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1 IntroductionThe classical planning problem is that of producing a sequence of actions thatguarantees the achievement of certain goal conditions when applied to a spec-i�ed starting state. The unrealistic assumptions embodied in much classicalplanning research, such as complete knowledge of the initial state and com-pletely predictable action e�ects, have been challenged in, for instance, workon conditional planning [50, 43] and probabilistic planning [32]. The problemof decision-theoretic planning (DTP) involves the design of plans or policies insituations where the initial conditions and the e�ects of actions are not knownwith certainty, and in which multiple, potentially con
icting objectives mustbe traded against one another to determine an optimal course of action. Forthis reason, one can view a DTP problem as a problem of optimal stochasticcontrol. Recently,Markov decision processes (MDPs) [26, 54, 45] have been pro-posed as a semantic and computational framework in which to formulate DTPproblems [15, 2, 56, 10, 8, 13, 11]. This model allows the formulation of actionswith stochastic e�ects and the speci�cation of states or objectives of di�eringvalue. It can also be applied to settings without obvious termination conditions,such as on-going processes [12], which cannot easily be dealt with by currentgoal-based planning algorithms.While MDPs provide �rm semantic foundations for much of DTP, the ques-tion of their computational utility for AI remains. Many robust methods foroptimalpolicy construction have been developed in the operations research (OR)community, but most of these methods require explicit enumeration of the un-derlying state space of the planning problem, which grows exponentially withthe number of variables relevant to the problem at hand. This severely a�ectsthe computational performance of these methods, the storage required to rep-resent the problem, and (potentially) the amount of e�ort required by the userto specify the problem. Much emphasis in DTP research has been placed onthe issue of speeding up computation by means of approximation. One class ofmethods involves restricting search or dynamic programming to local regions orenvelopes of the state space [15, 2, 56]. This approach reduces the state space tolocally accessible regions and allows OR methods to be used on reduced prob-lems. While optimality is sacri�ced, judicious choice of relevant states can leadto good approximations.In this paper, we explore a di�erent way of coping with the computationaldi�culties involved in optimal policy generation for large state spaces. First, wepresent a particular structured representation of MDPs using a variant of theprobabilistic strips operators used in [32] to describe actions and rewards. Thisrepresentation is a syntactic variant of certain types of \two-stage" Bayesiannetworks or in
uence diagrams [16, 10, 8]. This in itself allows large problemsto be speci�ed and represented in a concise and natural fashion.The key aim of this paper is the exploitation of structured representations toquickly identify appropriate dimensions for abstraction. We generate an abstract2



state space in which (concrete) states are clustered together, and construct anabstract MDP. This abstract MDP has a state space (potentially exponentially)smaller than that of the original MDP, and can be solved much more quickly.Crucial features of the aggregation process are:(a) the construction of the abstract MDP is reasonably fast (i.e., thetime required does not grow with the state space); and(b) the abstract process is constructed in such a way that standard so-lution techniques may be used in this reduced space to produce anabstract policy.Our approach has several advantages over the envelope method. Foremostamong these is the fact that no states are ignored in abstract policy generation{ each state may have some in
uence on the constructed policy by membershipin an abstract state.1 This allows us to prove bounds on the value of abstractpolicies (with respect to an optimal policy). Furthermore, �ner-grained abstrac-tions are guaranteed to increase the value of policies. Finally, abstractions canbe generated quickly. These factors allow abstract policies of varying degrees ofaccuracy to be constructed in an anytime fashion (in particular, in the style ofcontract anytime algorithms [47, 48]).While the abstraction method of approximating optimal policies is orthog-onal to the envelope approach, the model we propose actually illustrates thatthe two approaches complement one another quite nicely. O�-line computationof the optimal abstract policy provides one with a set of appropriate actions,though perhaps not optimal in the concrete space. In addition, it produces anabstract value function that characterizes the estimated long-term value of every(abstract) state. However, even with a good policy in hand, an agent may �nditself in a situation where computation time is available to improve its actionchoice. To integrate abstraction into a more online model of planning, one cantreat an abstract policy as a set of default reactions to be executed by an agentwhen an action must be performed. However, local search through the con-crete state space (i.e., the construction of a decision tree) can be used to re�nethese reactions when additional computation time is available. Such a model isreminiscent of reaction-�rst search [18] or real-time dynamic programming [2].A crucial di�erence is the existence of an abstract value function to guide thissearch. This gives us two ways to view abstraction: the abstraction process isused to generate default reactions and heuristics (or static-evaluation functions)to guide and prune an online search for good actions; or the abstraction processprovides a fast means for building approximately optimal plans in an o�-lineplanning system.1The envelope method of [15] in fact uses a heuristic function to estimate the value offalling out of the current envelope; but it is not clear how to construct such functions for adesired level of accuracy. 3



The main aims of this paper are: to present a compact and natural represen-tation of MDPs; to describe how such a representation can be used to constructabstract MDPs that can be solved quickly to produce approximately optimalpolicies, and to show how such abstract solutions can be used in online planningalgorithms. In Section 2, we brie
y describe the aims of decision-theoretic plan-ning and the suitability of Markov decision processes as a foundational model forDTP. We describe MDPs and various methods for constructing optimal policies,such as value iteration and policy iteration, based on the dynamic programmingprinciple [3]. We discuss compact representations for MDPs; in particular, weadopt a variant of the probabilistic strips operators used in [32] that capturesindependence of action e�ects in a manner similar to Bayes nets [41]. Such arepresentation allows MDPs to be speci�ed concisely and naturally by exploitingstructural regularities in the domain and in the e�ects of actions.In Section 3, we begin to address the computational di�culties associatedwith solving MDPs optimally. Solution methods such as policy iteration tendto converge well in practice, but each iteration requires computation that ispolynomial in the size of the state space. Since the state space itself growsexponentially with the number of variables present in the problem description,such methods are only feasible for reasonably small problems. We present anapproximation method for MDPs based on the construction and solution of asmaller abstract MDP. Our method for generating abstract MDPs is based onKnoblock's [29] abstraction generation technique for classical planning: certainliterals are deleted from the problem description. These literals are, roughlyspeaking, those whose impact on the value of a state or policy is \negligible."However, there are some critical di�erences in our model. First, care must betaken to ensure that the reduced problem is indeed an MDP; this guaranteesthat existing solution methods can be used. Second, the solution to the abstractproblem can be used directly in our model. In contrast to classical abstraction,where abstract solutions can only be used to guide the search for solutions ata concrete level, in our model the abstract solution is executable. Of course,the solution may not be optimal. We therefore require that abstract MDPsbe generated in such a way that the error, or divergence from optimality, canbe bounded and that di�erent abstractions can be quickly compared for valuebefore they are solved. The key contribution of Section 3 is an algorithm togenerate abstract MDPs and the derivation of an easily computed upper boundon the error of the abstract solution. We also discuss the generation of appro-priate abstractions in terms of value of information, and show that the boundson less abstract policies are always closer to optimal than those of more abstractpolicies. As such, the chosen degree of abstraction provides a parameter thatcan be set in a contract-anytime fashion.In Section 4, we describe how abstract MDPs and their solutions can be ex-ploited and improved in the planning process, in both o�-line and online modelsof plan construction. We �rst describe levels of abstraction, or abstraction hi-erarchies [29]. In classical abstraction, hierarchies are generally constructed so4



that various re�nement properties are satis�ed; that is, the solution at a givenabstraction level can be re�ned (without changing any of its components) toprovide a solution at a less abstract level. Such properties are generally impos-sible to ensure in our model, since the aim is the production of optimal, usefulsolutions at each level. However, we demonstrate empirically that abstract solu-tions can sometimes be used to speed up the computation for their less abstractcounterparts by \seeding" the policy iteration algorithm with abstract initialpolicies.We then consider re�nement of abstract solutions in an online model byusing search to improve the choice of action for the actual state in which anagent �nds itself. In contrast with methods such as policy and value iteration,which consider the appropriate action choice and value of all states, local searchcan be used to focus computational e�ort on only those states that directlyimpact the value of the current state.2 This view is reminiscent of the enve-lope method of Dean et al. [15], but is most closely related to the real-timedynamic programming model of Barto, Bradtke and Singh [2]. There are twokey advantages to integrating our abstraction method with this model: �rst,if action is required at any time, an abstract policy generated o�-line providesuseful default reactions (whose value is roughly known); second, the abstractvalue function generated in the solution of the abstract policy can be used toguide the local search process.In Section 5, we consider a generalization of our abstraction model. Whilethe original algorithm for generating abstractions will not delete any literal thatcan in
uence the probability of another literal that is deemed relevant, ourmethod of inexact abstraction ignores e�ects with little (in contrast to no) in
u-ence in the abstract problem (e.g., e�ects with small probability of occurrence).We provide an algorithm and error bounds for this approach, and point out thedi�culties in constructing inexact abstractions with predictable, tight bounds.Finally, in Section 6, we conclude with a discussion of open problems anddirections for future research, and describe how some existing work might beintegrated with our model of abstraction. In particular, we describe other formsof state aggregation that can be used to solve MDPs more quickly. We viewthe work presented here as a starting point for the use of AI-style, intensionalrepresentations of DTP problems to determine irrelevant details and appropriateaggregations and abstractions that allow the reasonably fast construction ofgood plans.2Indeed, as we elaborate below, the rollback procedure for a decision tree rooted at a givenstate can be viewed as a form of value iteration directed toward that state.5



2 Markov Decision Processes and their Repre-sentationDecision-theoretic planning generalizes classical AI planning to deal with sit-uations of uncertainty and multiple, possibly competing objectives of di�erentutility. The tools of decision theory should be used to determine a plan withmaximum expected utility. Because one generally does not know a priori which�nal state the system should end up in (e.g., a high utility state may be achiev-able with only low probability and thus should be eschewed), classical goal-basedtechniques such as regression or partial-order planning are of little value.3 Forexample, an agent required to deliver two packages before a certain deadline,but unable to do so, must decide which (if either) of the packages to pick up�rst. Goal-based methods require one of these objectives �rst be chosen; butthe objective to be chosen cannot generally be known until possible plans havebeen considered.The articulation of explicit goals is also frequently absent in DTP problems,which often have a process-oriented 
avor. For example, our agent above maybe acting in a constant loop of anticipating and performing routine tasks andachieving certain requests without consideration of termination conditions [12].Manufacturing processes are often best viewed this way as well: the aim is notto reach some �nal state where a certain number of units have been produced,rather one wishes to maximize throughput subject to other considerations ofimportance (such as safety, labor and maintenance constraints). Each aspect ofthe manufacturing process is an action (whether joining two parts together, orchecking a part for faults); the objectives are to �ll speci�c orders, to operate asinexpensively as possible, to minimize the number of faulty parts produced, etc.Actions are stochastic (e.g., they may introduce faults on occasion) and thereis uncertainty in the state of knowledge. A decision-theoretic planner shouldproduce a plan of operation that includes a sequence of manufacturing steps forparts of speci�c types, as well as certain test and repair actions designed to dealwith faulty parts. Note that as a matter of course, an optimal plan may nottest for certain faults if their cost and probability of occurrence is su�cientlysmall. The role of decision theory in such a process is to decide which tests are\worth it"; thus a priori goal states such as \Part X should be free of faultswith probability 0:995" are useful only in speci�c structured settings (see, e.g.,[32, 17] where this view is pursued).Features such as these make Markov decision processes an ideal model formodeling DTP problems. MDPs can be viewed as stochastic automata in whichactions have uncertain e�ects, inducing stochastic transitions between states,and the precise state of the system is known only with a certain probability. Inaddition, the expected value of a certain course of action is a function of the3At least, as currently formulated: there is some possibility that regression methods mayprove useful in approximation methods for DTP [8].6



transitions it induces, allowing rewards to be associated with di�erent aspectsof the problem rather than with all-or-nothing goal propositions. Finally, planscan be optimized over a �xed �nite period of time, or over an in�nite horizon,suitable for ongoing processes.We describe MDPs in detail below; however, we do not present them in fullgenerality. Certain simplifying assumptions are made that restrict the class ofproblems we address. The most restrictive assumption is that of complete ob-servability: although actions may have uncertain e�ects, we assume that oncethe agent has performed an action, it can observe its actual outcome. In otherwords, the agent has full access to the state of the system being controlled. Thus,the planning algorithm need not deal with uncertainty in its knowledge of theworld. While unrealistic in many domains, fully observable MDPs (FOMDPs)capture an interesting and useful class of problems. In addition, the compu-tational methods for optimal policy construction for the fully observable caseare much better studied and more powerful than those for partially observableMDPs (POMDPs). Indeed, while special purpose code for FOMDPs can oftenhandle systems with hundreds of thousands of states, dealing with twenty-statesystems is often problematic for POMDP algorithms [35, 13]. Our initial investi-gations of representational and abstraction methods for MDPs, described in thispaper, are therefore directed toward FOMDPs. However, we fully expect theseand related methods will be adaptable to POMDPs (see [11] for investigationsof this point).Primarily for reasons of presentation, we do not consider action costs inour formulation of MDPs. All utilities are associated with states (or proposi-tions). This assumption is not especially restrictive, for our algorithms can beaugmented to deal with more general reward speci�cations. However, explicitconsideration of action costs would detract from the main points of this pa-per. Finally, we note that our examples are primarily goal-based, again for easeof presentation. However, our algorithms can be applied directly to process-oriented problems (see, e.g., [12] for process-oriented problems that extend thetypes of examples we present here).2.1 Markov Decision ProcessesFor our purposes, a Markov decision process can be de�ned as a tuple hS;A; T;Ri,where S is a �nite set of states or possible worlds, A is a �nite set of actions, T isa state transition function, and R is a reward function. A state is a descriptionof the system of interest that captures all information about the system relevantto the problem at hand. In typical planning applications, the state is a possibleworld, or truth assignment to the logical propositions with which the system isdescribed. The agent can control the state of the system to some extent by per-forming actions a 2 A that cause state transitions, movement from the currentstate to some new state. Actions are stochastic in that the actual transitioncaused cannot be predicted with certainty. The transition function T describes7



the e�ects of each action at each state. T (s; a) is a probability distribution overS: T (s; a)(t) is the probability of ending up in state t 2 S when action a isperformed at state s. We will write this quantity as Pr(tja; s).4 We requirethat 0 � Pr(tja; s) � 1 for all s; t, and that for all s, Pt2S Pr(tja; s) = 1. Thecomponents S, A and T determine the dynamics of the system being controlled.We assume that each action can be performed at each state. In general models,each state can have a di�erent feasible action set, but this is not crucial here.5The states that the system passes through as actions are performed corre-spond to the stages of the process. The system starts in a state s0 at stage 0.After m actions are performed, the system is at stage m. Given a �xed \courseof action", the state of the system at stage m can be viewed as a random vari-able Sm . Stages provide a very rough notion of time for MDPs. The system isMarkovian due to the nature of the transition function; that is,Pr(Sm jam�1; Sm�1; am�2; Sm�2; � � �a0; S0) = Pr(Smjam�1; Sm�1)(where ai corresponds to the action taken at stage i). The fact that the systemis fully observable means that the agent knows the true state at each stage m(once that stageis reached), and its decisions can be based on this knowledge.A policy � : S ! A describes a course of action to be adopted by an agentcontrolling the system and plays the same role as a plan in classical planning.An agent adopting such a policy performs action �(s) whenever it �nds itselfin state s.6 In a sense, � is a conditional and universal plan [51], specifyingan action to perform in every possible circumstance. An agent following policy� can also be thought of as a reactive system. From a given start state s0, a�xed policy induces a distribution over possible system trajectories. An m-stagetrajectory is a sequence of states s0 through sm corresponding to the states ofthe system at stages 0 through m.Given an MDP, an agent ought to adopt a policy that maximizes the ex-pected value of the trajectories it admits. A number of di�erent value mea-sures or optimality criteria have been studied in the literature, most based ona bounded, real-valued, history-independent reward function R : S ! <. R(s)is the instantaneous reward an agent receives for entering state s. We take aMarkov decision problem to be an MDP together with a speci�c optimality cri-terion. Optimality criteria vary with the horizon of the process being controlled4This notation is merely suggestive. The term T (s; a)(t) cannot be formally interpreted asa conditional probability.5We could model the applicability conditions for actions using preconditions in a way that�ts within our framework below. However, we prefer to think of actions as action attempts,which the agent can execute (possibly without e�ect or success) at any state. Preconditionsmay be useful to restrict the planning agent's attention to potentially \useful" actions, andthus can be viewed as a form of heuristic guidance (e.g., don't bother considering attemptingto open a locked door). This will not impact what follows.6In fact, such policies are stationary (and Markovian), the action choice depending onlyon the state of the system, not on the stage of the process or its history. For the problems weconsider, optimal stationary policies always exist.8



