
Demonstrating Principled Uncertainty Modeling for
Recommender Ecosystems with RecSim NG

M. Mladenov
∗

Google Research

Mountain View, CA

mmladenov@google.com

C. Hsu
∗

Google Research

Mountain View, CA

cwhsu@google.com

V. Jain

Google Research

Mountain View, CA

vihanjain@google.com

E. Ie

Google Research

Mountain View, CA

eugeneie@google.com

C. Colby

Google Research

Mountain View, CA

ccolby@google.com

N. Mayoraz

Google Research

Mountain View, CA

nmayoraz@google.com

H. Pham

Google Research

Mountain View, CA

huberpham@google.com

D. Tran

Google Research

Mountain View, CA

trandustin@google.com

I. Vendrov

Google Research

Mountain View, CA

ivendrov@google.com

C. Boutilier

Google Research

Mountain View, CA

cboutilier@google.com

ABSTRACT
We develop RecSim NG, a probabilistic platform that supports nat-

ural, concise specification and learning of models for multi-agent

recommender systems simulation. RecSim NG is a scalable, modular,

differentiable simulator implemented in Edward2 and TensorFlow.

CCS CONCEPTS
• Computing methodologies → Simulation environments; •
Information systems→ Recommender systems.

KEYWORDS
Probabilistic Programming, Latent Variable Models, Reinforcement

Learning

ACM Reference Format:
M. Mladenov, C. Hsu, V. Jain, E. Ie, C. Colby, N. Mayoraz, H. Pham, D. Tran,

I. Vendrov, and C. Boutilier. 2020. Demonstrating Principled Uncertainty

Modeling for Recommender Ecosystems with RecSim NG. In Fourteenth
ACM Conference on Recommender Systems (RecSys ’20), September 21–26,
2020, Virtual Event, Brazil. ACM, New York, NY, USA, 3 pages. https://doi.

org/10.1145/3383313.3411527

∗
Contact author.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

RecSys ’20, September 21–26, 2020, Virtual Event, Brazil
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7583-2/20/09.

https://doi.org/10.1145/3383313.3411527

1 INTRODUCTION
Recent years have seen increased emphasis, both in research and in

practice, on recommender systems (RSs) that are capable of sophis-

ticated interaction with users, beyond simply presenting items and

passively observing immediate user reactions (clicks, consumption,

ratings, purchase, etc.). This includes systems capable of exploring

user interests [8, 16], optimizing engagement over multi-step hori-

zons [7, 11, 13, 21, 27], or engaging in natural language dialogue

[9, 23]. Such RSs cannot generally be trained using static data sets
since assessing the effect of counterfactual actions on user behavior

is crucial. Moreover, once we model non-myopic user behavior, the

interaction between content consumers and content providers takes

on added importance in predicting RS performance. Indeed, almost

every practical RS embodies a complex, multi-agent ecosystem. This

amplifies the need for RS methods to capture long-term behavior

of and among participants, as well as RS models that capture these

(potentially strategic) interactions.

To facilitate the development and study of RS methods in such

complex environments, we develop RecSim NG, a configurable plat-

form for both authoring and learning RS simulation environments.
Effective simulation can be used to evaluate existing RS policies, or

generate data to train new policies (in either a tightly coupled online

fashion, or in batchmode). Just as simulation has greatly accelerated

progress in reinforcement learning (RL) research [2, 4, 5], RecSim

NG can support advances in long-horizon and ecosystem-aware

RSs. Broadly, RecSim NG provides a probabilistic programming

framework that allows the natural specification of user and cre-

ator behavior/dynamics within RS ecosystems, the ability to learn

the parameters of such models from data, and supports a number

of probabilistic inference techniques (beyond Monte Carlo (MC)

simulation) for evaluating RS algorithms.

https://doi.org/10.1145/3383313.3411527
https://doi.org/10.1145/3383313.3411527
https://doi.org/10.1145/3383313.3411527


RecSys ’20, September 21–26, 2020, Virtual Event, Brazil M. Mladenov, C. Hsu, V. Jain, E. Ie, C. Colby, N. Mayoraz, H. Pham, D. Tran, I. Vendrov, and C. Boutilier

2 KEY GOALS AND CONTRIBUTIONS
We briefly outline the main aims and benefits of RecSim NG.

User state dynamics. Models of user (and provider) behavior

over interaction sequences must reflect user state evolution. RecSim
NG builds on the probabilistic programming language Edward2

[25] to specify common design patterns for user state and behavior

(e.g., user preferences, satisfaction, choice/consumption behavior).

RecSim NG emphasizes causal, generative models of user behavior

and utility (e.g., user state, choice, & response/engagement models;

user-state transition dynamics). These models are specified as a

composable set of dynamic Bayesian networks (DBNs) [10, 15] orga-

nized in an object-oriented fashion [19] using three main concepts

(or EBSs): entities (e.g., users, recommenders), behaviors (e.g., state
transitions, choice models) and stories (e.g., user-system interaction

details).

