of knowledge of the typical starting states (e.g., in the form of
a distribution over the state space) and exploit this in constructing a single
abstraction that gives good average-case performance. Another way of exploit-
ing known starting states is the adoption of envelope methods [15, 56], where
(likely) reachability from the start state is used to cluster states into a set of IN
states and OUT states. Dynamic programming is restricted to the IN states,
and if a transition leads out of the envelope, a estimated value of “being OUT”
is used to determine the value of related IN states. Our abstraction techniques
can be used by such a method, for example, to construct the estimate for being
OUT (perhaps refining the set of OUT states into regions) and provide ini-
tial estimates for policy construction over the IN states. The combination of
complementary approximation techniques should prove fruitful.

Finally, methods such as these must be extended to partially-observable set-
tings if they are to be applied to general DTP problems. The computational
difficulty of solving POMDPs optimally 1s well-documented, so the use of ap-
proximation becomes crucial. Some methods based on function approximation
are described in [39, 33]; and preliminary investigations of the use of inten-
sional representations to determine dynamic, nonuniform, exact aggregations
are described in [11].

References

[1] Bruce W. Ballard. The *-minimax search procedure for trees containing chance
nodes. Artificial Intelligence, 21:327-350, 1983.

[2] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-time
dynamic programming. Artificial Intelligence, 72(1-2):81-138, 1995.

62



(3]
[4]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Richard E. Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, 1957.

D. P. Bertsekas and D. A. Castanon. Adaptive aggregation for infinite horizon
dynamic programming. [EFE Transactions on Automatic Control, 34:589-598,
1989.

Dimitri P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Mod-
els. Prentice-Hall, Englewood Cliffs, 1987.

Mark Boddy and Thomas L.. Dean. Solving time-dependent planning problems.
In Proceedings of the Eleventh International Joint Conference on Artificial Intel-
ligence, pages 979-984, Detroit, 1989.

Mark Boddy and Thomas L. Dean. Deliberation scheduling for problem solving
in time-constrained environments. Artificial Intelligence, 67:245-285, 1994.

Craig Boutilier, Thomas Dean, and Steve Hanks. Planning under uncertainty:
Structural assumptions and computational leverage. In Proceedings of the Third
FEuropean Workshop on Planning, Assisi, Italy, 1995.

Craig Boutilier and Richard Dearden. Approximating value trees in structured
dynamic programming. In Proceedings of the Thirteenth International Conference
on Machine Learning, Bari, Italy, 1996. to appear.

Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Exploiting structure
in policy construction. In Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, pages 1104-1111, Montreal, 1995.

Craig Boutilier and David Poole. Computing optimal policies for partially ob-
servable decision processes using compact representations. In Proceedings of the
Tharteenth National Conference on Artificial Intelligence, Portland, OR, 1996. to
appear.

Craig Boutilier and Martin L. Puterman. Process-oriented planning and average-
reward optimality. In Proceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, pages 1096-1103, Montreal, 1995.

Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting
optimally in partially observable stochastic domains. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, pages 1023-1028, Seattle, 1994.

David Chapman and Leslie Pack Kaelbling. Input generalization in delayed rein-
forcement learning: An algorithm and performance comparisons. In Proceedings
of the Twelfth International Joint Conference on Artificial Intelligence, pages
726-731, Sydney, 1991.

Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann Nicholson. Planning
with deadlines in stochastic domains. In Proceedings of the Fleventh National
Conference on Artificial Intelligence, pages 574-579, Washington, D.C., 1993.

Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and

causation. Computational Intelligence, 5(3):142-150, 1989.

Denise Draper, Steve Hanks, and Daniel Weld. A probabilistic model of action
for least-commitment planning with information gathering. In Proceedings of
the Tenth Conference on Uncertainty in Artificial Intelligence, pages 178-186,
Seattle, 1994.

63



[18]

[19]

[23]

[24]

[31]

[32]

33]

[34]

Mark Drummond, Keith Swanson, John Bresina, and Richard Levinson.
Reaction-first search. In Proceedings of the Thirteenth International Joint Con-
ference on Artificial Intelligence, pages 1408-1414, Chambery, 1993.

Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

Simon French. Decision Theory. Halsted Press, New York, 1986.

Dan Geiger and David Heckerman. Advances in probabilistic reasoning. In Pro-
ceedings of the Seventh Conference on Uncertainty in Artificial Intelligence, pages
118-126, Los Angeles, 1991.

Peter Haddawy and Anhai Doan. Abstracting probabilistic actions. In Proceedings
of the Tenth Conference on Uncertainty in Artificial Intelligence, pages 270-277,
Seattle, 1994.

Eric J. Horvitz. Computation and action under bounded resources. Technical
Report KSL-90-76, Stanford University, Stanford, December 1990. Ph.D. thesis.

Eric J. Horvitz and Adrian C. Klein. Utility-based abstraction and categorization.
In Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence,
pages 128-135, Washington, D.C., 1993.

Ronald A. Howard. Dynamic Programming and Markov Processes. MIT Press,
Cambridge, 1960.

Ronald A. Howard. Dynamic Probabilistic Systems. Wiley, New York, 1971.

