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ABSTRACT
Most existing recommender systems focus primarily on match-

ing users (content consumers) to content which maximizes user

satisfaction on the platform. It is increasingly obvious, however,

that content providers have a critical influence on user satisfaction

through content creation, largely determining the content pool

available for recommendation. A natural question thus arises: can

we design recommenders taking into account the long-term util-

ity of both users and content providers? By doing so, we hope to

sustain more content providers and a more diverse content pool

for long-term user satisfaction. Understanding the full impact of

recommendations on both user and content provider groups is chal-

lenging. This paper aims to serve as a research investigation of one

approach toward building a content provider aware recommender,

and evaluating its impact in a simulated setup.

To characterize the user-recommender-provider interdependence,

we complement user modeling by formalizing provider dynamics

as well. The resulting joint dynamical system gives rise to a weakly-

coupled partially observable Markov decision process driven by

recommender actions and user feedback to providers. We then build

a REINFORCE recommender agent, coined EcoAgent, to optimize

a joint objective of user utility and the counterfactual utility lift

of the content provider associated with the recommended content,

which we show to be equivalent to maximizing overall user utility

and the utilities of all content providers on the platform under some

mild assumptions. To evaluate our approach, we introduce a sim-

ulation environment capturing the key interactions among users,

providers, and the recommender. We offer a number of simulated

experiments that shed light on both the benefits and the limitations
of our approach. These results help understand how and when a

content provider aware recommender agent is of benefit in building

multi-stakeholder recommender systems.
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1 INTRODUCTION
Recommender systems have been playing an increasingly impor-

tant role for online services by matching users with content for

personalization and experience enhancement. Most recommender

systems exclusively focus on serving content that maximizes user

(consumer) satisfaction. Aligning a recommender system’s objec-

tive with user utility is most natural given that users are first-hand

consumers of recommendation services. However, another key

group of players in any platform are the content providers, who
are also largely influenced by the recommendation decisions. In a

purely user-centric design, the exposure given to different content

providers can be vastly disproportionate, with a small subpopula-

tion receiving the majority of attention [22]. When this happens,

less established content providers can find it difficult to break the

popularity barrier and may eventually leave the platform due to

lack of exposure [23]. This is commonly referred to in marketplaces

as the ‘superstar economy’ [27], which in the long run can hurt the

overall user utility by limiting the diversity of the pool of recom-

mendable content.

As a result, there has been growing research interest in moving

from a user-centric recommendation paradigm toward a multi-

stakeholder setup [1, 10], under which the viability of content

providers on the platform, as a function of their respective satis-

faction, is also considered. Such content provider awareness can

be achieved by maximizing user satisfaction with the constraint

of keeping existing content providers on the platform [23], or by

trading off content relevance with content provider fairness [22].

However, most existing work treats content providers as static

entities. Here, we consider the dynamics of content providers in

response to recommendation, and propose a reinforcement learning

(RL)-based recommendation approach to optimize the combination

of both user and provider satisfaction.

Optimizing a recommendation policy for content provider satis-

faction is significantly more challenging than for user satisfaction

for two main reasons: (i) lack of a clear definition of provider utility;
and (ii) scalability. As opposed to more well-studied marketplaces,

such as advertising platforms where suppliers clearly define their

bidding policies, thus leaving signals indicating their utility [4],

content provider utility on recommendation platforms has received

little attention. In this paper, we consider one such definition: we

assume that provider utilities can be manifested through their ac-

tions e.g., via their content uploading frequencies, their decision

https://doi.org/10.1145/3442381.3449889
https://doi.org/10.1145/3442381.3449889
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Table 1: Related Work Comparison

User

Modeling

Content Provider

Modeling

Counterfactual Reasoning

Joint User &

Provider Optimization

Advertising Auctions [4, 12, 35] No Yes Yes No

Provider Fairness in RecSys [6, 8, 22, 23, 29] Yes No Yes (in [22]) No

EcoAgent (This paper) Yes Yes Yes Yes

to stay/leave the platform, or more generally how they respond to

recommender actions and user feedback.
1
This stands in contrast

to existing work in fairness of recommender systems (e.g. [29] and

references therein), where the direct influence of platforms/users on

provider utility is not considered. Furthermore, in contrast to tradi-

tional two-sidedmarketplaces, such as [4], where advertiser bidding

policies are more or less static, content providers in recommender

systems tend to be more adaptive to the environment. For example,

based on the popularity of their existing content, providers may

adapt their next content focus. To capture such considerations, we

model the provider dynamics as the counterpart of user dynamics

in Markov decision processes and RL.

Second, while a single recommendation to a user only affects

that specific user’s utility, it can impact all relevant content provider
utilities. For instance, the providers who are recommended may

become more satisfied with the platform, while those who are not

can have their satisfaction decreased, especially if their content has

not been shown to users for a while. A recommendation objective

that considers the utility of a single user and all content providers
may be intractable on platforms with large numbers of providers.