Latent state models. User models should reflect latent or unob-
servable user state. To support effective (long-term) recommenda-

tion, RSs must often engage in latent-state estimation, given various

observable behaviors, to build internal models of (say): user prefer-

ences; user psychological state (e.g., satisfaction, frustration); and

other exogenous environmental factors (e.g., user context such as

activity). RecSim NG allows the flexible specification of observables

so that practitioners can test the state estimation capabilities of

different model architectures.

General probabilistic inference. Behavior models require flex-

ibility in their structure and inference capabilities. For example, in

psychometric models of user choice, structural priors and biases are

often easy to specify, while precise parameterization is not. RecSim

NG supports this flexibility, allowing one to impose model structure

while learning model parameters (and structure if desired) from

data. Because realistic models have latent factors, model learning

requires sophisticated probabilistic inference, beyond the usual MC

rollouts employed by other simulation environments. RecSim NG

supports latent variable inference, including several MCMC and

variational methods.

Ecosystem modeling. Capturing ecosystem effects is important

to model long-term RS outcomes. This includes: incentives of agents

that drive behavior; variable observability criteria for pairs/groups

of agents; and the interaction between agents as mediated by the RS.

The use of EBSs allows the natural specification of the interaction

between agents in the system, while making it easy to uncover

any independence that exists. Moreover, scalability is critical, espe-

cially in RSs with large populations. RecSim NG provides scalable

TensorFlow-based execution to support several forms of posterior

inference beyond standard MC rollouts.

We primarily view simulation as a tool to explore, evaluate, and

compare different RS models, algorithms, and strategies. While the

so-called “sim2real” perspective is valuable, we have largely used

RecSim NG for simulations that reflect particular phenomena of

interest to allow the controlled evaluation of RS methods at suitable

levels of abstraction. RecSim NG should be equally valuable to

researchers (e.g., as an aid to reproducibility and model sharing) and

practitioners (e.g., to support rapidmodel refinement and evaluation

prior to training in a live system).

RecSim NG is fully described in forthcoming white paper [18].

We demonstrate one simple use case below (for others, see, e.g.,

[3, 17]). RecSim NG is a significant extension of RecSim, an earlier

platformwith some of the same goals.
1
RecSim NG differs from Rec-

Sim in its flexibility, generality and ease of use (object-orientation,

probabilistic programming); functionality (e.g., inference, ecosys-

tem support); and scalability (TF-based execution, vectorized com-

putation and GPU/TPU acceleration). RecSim NG will be released

open-source prior to RecSys-2020 on GitHub and as a PyPI package,

like RecSim. Researchers can download the code (and use tutorials)

to create their own simulations.

RecSim NG bears some connection in form and motivation to

other simulation platforms for RSs [20, 22, 26], RL [2, 5, 12, 24] and

user ecosystem models [1, 28]. We elaborate on differences in the

corresponding white paper [18],

3 DEMONSTRATION OF RECOMMENDER
ECOSYSTEM DYNAMICS

We demonstrate the use of RecSim NG using a stylized ecosystem

model that demonstrates the interaction between a large popu-

lation of users and content providers as mediated by a content

recommender system. The demo video can be found at https://bit.

ly/30cb43P. A rough outline of the model is as follows (see details

of a related model in [17]):

• Each content provider is represented by a “topicality” point

in an embedding or topic space S ⊆ Rd reflecting the type of

content offered by that provider. Each item lies in S . Providers
generate random content at each round of engagement with

the RS, drawn from a Gaussian centered at their topicality

point. Provider state reflects the (past-discounted) cumula-

tive user engagement with their items. This captures their

incentive to participate in the RS ecosystem—lower engage-

ment reduces (stochastically) the number of items offered at

any round.

• Each user is characterized by two latent variables. A interest
vector u in topic space S represents her general interests for

content, and her reward for consuming an item i is inversely
proportional to i’s Euclidean distance to u. A satisfaction

score reflects her past-discounted cumulative reward for

items consumed. When a slate of items is recommended,

the user selects an item using a multinomial logit choice

model (w.r.t. item reward). User interest vectors are drawn

at random using the following community model. Each user

is associated with one content provider. The probability a

provider is chosen for a given user is proportional to the

distance of the provider’s topicality point from the center of

the topic space S . This emulates a niche vs. mainstream con-

tent divide, with topics closer to the center considered more

mainstream. Once her community is sampled, the user’s in-

terest vector u is sampled from a unit-variance Gaussian

centered on that provider’s topicality vector.

• At each round, each provider randomly offers content to

the RS: providers with more (recency-weighted) user en-

gagement have greater probability of generating more items.