Ronald A. Howard and James E. Matheson, editors. Readings on the Principles
and Applications of Decision Analysis. Strategic Decision Group, Menlo Park,
CA, 1984.

R. L. Keeney and H. Raiffa. Decistons with Multiple Objectives: Preferences and
Value Trade-offs. Wiley, New York, 1978.

Craig A. Knoblock. Automatically generating abstractions for planning. Artificial
Intelligence, 68:243-302, 1994.

Craig A. Knoblock, Josh D. Tenenberg, and Qiang Yang. Characterizing abstrac-
tion hierarchies for planning. In Proceedings of the Ninth National Conference on
Artificial Intelligence, pages 692697, Anaheim, 1991.

Richard E. Korf. Real-time heuristic search. Artificial Intelligence, 42:189-211,
1990.

Nicholas Kushmerick, Steve Hanks, and Daniel Weld. An algorithm for probabilis-
tic least-commitment planning. In Proceedings of the Twelfth National Conference
on Artificial Intelligence, pages 1073-1078, Seattle, 1994.

Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. Learn-
ing policies for partially observable environments: Scaling up. In Proceedings of
the Twelfth International Conference on Machine Learning, pages 362-370, Lake
Tahoe, 1995.

Michael L. Littman, Thomas L.. Dean, and Leslie Pack Kaelbling. On the complex-
ity of solving Markov decision problems. In Proceedings of the Fleventh Conference
on Uncertainty in Artificial Intelligence, pages 394-402, Montreal, 1995.

64



[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]
[46]
[47]

[48]

[49]
[50]

[51]

Wiliam S. Lovejoy. A survey of algorithmic methods for partially observed
Markov decision processes. Annals of Operations Research, 28:47-66, 1991.

David McAllester and David Rosenblitt. Systematic nonlinear planning. In Pro-
ceedings of the Ninth National Conference on Artificial Intelligence, pages 634—
639, Anaheim, 1991.

Andrew W. Moore and Christopher G. Atkeson. The parti-game algorithm for
variable resolution reinforcement learning in multidimensional state spaces. Ma-
chine Learning, 1995. To appear.

Ann E. Nicholson and Leslie Pack Kaelbling. Toward approximate planning in
very large stochastic domains. In AAAT Spring Symposium on Decision Theoretic
Planning, pages 190-196, Stanford, 1994.

Ronald Parr and Stuart Russell. Approximating optimal policies for partially
observable stochastic domains. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, pages 1088-1094, Montreal, 1995.

Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solv-
ing. Addison-Wesley, Reading, MA, 1984.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, 1988.

Edwin Pednault. ADIL: Exploring the middle ground between STRIPS and the
situation calculus. In Proceedings of the First International Conference on Princi-
ples of Knowledge Representation and Reasoning, pages 324-332, Toronto, 1989.

Mark A. Peot and David E. Smith. Conditional nonlinear planning. In Proceedings
of the First International Conference on AI Planning Systems, pages 189-197,
College Park, MD, 1992.

David Poole. Exploiting the rule structure for decision making within the inde-
pendent choice logic. In Proceedings of the Fleventh Conference on Uncertainty
in Artificial Intelligence, pages 454-463, Montreal, 1995.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley, New York, 1994.

Martin L. Puterman and M.C. Shin. Modified policy iteration algorithms for
discounted Markov decision problems. Management Science, 24:1127-1137, 1978.

Stuart J. Russell and Eric Wefald. Do the Right Thing: Studies in Limited Ra-
tionality. MIT Press, Cambridge, 1991.

Stuart J. Russell and Shlomo Zilberstein. Composing real-time systems. In Pro-
ceedings of the Twelfth International Joint Conference on Artificial Intelligence,
pages 212-217, Sydney, 1991.

Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intel-
ligence, 5:115-135, 1974.

Earl D. Sacerdoti. The nonlinear nature of plans. In Proceedings of the Fourth
International Joint Conference on Artificial Intelligence, pages 206-214, 1975.

M. J. Schoppers. Universal plans for reactive robots in unpredictable environ-
ments. In Proceedings of the Tenth International Joint Conference on Artificial
Intelligence, pages 1039-1046, Milan, 1987.

65



[52]

53]

[54]

[55]

[56]

Paul L. Schweitzer, Martin L. Puterman, and Kyle W. Kindle. Iterative
aggregation-disaggregation procedures for discounted semi-Markov reward pro-
cesses. Operations Research, 33:589-605, 1985.

Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Reinforcement learn-
ing with soft state aggregation. In S. J. Hanson, J. D. Cowan, and C. L. Giles, ed-
itors, Advances in Neural Information Processing Systems 7. Morgan-Kaufmann,
San Mateo, 1994.

Richard D. Smallwood and Edward J. Sondik. The optimal control of partially
observable Markov processes over a finite horizon. Operations Research, 21:1071—
1088, 1973.

David E. Smith and Mark A. Peot. Postponing threats in partial-order plan-
ning. In Proceedings of the Fleventh National Conference on Artificial Intelligence,
pages 500-506, Washington, D.C., 1993.