To address this, we propose an approximation under which the all-

content-providers objective can be relaxed to just the recommended

content provider’s utility lift, defined as the difference in utility

between the provider being recommended versus not.

We offer the following contributions:

• RL for Content Provider Aware Recommendation: We

formulate recommendation as an RL problem for maximizing

the joint objective of user and content provider utilities (Sec-

tion 3). Building on the success of REINFORCE for user util-

ity maximization [11], we propose a REINFORCE approach,

coined EcoAgent (Section 4), on top of a neural sequential
representation of both user and content provider trajecto-

ries to maximize our joint objective.

• Counterfactual Content Provider Utility Uplift: To ad-

dress the computational concern of the effect of one recom-

mendation on multiple content providers, we design a novel

scalable objective that combines target user utility and rec-

ommended content provider utility uplift; and demonstrate

that it is equivalent to optimizing overall user and content

provider utilities under a mild condition (Section 3.4).

• Multi-Stakeholder Simulation Environment: To evalu-

ate our approach in a setting where content providers’ util-

ities are affected by both the users’ actions and the recom-

mender actions, we build a Gym [9] environment (Section

5). This environment aims at capturing a simplified version

1
Importantly, our experiments highlight the importance of investigating different

provider utility definitions under different recommendation setups.

of the user and content provider dynamics, which is not sup-

ported in most existing simulation platforms.
2

• Study of User vs. Content Provider Trade-offs: We pro-

vide a series of experiments, each with the goal of identifying

the extent to which our content provider aware RL recom-

mender can positively affect user satisfaction, and the overall

multi-stakeholder health, as measured by the user vs. con-

tent provider utility Pareto curve, and the number of viable

providers on the platform (Section 6).

2 RELATEDWORK
The impact of policies on content providers has been actively stud-

ied in two-sided markets with consumers and providers. There

are two important lines of research: one takes the game theory

perspective and develops econometric models for marketplaces

such as advertising auctions [4, 12, 35]; another considers the fair-

ness with respect to content providers in recommender systems

[6, 8, 22, 23, 29]. Table 1 summarizes the comparison between these

works and ours.

These two lines of work often have different modeling focuses

on users and content providers, while our work aims at directly

modeling their interaction dynamics with the platform. In the ad-

vertising auction literature, advertisers are modeled strategically

[4, 12, 35]. User (consumer) utility is implicitly incorporated in ad-

vertiser valuations. A similar gaming perspective is also introduced

to platforms with strategic content providers [5, 13, 14, 26]. Con-

versely, literature focusing on fairness of recommender systems

with respect to content providers often assumes fully observed or

static provider states, based on which user utility and provider fair-

ness are jointly optimized [8, 22, 29]. However, as intelligent agents,

content providers may have latent preferences/states influenced by

users and recommender. To capture this, in contrast to prior work,

we use Recurrent Neural Networks (RNNs) to model both user and

content provider state transitions, and learn their sophisticated

utility functions, which also implicitly account for their policies.

With user and content provider characterizations in hand, we then

update the agent through RL to optimize overall utilities.

The idea of using RL while utilizing temporal information in

recommender systems has received increasing attention. There is

an emerging literature in neural recommender systems that applies

RNNs to encode user historical events to predict future trajecto-

ries [7, 15, 37]. Chen et al. utilize such a sequential represention

as the user state encoding, on top of which an RL agent using a

REINFORCE [36] policy-gradient-based approach is learned. Fur-

thermore, the idea of jointly optimizing different objectives during

2
Code of environment and RL algorithms can be found at https://github.com/google-

research/google-research/tree/master/recs_ecosystem_creator_rl.

https://github.com/google-research/google-research/tree/master/recs_ecosystem_creator_rl
https://github.com/google-research/google-research/tree/master/recs_ecosystem_creator_rl
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agent learning can be categorized into a broader literature on Multi-

Objective Optimization [2, 25, 34].

Another difference of our work with the existing ones is the

formulation of agent objective. In advertising auction literature, the

goal is to construct an econometric model for a given marketplace,

where advertiser strategies are inferred from the equilibria of the

proposed model [4, 12]. The platform generates rankings that trade

off user satisfaction, platform revenue, and advertiser profits [4].

We note a connection between advertiser strategies and our objec-

tive. A risk-neutral advertiser decides her bid by considering the

incremental cost in an alternative ranking position [4, 12], while

each content provider is considered by our EcoAgent based on their
incremental (uplifted) utility resulted from one recommendation.

On the other hand, literature in fairness of recommender systems

across content providers usually optimizes user satisfaction (rank-

ing quality) as well as fairness with respect to content providers.

The notion of fairness can be measured in multiple ways, such

as content provider-groupwise model performance [6], equity of

content provider attention [8], content provider popularity dis-

tribution [22], content provider exposure [29], etc. As noted by

Mehrotra et al., such two objectives can be optimized through a

combined metric of both (e.g., [6]) or constrained optimization, such

as maximizing fairness with having an acceptable ranking quality

[8], optimizing user utility while being fair to providers [29], etc.