From the available content at each round, the RS uses some

strategy (see below) to recommend a slate of k items to a

1
RecSim is available (open-source) at github.com/google-research/recsim and is

detailed in [14].

https://bit.ly/30cb43P
https://bit.ly/30cb43P


RecSim NG Demo RecSys ’20, September 21–26, 2020, Virtual Event, Brazil

user, from which the user selects using the choice model

above. The RS cannot observe the latent state of any user

(but it is is free to estimate it); but it can directly track each

provider’s engagement.

Our demonstration illustrates how to use RecSim NG to: (a)

concisely and naturally specify the environment (users, providers,

and their state and behaviors) using entities, behaviors and stories;

(b) evaluate the performance of different RS policies using simu-

lation; and (c) accomplish the latter effectively using distributed

TensorFlow-based computation and the probabilistic independence

identified by Edward2.

We evaluate two distinct RS policies. The first is a standard

myopic policy used by traditional RSs: it matches a user to content

that best matches her estimated interests. While this policy updates

its estimate of a user’s interest given her observed response, it

does not explicitly explore to learn these interests. More critically,

this policy in unaware of provider incentives—even if a provider

is likely to reduce the amount of content it offers, the policy does

not anticipate the effect this might have on future user satisfaction.

In particular, providers of “niche” content—content that appeals to

a small number of users—are likely to effectively drop out of the

system, reducing the overall utility the RS provides to its audience

by driving these users to more “mainstream” providers (from which

niche user derive lower utility). Such “rich-get-richer” dynamics

can explain various power-law phenomena in RSs [6].

The second RS strategy is a provider-aware policy that matches

content to user “requests” in a way that explicitly accounts for the

potential withdrawal of providers and the impact this can have on
long-term user satisfaction. This policy matches users to a slightly

more diverse set of providers, which keeps more providers engaged

with the RS. The resulting increased viability of niche providers over

long horizons generates greater population-level user satisfaction.

REFERENCES
[1] J. Ahlgren, M. E. Berezin, K. Bojarczuk, E. Dulskyte, I. Dvortsova, J. George,

N. Gucevska, M. Harman, R. LÃ¤mmel, E. Meijer, S. Sapora, and J. Spahr-Summers.

2020. WES: Agent-based User Interaction Simulation on Real Infrastructure.

arXiv:2004.05363.

[2] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. 2013. The Arcade Learning

Environment: An Evaluation Platform for General Agents. Journal of Artificial
Intelligence Research 47 (June 2013), 253–279.

[3] C. Boutilier, C.-w. Hsu, B. Kveton, M. Mladenov, C. Szepesvari, and M. Zaheer.

2020. Differentiable Bandit Exploration. (2020). arXiv:2002.06772.
[4] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba. 2016. OpenAI Gym. (2016). arXiv:arXiv:1606.01540 preprint

arXiv:1606.01540.

[5] P. S. Castro, S. Moitra, C. Gelada, S. Kumar, and M. G. Bellemare. 2018.

Dopamine: A Research Framework for Deep Reinforcement Learning. (2018).

arXiv:1812.06110.

[6] Ò. Celma. 2010. The Long Tail in Recommender Systems. In Music Recommenda-
tion and Discovery. Springer, 87–107.

[7] M. Chen, A. Beutel, P. Covington, S. Jain, F. Belletti, and E. Chi. 2018. Top-K

Off-Policy Correction for a REINFORCE Recommender System. In 12th ACM
International Conference on Web Search and Data Mining (WSDM-19). Melbourne,

Australia, 456–464.

[8] K. Christakopoulou and A. Banerjee. 2018. Learning to Interact with Users: A

Collaborative-Bandit Approach. In Proceedings of the 2018 SIAM International
Conference on Data Mining. San Diego, 612–620.

[9] K. Christakopoulou, F. Radlinski, and K. Hofmann. 2016. Towards Conversational

Recommender Systems. In Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (San Francisco, California,

USA) (KDD ’16). ACM, New York, NY, USA, 815–824.

[10] T. Dean and K. Kanazawa. 1989. A Model for Reasoning about Persistence and

Causation. Computational Intelligence 5, 3 (1989), 142–150.
[11] J. Gauci, E. Conti, Y. Liang, K. Virochsiri, Y. He, Z. Kaden, V. Narayanan, and

X. Ye. 2018. Horizon: Facebook’s Open Source Applied Reinforcement Learning

Platform. (2018). arXiv:1811.00260 [cs.LG].
[12] S. Guadarrama, A. Korattikara, O. Ramirez, Pa. Castro, E. Holly, S. Fishman,

K. Wang, E. Gonina, N. Wu, C. Harris, V. Vanhoucke, and E. Brevdo. 2018. TF-

Agents: A Library for Reinforcement Learning in TensorFlow. https://github.

com/tensorflow/agents. https://github.com/tensorflow/agents Online; accessed

25-June-2019.