and the manner in which future reward is valued. For �nite-horizon problems,the aim is typically to construct a policy that maximizes the expected totalreward gained over some �xed number of stages m. The total reward for a �nitetrajectory is simply the sum of the rewards Pmi=0R(si). For in�nite-horizonproblems total expected reward will typically diverge, and other criteria arenecessary. One criterion is average reward per stage of the process. While well-studied, and perhaps ideally suited for planning problems, such measures areoften di�cult to compute. In this paper, we focus on discounted in�nite hori-zon problems: the current value of a reward received n stages in the future isdiscounted by some factor �n(0 < � < 1). This allows simple computations tobe used, as discounted total reward will be �nite. The in�nite-horizon model isimportant because, even if a planning problem does not proceed for an in�nitenumber of stages, the horizon is usually inde�nite, and can only be boundedloosely. Furthermore, solving an in�nite-horizon problem is typically more com-putationally tractable than a very long �nite-horizon problem. Discounting hascertain other attractive features, such as encouraging plans that achieve goalsquickly, and can sometimes be justi�ed on economic grounds, or can be justi�edas modeling expected total reward in a setting where the process has probability1 � � of terminating (e.g., the agent breaks down) at each stage. We refer to[45] for further discussion of MDPs and di�erent optimality criteria.The expected sum of discounted future rewards for a �xed policy � dependson the state in which the process starts and is denoted by the function V� , whereV�(s) is the expected value when � is executed beginning in state s. There areseveral algorithms that can be used to determine V� (see [5, 45] for details). Astraightforward iterative algorithm, called successive approximation, proceedsby constructing the sequence of n-stage-to-go value functions V n� . The quantityV n� (s) is the expected discounted future reward received when � is executed forn stages starting at state s. We set V 0� (s) = R(s) and inductively computeV n� (s) = R(s) + �Xt2S Pr(tj�(s); s)V n�1� (t) (1)As n ! 1, V n� ! V� ; and the convergence rate and error for a �xed n canbe bounded easily [45]. We note that the right-hand side of this equation de-termines a contraction operator so that: a) the algorithm converges for anystarting estimate V 0� ; and b) if we set V 0� = V� , then the computed V n� for anyn is equal to V� (i.e., V� is a �xed-point of this operator). We can also exactlycompute the value V� using the following formula due to Howard [25]:V�(s) = R(s) + �Xt2S Pr(tj�(s); s)V�(t) (2)We can �nd the value of � for all states by solving this set of linear equationsV�(s); 8s 2 S.A policy �� is optimal if, for all s 2 S and all policies �, we have V�� (s) �V�(s). We say the (optimal) value of a state V �(s) is its value under any optimal9



policy (V�� (s)). We take the problem of decision-theoretic planning to be thatof determining an optimal policy (or an approximately optimal or satis�cingpolicy). An incremental approximation method for policy construction knownas value iteration proceeds much like successive approximation, except that arandom value function V 0 is initially chosen and at each stage we choose theaction that maximizes the right-hand side of Equation 1:V n(s) = R(s) + maxa2Af�Xt2S Pr(tja; s)V n�1(t)g (3)The sequence of value functions V n converges to V �, and for some �nite n theactions a that maximize the right-hand side of Equation 3 form an optimalpolicy. As with successive approximation, V � is a �xed point of Equation 3and, if used as an initial value estimate, results in immediate convergence.Policy iteration is an ingenious algorithm proposed by Howard [25] for opti-mal policy construction. It proceeds as follows:1. Let �0 be any policy on S2. While � 6= �0 do(a) � = �0(b) For all s 2 S, calculate V�(s) by solving the set of jSj linear equationsgiven by Equation 2.(c) For all s 2 S, if there is some action a 2 A such thatR(s) + �Xt2S Pr(tja; s)V�(t) > V�(s)then �0(s) = a; otherwise �0(s) = �(s)3. Return �The algorithm begins with an arbitrary policy and alternates repeatedly (inStep 2) between an evaluation phase (Step b) in which the current policy isevaluated, and an improvement phase (Step c) in which local improvementsare made to the policy. This continues until no local policy improvement ispossible. The algorithm is guaranteed to converge [25] and in practice tendsto do so in relatively few iterations [45]. The evaluation phase requires solvingthe set of jSj linear equations. Algorithms for solving linear equations of thiskind are typically O(n3) where n is the number of variables (here n = jSj). Theimprovement phase uses these values in a local computation to �nd an actionthat, if executed once at state s, followed by execution of the current policy �,results in improved value.The main cost per iteration in the policy iteration is clearly policy evaluation.Puterman and Shin [46] have observed that the exact value of the current policy10



is typically not needed to check for improvement. Their modi�ed policy iterationalgorithm is exactly like policy iteration except that the evaluation phase usessome number of successive approximation steps instead of the exact solutionmethod. This algorithm tends to work extremely well in practice and can betuned so that both policy iteration and value iteration are special cases [46, 45].We note that all three policy construction methods produce the value functionV � as well as an optimal policy. In addition, the algorithms are incrementalin the sense that a sequence of improving (or roughly improving) intermediatepolicies is produced.2.2 Compact Representation of MDPsMost planning problems are described by a set of features or propositions thatcharacterize the domain of interest, and problems typically \grow" by the ad-dition of atomic propositions re
ecting relevant features of the domain. Weassume that the system to be controlled is described by some logical proposi-tional language L, generated by a set P of atomic propositions. The state spaceS is the set of all valuations over this language containing jSj = 2jPj possiblestates, and grows exponentially with the number of variables. This poses somedi�culty for the speci�cation and computational methods for MDPs describedabove, for the problem formulation requires explicit enumeration of the statespace.Focusing on representation for the moment, we notice that the transitionfunction T requires a set of jSj�jSj matrices, one matrix representing the tran-sition probabilities for each action. For a large planning problem the storagerequirements for these action descriptions (as well as the reward function) canbe prohibitive. For a problem with ten propositions (roughly 1000 states), a1,000,000 element matrix may be needed to represent the e�ects of each ac-tion. Even though the probability matrices are typically quite sparse, (andstorage methods may exploit this), the speci�cation of a problem in this for-mat is unattractive. In AI planning, actions are rarely described explicitly asstate transitions. Natural representations such as strips rules or the situationcalculus specify the e�ects of actions on propositions rather than states. Suchrepresentations are extremely compact in normal circumstances because actionsexhibit a number of regularities that can be exploited.To represent stochastic actions compactly, we adopt a probabilistic variantof strips rules very similar to that used in buridan [32]. In the classicalstrips representation [19], an action is represented using a list of e�ects, or aset of literals that become true when the action is executed. When an actionis executed at a state, the e�ect is \applied" to the current state to determinethe new state that results. More precisely, let E be the e�ect (a consistent setof literals) associated with action a, and let s be a state (represented as the setof literals true in that state). The state that results when a is executed at s11



(denoted a(s)) is simply the result of applying the e�ect to s:E(s) = (s n fp : :p 2 Eg) [ENote that any literal unmentioned in the e�ect persists in truth value and thata single e�ect changes many states in similar ways. Thus large classes of statetransitions can be represented using a single e�ect. As an example, consider theaction a with e�ect fP;:Qg. When applied to state s = f:P;:Q;R; Sg, theresulting state is a(s) = fP;:Q;R; Sg.Pednault [42] generalizes these descriptions somewhat by allowing actions tohave conditional e�ects, or context-dependent e�ects that vary with the initialstate. Following [32] we assume that the conditions under which an actioncan have di�erent e�ects are described by a �nite set of discriminants D =fd1; � � �dng. This is a set of mutually exclusive and exhaustive logical formulaethat partitions the state space. We typically assume each di to be a conjunctionof literals, and often treat di as the set of literals occurring in the conjunction.We denote by atoms(di) the set of atoms occurring in di (when viewed as a set).A conditional action description associates an e�ect Ei with each discriminantdi. The state a(s) that results from a conditional action a is given by Ei(s),where di is the (unique) action discriminant such that s j= di. For example,suppose action a is described using two discriminants, d1 = fRg and d2 = f:Rg,with associated e�ects E1 = fP;:Qg and E2 = fP;Qg. When a is appliedto state s = f:P;:Q;R; Sg, the resulting state is a(s) = fP;:Q;R; Sg (asabove) since s j= d1. But when applied to t = f:P;:Q;:R;Sg, the result isa(t) = fP;Q;:R;Sg.To these conditional e�ects, we add nondeterminism by supposing that un-der each condition a number of possible e�ects might occur with a speci�edprobability, following the buridan representation. That is, with each di weassociate a stochastic e�ects list of the form hEi1; pi1; : : :Ein; pini, where each Eijis an e�ect and each pij is the probability that e�ect will occur; we requireonly that Pnj=1 pij = 1. An action now induces a probability distribution overpossible resulting states. The semantics of an action of this type is as follows:Pr(tja; s) =Xj fpij : Eij(s) = tgwhere s j= di. It should be clear that this determines a well-de�ned stochastictransition function for each action, and that any transition function can be sorepresented (though perhaps not compactly).To illustrate this representation, as well as our algorithms below, considerthe following simple planning problem. We have a robot whose main objectiveis to deliver co�ee to a user. It can move between the user's o�ce and a co�eeshop across the street, buy co�ee at the co�ee shop, and deliver co�ee to theuser in the o�ce. If it is raining outside the robot gets wet if it moves betweenthe two locations, unless it has an umbrella (which it can obtain in the user's12



Action Discriminant E�ect Prob.Move O�ce :O�ce 0.9; 0.1:O�ce O�ce 0.9; 0.1Move Rain;:Umb Wet 0.9; 0.1:Rain _Umb ; 1.0BuyC :O�ce HRC 0.8; 0.2O�ce ; 1.0GetU O�ce Umb 0.9; 0.1:O�ce ; 1.0DelC O�ce;HRC HUC;:HRC 0.8:HRC 0.1; 0.1:O�ce;HRC :HRC 0.8; 0.2:HRC ; 1.0Figure 1: Stochastic strips-style action representationo�ce). The robot is penalized for getting wet, but it is penalized more if the userdoes not have co�ee. The coffee domain is characterized by six propositions:O�ce (the robot is in the o�ce, otherwise at the co�ee shop); HRC (the robothas co�ee); HUC (the user has co�ee); Rain (it is raining); Umb (the robot hasthe umbrella); and Wet (the robot is wet). The robot has four actions at itsdisposal, all of which may fail: Move (to the opposite location); BuyC (buyco�ee if it is in the co�ee shop); DelC (deliver co�ee in its possession to theuser in the o�ce); GetU (get the umbrella if it is in the o�ce). The e�ects ofthese actions and their probabilities are listed in Figure 1. Worth noting is thatthe DelC action can fail in two di�erent ways: ten per cent of the time the usersimply fails to get the co�ee and the robot retains possession (simple failure),and ten per cent of the time the the robot loses the co�ee (co�ee spill).We extend the buridan representation by adding action aspects. These areintended to represent the fact that some e�ects of an action only depend on cer-tain features distinguished by the discriminant set. For example, in Figure 1,the Move action has two aspects. The �rst represents the fact that when theagent performs a Move, the resulting location depends on the agent's currentlocation only. It is independent of the values of Rain and Umb. The second as-pect deals with whether the agent becomes wet or not. Since this is independentof where the agent is, the discriminant only contains Rain and Umb.Actions with multiple action aspects can be translated into actions with asingle aspect by forming the \cross-product" of their e�ects. Figure 2 shows13



Action Discriminant E�ect Prob.Move O�ce;Rain;:Umb :O�ce;Wet 0.81Wet 0.09:O�ce 0.09; 0.01O�ce;:Rain_ Umb :O�ce 0.9; 0.1:O�ce;Rain;:Umb O�ce;Wet 0.81Wet 0.09O�ce 0.09; 0.01:O�ce;:Rain _Umb O�ce 0.9; 0.1Figure 2: Expansion of action aspectsthe translated form of the Move action for this example. More precisely, anaction can be speci�ed using di�erent aspects, each of which has the form of anaction as described above (i.e., each aspect has its own discriminant set). Theactual e�ect of an action at a state is determined by applying the e�ects list ofthe relevant discriminant for each aspect of that action. Let w be some stateto which we apply an action with k aspects. Since each aspect has a properdiscriminant set associated with it, w satis�es exactly one discriminant for eachaspect. Assume the discriminants for the jth aspect are d1j ; � � � ; dcjj and thateach dij has an associated e�ects list hEi;1j ; pi;1j ; : : :Ei;njj ; pi;njj i. An e�ect fromeach applicable list will occur with the speci�ed probability, these probabilitiesbeing independent. Intuitively, action aspects capture the kind of independenceassumptions one might �nd in a Bayesian network or in
uence diagram (as weshow below). Thus, the net e�ect of an action A at w is the union of thesee�ects (sets of literals), one chosen from each aspect. The probability of thiscombined e�ect is determined by multiplying these probabilities. Thus, we havePr(vjA;w) =Xfpi1;j11 � pi2;j22 � � �pik;jkk : E(w) = vgwhere E is an e�ect such thatE = Ei1;j11 [Ei2;j22 [ � � � [Eik;jkkTo ensure that actions are well-formed we impose the following consistencycondition: if dil and djk are mutually consistent discriminants taken from distinctaspects i and j of a given action, then their e�ects lists must contain no atomsin common (thus, the union above is consistent).Compact representation of the reward function can use the same techniquesused for action representation. We assume a set of mutually exclusive and ex-haustive reward discriminants di to each of which is assigned an immediate14