However, as pointed out by Asudeh et al., metrics of fairness need

careful design and are sometimes chosen subjectively. In contrast,

our work directly maximizes overall content provider utilities and

implicitly considers disparity in content provider exposure and

associated fairness in recommendations.

One closely related work featuring long-term ‘social welfare’

optimization in recommender system is proposed by Mladenov

et al., wherein the authors optimize user utility while restricting

matched content providers to be viable in equilibrium [23]. Our

work differs in a few major ways. First and foremost, we learn fully

dynamic recommendation policies which adapt to user feedback

and provider behavior (e.g. changing topic focus) in every time

step in contrast to a precomputed query-specific policy. Moreover,

due to the partially-observed nature of our setting, the EcoAgent
recommender naturally factors in issues such as exploration and

uncertainty representation.

Finally, we relate our work to literature applying counterfactual
reasoning to algorithm design, where the effect of a treatment (ac-

tion, policy) is quantified by the difference of potential outcomes

between the treated (with the treatment) and control (without the

treatment) [28]. Usually, only one outcome is observed, and we

need to infer the counterfactual alternatives. For example, Jaques

et al. define an influence reward to be the treatment effect of an

agent’s action on other agents, and use it to increase agent-level

collaboration in Multi-Agent RL [17]. Mehrotra et al. apply it to

music recommendation platforms, where they analyze the treat-

ment effect of one artist new track release on popularities of herself

and other artists [21]. Similarly, in this paper, the content provider

utility uplift is the treatment effect of current recommendation on

content provider utility.

Figure 1: Interactions among Recommender Stakeholders

3 PROBLEM FORMULATION
We start by describing our problem setting, motivating the need

for content provider aware RL-based recommenders and defining

key terms to be used throughout.

3.1 RL for User Utility
A typical setup for long-term recommendation problems is as fol-

lows [11, 18, 30, 32]. A user issues a (possibly implicit) query to the

recommendation system. The recommender agent responds with a

slate of one or more items of content; the user interacts with the

recommended content according to their (unobserved) preferences,

emitting signals, such as likes, clicks, dwell times, indicating their

engagement, satisfaction, etc. These proxy reward signals are then

collected by the agent for future planning. We use proxy reward
to refer to these immediate signals indicative of the user’s affinity

towards the recommended content, which can depend on topic

preference alignment and content quality, among others.

We formulate the problem as a Markov decision process (MDP)
3

(S𝑢 ,A, 𝑃𝑢 , 𝑅𝑢 , 𝜌𝑢
0
, 𝛾𝑢 ), where S𝑢 is the state space encoding user

topic preferences and context, A is the action space composed of

the content available on the platform
4
, 𝑃𝑢 : S𝑢 × A → Δ(S𝑢 )

captures the state transition, 𝑅𝑢 defines the user proxy reward,

𝜌𝑢
0
is the initial state distribution, and 𝛾𝑢 the discount factor. A

recommendation policy 𝜋 (·|𝑠) over the action space is learned to

maximize the discounted cumulative reward across different user

trajectories, which we refer to as the expected user utility under

the policy 𝜋 , that is

max

𝜋

𝑇∑
𝑡=0

E𝑠𝑢𝑡 ∼𝑑𝑢𝜋,𝑡 (𝑠𝑢𝑡 ),𝑎𝑡∼𝜋 ( · |𝑠𝑢𝑡 )
[
𝑄𝑢𝑡 (𝑠𝑢𝑡 , 𝑎𝑡 )

]
(1)

where 𝑄𝑢𝑡 (𝑠𝑢𝑡 , 𝑎𝑡 ) =
|𝜏𝑢 |∑
𝑡 ′=𝑡

(
𝛾𝑢

)𝑡 ′−𝑡
𝑟𝑢 (𝑠𝑢𝑡 ′, 𝑎𝑡 ′) .

Here 𝑇 is the maximum trajectory length, and 𝜏𝑢 is the user trajec-

tory sampled according to the policy 𝜋 under the user MDP. We

use 𝑑𝑢𝜋,𝑡 (·) to denote the average user state visitation distribution

3
Recommender systems are generally best formulated as partially-observable MDPs
since user states are not observed. Here, for ease of exposition, we retain the MDP nota-

tion, assuming a learned state representation; but throughout (including experiments),

we infer a user’s state from their interaction history with the platform.

4
W.l.o.g., we assume the agent recommends a single item to the user each time.
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at time 𝑡 [20], and𝑄𝑢 (𝑠𝑢𝑡 , 𝑎𝑡 ) is the user utility calculated from time

step 𝑡 according to the policy 𝜋 . Note that the expectation takes into

account different user trajectories induced by the learned policy.