[13] E. Ie, V. Jain, J. Wang, S. Narvekar, R. Agarwal, R. Wu, H.-T. Cheng, T. Chandra,

and C. Boutilier. 2019. SlateQ: A Tractable Decomposition for Reinforcement

Learning with Recommendation Sets. In International Joint Conference on Artifical
Intelligence (IJCAI). Macau, 2592–2599.

[14] E. Ie, C.-w. Hsu, M. Mladenov, V. Jain, S. Narvekar, J. Wang, R.Wu, and C. Boutilier.

2019. RecSim: A Configurable Simulation Platform for Recommender Systems.

(2019). arXiv:1909.04847.
[15] U. Lerner, B. Moses, M. Scott, S. McIlraith, and D. Koller. 2002. Monitoring a

Complex Physical System using a Hybrid Dynamic Bayes Net. In Proceedings
of the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI-02).
Edmonton, 301–310.

[16] S. Li, A. Karatzoglou, and C. Gentile. 2016. Collaborative Filtering Bandits. In

Proceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval (Pisa, Italy) (SIGIR ’16). ACM, New York,

NY, USA, 539–548. https://doi.org/10.1145/2911451.2911548

[17] M. Mladenov, E. Creager, K. Swerksy, O. Ben-Porat, R. S. Zemel, and C. Boutilier.

2020. Optimizing Long-term Social Welfare in Recommender Systems: A Con-

strained Matching Approach. In Proceedings of the Thirty-seventh International
Conference on Machine Learning (ICML-20). Virtual Conference. to appear.

[18] M. Mladenov, C.-w. Hsu, V. Jain, E. Ie, C. Colby, N. Mayoraz, H. Pham, D. Tran,

I. Vendrov, and C. Boutilier. 2020. RecSim NG: Toward Principled Uncertainty

Modeling for Recommender Ecosystems. (2020). in preparation.

[19] A. Pfeffer and D. Koller. 1997. Object-oriented Bayesian Networks. In Proceedings
of the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI-97).
Providence, RI, 303–313.

[20] D. Rohde, S. Bonner, T. Dunlop, F. Vasile, and A. Karatzoglou. 2018. RecoGym: A

Reinforcement Learning Environment for the problem of Product Recommenda-

tion in Online Advertising. (2018). arXiv:1808.00720 [cs.IR].
[21] G. Shani, D. Heckerman, and R. I. Brafman. 2005. An MDP-based Recommender

System. Journal of Machine Learning Research 6 (2005), 1265–1295.

[22] J.-C. Shi, Y. Yu, Q. Da, Shi-Y. Chen, and A.-X. Zeng. 2019. Virtual-Taobao: Virtu-

alizing Real-world Online Retail Environment for Reinforcement Learning. In

Proceedings of the Thirty-third AAAI Conference on Artificial Intelligence (AAAI-19).
Honolulu, 4902–4909.

[23] Y. Sun and Y. Zhang. 2018. Conversational Recommender System. (2018).

arXiv:1806.03277 [cs.IR].
[24] Yuandong Tian, Q. Gong, W. Shang, Y. Wu, and C. L. Zitnick. 2017. ELF: An

Extensive, Lightweight and Flexible Research Platform for Real-time Strategy

Games. In Advances in Neural Information Processing Systems 30 (NIPS-17). Long
Beach, CA, 2659–2669.

[25] Dustin Tran, M.W. Hoffman, D. Moore, C. Suter, S. Vasudevan, and A. Radul. 2018.

Simple, distributed, and accelerated probabilistic programming. In Advances in
Neural Information Processing Systems 31 (NeurIPS-18). Montreal, 7598–7609.

[26] X. Zhao, L. Xia, Z. Ding, D. Yin, and J. Tang. 2019. Toward Simulating

Environments in Reinforcement Learning Based Recommendations. (2019).

arXiv:1906.11462.

[27] X. Zhao, L. Xia, L. Zhang, Z. Ding, D. Yin, and J. Tang. 2018. Deep Reinforce-

ment Learning for Page-wise Recommendations. In Proceedings of the 12th ACM
Conference on Recommender Systems (RecSys-18). Vancouver, 95–103.

[28] Stephan Zheng, A. Trott, S. Srinivasa, N. Naik, M. Gruesbeck, D. C. Parkes, and

R. Socher. 2020. The AI Economist: Improving Equality and Productivity with

AI-Driven Tax Policies. arXiv:2004.13332.

https://arxiv.org/abs/arXiv:1606.01540
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://doi.org/10.1145/2911451.2911548

	Abstract
	1 Introduction
	2 Key Goals and Contributions
	3 Demonstration of Recommender Ecosystem Dynamics
	References