Discriminant Value Discriminant ValueHUC;:Wet 1.0 :HUC, :Wet 0.2HUC;Wet 0.8 :HUC, Wet 0.0Figure 3: strips-style reward function representationreward ri. As usual, R(s) = ri for any s j= di. Such a representation is com-pletely general. Figure 3 describes the reward function for our example: therobot is given a reward of 0:8 for ensuring the user has co�ee, and a rewardof 0:2 for staying dry. An alternative representation, which we do not pursuebut which could exploited by our algorithms below, is the association of in-dependent, additive rewards with a number of propositions in the manner ofmulti-attribute utility theory [28], and to sum the individual rewards of eachproposition satis�ed by s to determine R(s). This would provide a very directencoding of the reward function we adopt in this example.A related action representation uses \two-stage" Bayes nets [16, 38, 10], inwhich each action is modeled with a Bayesian network with two \slices" orsets of variables. The �rst slice represents the values of (possibly multi-valued)variables before the action is performed while the second slice represents thevalue after the action. Arcs in the diagram represent probabilistic dependencebetween variables.7 As with conventional Bayesian networks, each post-actionnode contains a table of conditional probabilities given the values of its parentvariables. The Bayes net representation of the action Move in our example isillustrated in Figure 4, with three of its probability tables.The dashed arcs indicate persistence relations: the value of the variable afterthe action is identical to its value prior to the action. Unlike strips rules, suchpersistence must be expressed explicitly in the network (though they can beconstructed automatically, having the prototypical form shown for the variableHRC). In addition, the locally exponential probability tables in the networkfail to capture some of the regularities in transition probabilities that allow thestrips model to be speci�ed more compactly (e.g., the table for Wet could berepresented more compactly [21, 10, 44]). Notice however that the independenceof the e�ect of Move on O�ce and Wet is captured naturally in the network,while standard (stochastic) strips rules cannot express this independence. Ouraction aspects provide the means to represent such independent e�ects con-cisely and are intended to perform precisely this role. The expressiveness ofstochastic strips rules (with or without aspects) and two-stage Bayes nets areidentical in this propositional setting, both able to express arbitrary transitionrelations. The relative advantages of both representations vis-�a-vis compactness7Typically, arcs from pre-action nodes can point only to post-action nodes, while arcsbetween post-action nodes (correlated action e�ects) must not induce directed cycles in thegraph. 15



W

U

W

U

RR T

F

F

T

T

F

F

T

Ut

T

T

T

T

F

F

F

F

Wt

T

F

t t+1

T

F

T

F

t

T

F

T

F

t

F

HRC

T 1.0

0.0

HRCt+1

HUC HUC

HRC HRC

Move

O O O O

0.1

0.9

R

1.0

1.0

1.0

1.0

0.0

0.0

Wt+1

0.9

0.0

Figure 4: The in
uence diagram representation for MoveW WUR,WUR,WUR WURHUC DelC | 16.0 DelC | 20.0HUC;HRC;O DelC | 14.73 DelC | 18.73 DelC | 18.66HUC;HRC;O Move | 13.92 Move | 17.92 Move | 14.46HUC;HRC;O BuyC | 13.05 BuyC | 17.06 BuyC | 13.81HUC;HRC;O Move | 12.34 Move | 16.34 GetU | 15.66Table 1: Optimal policy for the COFFEE domainand naturalness are described in some detail in [8].The optimal policy and the corresponding value function V � for this exampleare shown in Table 1, as computed by policy iteration using a discounting factorof 0:95. While policy iteration explicitly computes an action and value for eachof the 64 states, the policy and value function exhibit regularities that permitthe compact expression shown in the table.88This fact itself suggests that more reasonable implementations of policy iteration mightexploit such structure | see Section 6. 16



3 Constructing and Solving Abstract MDPsEven though strips-style representations allow problems with large state spacesto be speci�ed concisely, algorithms such as policy iteration still require enumer-ation of the exponential state space to produce optimal policies.9 In classicalplanning, one technique for dealing with large problems is abstraction. In tradi-tional abstraction planners, a complex problem is decomposed into a hierarchyof progressively simpler problems. The simplest problem is then solved, thissolution is used to solve the next simplest problem, and so on, until the originalproblem is solved. While the solutions to these simpler problems are not gen-erally executable plans, they reduce the complexity of the problem by guidingthe search for a solution at less abstract levels [49, 29, 30].We describe an abstraction method, similar in spirit to those used in classicalplanning, for dealing with large state spaces in solving MDPs. In particular,we adopt a method similar to abstrips [49, 29] in which an abstract problemis one where certain details of the original problem, in this case propositionalatoms, are ignored. However, in contrast to this traditional work, the solutionsto our abstract problems will be directly executable. Thus, an abstract policy(an optimal solution to an abstract problem) will be an approximately optimalsolution to the original problem.10To perform abstraction, we construct an abstract MDP that has (possiblyexponentially) fewer states, but the same set of actions as the original problem.To reduce the number of states, the propositional description of the problem(i.e., actions and reward structure) is used to choose some subset of the variablesthat are judged less relevant than the rest, and the irrelevant variables aredeleted from the problem description. The idea is to construct a problem thatonly captures the most important parts of the concrete MDP, �nd an optimalpolicy for this abstract MDP using standard algorithms, and apply this policyin the original problem. The key to the approach is the automatic constructionof the abstract MDP.The algorithm used is described in broad outlines in Figure 5. Automaticconstruction of an abstract MDP requires �rst that we identify the set of relevantatoms that must be retained in the abstract problem description. The procedurethat makes this identi�cation uses a form of value of information as well as avariant of Knoblock's [29] algorithm for constructing abstractions in a classicalsetting. The abstract state space eS is the set of states induced by the languageobtained by deleting the set of irrelevant atoms. An alternative view of theabstract state space is as an aggregation of states: each abstract state es 2 eS isa collection of concrete states such that each s 2 es is indistinguishable in thereduced language. Finally, a set of actions and a reward function suitable for9For large problems, sparse matrix methods alleviate this problem to some extent, but willonly reduce computation by relatively small factors.10Our abstract solutions can be used in the traditional way, to guide search for a concretesolution, as well (see Section 4). 17



1. Using the probabilistic strips representation of the domain, decide which atomsare most important for constructing a good policy. (This de�nes an abstractstate space eS.)2. For each action, build an abstract transition function eT by deleting all referenceto unimportant atoms from the action description and translating the extendedstrips representation of the action into an MDP transition function. Note thatan explicit transition matrix need not be built for each action as the extendedstrips rules can be used to generate the linear equations required for policyiteration directly.3. Construct eR, the reward function for the abstract problem.4. Use policy iteration to �nd the optimal policy e� for the MDP h eS;A; eT ; eRi.5. Construct the policy � such that for each state s 2 es 2 eS; �(s) = e�(es). � is anapproximately optimal policy for the original MDP.Figure 5: Constructing an approximately optimal policy using abstractionthe new state space eS must be constructed. A key feature of our model is thatthe set of abstract actions is the same as the action set for the original problem,though each action description may be simpli�ed somewhat.With this abstract MDP in place, standard methods such as policy iterationcan be used to produce an abstract policy e� associating an action with eachabstract state es 2 eS . Finally, the abstract policy determines a concrete policy� such that �(s) = e�(es) for each s 2 es: the action associated with a cluster isapplied to each constituent state. (We note that Step 5 need never be performedexplicitly; the abstract policy e� is itself a good representation of the concretepolicy �.)We describe each of the components of the algorithm below. There are sev-eral key points that ensure the usefulness of our abstraction framework. First,the identi�cation of relevant atoms and the construction of the abstract MDPmust be very quick | the time taken must be negligible compared to the timerequired to solve the MDP. In particular, we require that the time grow poly-nomially with the size of the problem description rather than with the size ofthe state space. Second, the abstract MDP must be well-de�ned, so that pol-icy construction algorithms applied to the abstract MDP produce meaningfulpolicies. Third, we should be able to bound the error of the abstract policy, orcharacterize how much worse than optimal the abstract policy might be.3.1 Constructing an Abstract MDPIn order to construct an abstract MDP, we need to select some subset of theatoms that will form the basis of the abstraction. The quality of the policy andthe e�ectiveness of the abstraction process depend closely on the atoms chosen.18



If too many atoms are selected, the policy created may be very close to optimal,but the computational savings may not be large enough to justify the loss ofoptimality. On the other hand, if the set of atoms chosen is too small, then thecomputation required to produce the approximate policy will be minimal, butthe policy may be quite poor.As well as choosing an appropriate \number" of atoms for the abstract MDP(e.g., determined by available computation time), we must consider which atomsshould be selected. Obviously, if the reward for each state depends solely on thevalue of a single atom, it would be foolish to ignore that atomwhen constructingthe abstract state space. However, this is not the only consideration | atomsthat have relatively little e�ect on the reward for a state may be ignorable,while atoms that have no direct impact on the reward function (i.e., that arenot mentioned in the description of R) may not.In order to construct a set of atoms which meets the criteria described above,we �rst identify a set IR of immediately relevant atoms. IR is formed byexamining the propositional model of the reward structure and selecting onlythose atoms which have the greatest impact on the reward for each state. Thelarger this set is, the more �ne-grained the abstraction will be, so by varyingthe size of IR, we can strike a balance between the quality of the abstractionand the computation time required.To construct IR we examine each atomwhich appears in the reward functionand calculate the maximum range of the reward function for each of its values.In general, atoms with smaller ranges have greater e�ect on reward than atomswith larger ranges, and should be placed in IR �rst. For example, in the coffeedomain of Figure 1, HUC has range 0:8 � 1:0 when true, and range 0:0 � 0:2when false, so it's maximum range is 0:2. This makes it a better candidate forinclusion in IR than Wet which has maximum range 0:8. We discuss the choiceof immediately relevant atoms further in Section 3.3.Although the set IR contains some of the relevant atoms needed for ab-straction, it does not yet include all relevant atoms. For example, in a domainwhere the reward is large if atom A is true and small otherwise, IR would befAg. But if an action that makes A true requires B to be true to achieve thedesired e�ect, then clearly B is a relevant atom as well: ignoring B may notgive the agent the ability to a�ect A as it should.11 The set R is de�ned as thesmallest set satisfying the following conditions (as before, di is the discriminantassociated with the action e�ect Eij):1. IR � R.2. if q 2 R and for some e�ect Eij, q 2 atoms(Eij), then atoms(di) � R.Only the atoms in a discriminant that might probabilistically lead to a relevante�ect are deemed relevant; we will call this a relevant discriminant. Other11In fact, if the impact of B on the control of A is marginal, we may do well to ignore Bafter all. We address this issue in Section 5. 19



Initialize Rold  IR; R ;; Rnew  ;while Rold 6= ; dofor each P 2 Rold dofor each action aspect A dofor each discriminant Di 2 A doif P 2 Eij for some j thenRnew  Rnew [ atoms(Di)end ifend forend forend forR  R[RoldRold  Rnew �Rend whileFigure 6: Algorithm to generate set R of relevant atomsconditions associated with the same action aspect are ignored (unless these arerelevant for other reasons).The only decision required from the user of the system is that of which atomsshould be placed in IR. As we shall see, this fact allows the user to specify thedegree of accuracy required of the abstraction, and to have an abstract policycalculated automatically. (The set IR may be chosen automatically as well; seeSection 3.3.)The algorithm we use to generate the set of relevant atoms is based onKnoblock's [29] algorithm for determining constraints for problem-speci�c ab-stractions. Intuitively, the algorithm backchains through action descriptionsto see what atoms in
uence immediately relevant atoms, what atoms in
uencethose, and so on, until a �xed point is reached. The algorithm is described inFigure 6 and takes as input a set of action (aspect) descriptions, as describedabove, and a set IR of immediately relevant atoms. The output is a set Rof relevant atoms. The complexity of this algorithm is O(r � a � e), where r isthe number of relevant atoms produced, a is the number of action aspects, ande is the average number of e�ect literals per action aspect (that is, e is theproduct of the number of discriminants per action, the number of e�ects perdiscriminant and the size of the e�ects lists). It is reasonable to assume thatthe \branching factor" and number of e�ects of a given action is bounded bysome reasonably small constant, so we can take e to be constant and state thecomplexity to be O(r � a). In the worst case, each atom in the language will beconsidered relevant and the algorithm will take roughly jPj � a steps. However,even in this worst case, this term is not signi�cant compared to solving an MDP(whose state space is of size 2jPj). 20



Having calculated R, the abstract state space eS is that induced by clusteringtogether all the states in the original MDP that agree on the values of the atomsin R. By treating each cluster as a state in the abstract MDP, we ignore theirrelevant details of atoms that do not appear in R.De�nition 3.1 The abstract state space generated by R is eS = fes1; : : : ; esng,where:1. esi � S.2. Sfesig = S.3. esi \ esj = ; if i 6= j.4. s; t 2 esi i� s j= P implies t j= P for all P 2 R.Note that there is no need to actually group together states in the algorithm;the construction of eS is merely conceptual.To illustrate the construction of an abstract state space, we consider thecoffee example shown in Figures 1 and 3. There are two atoms that in
uencethe reward assigned to a state, HUC and Wet; but the in
uence of Wet isrelatively small while that of HUC is more substantive. Thus, we will set IR =fHUCg. To construct R, we notice that only the action DelC a�ects HUC, andthat the variables O�ce and HRC in
uence its truth; so O�ce and HRC areadded to R. When examining discriminants of actions that a�ect these twoatoms, we see that no further atoms are deemed relevant. We end up withR = fHUC;O�ce;HRCg. The abstract state space eS consists of those subsetsof eight states that agree on the truth assignment to these three atoms, butdisagree on the values of the remaining irrelevant atoms Rain, Wet and Umb.A portion of the abstract state space is shown in Figure 7. Note that j eSj = 8(in contrast, jSj = 64).We note that by breaking up the action Move into two independent aspects,the set R remains small. Had we used the expanded action e�ect shown inFigure 2, the atoms Rain and Umb would have been added to the relevantset although they have no impact on the probability of other relevant atomsbecoming true or false. We also note that had we chosen IR to include Wet,then Rain and Umb would have been added to R due to the second aspect ofthe Move action, so all the atoms from the original problem would appear in R(and the abstract state space would be identical in size to the original).Apart from the abstract state space, we require actions and a reward func-tion compatible with these abstract states. In general, we can imagine thatcomputing the transition probabilities for actions associated with an arbitraryclustering of states is computationally prohibitive, demanding that one considerthe e�ect of each action on each state in the cluster. Furthermore, computingthe probability of moving from one cluster to another requires, in general, someprior distribution over the states in the initial cluster. This cannot be realizedin our setting, since such information depends on the distribution over initial21
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Proof i) If Ei is associated with an irrelevant discriminant, then Ei \ R = ;(otherwise the discriminant would be relevant). Ei(s) must therefore agreewith s on the truth value of all atoms in R, and hence Ei(s) 2 es.ii) Since s and t agree on the values of all atoms in R, Ei(s) and Ei(t)must also (because Ei changes the same literals in both). So Ei(s) 2 eu i�Ei(t) 2 eu. �Theorem 3.3 Let es and eu be clusters such that s; t 2 es. Then for any action aXu2euPr(uja; s) =Xu2euPr(uja; t)Proof Since s and t are in the same cluster, they either satisfy the same relevantdiscriminant d for action a or neither satis�es a relevant discriminant fora (by Lemma 3.1). In the former case, for each e�ect Ei associated withd, we have Ei(s) 2 eu i� Ei(t) 2 eu (by Lemma 3.2). Since Pr(uja; s) =Pfpi : Ei(s) = ug for each u (and similarly for t), the result holds. Inthe latter case, let s j= dj and t j= dk, where dj and dk are irrelevantdiscriminants for a. By Lemma 3.2, each possible e�ect Eji is such thatEji (s) 2 es, soPu2eu Pr(uja; s) equals 1 if es = eu and 0 otherwise. Similarly,Pu2eu Pr(uja; t) equals 1 if es = eu and 0 otherwise. Thus the result holdsin the latter case as well. �Theorem 3.3 provides justi�cation for associating a unique transition prob-ability Pr(etja;es) with the abstract MDP, namelyPt2etPr(tja; s). Figure 8 illus-trates how the abstraction mechanism works when concrete states map to morethan one state within a given cluster (in this case for the action Move). Thebold type indicates the abstract version of the concrete transitions (in smallertype).The results above permit a simple syntactic procedure to construct abstractaction descriptions: we simply delete all reference to irrelevant atoms from theactions in the original problem. This may subsequently permit simpli�cation ofthe action speci�cation, as discriminants and e�ects that were di�erent in theoriginal problem potentially become the same in the abstract problem. For ex-ample, consider the action shown in Figure 9, where atom Q is deemed relevantand as a result so is A, leaving B and P to be irrelevant. The abstract actionis created by deleting P and B from the action description. We note that thisleaves the two possible e�ects associated with each of the �rst two discriminantsidentical (both become ;). So the �rst stage of the simpli�cation is to collapseidentical action e�ects within a discriminant into one e�ect with the sum of theoriginal probabilities. In this case, the e�ect becomes ; and is given probability1:0. We also note that action discriminants may also become non-disjoint or23
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Discriminant E�ect Prob.A;B P 0.9; 0.1A;:B :P 0.9; 0.1:A Q 0.9; 0.1Figure 9: An action that simpli�es when abstracted24