3.2 Multi-Stakeholder Interactions
The above framing misses one group of key stakeholders: the con-

tent providers. To be able to optimize the overall utility of all stake-
holders, it is necessary to extend the user-recommender interaction

model to account for the impact of recommendations on providers’

state and utility. Figure 1 gives an intuitive schema that captures styl-

ized, yet real-world-inspired interactions among these stakeholders.

As a simplification, we do not include environment externalities,

e.g., exogenous discovery of provider.

Users↔ Recommender Agent. The interactions between users and

the recommendation agent are already captured in the setup of the

previous section. One point to highlight is that not only does the

agent adapt to user feedback, but users themselves are influenced by

their interactions with the platform (e.g., a user’s topic preferences

might shift closer to or further from recommended content topics

depending on how much they like the recommendations).

Content Providers↔ Recommender Agent. Besides users, the agent
also influences the content providers. This form of interaction has

been largely ignored in the recommendation literature, but it is

a key focus of this work. Specifically, depending on the exposure

generated by the platform (i.e., how much the agent recommends a

provider’s content to users) and the user feedback (the users’ proxy
reward for such recommended content), content providers may

decide to change the nature of their engagement with the platform.

For example, content providers can decide to create more or less

content, shift their topic focus, and or even leave the platform if

their satisfaction falls below a certain point. This in turn influences

the recommender agent, as it will directly affect the content corpus,

from which recommendable candidate items are drawn.

3.3 RL for Content Provider Utility
Similar to a recommender agent that maximizes user utility as de-

fined in Section 3.1, we can also define a MDP (S𝑐 ,A, 𝑃𝑐 , 𝑅𝑐 , 𝜌𝑐
0
, 𝛾𝑐 )

for each content provider 𝑐 . Here S𝑐 is the content provider state
space,A is again the action space composed of the content available

on the platform, and 𝑃𝑐 : S𝑐 × A → Δ(S𝑐 ) captures the content
provider state transition, 𝑅𝑐 defines the content provider proxy

reward, 𝜌𝑐
0
is the initial state distribution and 𝛾𝑐 the discount factor.

We explain the content provider state, transition model and proxy

reward in more detail.

Content Provider State 𝑠𝑐𝑡 : The content provider state is influ-
enced by the popularity of their current content, and captures the

latent incentives for future content creation and preferences for

content topics. In our design, we also force one component of the

state to capture the content provider’s current satisfaction with the

platform, specifically the cumulative historical content provider

proxy reward up to time 𝑡 .

Content Provider State Transition 𝑠𝑐
𝑡+1 ∼ 𝑃

𝑐 (·|𝑠𝑐𝑡 , 𝑎𝑡 ): Con-
tent provider states are changing over time based on feedback from

the recommender and the users, i.e., how many recommendations

the content provider received and how the users liked this content

provider’s recommended content. For instance, if content provider’s

existing content is popular among users, the content provider’s

latent topic preference will shift towards existing content topics;

otherwise they may change topics of future creation. The content

provider satisfaction component of the state is incremented by

the number of recommendations and summed user reward proxy

signals acquired from the current time step.

Content Provider Reward Signals 𝑟𝑐 (𝑠𝑐𝑡 , 𝑎𝑡 ) and Utility: We

use the content provider proxy reward 𝑟𝑐 to capture content providers’
incremental engagement/satisfaction with the platform at any time

point. Such signals canmanifest as viability (i.e., decide to stay/leave

the platform), frequency of new content uploads, etc.
5
Conceptually,

content provider reward captures how active the content provider

is during a given time period. It also indicates how the content

provider responds to recommender and user feedback. We argue that

content providers of different groups will respond differently. Partic-

ularly, less established content providers who receive little attention

or negative user feedback during certain time period are more likely

to change their next content topics or become non-viable and even-

tually leave the platform, while the established content providers are
more resilient to small changes in recommender and user feedback.

With the content provider MDP, we can learn a recommendation

policy 𝜋 (·|𝑠) over the action space to maximize the discounted cu-

mulative reward, which we refer to as the expected content provider
utility under the policy 𝜋 , that is

max

𝜋

𝑇∑
𝑡=0

E𝑠𝑐𝑡 ∼𝑑𝑐𝜋,𝑡 (𝑠𝑐𝑡 ),𝑎𝑡∼𝜋 ( · |𝑠𝑐𝑡 )
[
𝑄𝑐𝑡 (𝑠𝑐𝑡 , 𝑎𝑡 )

]
(2)

where 𝑄𝑐𝑡 (𝑠𝑐𝑡 , 𝑎𝑡 ) =
|𝜏𝑐 |∑
𝑡 ′=𝑡

(
𝛾𝑐

)𝑡 ′−𝑡
𝑟𝑐 (𝑠𝑐𝑡 ′, 𝑎𝑡 ′) .

Here 𝑇 is the maximum trajectory length, and 𝜏𝑐 is the creator

trajectory sampled according to the policy 𝜋 under the creator MDP.