Jonathan Tash and Stuart Russell. Control strategies for a stochastic planner. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, pages
1079-1085, Seattle, 1994.

Acknowledgements

This work has been aided substantially by our discussions with a number of
people. Our initial investigations into abstraction arose from conversation with
Moisés Goldszmidt. Thanks also to Tom Dean, Eric Horvitz, Keiji Kanazawa,
Daphne Koller, Ann Nicholson, David Poole, Marty Puterman, Stuart Russell
and Jonathan Tash for discussions and pointers to relevant work. We are grateful
to the anonymous referees for their very detailed comments. This research was
supported by NSERC Research Grant OGP0121843 and TRIS Phase II Project
IC-7.

66



A Example Problem Descriptions

The 2048-State cOFFEE Domain

Rewards in this domain are additive as follows:

| Proposition | Value | Proposition | Value |
UhC 1.0 =UhC 0.0
UhB 0.7 -UhB 0.0
w 0.0 -W 0.1
MW,RhM 0.0 MW ,-RhM 0.0
-MW,RhM 0.0 -MW,-RhM 0.3

67

| Action | Discriminant | Effect | Prob. || Action | Discriminant | Effect | Prob. |
MoveLeft Loc = Off Loc = Lab 0.9 BuyCoffee | Loc = Shop,mRhB RhC 0.8
0 0.1 0 0.2
Loc = Lab Loc = Shop 0.9 Loc = Shop,RhB RhC,—=RhB 0.7
0 0.1 -RhB 0.2
Loc = Shop Loc = Mail 0.9 0 0.1
0 0.1 Loc = Off [ 1.0
Loc = Mail Loc = Off 0.9 Loc = Lab [] 1.0
0 0.1 Loc = Mail [ 1.0
MoveLeft R,-U w 0.9 BuyBun Loc = Shop,—RhC RhB 0.8
0 0.1 0 0.2
R,U 0 1.0 Loc = Shop,RhC RhB,-RhC 0.7
-R [] 1.0 -RhC 0.2
MoveRight Loc = Off Loc = Mail 0.9 0 0.1
0 0.1 Loc = Off [ 1.0
Loc = Lab Loc = Off 0.9 Loc = Lab [] 1.0
0 0.1 Loc = Mail [ 1.0
Loc = Shop Loc = Lab 0.9 GetMail Loc = Mail, MW RhM,-MW 0.9
0 0.1 0 0.1
Loc = Mail Loc = Shop 0.9 Loc = Mail,-MW [] 1.0
0 0.1 Loc = Off [ 1.0
MoveRight R,-U w 0.9 Loc = Lab 0 1.0
0 0.1 Loc = Shop 0 1.0
R,U [} 1.0 DelMail Loc = Off RhM -RhM 0.9
-R [ 1.0 ] 0.1
Deliver Loc = Off, RhC —=RhC,UhC 0.8 Loc = Off,-RhM [] 1.0
-RhC 0.1 Loc = Lab [] 1.0
0 0.1 Loc = Shop 0 1.0
Loc = Off,=RhC,RhB -RhB,UhB 0.8 Loc = Mail [} 1.0
-RhB 0.1
0 0.1
Loc = Off,=RhC,-=Rhb 0 1.0
Loc = Lab [] 1.0
Loc = Shop [} 1.0
Loc = Mail [] 1.0



The BUILDER Domain

Action Discriminant Effect Prob.
PaintA AClean APainted 0.75
—AClean 0.20

0 0.05

- AClean [} 1.00

PaintB BClean BPainted 0.75
—-BClean 0.20

0 0.05

—-BClean 0 1.00

ShapeA —Joined —APainted,AShaped 0.80
—APainted,—AClean,—AShaped,—ADrilled 0.10

—APainted 0.10

Joined —BPainted,—~APainted 1.00

ShapeB —Joined —BPainted,BShaped 0.80
—BPainted,~BClean,mBShaped,—BDrilled 0.10

—BPainted 0.10

Joined —BPainted,—~APainted 1.00

DrillA —Joined ADrilled 0.90
0 0.10

Joined 1.00

DrillB —Joined BDrilled 0.90
0 0.10

Joined [} 1.00

WashA AClean 0.90
0 0.10

WashB BClean 0.90
0 0.10

Bolt BShaped,AShaped, Joined 0.80
BDrilled,ADrilled 0 0.20

= ADrilled [} 1.00

=BDrilled,ADrilled 0 1.00
—AShaped,BDrilled,ADrilled [} 1.00
—BShaped,AShaped, [} 1.00

BDrilled,ADrilled

Glue BShaped,AShaped —-BClean,—AClean,Joined 0.35
Joined 0.35

—-BClean,—~AClean 0.15

0 0.15

—AShaped —-BClean,—~AClean 0.50

0 0.50

—BShaped,AShaped —-BClean,—~AClean 0.50

0 0.50

Rewards in this domain are additive as follows:

| Proposition | Value | Proposition | Value |

AClean 0.1 —AClean 0.0
BClean 0.1 —-BClean 0.0
APainted 0.2 —BPainted 0.0
APainted 0.2 —BPainted 0.0
Joined 0.4 —Joined 0.0

68