Action Discriminant E�ect Prob.Move O�ce :O�ce 0.9; 0.1:O�ce O�ce 0.9; 0.1BuyC :O�ce HRC 0.8; 0.2O�ce ; 1.0GetU True ; 1.0DelC O�ce;HRC HUC;:HRC 0.8:HRC 0.1; 0.1:O�ce;HRC :HRC 0.8; 0.2:HRC ; 1.0Figure 10: Abstract actions for the COFFEE domaineven identical; however, by construction (see, e.g., Lemma 3.2) this can only bethe case when the discriminants in question are irrelevant (i.e., have no rele-vant e�ects), thus only when the reduced e�ect is ; with probability 1. We cantherefore collapse overlapping or identical reduced discriminants into a set ofwell-formed discriminants or into a single discriminant in the abstract action,this being well-de�ned since they must have the same \abstract" e�ect. The re-duced action description in this small example has two discriminants, A : ;; 1:0and :A : Q; 0:9; ;; 0:1. In simple outline, the algorithm for constructing anabstract action description, given the set of relevant atoms R is:1. Delete irrelevant atoms from each di and Eij (call these the reduced dis-criminants and e�ects).2. For each discriminant di, collapse any reduced e�ects Eij, Eik, etc. thathave become identical into a single reduced e�ect with probability equalto P pij of the participating reduced e�ects3. For any non-disjoint reduced discriminant (which must thus have a col-lapsed e�ect of the form ;), simplify the action description as needed.The set of abstract actions for the coffee domain (Figure 1) is shown inFigure 10. We denote by eT the new transition function constructed in this wayfor the abstract MDP (the set of actions A remains unchanged). It is easy tosee by construction that:Proposition 3.4 For any s 2 es and action aPr(etja;es) =Xt2et Pr(tja; s)25



Sentence ValueHUC 0.9:HUC 0.1Figure 11: Abstract reward function for the COFFEE domainA simple corollary of Theorem 3.3 and Proposition 3.4 is the fact that theabstract process is indeed Markovian. Let eSm be a random variable denotingthe state of the abstract process at stage m. Then we haveCorollary 3.5Pr(eSmjam�1; eSm�1; am�2; eSm�2; � � � eS0) = Pr(eSm jam�1; eSm�1)The system dynamics for the abstract system is truly history-independent.The reward function for the abstract MDP is denoted eR and must associatean immediate reward with each abstract state or cluster es 2 eS. We chooseto assign the midpoint of the range of (concrete) rewards for the states in es.Formally, let min(es) and max(es) denote the minimum and maximum values ofthe set fR(s) : s 2 esg, respectively. The abstract reward function is:eR(es) = max(es) +min(es)2This choice of eR(es) minimizes the maximum di�erence between R(s) and eR(es)for any s 2 es, and is adopted because it allows the tightest error bounds to bederived (below). Although using the average of the rewards in a cluster mightresult in better average-case behavior, it can lead to much worse bounds onthe di�erence between the abstract and optimal policies. The abstract rewardfunction for our example problem is shown in Figure 11. The general method forconstructing this representation is identical to that used for creating abstractaction descriptions, with the simple addition of choosing a midpoint reward forany collapsible reward discriminants.3.2 Solution of Abstract MDPsOnce we have constructed an abstract MDP h eS ;A; eT; eRi, we can compute anoptimal abstract policy e� as well as an optimal abstract value function eV � usingstandard policy construction techniques. For example, the optimal abstractpolicy and value function (computed using policy iteration) for the abstract26



HUC Val. :HUC Val.HRC;O�ce DelC 18.0 DelC 16.7HRC;:O�ce DelC 18.0 Move 15.9:HRC;O�ce DelC 18.0 Move 14.3:HRC;:O�ce DelC 18.0 BuyC 15.1Table 2: The policy computed using the abstract MDPversion of the co�ee problem is described in Table 2, which shows the actionand value for each of the eight abstract states. When compared to the optimalpolicy for the original problem (Table 1), we see that an \optimal" action ischosen at all but one of the 64 states. As we would expect given the methodof construction, the policy is optimal except in the state where it is raining andthe robot can pick up the umbrella before going to the co�ee shop | in theabstract policy the robot immediately heads for co�ee ignoring the umbrella.12The abstract value for each cluster according to the abstract policy is close tothe midpoint of the range of true (optimal) values for the states in the cluster.Moreover, the time required to compute the abstract policy is only 2 percentof that required for optimal policy construction in the original problem (bothusing policy iteration).In general, the utility of a particular abstraction is a function of the timerequired to compute the abstract policy and the quality of the abstract policy(both relative to the same properties for the original problem). Since the timerequired for policy iteration is a function of the size of the state space, andthe size of the state space is exponential in the number of underlying atoms,any reduction in the size of R will result in an exponential reduction in thesize of the state space and hence in computation time. Even reducing thedomain by a single atom will halve the size of the state space, and producea large computational saving when performing policy iteration or other policyconstruction methods.13This speed-up comes at the cost of generating possibly less-than-optimalpolicies. However, we can estimate the solution quality of an abstract policy bybounding the error associated with this policy. In particular, we are interested intwo quantities, the di�erence between the computed value of an abstract policyand its true value in the original MDP, and the di�erence between this true12The fact that the abstract policy agrees with the optimal policy in states where the goalhas been achieved is an artifact of the robot choosing the \harmless" action DelC arbitrarily.Had the robot chosen the \harmless" action Move as something to do once co�ee has beensuccessfully delivered, the robot would get wet if it is raining, making the abstract policysuboptimal in all states where Rain and HUC hold, losing the small reward for :W .13The number of iterations required by policy iteration can be hard to predict for a givenproblem, but is polynomial in jSj. Aside from the number of iterations, the time per iterationis generally O(jSj3). See [34] for a survey of complexity results regarding the solution ofMDPs. 27



value and the value of an optimal policy for the original MDP. More precisely,let e� be the optimal policy computed for the abstract MDP and let Ve� be theabstract value function computed for this policy. Let � be the concrete policyinduced by e� (i.e., �(s) = e�(es) for each s 2 es) and let V� be the value ofthis concrete policy. Finally, let V � denote the optimal value function for theconcrete MDP. The quality of an abstract policy will be characterized in termsof two quantities, the discounting factor � and the maximum reward span of theabstract MDP.De�nition 3.2 The reward span of a cluster es 2 eS is the maximum range ofpossible rewards for that cluster, that isspan(es) = max(es)�min(es)The reward span for a cluster is twice the maximumdegree to which the estimateeR(es) of the immediate reward associated with a state s 2 es di�ers from the truereward R(s) for that state.14Let � denote the maximum reward span over all the clusters in eS ; that is:De�nition 3.3 The maximum reward span for an abstract MDP is� = maxes2eS fspan(es)gProposition 3.6 For any s 2 esR(s) � �2 � eR(es) � R(s) + �2Theorem 3.7 For any s 2 es 2 eS ,���eVe�(es) � V�(s)��� � �2(1� �)Proof We prove inductively that for all n���eV ne� (es)� V n� (s)��� � nXi=0 �2�i14The use of utility spans to generate abstractions is proposed by Horvitz and Klein [24], whouse the notion in single-step decision making. Our analysis can be applied to their frameworkto establish bounds on the degree to which an \abstract decision" can be less than optimal.Furthermore, the notion is useful in more general circumstances, as our results illustrate.28



Since V�(s) = limn!1 V n� (s) and eVe�(es) = limn!1 eV ne� (es), this su�ces toprove the result.The base of the induction is immediate: since eV 0e� (es) = eR(es) and V 0� (s) =R(s), by Proposition 3.6 we have���eV 0e� (es)� V 0� (s)��� � �2�0Now assume that for all es and s 2 es, for some �xed k,���eV ke� (es)� V k� (s)��� � kXi=0 �2�iThen���eV k+1e� (es)� V k+1� (s)��� = ������24 eR(es) + �Xet2eS Pr(etje�(es); es)eV ke� (et)35� "R(s) + �Xt2S Pr(tj�(s); s)V k� (t)#������� ��� eR(es)�R(s)��� + � ������Xet2eS 24Pr(etje�(es); es)eV ke� (et)�Xt2et Pr(tj�(s); s)V k� (t)35������By Proposition 3.6, Theorem 3.3 and Proposition 3.4, this term is nogreater than �2 + � ���eV ke� (es)� V k� (s)���Therefore, by the inductive hypothesis,���eV k+1e� (es)� V k+1� (s)��� � �2 + � kXi=0 �2�i � k+1Xi=0 �2�i�This result shows the maximum di�erence between the computed value of theabstract policy and the actual value of that policy when implemented in theoriginal decision problem. In e�ect, this determines the con�dence we mayadopt in this computed value. Intuitively, this result shows that the value ofthe policy di�ers from the computed value by no more that �2 per stage of theprocess.Of use in determining the loss of value one might expect by focusing on theabstract problem is the following result (where eV � denotes the optimal valuefunction for the abstract MDP): 29



Lemma 3.8 For any s 2 es,���V �(s) � eV �(es)��� � �2(1� �)Proof We prove inductively that for all njeV n(es)� V n(s)j � nXi=0 �2�iSince V �(s) = limn!1 V n(s) and eV �(es) = limn!1 eV n(es), this su�ces toprove the result.The base of the induction is immediate: since eV 0(es) = eR(es) and V 0(s) =R(s), by Proposition 3.6 we havejeV 0(es)� V 0(s)j � �2�0Now assume that for all es and s 2 es, for some �xed k,jeV k(es)� V k(s)j � kXi=0 �2�iLet a be any action that maximizes the value of eV k+1(es) in its de�nition(see Equation 3); i.e.,eV k+1(es) = eR(es) + �Xet2eS Pr(etja; es)eV k(et)Similarly, let b be a maximizing action for V k+1(s), so thatV k+1(s) = R(s) + �Xt2S Pr(tjb; s)V k� (t)Thus, we have���eVk+1(es) � V k+1(s)��� = ������24eR(es) + �Xet2eS Pr(etja;es)eV k(et)35� "R(s) + �Xt2S Pr(tjb; s)V k(t)#������� ��� eR(es) �R(s)��� + � ������Xet2eS Pr(etja; es)eV k(et)�Xt2S Pr(tjb; s)V k(t)������30



We introduce the following de�ned terms; letA = Xt2S Pr(tjb; s)V k(t)B = Xt2S Pr(tja; s)V k(t)C = Xet2eS Pr(etja; es)eV k(et)D = Xet2eS Pr(etjb; es)eV k(et)and let f = Pki=0 �2�i. Now, by Theorem 3.3 and Proposition 3.4, andthe inductive hypothesis, it is easy to verify that both jB � Cj � f andjA � Dj � f . Furthermore, by the choice of actions a and b (whichmaximize their value respective functions), we have both A � B, andC � D. Reasoning with these inequalities, we obtain that: a) if C � B,we have C � A � f , and (since C � D and jA � Dj � f) we haveA � C � f | thus, jA � Cj � f ; b) if C < B, we have A > C, and(since C � D and A � D � f), we have jA � Cj � f . In either case,jA � Cj � f = Pki=0 �2�i. Plugging these quantities into the inequalityabove, we obtain��� eVk+1(es)� V k+1(s)��� � ��� eR(es)�R(s)��� + � jC�Aj� �2 + � kXi=0 �2�i� k+1Xi=0 �2�i�The true bound of solution quality is given by the following result:Theorem 3.9 For any s 2 S,jV��(s) � V�(s)j � ��1� �Proof This follows immediately from Theorem 3.7 and Lemma 3.8, with thecombined error reduced by the added term � due to the fact that theinitial reward received at stage 0 will be identical in both cases. �31



This is the main result regarding our abstraction mechanism. By adopting anabstract version of the original decision problem, we can guarantee that anagent implementing the abstract policy will lose no more than a reward of � perstage of the process | the error introduced by abstraction is simply additiveover time. In addition, the smaller the reward span of the clusters used inthe abstract process, the better the performance guarantees on the abstractsolution. Clearly, if the abstraction is such that no atoms that impact on thereward function are deleted, the abstract solution will be optimal (since � = 0).Of course, the error bound here is absolute, not relative. While the most onecould lose is � per stage, there is a possibility that this is \all the value" we couldhave obtained by behaving optimally. For instance, in our example it might havebeen that case that getting co�ee turned out to be impossible, in which casestaying dry is the best the robot could have done; yet the abstraction preventedeven this. The relative error in this case may be unacceptable. However, tightrelative error bounds, while not computable a priori can be determined oncethe value function has been computed.We note that should a more re�ned abstraction be used, the generated policywill have tighter error bounds. Although one cannot guarantee improvement ofthe abstract policy at each state (with respect to the performance of its concretecounterpart) when moving to a less abstract version of an MDP, the bound onthe maximum possible error will be tighter and we can typically expect betterpolicies as a result.Finally, we point out that the reliance of the error term on the discountingfactor � is of little import. As mentioned, this simply indicates that valueloss accumulates over time. Since value itself accumulates over time, it is therelative value loss that is crucial. If the problem is undiscounted (i.e., � = 1),then the error is unbounded, but generally so is value for the types of problemswe consider. In such a case, an average reward analysis could be performed. Wedo not pursue this here, but expect that our ideas can be extended this way ina relatively straightforward fashion.3.3 Choosing an AbstractionWe have described how an abstract MDP is generated and solved given someset IR of immediately relevant atoms. The time required to solve the abstractMDP and the accuracy of the policy produced will both depend on the cho-sen IR, or more directly on the size of the induced set R of relevant atoms.A smaller relevant set is desirable since computation time grows exponentiallywith the number of relevant atoms (in fact, in a polynomial of this exponentialfactor), but a larger relevant set is desirable since the error bound will be tighter.This produces the tension between computation time and solution quality char-acteristic of most AI problems, especially those for which anytime algorithmsare designed. The key question then arises: what is the \right" set of relevantatoms to use given this tradeo�? 32