Similarly, we use 𝑑𝑐𝜋,𝑡 (·) to denote the average content provider

state visitation distribution at time 𝑡 [20], and 𝑄𝑐 (𝑠𝑐𝑡 , 𝑎𝑡 ) is the
content provider utility calculated from time step 𝑡 according to

policy 𝜋 . Again the expectation takes into account the different

content provider trajectories induced by the learned policy.

3.4 RL for Content Provider and User Utility
Having established that recommendations affect the future state

and utility of both users and content providers, we formulate the

recommendation problem as follows:

Decide which content (from which content provider)
to recommend to a user so that a combined metric of
both content provider and user utilities is maximized,
given the current state of the user and the providers of
candidate content recommendations.

Putting everything together, we translate this setup into a user-

and-content-provider MDP (S,A, 𝑃, 𝑅, 𝜌0, 𝛾) where S is the con-

catenation of user state and states of all the content providers on the

5
If we view content providers as rational decision-making agents, which could in turn

be modeled as RL agents themselves, whether they will leave the platform, what type

of content they create, etc., can be seen as content provider actions rather than reward

proxy signals. Here though, we model this from the perspective of recommender as

the RL agent finding the action so to maximize content provider–and user–utility.
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platform, A is the content available on the platform, 𝑃 : S × A →
Δ(S) captures the state transition, 𝑅 is the concatenation of proxy

rewards of the user and all content providers, 𝜌0 is the initial state

distribution, and 𝛾 as concatenation of user and content provider

discount factors. With this user-and-content-provider MDP, our

goal is to learn a recommendation policy 𝜋 (·|𝑠) over the action space
that maximizes two objectives: user utility and content provider

utility. For simplicity, we adopt a scalarization approach, using a

coefficient 𝜆 ∈ [0, 1] to interpolate between the two objectives,

which we refer to as the content provider constant; future work can

look into other multi-objective optimization (MOO) approaches

as well (e.g., [2, 25, 34]). When 𝜆 = 0, this is equivalent to RL for

user utility (Section 3.1), whereas when 𝜆 = 1, this is a content

provider-only optimizing policy (Section 3.3).
6

max

𝜋

𝑇∑
𝑡=0

E𝑠𝑡∼𝑑𝜋,𝑡 (𝑠𝑡 )
𝑎𝑡∼𝜋 ( · |𝑠𝑡 )

[
(1 − 𝜆)𝑄𝑢𝑡 (𝑠𝑢𝑡 , 𝑎𝑡 ) + 𝜆

∑
𝑐∈C

𝑄𝑐𝑡 (𝑠𝑐𝑡 , 𝑎𝑡 )
]

(3)

where 𝑇 is the maximum trajectory length, C is the set of content

providers on the platform
7
, state 𝑠𝑡 = (𝑠𝑢𝑡 , 𝑠

𝑐1
𝑡 , . . . , 𝑠

𝑐 |C|
𝑡 ) is the state

concatenation of the user and all content providers, 𝑑𝜋,𝑡 (𝑠𝑡 ) is the
average visitation distribution of 𝑠 at time 𝑡 [20], 𝑄𝑢𝑡 and 𝑄𝑐𝑡 are

user and content provider utilities at time 𝑡 defined in Eq. 1 and

Eq. 2 respectively. Note that for each recommendation (user query),

we consider the utility of the targeted user and the utilities of all

relevant content providers in the action space—the content provider

who is recommended increases her satisfaction, while others who

are not have their satisfaction decreased.

Albeit complete, the objective as defined in eq. 3 is intractable

on platforms with a large number of content providers. To make it

tractable, we break down the utility of the content providers into

the one whose content was recommended by the recommender and

the others. That is,∑
𝑐∈C

𝑄𝑐𝑡 (𝑠𝑐𝑡 , 𝑎𝑡 ) = 𝑄
𝑐𝑎𝑡
𝑡 (𝑠

𝑐𝑎𝑡
𝑡 , 𝑎𝑡 ) +

∑
𝑐′∈C\𝑐𝑎𝑡

𝑄𝑐
′
𝑡 (𝑠𝑐

′
𝑡 , 𝑎𝑡 ) (4)

Here we use 𝑐𝑎𝑡 to denote the content provider associated with the

chosen content 𝑎𝑡 .

Assumption 1 (No Content Provider Externality). A con-
tent provider’s proxy reward and state transition of not being recom-
mended do not depend on which provider is recommended instead.