The answer to this question depends of course on the time pressure underwhich a planning agent �nds itself and the relative values of quick solutionsversus good solutions. This type of issue is addressed in the work of Boddy andDean [6, 7], Horvitz [23], Russell and Wefald [47] and other work on anytimemethods. It is important that we provide techniques for estimating solutiontime and solution quality as well as methods for improving solution quality ina way that can interact with a module assessing the time-quality tradeo�s. Webrie
y sketch ways to compute the error bound associated with a particularabstraction as well as improve this bound through judicious selection of newrelevant atoms.Deciding which atoms to add to the set IR is essentially a value of infor-mation calculation [27, 41]. We could imagine for example being given a timebound and wanting the best possible solution computable within that time.Since a time bound restricts the number of atoms that can be considered, wewant a set of relevant atoms that satis�es the size restriction and has the lowestpossible error bound. Thus we want a set IR that has the largest value of infor-mation for our decision problem among all sets of atoms of the appropriate size.Alternatively, we may simply want a solution of �xed quality (whose error isunder some threshold). In this case, we want the smallest set of relevant atomswhose error bound is under threshold.To estimate the computation time associated with a given set IR, we must�rst generate the set R induced by IR. As described above, this operation isrelatively e�cient.15 The maximum span span(IR) provides an estimate of thevalue of information associated with IR: the smaller span(IR) is, the better weexpect the solution of the abstract MDP to be. Given a set IR, let Val(IR) bethe set of 2jIRj truth valuations over this set of atoms (i.e., the set of clustersinduced by IR). Assume that the reward function is represented using a set Dof reward discriminants. We compute span(IR) as follows:1. For each v 2 Val(IR), compute span(v) to bemaxd2DfR(d) : v 6j= :dg �mind2DfR(d) : v 6j= :dg2. Let span(IR) = maxfspan(v) : v 2 Val(IR)g.Testing the span of any cluster v requires jDj satis�ability tests (i.e., testingwhether v intersects each utility discriminant). The satis�ability tests them-selves will be O(jvj � jdj) when each discriminant d 2 D is represented as a setof literals (as v is). Assuming the size of the reward description to be bounded,this becomes essentially linear in the number of immediately relevant atoms.This ensures that computing span(IR) is exponential in jIRj, but linear in the15We note that appropriate preprocessing of actions { e.g., constructing an operator graphas described in [55] { can make this much more e�cient.33



size of the induced (abstract) state space.16To determine the best set of immediately relevant atoms, say, of a given sizeis equivalent to determining the subset of atoms of that size with the greatestvalue of information. Value of information has certain nice properties such asmonotonicity: the value of knowing the assignments of a set of variables S � S0is at least as great as that of knowing S0. In our setting, this is re
ected inthe fact that adding new relevant atoms will not worsen (and will generallyimprove) bounds on solution quality. Unfortunately, value of information (andspan) have other less desirable features. For example, the atom with the bestsingle value may not be an element of the set of two atoms with highest value.Thus we cannot guarantee that determining the most important single atomwill aid in constructing the most valuable set of two (or more) atoms.Determining a set of variables of �xed size with greatest information valuegenerally requires exhaustive search through the space of possible sets [27]. Iftime restrictions require a set IR of size k, we potentially have to enumerateall size k subsets of the set of atoms P and determine their span, choosing a setwith smallest span. Of course, atoms not mentioned in the reward discriminantcan have no impact on span, so we can restrict attention to subsets of the atomsmentioned in D (i.e., to [fd 2 Dg). If we want to �nd the smallest set IRwith an error bound under some threshold, this may require exhaustive searchthrough all subsets of the atoms in D. In either case, constructing optimalapproximations is computationally prohibitive, and grows exponentially withthe number of immediately relevant atoms one is willing to consider.One may alleviate this problem by adopting a greedy approach to abstractionselection. Techniques of this type are the norm when value of information isinvolved. For each atom p 2 [fd 2 Dg, one can estimate its value by computingspan(fpg) as above. For each atom p, this is an O(jDj) operation. This capturesthe rough value of abstracting based on p only and provides an ordering of allatoms that might potentially be added to IR. We can then add atoms to IRincrementally based on this ordering, adding atoms with smaller span �rst.If we are attempting to �nd the set of k atoms with the lowest error bound,we can simply add the best k atoms (considered individually) to the set IRand solve the problem. This greedy strategy will not generally guarantee thatit is indeed the best set of k atoms (considered collectively), but may work wellin practice.17 In addition, under certain conditions, such a greedy strategy canproduce optimal abstractions | for instance, when the reward function encodes16The estimated span(IR) may in fact be too liberal. When determining the set of relevantatomsR based on IR, additional atoms may be added to R that impact reward, and may infact reduce the span further. In this case, the error bounds on solution quality will be eventighter than indicated by span(IR). One could, when adding atoms to IR, compute the spanof the induced set R if one is willing to construct R for the di�erent candidate sets IR. Allthe methods for choosing IR described here can be applied using Val(R) instead of Val(IR).17We again emphasize that we are ignoring the fact that the set R may have a tighter spanthan IR. In general, one can use span(R) to get more accurate estimates if one is willing tocomputeR repeatedly. 34



additive independent rewards for certain atoms or sets of atoms. If we want to�nd the smallest set of atoms within a certain error threshold, we can constructIR incrementally. We add atoms to IR according to their span, at each stagetesting the span of the current set IR. If the error is below threshold we use IRas it stands; if not, we add the next best atom to IR and test again. Similarremarks apply here: under certain conditions this may guarantee an optimal(smallest) abstraction, but not generally.We note that if the size of [fd 2 Dg is relatively small (in relation to theproblem size jPj), then the computation involved in determining an optimal(or roughly optimal) abstraction that satis�es the time or solution quality con-straints imposed by the problem is relatively trivial compared with the timeto solve the abstract MDP itself. We expect that computation time spent incareful abstraction selection using value of information considerations will betime well spent in typical domains.3.4 Experimental ResultsThe error bounds described in Section 3.2 are worst-case bounds described interms of the maximum reward span. However, if certain clusters have smallerspan than maximum we can expect better performance. In addition, unlesswe visit states at each stage whose reward actually di�ers maximally from theabstract reward, we will generally not achieve these worst case results. In thissection we relate some initial experimental results that examine the performanceof our abstraction mechanism.The coffee domain is an extension of the running coffee example we havebeen using. It contains 2048 states described by ten variables, and seven actions(see Appendix A for a description of the problem). There are three possibleabstractions for this domain, with 32, 64 and 256 abstract states respectively.Policy iteration on the 2048-state complete problem required 1588 seconds and113 iterations. The optimal values for this problem range from 22.4 to 42.0.The results of the abstractions are summarized in Table 3 which compares thecomputed abstract policy value with its true value, as well as this true valuewith the optimal value for the original problem.18 As the table shows, the more�ne-grained the abstraction, the better the resulting policy is. The numberof \correct" actions chosen by the abstract policies improves until over 93 percent of states agree with the optimal policy using the 256 state abstraction. Ofcourse, this measure is less crucial19 than the loss in expected value accrued18Number of errors refers to the number of (concrete) states at which the true value di�ersfrom the optimal (or computed) value. The average, deviation and maximums refer to themagnitudes of these di�erences (and percentage of the range of optimal state values). Timeand number of iterations refers to the time taken by policy iteration to compute the optimalpolicy for each of the abstractions (and percentage of time compared to optimal solution).19Indeed, the extent to which an \approximate" policy agrees with the optimal policy maynot measure anything like the quality of the approximate policy; even changing one actionin the optimal policy may require drastic changes in the rest of the policy for it to retain35



Abstract value vs. 32 state 64 state 256 statetrue policy value domain domain domainAverage error 6.96 3.14 0.99Standard Deviation 3.28 1.00 0.19Maximum Error 11.0 4.0 1.0Predicted Bound 11.0 4.0 1.0Time required to 0.34s 1.03s 9.74scompute policy (0.021%) (0.065%) (0.61%)Iterations 5 9 13true abstract policyvalue vs. optimal policyNo. of errors in 879 425 136action to choose 42:9% 20:8% 6:6%Average error in 8.26 3.27 0.22value of state (42.1%) (16.7%) (1.1%)Standard Deviation 5.21 1.92 0.21Maximum Error 19.6 7.39 1.9Predicted Bound 20.9 7.6 1.9Table 3: Results of abstraction for the coffee domain.by adopting the abstract policy rather than the optimal policy. As we see, theaverage loss in value per state is quite good, dropping to 0:22 (with possibleoptimal values ranging from 22.4 to 42.0) in the �nest-grained abstraction, witha maximum error of 1:9. The 32-state and 64-state abstractions also producereasonable policies, and require trivial amounts of computation time (0:34 and1:07 seconds, respectively) compared to the 1588 seconds required to solve thefull problem.The second domain, the builder domain, involves an agent that must jointwo objects together and is adapted from standard job-shop scheduling prob-lems used to test partial-order planners like SNLP [36] and buridan [32]. Itis not designed with the ability to construct good abstractions in mind. Formaximum reward, the objects must be machined to the correct shape, clean,painted, and joined together. The reward for any given state is simply the sumof the individual rewards for all of these attributes. The state contains ninepropositions (512 states) and ten actions (see Appendix A for a description ofthe problem). Policy iteration on the entire state space required 27.1 secondsand eight iterations. State values range from 0.0 to 20.0. The results of the sin-gle possible abstraction are summarized in Table 4. The abstraction was againgood, especially considering the small size of the abstraction (only 32 states).The average error in the value of a state is 5.99, which is quite large, spanning30 per cent of the possible range of optimal values; but the abstract policy re-reasonable value. However, in this domain the measure is of some interest since many of thesame tasks must be performed at di�erent levels of abstraction.36



Abstract value vs. true policy valueAverage error in state value 2.69Standard Deviation 1.86Maximum Error 6.0Predicted Bound 6.0Time required to compute policy 0:35s= 1:29%Iterations required 4true abstract policy value vs. optimal policyNo. of errors in action 309 = 60:4%Average error 5.99Standard Deviation 2.16Maximum Error 10.00Predicted Bound 11.40Table 4: Results of abstraction for the builder domain.quired only about one percent of the computation time required for the optimalpolicy. For this domain, since the abstract state space is so much smaller thanthe concrete one, some local way of improving the policy, such as the searchprocedure described in the next section, may be very valuable. Since there isno abstraction that is more �ne-grained than this, we cannot choose anotherabstraction if the bound on the di�erence between the abstract and optimalpolicies of 11.4 is unacceptable.4 Using Abstract Policies and Value FunctionsMany problems may prove amenable to our abstraction procedure, and allowapproximately optimal policies to be computed much more quickly than onecould construct an optimal policy. Problem characteristics that will give riseto good abstractions include the existence of variables that are irrelevant tothe objectives at hand (or only marginally relevant | see Section 5); a multi-attribute utility function in which the various attributes (subgoals) may beachieved or maintained relatively independently; and especially the existenceof subgoals whose contributions to the value function are considerably largerthan those of other subgoals. However, we expect that for many problems,abstractions of the type described here may not produce abstract policies withacceptable error bounds. In such cases, our abstraction mechanism may stillprove useful, for it can be integrated with a number of other planning strategies.One way to take advantage of the abstraction procedure is to use multiplelevels of abstraction to produce an optimal policy in a way analogous to clas-sical abstraction planners: a solution to an abstact problem is used to �nd thesolution to a less abstract problem more e�ciently, perhaps proceeding througha hierarchy of more and more �ne-grained abstractions. This can prove useful,even when good abstract solutions exist, if an optimal solution is required.37



MDP to solve Initial policy Time Iterations32 state Greedy 0.34s 564 state Greedy 1.03s 932 state 1.29s 9256 state Greedy 9.75s 1332 state 10.40s 1264 state 8.37s 92048 state Greedy 1588.62s 11332 state 1401.72s 8164 state 588.23s 20256 state 1106.32s 71Table 5: Abstraction sequences for optimal solutionAnother way to exploit the information generated by our abstraction mech-anism is to use the abstract value function as a heuristic estimate of the true(long-term) value of individual states. This is an invaluable source of informa-tion when planning is viewed as forward or progressive search through the statespace. In addition, should real-time constraints force actions to be selected andexecuted at di�erent intervals, the abstract policy provides a reasonable set ofdefault reactions. We discuss each of these uses of the abstraction mechanismin turn.4.1 Levels of AbstractionThe performance of the policy iteration algorithm tends to be very sensitive tothe initial (seed) policy that is used. We can take advantage of this by usingthe solution for an abstract MDP to seed the application of policy iteration toa more concrete problem, which should then require fewer iterations to solve.20The results of performing this experiment in the coffee domain describedabove, compared with using a one-step greedy policy as the initial seed, aregiven in Table 5. As the table shows, considerable savings can be gained byusing a series of abstractions to solve the concrete problem. The fastest way tocompute the optimal value for the concrete domain is to compute the optimalvalue for the 64 state abstraction, and then use that to �nd the optimal policy.This requires only 37 percent of the computation time of computing the optimalpolicy directly. Perhaps surprisingly, computing the optimal policy using the 256state policy is less e�ective than using the 64 state policy. At present, we have noway of predicting which abstractions to use for the best possible performance. Ifmultiple processors are available, a number of di�erent sequences of abstractions20Similar remarks apply to value iteration, where the initial value estimate adopted, typ-ically the immediate reward function, can have a dramatic impact on convergence. In thiscase, the abstract value function can be used as the initial estimate. We elaborate on thispoint in the section on state-space search below.38