Intuitively, the above assumption describes that when a provider

is not recommended, her reaction only depends on the fact that she

was not exposed to users, but not on which other providers were

recommended. We translate it to the following two equivalences:

for any content provider 𝑐 ′ ∈ C \𝑐𝑎𝑡 who is not chosen for current

recommendation, we have

proxy reward 𝑟𝑐 (𝑠𝑐
′
𝑡 , 𝑎𝑡 ) = 𝑟𝑐 (𝑠𝑐

′
𝑡 , 𝑏

𝑐′
𝑡 )

state transition 𝑃𝑐 (·|𝑠𝑐
′
𝑡 , 𝑎𝑡 )

𝑑
= 𝑃𝑐 (·|𝑠𝑐

′
𝑡 , 𝑏

𝑐′
𝑡 )

where 𝑏𝑐
′
𝑡 indicates any chosen content not associated with the

content provider 𝑐 ′ at time 𝑡 . This further implies that, for any

6
Nevertheless, as content provider reward proxy signals are a function of user feed-

back, this still indirectly optimizes user utility; but this might not always be the case

depending on how one decides to define content provider proxy reward.

7
W.l.o.g., we assume that all content providers have the same discount factor.

content provider 𝑐 ′ ∈ C \𝑐𝑎𝑡 who is not recommended at current

time step, her utility later on does not depend on which other

provider’s content is recommended, i.e.,

𝑄𝑐𝑡 (𝑠𝑐
′
𝑡 , 𝑎𝑡 ) = 𝑄𝑐𝑡 (𝑠𝑐

′
𝑡 , 𝑏

𝑐′
𝑡 ), ∀𝑐 ′ ∈ C \𝑐𝑎𝑡 . (5)

Eq. 4 can then be simplified as the recommended content provider

utility uplift plus a baseline as the sum of all content provider

utilities when none of their content are recommended,∑
𝑐∈C

𝑄𝑐𝑡 (𝑠𝑐𝑡 , 𝑎𝑡 ) (6)

= 𝑄
𝑐𝑎𝑡
𝑡 (𝑠

𝑐𝑎𝑡
𝑡 , 𝑎𝑡 ) −𝑄

𝑐𝑎𝑡
𝑡 (𝑠

𝑐𝑎𝑡
𝑡 , 𝑏

𝑐𝑎𝑡
𝑡 )︸                                    ︷︷                                    ︸

utility uplift

+
∑
𝑐′∈C

𝑄𝑐
′
𝑡 (𝑠𝑐

′
𝑡 , 𝑏

𝑐′
𝑡 )︸               ︷︷               ︸

baseline

.

Note that the baseline has the merit of independence from the taken

action and thus can be dropped when calculating the gradient of

policy [36], which will be detailed in Section 4. As a result, the

objective defined in eq. 3 can be simplified as optimizing user utility

and the utility uplift of the recommended content provider,

max

𝜋

𝑇∑
𝑡=0

E𝑠𝑡∼𝑑𝜋,𝑡 (𝑠𝑡 ),𝑎𝑡∼𝜋 ( · |𝑠𝑡 ) [𝑅𝑡 ] (7)

where 𝑅𝑡 = (1 − 𝜆)𝑄𝑢𝑡 (𝑠𝑢𝑡 , 𝑎𝑡 )

+𝜆
(
𝑄
𝑐𝑎𝑡
𝑡 (𝑠

𝑐𝑎𝑡
𝑡 , 𝑎𝑡 ) −𝑄

𝑐𝑎𝑡
𝑡 (𝑠

𝑐𝑎𝑡
𝑡 , 𝑏

𝑐𝑎𝑡
𝑡 )

)
.

4 PROVIDER-AWARE REINFORCE AGENT
Now that we have formulated the multi-stakeholder recommender

problem as an RL problem, we turn attention to learning the policy

𝜋 that maximizes the objective Eq. 7. Different approaches [19, 24,

31, 33, 36] can be applied to solve this RL problem. Here, we adopt

the policy-based REINFORCE [36] approach, inspired by its success

in the classic user utility maximization recommender setting [11].

Let (parameterized) policy 𝜋𝜃 map states to actions. Using the

log-trick, the policy parameters 𝜃 ∈ R𝑑 can be updated directly

following the gradient,

E𝑠𝑡∼𝑑𝜋,𝑡 (𝑠𝑡 ),𝑎𝑡∼𝜋 ( · |𝑠𝑡 ) [𝑅𝑡 log∇𝜃𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )] . (8)

Eq. 8 gives an unbiased estimate of the policy gradient in online RL,

where the gradient of the policy is computed on the trajectories

collected by the same policy; this is our setup here.

In what follows, we outline how we parameterize the policy—

particularly how to learn the user states (Section 4.1), the content

provider states (Section 4.2), and the policy-specific parameters

on top of these states to output probabilities over the action space

(Section 4.3). Finally, we discuss in detail our reward, and specif-

ically how we learn the content provider utility uplift part of the

reward (Section 4.4), and close this section with an overview of

how everything ties together to solve the multi-stakeholder rec-

ommendation RL problem (Section 4.5). We refer to our proposed

learning approach as EcoAgent, illustrated in Figure 2.