could be run in parallel, and computation halted as soon as any processor returnsan optimal policy. This method guarantees that computing the optimal policyusing a series of abstractions will be no worse than computing it directly, shouldthe original problem be included as a (trivial) abstraction sequence.4.2 Abstract Value Function as a Heuristic FunctionPerhaps the most straightforward planning algorithm is forward search throughthe state space, or progression planning. In a decision-theoretic setting such asours, state space search amounts to the construction of a decision tree, familiarfrom decision analysis [27, 20, 41]. The value of taking an action a at a state sis the (discounted) weighted average of the value of all possible states that mayresult from a. The action selected for s is that with the highest expected value.Of course, determining the value of the outcome states requires the evaluationof actions that may be taken at those states, and so on, until terminal statesare reached, and the values at these leaves are propagated through the tree viathe familiar rollback procedure.Unfortunately, discounted in�nite-horizon problems do not have terminalstates, so the rollback procedure cannot be applied to true terminal values.21 Inthis sense, every branch of the actual decision tree is in�nite and search becomesmore like AI problem-solving or game-tree search: the tree must be cut o� atsome �nite-horizon and an estimated or heuristic value must be assigned to theleaves. The only di�erence from standard game tree search is the existence ofchance nodes, at which expectations are taken, instead of adversary nodes, atwhich minimumvalues are backed up. This is the basis of, for instance, Ballard's?-minimax search [1].We discuss the relationship of our abstraction mechanism and decision treesearch below, but we �rst describe the search mechanism in slightly more detail.The search algorithm constructs a partial decision tree rooted at the currentstate to determine the best action to perform. The decision tree is built toa �xed depth, and a heuristic function is used to estimate the value of theleaf nodes. Although �xed-depth search is not necessary for the algorithm tofunction, it allows the use of depth-�rst search, which tends to perform well inpractice. Using breadth-�rst search (or one of its variations) would make someof the pruning methods we describe below more e�cient, but these techniquesoften require considerable extra book-keeping costs.Let s and t be states, let � be the discounting factor as before, and let V(t)be the value of the heuristic function at state t. Then the estimated expectedutility of action ai in state s is:U (aijs) =Xt2S Pr(tjai; s)V (t)21One exceptionmight be when a goal state s, or other absorbing state is reached, for whichthe optimal value function can be determined analytically as R(s)=(1� �).39
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the initial state s (at the appropriate stage n). This can provide a signi�cantadvantage should a plan be needed only for a speci�c start state (or small setof start states), as much of the state space may remain unexplored.Our abstraction mechanism is relevant to o�-line decision-tree search fortwo reasons. First, an abstract MDP can generally be solved o�-line relativelyquickly, but may not produce a policy whose performance is acceptable. Oneby-product of this process is the abstract value function that provides an esti-mate of the value of each state. The values eV (s) can then be used as heuristicestimates for the leaves of the search tree. This is especially important whenthe connection to value iteration is taken into account. A reasonable heuristicfunction (or more accurately, a static evaluation function) can cause a dramaticperformance increase in a state-space search planner. On this view, our ab-straction mechanism can be thought of as a method of automatically generatingheuristic functions for decision tree evaluation. In addition, the amount of timespent on the construction of this heuristic and its accuracy can be controlled,to some extent, by adopting an abstraction at a particular level of granularity.The second advantage of using an abstract value function eV as a heuristicfunction is that we have considerable knowledge of its range of values and itsaccuracy. This allows the deployment of several pruning strategies in decisiontree construction. Utility pruning is very similar to �- and �-cuts in minimaxsearch, and requires knowledge of the maximum and minimum values of theheuristic function. For heuristics produced by the abstraction algorithm de-scribed in Section 3, these can be bounded as follows. De�ne the quantitiesM+and M� as follows:M+ = maxfR(s) : s 2 Sg1� � and M� = minfR(s) : s 2 Sg1� �These quantities are quickly computable (assuming R is represented compactly)and it is easy to see [5, 45] that M� � V �(s) � M+ for all states s. Inaddition, the value function eV � must also satisfy the same relation (since therange of the abstract reward function eR can only be tighter than that of R).For the second type of pruning, expectation pruning, we require bounds on theerror associated with the heuristic function. Again, for heuristics based on ourabstraction algorithm, these bounds can be computed using Lemma 3.8.Utility Pruning We can prune the search at an AVERAGE step if we knowthat no matter what the value of the remaining outcomes of this action,we can never exceed the utility of some other action at the preceding MAXstep. For example, consider the search tree in Figure 13 (a). We assumethat the maximum value that the heuristic function can take is 10. Whenevaluating action b, since we know that the value of the subtree rooted atT is 5, and the best that the subtrees below U and V could be is 10, theexpanded value of action b cannot be larger than 6:5 (= 5�0:7+10�0:3),so neither of nodes U and V need be expanded. This type of pruning41
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of the heuristic that it is always increasing, we rely on an estimate of the actualerror in the heuristic. Using iterative deepening rather than depth-�rst searchseriously limits the applicability of utility pruning since the �nal value of an ac-tion is only known when the last round of deepening is performed. On the otherhand, iterative deepening removes the additional computation requirements thatmake expectation pruning more expensive to perform.The advantage of planning via search is that the complexity of the algorithmdoes not depend on the size of the state space. If n is the number of actions, andb is the maximum number of possible outcomes for any action and state, thenfor an unpruned search tree of depth d, the number of nodes (states) expandedwhile calculating the best action for a single state is 1+bn+(bn)2+: : :+(bn)d =((bn)d+1 � 1)=(bn � 1). Over a series of such calculations, the cost is slightlyless than this because we can reuse previous calculations, but the complexity isO((bn)d). Thus the size of the state space has no e�ect on the algorithm; onlythe number of states visited determines the cost. In many domains this numbermay be considerably less than the total number of states. More importantly, thecomplexity of the algorithm is constant (with regard to the number of states),and execution time per action can be bounded for a �xed search depth andbranching factor.We have performed experiments to test the e�ectiveness of the searchingalgorithm in several domains. Table 6 summarizes the e�ects of search for threedi�erent problems, where for each problem, search is performed at each state inthe MDP.As the �rst and third tables show, deeper search generally leads to improvedperformance. The number of states for which an optimal action has not beenfound22 drops steadily as search depth increases, and the state values quicklyapproach optimal even though a few high-error states remain even after four stepsearch. The results from the builder domain also illustrate an important point;the search procedure doesn't always perform better as search depth increases.The two-step search is better than searching to three or four steps, at least interms of the average value of a state. More detailed analysis of the policiesproduced by each depth of search reveals that for almost all states the value ofthe policy continues to improve as search depth increases, but there are a smallnumber of pathological states for which the search algorithm performs verybadly. This phenomenon is well-documented in the search literature [40]. Searchin the coffee domain using a heuristic derived from the 256 state abstractMDP �nds a very close to optimal policy; but even four step search is unableto improve on it since the heuristic is so good.Figure 14 shows the e�ects of pruning for both �ne- and coarse-grainedheuristics in the coffee domain. It describes the number of states examinedand time required as a percentage of the same values for full (unpruned) searchto the same depth. In this case, the �ne-grained heuristic was produced from22A non-zero error means that some reachable state has a suboptimal action.43



coffee domain, heuristic from 64 state abstractionOptimal 1 step 2 step 3 step 4 steppolicy search search search searchAverage state value 35.35 32.0 33.13 33.24 34.90Percentage of optimal 100.0 90.5 93.7 94.0 98.7Maximum error 0 7.6 5.51 5.22 4.94Average error 0 3.35 2.22 2.11 0.45No. of non-zero errors 0 1786 1719 1621 1451Average non-zero error 0 3.84 2.64 2.67 0.64Time to search for one state - 0.8ms 7.6ms 97.2ms 944.8mscoffee domain, heuristic from 256 state abstractionOptimal 1 step 2 step 3 step 4 steppolicy search search search searchAverage state value 35.35 35.31 35.34 35.34 35.34Percentage of optimal 100.0 99.9 99.9 99.9 99.9Maximum error 0 1.71 0.18 0.18 0.18Average error 0 0.24 0.18 0.18 0.18No. of non-zero errors 0 2048 2048 2048 2048Average non-zero error 0 0.24 0.18 0.18 0.18Time to search for one state - 0.8ms 7.6ms 97.2ms 944.8msbuilder domainOptimal 1 step 2 step 3 step 4 steppolicy search search search searchAverage state value 18.17 12.23 18.11 18.01 18.02Percentage of optimal 100.0 67.3 99.7 99.1 99.2Maximum error 0 10.003 0.702 5.050 5.050Average error 0 5.947 0.062 0.166 0.152No. of non-zero errors 0 512 207 141 91Average non-zero error 0 5.947 0.153 0.602 0.857Time to search for one state - 1.4ms 37.8ms 1.19s 31.13sTable 6: Comparison of induced policies for various search depths for thebuilder domain. 44
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Figure 14: Pruning with (a) 256- and (b) 64- state abstractionsthe optimal policy for the 256 state abstraction described in Section 3, while thecoarse-grained heuristic was produced from the 64 state abstraction. For the�ne-grained heuristic, both pruning algorithms result in a considerable reductionin the number of states searched, while only utility pruning is e�ective with thecoarse-grained heuristic. This is due to the large error associated with theheuristic which largely prevents expectation pruning from being applied. As ageneral guide, expectation pruning should only be used when the heuristic isreasonably accurate and tight bounds can be placed on the error.As �gure 14 shows, despite the large number of states pruned from the searchtree in both domains, there is little or no saving in computation time. This isdue to the additional cost of pruning, and suggests that the tree should only bepruned if a su�ciently large subtree will be removed to justify this extra cost.Only allowing pruning close to the root of the tree gives the desired e�ect, andTable 7 shows the computational savings achieved using this method. For thebest results, we suggest allowing pruning to a depth one less than the searchtree.4.3 Integrating Planning and ExecutionThe type of search described above provides an online, anytimemethod for plan-ning and action selection. These types of considerations form, for instance, thebasis of Korf's [31] RTA* algorithm. Real-time dynamic programming (RTDP)45



Search depth Prune depth Percentage of Percentage ofstates pruned search time2 1 18.6 88.22 55.9 138.23 1 13.1 70.62 26.3 67.23 59.5 112.04 1 5.3 101.72 9.5 75.23 24.0 84.34 67.1 140.2Table 7: E�ects of limiting the depth to which pruning is performed. Valuesare compared with those for no pruning.[2] generalizes RTA* to deal with MDPs, essentially adapting a form of asyn-chronous value iteration [5] to a real-time setting. The search procedure de-scribed above can be viewed as a form of RTDP, where a search tree is useddetermine which backups are to be performed. The key di�erence in our algo-rithm is the existence of a heuristic function that will cause faster convergenceof the search and will generally cause better actions to be chosen using the sameamount of search.Time-critical domains provide a minimum of computation time in which toplan, hence it is important to restrict the space to be searched as much as pos-sible. This suggests another advantage to integrating planning and execution instochastic domains (apart from the real-time aspect). By executing the currentbest action, the agent resolves any uncertainty about the next state. We notethat the presence of a heuristic function with error bounds may cause searchto terminate quickly (through pruning), or cause fairly rapid convergence. Tothis end, the agent should execute each action as soon as it has been selected.This may result in considerable computational savings. Performing an actionin a certain state can leave the system in a number of di�erent states, so aplanning algorithm that constructs a sequence of actions would need to �nd anaction to perform for each of the possible outcomes of the action it selects �rst.By executing actions as soon as they are selected, we know (since the MDP iscompletely observable) which of the possible outcomes actually occurred, andneed only search for the next action to perform from a single state rather thanfrom many.An online search-based planning algorithm can be viewed at the highest levelas follows:1. Calculate the best action for the current state, using the heuristic functionas needed.2. Execute the best action when it is known, or the current estimated best46



Search Execution Interleaved No Executiondepth Caching No cache Caching No cache1 0.01 0.02 5.19 26.72 0.04 0.06 5.41 2813 0.42 0.51 7.14 27804 4.48 5.68 15.4 -5 55.9 56.9 102 -6 219 230 272 -Table 8: Search time for ten actions varying caching and executionaction when required due to time pressure3. Observe the new state of the system and return to step 1.Although the algorithm as presented never terminates, this is consistent withthe process-like domains for which MDPs are ideally suited. If the domaincontains goal states or other terminal (e.g., absorbing) states, the algorithmmay terminate when such a state is reached. In general, however, the agent willcontinue planning and acting inde�nitely.As we would expect, the saving in computation gained by interleaving execu-tion with planning is considerable. Let b be the maximum number of outcomesof any action. In a search for a sequence of n actions, search without executionwill require an action to be selected for Pn�1i=0 bi states compared with only nstates for search with execution. We have also performed experiments to inves-tigate the value of caching previously computed best actions (similar to LRTA*[31] or LRTDP [2]), and the value of interleaving execution with search. Ta-ble 8 summarizes the results of the search for a sequence of ten actions in asmall version of the coffee domain. The columns where execution is inter-leaved with search show the standard algorithm as described above. For searchwithout execution, the agent performs the standard search, determines the bestaction and then, rather than executing it, searches again to �nd the best ac-tion to perform for all possible outcomes of the action. Unsurprisingly, cachedsearch interleaved with execution is the most e�cient method. The size of thedomain will have a considerable e�ect on the value of caching. In this case, thedomain contains 256 states but we are only performing ten actions, so cachinghas relatively little e�ect. However, if more search is performed and space isavailable, caching appears to be worthwhile. One surprising aspect of this tableis how well the cached search without execution performs. This is due to thesmall number of states in the example. Because the algorithm caches the bestcomputed action for each state, the interleaved execution algorithm will onlycache values for at most ten states. In comparison, if each action has m possibleoutcomes, the no-execution algorithm can cache actions for up to m10=2 states.In practice this means that for a domain of this size, the algorithm quickly �nds47



Action Discriminant E�ect Prob.DelC O�ce;HRC;Wet HUC;:HRC 0.7:HRC 0.3O�ce;HRC;:Wet HUC;:HRC 0.8:HRC 0.2:O�ce;HRC :HRC 1.0:HRC 1.0Figure 15: Action with marginally relevant factorsitself looking for actions for states it has already evaluated. The column forsearch without caching or execution gives an idea of how badly search withoutexecution and with caching would perform if the state space were large enoughto prevent su�cient reuse of cached values.5 Inexact AbstractionThe method of abstraction presented in Section 3 takes as a starting pointthose propositions deemed to have the largest impact on immediate reward andthen determines the set of atoms that can, under some action choice, in
uencethe truth of these propositions. However, this is a very cautious approach togenerating relevant atoms for a given abstraction, since it does not account forthe degree of relevance of the atoms in question. In particular, an atom thathas only a marginal in
uence on the probability of an immediately relevantproposition (under some action) should be considered less relevant than an atomthat completely determines the truth or falsity of that proposition.A simple variant of our coffee example illustrates this point. Imagine thatthe problem description is exactly as in Figure 1 except that the successfuldelivery of co�ee is in
uenced slightly by the fact Wet: if the robot is wet,there is slightly increased chance (0.3 vs. 0.2) it will drop the co�ee (the newDelC action is shown in Figure 15 | we ignore the possibility of the nothinghappening, a possibility in the original formulation). In the original abstractionof this problem we ignored the impact of the variableWet on immediate rewardand generated an abstract MDP based on literals L, HRC and HUC. In thisslightly altered problem, our abstraction generation mechanism will now noticethat Wet is relevant to the achievement of HUC; subsequently, the literals Rainand Umb will be deemed relevant (since they in
uence Wet) and the abstractMDP for this slightly altered problem o�ers no compression of the state spaceat all.Just as we may be willing to ignore small distinctions in immediate reward,we may accept small errors in transition probabilities if it opens up the pos-sibility of a much smaller state space. In this example, the di�erence in the48
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0.3Figure 16: Abstract state space with inexact abstraction (action DelC)probabilities of making HUC true when Wet is true or false is 0:1. The relativeimpact of making the distinctionWet is roughly 0:08 unit of utility in a one-stepdecision problem (since the reward for HUC is 0:8). If we can accept such anerror in the policy, then it makes sense to ignoreWet in the abstract MDP. Thisallows us to also ignore Rain and Umb, generating a very small MDP (as in theoriginal problem) with a small increase in error.Certain di�culties arise with this type of inexact abstraction. The �rst isillustrated in Figure 16, which shows the clustering induced by the above con-siderations over part of the state space, along with the transition probabilitiesfor the altered DelC action (in the lighter type). In contrast with exact abstrac-tion (see Figure 7 and Theorem 3.3), we now have states in clusters that do nothave identical transition probabilities in the concrete model for a given action.To deal with this, we must assign transition probabilities to these clusters thatin some sense \average" the di�erent probabilities associated with the statesin that cluster. In the diagram, we have assigned the midpoint probabilities0:75 and 0:25 (the heavier transition arrows) to the abstract version of DelC. Arelated di�culty is the construction of the abstract action descriptions. In theexact method, if an action discriminant had a single relevant atom, the entirediscriminant (i.e., all atoms in the discriminant) was deemed relevant. Withinexact abstraction, we may delete speci�c literals from a discriminant; for ex-ample, in the abstract version of DelC the atom Wet will be deleted, resultingin partial, non-exclusive discriminants characterizing the action e�ects, some ofwhich have contradictory probabilities. We describe an algorithm that dealswith both phenomena below.It is worth pointing out that clustering of this type induces an abstract MDP49



of a fundamentally di�erent character than those built during exact abstraction:by assigning a single transition probability to cluster es, our predictions are basedon less than accurate information. In particular, if we know the prior historyof the abstract process (for example, the cluster visited prior to es), we maygain insight into which of the states we are actually at within es. But if we doknow this, we can make more accurate predictions about the e�ects of actionsperformed in es. In other words, if we keep track of the history of the abstractprocess, we can generally make more informed decisions. For instance, it maywell be that Pr(etja;es) is not the same as the probability of moving from esto et under action a given that the process was in cluster eu prior to cluster es.Therefore, the abstract stochastic process induced by inexact abstraction maynot be Markovian. By assigning history-independent probabilities Pr(etja;es) toclusters in the abstract MDP, we are necessarily losing information relevant tooptimal decision making (information that is contained in the abstract MDPitself). However, treating the abstract process as Markovian allows standard,computationally feasible history-independent solution techniques to be used.We simply have to analyze the potential loss in decision quality associated withtreating a non-Markovian model as an MDP. We describe techniques for doingso and prove certain error bounds below.A �nal di�culty associated with inexact abstraction has to do with choosingrelevant atoms. As suggested above, given a particular relevant proposition P ,we deem an atom R to be more or less relevant depending on its probabilisticin
uence on P under some action. Of course, this probabilistic in
uence mustbe traded against the relative importance of P . If R has a fairly strong impacton P , we may consider R to be relevant; but we may decide to ignore R if theutility of P is su�ciently small. In contrast, R may make only a small di�erencein the ability to predict P accurately; but if P is extremely important, Rmay bejudged relevant. Unfortunately, the degree of relevance of P must be quanti�edin order to make such a decision; and in general the impact of P on immediatereward is not an appropriate measure. Consider the following example, withtwo actions a1 and a2. If a1 is executed when R, then P becomes true withprobability 0:9 (no e�ect with probability 0:1), and if executed when :R, Pbecomes true with probability 0:8. If a2 is executed when P , then Q becomestrue with probability 0:6 and false with probability 0:4; and if executed when:P ,Q becomes true with probability 0:1 and false with probability 0:9. Supposealso that immediate reward depends only on whether Q is true (reward 10) orfalse (reward 0). Certainly Q will be deemed relevant, and presumably P willbe deemed relevant because it has an important impact on the probability of Q.Now when deciding whether to include R among the relevant atoms, we mustdetermine whether the 0:1 di�erence in the predictability of P permitted bydistinguishing R from :R is large enough to merit an increase in the abstractstate space. This in turn depends on the relative importance of P itself. Notethat the impact of P is not a function of its impact on immediate reward (ithas none); rather it depends on the atoms it in
uences (in this case Q).50