4.1 User States via Utility Imputation
As described in Section 3.1, the user state 𝑠𝑢 ∈ S𝑢 encodes user

preferences and context. To learn the user state, building on re-

cent work showing the value of sequence learning [11], we use
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Figure 2: Illustration of EcoAgent structure. EcoAgent consists of three components: (i) a user RNN utility model that embeds
user history into user hidden states and predicts user utility; (ii) a content provider RNN utility model that embeds content
provider history into content provider hidden states and predicts content provider utility; (iii) an actor model that inputs
user hidden state and candidates (content, content provider hidden state) to generate policy. Actor model is optimized using
REINFORCE with recommendation reward being a linear combination of user utility and content provider utility uplift.

a recurrent neural network (RNN) to encode user interaction his-

tories, and ensure the learned user state together with the action

representation can predict observed user utility.

Let a user trajectory 𝜏 = {(𝑥𝑢
0
, 𝑎0, 𝑟

𝑢
0
), · · · , (𝑥𝑢

𝑇
, 𝑎𝑇 , 𝑟

𝑢
𝑇
)} sampled

according to the current policy 𝜋𝜃 , where 𝑥
𝑢
𝑡 is user’s context at

time t. We can then further break 𝜏 into a set of history-action-

return tuples of D𝑢 = {(𝐻𝑢𝑡 , 𝑎𝑡 , 𝑄𝑢𝑡 )} by aggregating the historical

contexts and actions 𝐻𝑢𝑡 = {(𝑠𝑢
𝑡 ′, 𝑎𝑡

′)}𝑡
𝑡 ′=0 and accumulating the

discounted future reward 𝑄𝑢𝑡 .

Given this collection D𝑢 of historical contexts/actions and asso-

ciated utilities, we can learn user utility model parameters 𝜙 so to

minimize a loss function ℓ between the predicted and ground truth

user utilities. This also offers the user hidden state 𝑠𝑢𝑡 at time 𝑡 :

min

𝜙

∑
(𝐻𝑢

𝑡 ,𝑎𝑡 ,𝑄
𝑢
𝑡 ) ∈D𝑢

ℓ

(
�̂�𝑢𝑡 (𝑠𝑢𝑡 , 𝑎𝑡 ;𝜙), 𝑄𝑢𝑡

)
(9)

where 𝑠𝑢𝑡 = RNN(𝐻𝑢𝑡 ) .

In our experiments, we used Huber loss for ℓ .

4.2 Provider States via Utility Imputation
As described in Section 3.3, the content provider states encode

content provider preferences and satisfaction. We learn the content

provider states in similar fashion as the user states, “forcing” the

state to be able to predict content provider utility.

Given a provider trajectory 𝜏 = {(𝑥𝑐
0
, 𝐴0, 𝑟

𝑐
0
), · · · , (𝑥𝑐

𝑇
, 𝐴𝑇 , 𝑟

𝑐
𝑇
)},

where 𝑥𝑐𝑡 is content provider 𝑐’s context at time 𝑡 , we again break it

into a set of history-action-return tuples ofD𝑐 = {(𝐻𝑐𝑡 , 𝐴𝑡 , 𝑄𝑐𝑡 )} by
aggregating historical contexts and actions, and accumulating the

discounted future reward. In general, we expect content provider

dynamics to evolve at a much slower rate than user dynamics;

hence, the per-event time interval will typically be much differ-

ent from that of the user trajectory. At each time step, the action

𝐴𝑡 = {(𝑣𝑑𝑖 , 𝑟𝑢
𝑖
)}𝑚𝑡

𝑖=1
records the provider’s recommended item 𝑑𝑖

and the user feedback 𝑟𝑢
𝑖
offered on this content, where𝑚𝑡 denotes

the number of recommendations made of this provider’s contents,

and 𝑣𝑑𝑖 as an indicator vector of content 𝑑𝑖 . Concretely, 𝐴𝑡 is sum-

marized by (i) the number of recommendations𝑚𝑡 this provider

received at time 𝑡 ; (ii) the sum of user rewards

∑𝑚
𝑖=1 𝑟

𝑢
𝑖
; and (iii) a

weighted bag-of-words representation of the recommended con-

tents {𝑑𝑖 }𝑚𝑡

𝑖=1
, with weights reflecting the received user rewards:∑𝑚𝑡

𝑖=1
𝑟𝑖𝑣

𝑑𝑖 /∑𝑚𝑡

𝑖=1
𝑟𝑖 .

We employ another RNN to encode the historical actions into

a content provider’s state and learn the model parameters𝜓 so to

minimize a loss function ℓ between the predicted and the ground

truth content provider utilities,

min

𝜓

∑
(𝐻𝑐

𝑡 ,𝐴𝑡 ,𝑄
𝑐
𝑡 ) ∈D𝑐

ℓ

(
�̂�𝑐𝑡 (𝑠𝑐𝑡 , 𝐴𝑡 ;𝜓 ), 𝑄𝑐𝑡

)
(10)

where 𝑠𝑐𝑡 = RNN(𝐻𝑐𝑡 ) .