Constructing inexact abstractions requires a method of quantifying the im-pact of atoms on the value of the optimal decision. This is a di�cult issue,exacerbated by the fact that we are dealing with in�nite horizon problems. Wedo not have a wholly satisfactory method for solving this problem, but we domake some suggestions below.23 We �rst describe the construction of an ab-stract MDP and prove certain error bounds. This makes it clear just whatfactors should be accounted for when assembling the set of relevant atoms.5.1 Constructing an Abstract MDPThe algorithm for generating a set of relevant atoms in the case of inexactabstraction is similar to the algorithm used for exact abstraction presented inSection 3.1. The only di�erence is that atoms in discriminants with e�ectscontaining relevant atoms are not automatically deemed relevant; rather somecriterion is used to determine relevance based on the importance of the atom inthe e�ect list and the \predictive power" of the atom under consideration withrespect to the a�ected atom. We defer discussion of possible criteria to the nextsections. We �rst present an algorithm that constructs a new abstract actionfrom an existing action description assuming the set of relevant atoms is given.Assume a set R of relevant atoms has been determined using some methodof inexact abstraction and let a be an action of the formd1 : E11; p11;E12; p12; � � �d2 : E21; p21;E22; p22; � � �� � �dn : En1 ; pn1 ;En2 ; pn2 ; � � �The algorithm to construct an abstract action corresponding to a proceeds by�rst deleting irrelevant atoms from the action description and collapsing com-mon e�ects within discriminants (as with exact abstraction). However, specialsteps must be taken to combine the possibly di�erent e�ects of the new partialdiscriminants that are no longer completely disjoint, or have perhaps becomeidentical. It proceeds in four stages:1. Delete irrelevant atoms from each di, Eij (call these the reduced discrimi-nants and e�ects)2. For each discriminant di, collapse reduced e�ects Eij that have becomeidentical into a single reduced e�ect with probability equal toP pij of theparticipating reduced e�ects3. For any two reduced discriminants that are not mutually exclusive (i.e.,do not have complementary literals), but that have not become identical,23In particular, we suggest in Section 6.2.1 that dynamic aggregationmethods will be bettersuited to this problem. 51



split (one of) the discriminants so they become exclusive, giving each splitdiscriminant the same e�ects and probabilities as the original discriminant4. For each (maximal) set of reduced discriminants ID = fdi; dj; � � �g thatare identical, collapse into a single discriminant with a unique e�ect listas follows (for ease of presentation, assume ID = fd1; � � �dkg):(a) Replace the set ID with the single discriminant ed = d1(b) For each di 2 ID and Eij associated with di, add the e�ect-probabilitypair hEij; pijk i to the new e�ect list for ed(c) Collapse identical e�ects Eij associated with d in the usual way (sum-ming probabilities { let the probability of any e�ect in the simpli�edabstract action be denoted epij)Steps 1 and 2 of this process proceed exactly as in exact abstraction. Steps 3 and4 are required because discriminants need not be mutually exclusive. Note thatin exact abstraction, two discriminants can become simpler only if all possiblee�ects contain no relevant atoms | no con
icting e�ects are possible in theabstract space | so Steps 3 and 4 were not necessary.Step 3 is intended to deal with a situation where an atom is deleted froman action description leaving two non-exclusive discriminants. For instance,imagine an action of the formA ^B : e1; 1:0A ^ :B : e1; 0:95; e2; 0:05:A : e1; 0:9; e2; 0:1where B is deemed relevant for certain reasons, but the di�erence between e�ectse1 and e2 is not judged important enough to warrant the distinction between Aand :A (i.e., the probability di�erence of 0:1 is too small). Deleting A from theaction description results in the three non-exclusive discriminants B, :B and>. Before combining probabilistic e�ects, we split discriminants such as > intotwo parts B and :B so that each pair of discriminants is mutually exclusiveor identical, and copy the e�ect list of the original discriminant into each of itscomponents. This results in the new action descriptionB : e1; 1:0:B : e1; 0:95; e2; 0:05B : e1; 0:9; e2; 0:1:B : e1; 0:9; e2; 0:1The details of such a procedure are straightforward in the case of discriminantsrepresented as sets of literals, so we do not elaborate here.Step 4 captures the essence of inexact abstraction, approximating the tran-sition probabilities for states that have become clustered despite having slightly52



di�erent probabilistic e�ects on relevant atoms. The e�ect of this collapsing inthe action above would be B : e1; 0:95; e2; 0:05:B : e1; 0:925; e2; 0:075In the case of the new DelC action in Figure 15, the abstract action produced,should atom Wet be judged irrelevant, is given by:O�ce;HRC : HUC;:HRC; 0:75;:HRC; 0:25:O�ce;HRC : :HRC; 1:0:HRC : ;; 1:0We note that the particular procedure described in Step 4 for \blurring"probabilities is adopted primarily for convenience. In general, any procedurecan be used to assign probabilities to e�ects, as long as the e�ect probabilitiessum to one for the combined discriminant. This particularly simple approachhas this property and works well in cases where the same e�ects occur in theelements of ID, just with di�erent probabilities. In such a case, the e�ectsare assigned the average probability. Approximate midpoints might also beassigned to each e�ect, so long as care is taken to ensure the e�ect probabilitiessum to one (e.g., a sophisticated minimization procedure might be adopted). Weleave open the possibility of more sophisticated but computationally demandingblurring techniques. In general, we want to minimize the di�erence between thenew assigned probability p and the true probability of the e�ect under any ofthe original discriminants. More precisely, as we will see below, the errors intransition probabilities within a single discriminant can accumulate to produceerrors in the computation of value and in action selection. Thus, we wantto ensure that the total error is kept small. We will assume below (roughly)that the accumulated error in the new transition probabilities for any actiondiscriminant is bounded by some factor �: that is, for any discriminant di,Pj jepij � pij j � �. Clearly, this factor will in
uence which atoms are actuallydeleted from the action description.We note without proof the following rather obvious properties of new ab-stract actions constructed in this way:Proposition 5.1 Let action ea be an abstract actioned1 : E11; ep11;E12; ep12; � � �ed2 : E21; ep21;E22; ep22; � � �� � �edn : En1 ; epn1 ;En2 ; epn2 ; � � �constructed from a concrete action a by inexact abstraction as described above.If a is well-formed (i.e., has mutually exclusive, exhaustive discriminants andprobabilities that sum to one for each discriminant), then53



(a) The set of discriminants fed1; � � � edng is mutually exclusive andexhaustive.(b) For each j, Pifepjig = 1.5.2 Error Bounds for Inexact AbstractionBefore considering means by which to construct the set of relevant atoms, it isinstructive to determine error bounds for inexact abstraction and the featuresof the abstraction that a�ect solution quality. To begin, we consider the errorassociated with determining the value of the one-stage policy DelC at the initialcluster in the inexact abstraction depicted in Figure 16. The abstract (zero-stage) value of the two clusters et and eu is simply the abstract reward function| eV 0(et) = 0:9 and eV 0(eu) = 0:1. The error introduced in the abstract one-stage value function eV 1(es) by blurring the immediate reward function is exactlyas characterized in exact abstraction. However, the fact that the transitionprobabilities used to derive the abstract value function are imprecise introducesfurther error in the estimated value. The true value of the policy DelC at states is a function of the transition probabilities 0:8 and 0:2, whereas the abstractvalue function adopts probabilities 0:75 and 0:25 in its calculation. Ignoring theerrors in the reward function, a simple calculation reveals thatjeV 1(es) � V 1(s)j � � � 0:05(V 0(t)� V 0(u))Here 0:05 is the error in the probability estimates for each of the e�ects as-sociated with action DelC, while intuitively the quantity V 0(t) � V 0(u) is thedi�erence in (zero-stage) value for the states reachable from s. We could alsoreplace this part of the term by eV 0(et)� eV 0(eu), which suggests that the possiblevalues of the di�erent reachable clusters may be used to bound error as well.To determine the possible error in the abstract value function eV i introducedby inexact abstraction, we must know the possible ranges of values (at least forreachable clusters) in the function eV i�1. Not surprisingly, knowing the errorsin the abstract transition probabilities is not enough. The di�culty is that theerror bound cannot be computed directly using the local information in theproblem speci�cation (such as the reward function). For an in�nite horizonproblem, we must have estimates of the (optimal) value function before wecan compute the error bounds for possible inexact abstractions. However, theoptimal value function is one of the things we are trying to determine by solvingthe abstract MDP. This circularity makes generating inexact abstractions with(a priori) known error bounds very di�cult. However, we can prove error boundsbased on certain knowledge of the abstract (or concrete) value function; thissuggests certain crude methods for bounding the error of inexact abstraction,which we address in the next section.As noted, the error in the value estimate of an abstract policy depends onboth the accumulated error in transition probabilities and the value di�erences54



in the reachable clusters for which inexact probabilities are used. We assumethat, for a speci�c action a and discriminant d associated with a in its inexactabstraction, the total error introduced in the probability of any e�ect associatedwith that discriminant is �d;a; that is, Pj jepj � pj j � �d;a for all e�ects Ej inthe e�ect list for d. Characterized in terms of state transitions, we assume theinexact abstraction is such that, for any es satisfying discriminant d of action aand s 2 es: Xet2eS jPr(etja; es)�Xt2et Pr(tja; s)j � �d;aOf course, even small errors in prediction can be disastrous if they haveimportant consequences. Thus, we also assume that we have certain informationabout the value function for any blurred transition probability. Let es be anyabstract state satisfying discriminant d. We assume that[maxfeV (et) : Pr(etja;es) > 0g �minfeV (et) : Pr(etja;es) > 0g] � �d;a � �In other words, for any transition probability error introduced, the values of theclusters to which that error applies lie within a range r such that r ��d;a � �. Ifwe assume that an inexact abstraction is created such that, whenever a transi-tion probability is approximated within a certain discriminant, this condition isobserved, then we can bound the errors introduced by inexact abstraction. Asusual, we take � to be the discounting factor and � to be the maximum utilityspan for the (inexact) abstract MDP.Theorem 5.2 For any s 2 es,jeVe�(es) � V�(s)j � � + ��2(1� �)Proof This result is proved in an inductive fashion similar to the proof ofTheorem 3.7. The crucial di�erence in the proof lies in the inductive stepwhere the abstract and concrete probabilities may di�er. The inductivehypothesis is jeV ke� (et)� V k� (t)j � kXi=0 �2�i + kXi=1 �2 �iwhich clearly holds for k = 0 (where the error is �2 as in the case of exactabstraction). The induction step proceeds as follows (we assume es satis�esdiscriminant d of action e�(es)).���eV k+1e� (es)� V k+1� (s)��� = ������24 eR(es) + �Xet2eS Pr(etje�(es); es)eV ke� (et)35� "R(s) + �Xt2S Pr(tj�(s); s)V k� (t)#������55



� ��� eR(es)�R(s)��� + � ������Xet2eS 24Pr(etje�(es); es)eV ke� (et)�Xt2et Pr(tj�(s); s)V k� (t)35������Now we have������Xet2eS 24Pr(etje�(es); es)eV ke� (et)�Xt2et Pr(tj�(s); s)V k� (t)35������� ������Xet2eS 24Pr(etje�(es); es)eV ke� (et)�Xt2et Pr(tj�(s); s)eV k� (et)35������+ ������Xet2eSXt2et Pr(tj�(s); s)�eV k� (et)� V k� (t)�������� ������Xet2eS 0@Pr(etje�(es); es)�Xt2et Pr(tj�(s); s)1A eV k� (et)������+ kXi=0 �2�i + kXi=1 �2 �iWe know that, for s 2 es, the following relationships hold:������Pr(etje�(es); es)�Xt2et Pr(tj�(s); s))������ � �d;e�(es);Xet2eS Pr(etje�(es); es) = 1 and Xet2eSXt2et Pr(tj�(s); s) = 1Each summand in the term������Xet2eS 0@Pr(etje�(es); es)�Xt2et Pr(tj�(s); s)1A eV k� (et)������ (4)has the form (p�p0)V where the ps sum to 1, and the p0s sum to 1, henceXet2eS 0@Pr(etje�(es); es)�Xt2et Pr(tj�(s); s)1A = 0That is, the sum of the transition probability errors is zero. ThereforeEquation 4 takes its maximum value when the positive half of the error inprobability �d;e�(es)=2 occurs at extreme values of eV k (either its maximumorminimum), and the negative half of the error occurs at the other extreme.Thus we have������Xet2eS 0@Pr(etje�(es); es) �Xt2et Pr(tj�(s); s)1A eV k� (et)������ ��d;e�(es)2 hmaxfeV k(et) : Pr(etje�(es); es) > 0g �minfeV k(et) : Pr(etje�(es); es) > 0gi56



By construction, the l.h.s. of this last inequality is bounded by �=2.Putting these components together we get���eV k+1e� (es)� V k+1� (s)��� � �2 + � "�2 + kXi=0 �2�i + kXi=1 �2 �i#� k+1Xi=0 �2�i + k+1Xi=1 �2 �i� k+1Xi=0 � + ��2 �iTaking this in the limit yields the result. �Thus, by introducing small errors in the abstract transition function, we intro-duce additional errors in the computed value function. However, as in the caseof errors in the abstract reward function, the contribution of this error to theoverall error in the value is additive, introducing additional error of at most�=2 at each stage of the process. We note that similar bounds can be derivedusing the concrete value function in the de�nition of � instead of the abstractvalue function eV .Similar considerations apply to the loss in solution quality introduced byadopting an inexact abstraction. Taking � to be the concrete policy induced bysolution of the abstract MDP, we have:Theorem 5.3 For any s 2 SjV �(s) � V�(s)j � �(� +�)1� �Proof We omit details. The proof proceeds exactly like that for Theorem 3.7.In particular, the proof of Lemma 3.8 can be adapted using considerationsidentical to those described in the proof of Theorem 5.2. �5.3 Determining Relevant AtomsAs mentioned above, the di�culty associated with inexact abstraction is thatone is required to know the value of a particular state or cluster before beingable to determine the degree of relevance of any atom when considering it fordeletion from the problem description. Naturally, this value will not generallybe known since it is usually determined by the generation of an optimal policy(whose computation will be based on the abstraction we generate). However,57



there are methods one can use to estimate or bound the value function in a waythat can be applied to this problem.The simplest mechanism for bounding the error is to use the maximum andminimum rewards to bound the maximum and minimum values of any statewhich can then be plugged into the formulae above. The quantities M+ andM�, de�ned in Section 4, can thus be used to bound the error introduced (inthe de�nition of �) and can thus be used to decide when small probabilisticin
uences should be ignored in the generation of the set of relevant atoms.In particular, suppose that the error in transition probability for any abstractaction at any state is bounded by a term �. The following easily computableerror bound then holds:Proposition 5.4 Let �d;a � � for all actions a and discriminants d. Then forany s 2 S jV �(s)� V�(s)j � �(� + �(M+ �M�))1� �This fact can be used in the generation of the relevant set whenever a smallprobabilistic distinction is to be ignored. If the collapsing of a set of discrimi-nants for a given action introduces an error in transition probability � such thatthe error term above is acceptable, then the deletion of the distinction can bemade. In essence, considerations of this type introduce a threshold in transitionprobability error that is simple from both a conceptual and implementationalstandpoint.This simple and loose error bound induces a strategy for deleting marginallyrelevant atoms that depends solely on the di�erence in probabilities of an ac-tion's e�ects, not on the relative value of the e�ects. While easy to implement,this may provide only crude estimates of degrees of relevance and will tend to beextremely cautious (ignoring only small probability errors). In general, largererrors in transition probability will be acceptable if the value of the target clus-ters is reasonably close. In order to track this, one could augment the algorithmfor determining relevant atoms with additional machinery to determine degreeof relevance. This would be able to take into account the in
uence of atoms onother relevant atoms by considering the degree to which they a�ect the controlof the relevant atoms using particular actions; it can also account for the \dis-tance" of this in
uence. If the impact of a particular atom A on the value of animmediately relevant atom B is removed through a sequence of n actions, thenthe relative importance of A can be scaled down by a factor �n to re
ect this\e�ect at a distance".A backchaining algorithm similar to the one described in Section 3 could beadapted in this way. Unfortunately, to determine degrees of relevance with anyaccuracy will no longer be an operation linear in the problem description: themore accurate these values must be, the more such backchaining must imple-ment the steps of the dynamic programming solution algorithms. We therefore58



do not present any algorithm for estimating the relative importance of atomsfor use by our inexact abstraction mechanism. We feel that the appropriatemanner in which to deal with these considerations requires the integration ofthe abstraction mechanism with dynamic programming solution methods. Inparticular, to deal with these problems we suggest that adaptive abstractionmechanisms must be adopted. We have begun investigations of such techniquesin [10]; we elaborate further in Section 6.2.1.6 Concluding Remarks6.1 SummaryWe have argued that Markov decision processes provide a useful foundation forunderstanding decision theoretic planning, and that computational tools for op-timal policy construction may be adapted for DTP. In particular, we have shownthat AI representational techniques allow the compact and natural speci�cationof DTP problems as MDPs, and that the regularities and independencies madeexplicit by the representation can be exploited to develop abstractions or aggre-gations that allow approximately optimal policies to be developed with greatlyreduced computation time in appropriate domains. This aspect of our workalso adopts techniques from classical AI planning, in particular, work on thegeneration of abstraction hierarchies. Finally, we have shown several ways inwhich the solutions to abstract MDPs can be used and locally improved in bothonline and o�-line models of plan construction.The keys to our approach to abstraction are the fact that abstractions can begenerated quickly (in time roughly linear in the size of the problem descriptionrather than in time that grows with the state space), and the fact that one candetermine upper bounds on the loss in solution quality associated with a givenabstraction (also very quickly). In addition, the trade-o�s between abstractionsand their quality can be characterized in terms related to the notion of value ofinformation.We consider this work to represent some �rst steps toward the developmentof practical and theoretically-sound solution methods based on the use of inten-sional, AI-style representations of decision and planning problems. However, wedo not claim that the particular model adopted here will prove useful in all set-tings | it seems most appropriate when there are objectives with additive andindependent value, some of which are more important than others, and for whichsome features of the domain are only (or primarily) relevant in the achievementof less important objectives. Combined with local improvement methods (suchas search) or global improvement methods (such as abstraction hierarchies),our abstraction model provides faster and potentially very tractable (exact orapproximate) solution methods for such domains.There are two key weaknesses in this model. The �rst is the di�culty in59



providing tight, a priori error bounds on inexact abstractions. The second isthe fact that the aggregation method used requires the prior, uniform deletionof literals from the problem description. Thus, the aggregation is �xed anduniform. Other aggregation methods will prove more useful (as we describebelow). However, this work provides the conceptual foundation and techniquesfor proving error bounds for other abstraction methods based on intensionalrepresentation.6.2 Future Directions6.2.1 Other Aggregation MethodsThere are a number of very interesting directions in which this work can beextended, some of which we are currently exploring. One of the most promisingavenues appears to be the use of more general forms of aggregation. While ourmethod of aggregation, exploiting intensional problem representations, is novel,the notion of aggregation of states to solve MDPs has been explored previously[4, 52]. For instance, Bertsekas and Castanon [4] propose an adaptive aggrega-tion method that allows one to group together states in the evaluation phase ofpolicy iteration such that the value produced for any cluster of states approx-imates the value for each constituent state. Unfortunately, with this methodone typically must examine properties of individual states to determine an ap-propriate aggregation (thus, this does not preclude explicit enumeration of thestate space). However, dynamic aggregation using structured representations toapproximate the solution of MDPs should prove extremely valuable.To elaborate, we can roughly classify aggregation methods along three di-mensions (among others): adaptivity, uniformity and accuracy. Aggregationscan be either dynamic (adaptive) or �xed, referring to whether or not the clus-tering of states can change according the state of the computation of a solution.They can also be uniform or nonuniform, depending on whether the distinctionsused to partition the state space are identical everywhere. Finally, they can beexact or approximate, where by exact aggregation we refer to a clustering inwhich the states within any particular cluster are known to have the same valueor best action, in contrast to an approximate aggregation where these statesmay share similar but not identical values.Our abstraction procedure is a �xed, uniform and approximate aggregationmethod. The �rst two characteristics are drawbacks in may cases. For example,suppose a reward function describes two objectives o1 and o2 such that o1 issomewhat more important that o2, but o2 is important enough to merit con-sideration. In the course of developing a policy, a planner may notice that theachievement of both o1 and o2 is impossible and that an optimal policy ignoreso2 completely in favor of o1. It often turns out that the irrelevance of o2 can bedetected early in the development of an optimal policy [10]. More generally, therelevance of literals can vary dramatically with the policy adopted. This means60



that dynamic rather than �xed aggregations should be adopted: one shouldoften allow the aggregation to vary with the current policy in policy iteration.The uniform deletion of literals from the problem description may also beinappropriate: if an agent receives a reward for ensuring B whenever A is true,but reward is independent of B when A is false, then a uniform aggregationscheme requires either than B be deleted everywhere (thus ignoring the pos-sible reward di�erence when A is true), or the distinction on dimension B bemade everywhere (although the distinction is irrelevant where A is false). In-tuitively, relevance is a conditional notion: a literal may be relevant in certaincircumstances and irrelevant in others. In this example, the state space shouldbe aggregated into three clusters corresponding to the propositions :A, A ^Band A ^ :B. In contrast to a uniform aggregation, where clusters are of thesame \size" and make the same distinctions, a nonuniform aggregation wouldbe appropriate here.We have begun explorations of the use of intensional representations forcreating dynamic, nonuniform aggregation techniques for solving MDPs. In[10] we describe an algorithm in which a decision-tree representation is used torepresent value functions and policies so that regularities in these functions canbe exploited and the functions themselves can be represented compactly. It isalso possible to apply of the approximation methods developed in this paper tosuch dynamic, nonuniform methods [9].An advantage of an adaptive scheme like that described in [10, 9] is that theproblem of estimating the impact of ignoring marginally relevant atoms (thebottleneck in Section 5) is obviated. Because the aggregation being used is re-constructed at each step of the computation, evaluating the impact of ignoringone of these distinctions is essentially a local operation whose error bounds arelocally computable. We need not determine the global impact of such a de-cision since the decision may be re-evaluated at a later stage of computation.Our expectation is that combining the ideas from this paper with other aggre-gation methods will result in very robust and tractable dynamic, nonuniform,approximate abstraction mechanisms.Aggregation methods and function approximation have also been studiedto a large extent in the reinforcement learning community, albeit not usuallybased on intensional problem descriptions, and particular ideas in that workcan also play a crucial role in determining good abstractions [37, 14, 53]. It isimportant to point out that many aggregation algorithms are useful for dealingwith metric state spaces, such as robot navigation domains, where states can beclustered according to their distance from each other. For example, a grid worldmay be broken into geographic regions such that the construction of a policymay be computed separately for each region or (less commonly addressed) thesame action can be performed with good results at each state within a region.Such clusterings cannot be developed within our approach | close locationson a map do not share properties of the type we exploit in our method. Inparticular, if locations are described by x; y-coordinates, then no two locations61



share useful properties (having the same x-dimension is not likely to be mean-ingful for abstraction). Of course, such approaches cannot deal with regularityin \propositional structure".In addition, good theories of action aggregation may prove useful. To someextent, our abstraction mechanism does aggregate actions, either by collapsing\branches" when discriminants within an action become the same, or (implic-itly) combining actions themselves. However, this action simpli�cation is drivenby abstraction in the state space. Considerations unique to actions themselvesmay also be applied (see, e.g., [22] where hand-crafted action abstractions areanalyzed), but the automatic aggregation of (components of) action descriptionsremains largely unexplored.6.2.2 Other DirectionsOther directions in which this work can be extended include the developmentof problem-speci�c abstraction mechanisms. For instance, if one is generatinga policy for repeated use over �nite-horizon problems, it may be possible totake advantage of knowledge of the typical starting states (e.g., in the form ofa distribution over the state space) and exploit this in constructing a singleabstraction that gives good average-case performance. Another way of exploit-ing known starting states is the adoption of envelope methods [15, 56], where(likely) reachability from the start state is used to cluster states into a set of INstates and OUT states. Dynamic programming is restricted to the IN states,and if a transition leads out of the envelope, a estimated value of \being OUT"is used to determine the value of related IN states. Our abstraction techniquescan be used by such a method, for example, to construct the estimate for beingOUT (perhaps re�ning the set of OUT states into regions) and provide ini-tial estimates for policy construction over the IN states. The combination ofcomplementary approximation techniques should prove fruitful.Finally, methods such as these must be extended to partially-observable set-tings if they are to be applied to general DTP problems. The computationaldi�culty of solving POMDPs optimally is well-documented, so the use of ap-proximation becomes crucial. Some methods based on function approximationare described in [39, 33]; and preliminary investigations of the use of inten-sional representations to determine dynamic, nonuniform, exact aggregationsare described in [11].References[1] Bruce W. Ballard. The *-minimax search procedure for trees containing chancenodes. Arti�cial Intelligence, 21:327{350, 1983.[2] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-timedynamic programming. Arti�cial Intelligence, 72(1{2):81{138, 1995.62
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A Example Problem DescriptionsThe 2048-State coffee DomainAction Discriminant E�ect Prob. Action Discriminant E�ect Prob.MoveLeft Loc = O� Loc = Lab 0.9 BuyCo�ee Loc = Shop,:RhB RhC 0.8; 0.1 ; 0.2Loc = Lab Loc = Shop 0.9 Loc = Shop,RhB RhC,:RhB 0.7; 0.1 :RhB 0.2Loc = Shop Loc = Mail 0.9 ; 0.1; 0.1 Loc = O� ; 1.0Loc = Mail Loc = O� 0.9 Loc = Lab ; 1.0; 0.1 Loc = Mail ; 1.0MoveLeft R,:U W 0.9 BuyBun Loc = Shop,:RhC RhB 0.8; 0.1 ; 0.2R,U ; 1.0 Loc = Shop,RhC RhB,:RhC 0.7:R ; 1.0 :RhC 0.2MoveRight Loc = O� Loc = Mail 0.9 ; 0.1; 0.1 Loc = O� ; 1.0Loc = Lab Loc = O� 0.9 Loc = Lab ; 1.0; 0.1 Loc = Mail ; 1.0Loc = Shop Loc = Lab 0.9 GetMail Loc = Mail,MW RhM,:MW 0.9; 0.1 ; 0.1Loc = Mail Loc = Shop 0.9 Loc = Mail,:MW ; 1.0; 0.1 Loc = O� ; 1.0MoveRight R,:U W 0.9 Loc = Lab ; 1.0; 0.1 Loc = Shop ; 1.0R,U ; 1.0 DelMail Loc = O�,RhM :RhM 0.9:R ; 1.0 ; 0.1Deliver Loc = O�,RhC :RhC,UhC 0.8 Loc = O�,:RhM ; 1.0:RhC 0.1 Loc = Lab ; 1.0; 0.1 Loc = Shop ; 1.0Loc = O�,:RhC,RhB :RhB,UhB 0.8 Loc = Mail ; 1.0:RhB 0.1; 0.1Loc = O�,:RhC,:Rhb ; 1.0Loc = Lab ; 1.0Loc = Shop ; 1.0Loc = Mail ; 1.0Rewards in this domain are additive as follows:Proposition Value Proposition ValueUhC 1.0 :UhC 0.0UhB 0.7 :UhB 0.0W 0.0 :W 0.1MW,RhM 0.0 MW,:RhM 0.0:MW,RhM 0.0 :MW,:RhM 0.367



The builder DomainAction Discriminant E�ect Prob.PaintA AClean APainted 0.75:AClean 0.20; 0.05:AClean ; 1.00PaintB BClean BPainted 0.75:BClean 0.20; 0.05:BClean ; 1.00ShapeA :Joined :APainted,AShaped 0.80:APainted,:AClean,:AShaped,:ADrilled 0.10:APainted 0.10Joined :BPainted,:APainted 1.00ShapeB :Joined :BPainted,BShaped 0.80:BPainted,:BClean,:BShaped,:BDrilled 0.10:BPainted 0.10Joined :BPainted,:APainted 1.00DrillA :Joined ADrilled 0.90; 0.10Joined ; 1.00DrillB :Joined BDrilled 0.90; 0.10Joined ; 1.00WashA AClean 0.90; 0.10WashB BClean 0.90; 0.10Bolt BShaped,AShaped, Joined 0.80BDrilled,ADrilled ; 0.20:ADrilled ; 1.00:BDrilled,ADrilled ; 1.00:AShaped,BDrilled,ADrilled ; 1.00:BShaped,AShaped, ; 1.00BDrilled,ADrilledGlue BShaped,AShaped :BClean,:AClean,Joined 0.35Joined 0.35:BClean,:AClean 0.15; 0.15:AShaped :BClean,:AClean 0.50; 0.50:BShaped,AShaped :BClean,:AClean 0.50; 0.50Rewards in this domain are additive as follows:Proposition Value Proposition ValueAClean 0.1 :AClean 0.0BClean 0.1 :BClean 0.0APainted 0.2 :BPainted 0.0APainted 0.2 :BPainted 0.0Joined 0.4 :Joined 0.068