4.3 Policy Parameterization
Conditioning on the user state 𝑠𝑢 as learned by the User Utility

model (Section 4.1) and each candidate content provider states 𝑠𝑐

as learned by the content provider utility model (Section 4.2), the

policy 𝜋𝜃 (𝑎 |𝑠) mapping state to action is then learned with a simple

softmax,

𝜋𝜃 (𝑎 |𝑠) =
exp⟨Φ(𝑠𝑢 ),Ψ( [𝑎, 𝑠𝑐𝑎 ])⟩/𝑇 )∑

𝑎′∈A exp(⟨Φ(𝑠𝑢 ),Ψ( [𝑎′, 𝑠𝑐𝑎′ ])⟩/𝑇 ) , (11)

Note that this follows the paradigm of latent factor based recommen-

dation where both users and candidate content items are mapped

to the same low-dimensional embedding space, and the inner prod-

uct ⟨, ⟩ is used to capture the user-content proximity. Here, we

use Φ to denote the projection of user state 𝑠𝑢 to the embedding

space. For the representation of the candidate content item, we

concatenate the dense action/content embedding 𝑎 with its asso-

ciated content provider state 𝑠𝑐𝑎 , and map them, via Ψ into the

same low-dimensional space. 𝑇 is a temperature term controlling

the smoothness of the policy (set to 1 in our case).
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Figure 3: Illustration of Content Provider Utility Uplift.

4.4 Reward
Last, we need to specify our reward which will be guiding the

learning of the policy. Recall that in eq. 7 we have defined our

reward as the 𝜆-weighted sum between the user utility and the

content provider utility uplift.

User Utility Reward. Specifically, for user 𝑢 and recommendation

𝑎𝑡 at time 𝑡 , we calculate user utility 𝑄𝑢𝑡 (𝑠𝑢𝑡 , 𝑎𝑡 ) using the accumu-

lated 𝛾𝑢 -discounted future reward of this user:

𝑄𝑢𝑡 (𝑠𝑢𝑡 , 𝑎𝑡 ) =
∞∑
𝑡 ′=𝑡

(
𝛾𝑢

)𝑡 ′−𝑡
𝑟𝑢 (𝑠𝑢𝑡 ′, 𝑎𝑡 ′) . (12)

Content Provider Utility Uplift Reward. For the recommended

content provider 𝑐𝑎𝑡 , recall that this is defined as the difference

of content provider factual utility when recommended versus the

counterfactual utility when not recommended, as derived in eq. 6

and shown below,

𝑄𝑐𝑡 (𝑠
𝑐𝑎𝑡
𝑡 , 𝑎𝑡 ) −𝑄𝑐𝑡 (𝑠

𝑐𝑎𝑡
𝑡 , 𝑏

𝑐𝑎𝑡
𝑡 ) (13)

However, for provider 𝑐𝑎𝑡 , we do not have the data of her coun-

terfactual utility supposing that she was not recommended at time 𝑡 .

We thus resort to content provider RNN utility model �̂�𝑐 (𝑠𝑐𝑡 , 𝐴′𝑡 ;𝜓 )
in Eq. 10 to predict her counterfactual utility value. Here 𝐴′𝑡 stands
for the counterfactual history where we remove the chosen action

𝑎𝑡 from this content provider. To be robust to systematic prediction

bias, we also use the utility model to estimate her factual utility for

consistency. We illustrate this calculation in Figure 3.

4.5 Putting Everything Together
We adopt online learning for training EcoAgent and leave the dis-

cussion on offline learning to Section 7. In online RL, agent interacts

with the environment to collect new data, based on which the agent

is updated. We thus use the following optimization procedure:

(i) (EcoAgent in Action) Use current parametrized policy 𝜋𝜃 to

interact with the environment and collect new data;

(ii) (EcoAgent in Optimization) Use newly-collected data to opti-

mize the policy 𝜋𝜃 , and particularly the parameters of the user

utility RNN model 𝜙 , the parameters of the content provider

utility RNN model𝜓 , and the policy softmax parameters;

(iii) Repeat (i) and (ii) until converged.

5 SIMULATED ENVIRONMENT
We opt for a simulation environment to study the effectiveness

of our approach for two reasons. First, publicly available recom-

mender datasets do not consider the content provider aspect of

the recommendation problem; they therefore cannot serve as a

basis for evaluating RL for multi-stakeholder recommendation. Sec-

ond, simulation allows us to control the underlying environmental

assumptions and study their effects on the performance of our

proposed approach.

Although there has been prior work on simulation recommen-

dation environments [23], it does not capture the full spectrum

of users-recommender-content providers interactions described in

Section 3. We thus implemented a new Gym [9] environment on

top of RecSim which is a simulation platform with user dynamics

[16]. This environment is designed to capture the content provider

dynamics as illustrated in Figure 1. We now offer more detail on

the underlying dynamics used in our experiments.

5.1 Content Description
We assume that there are 𝐾 content topics. Each content item 𝑑 has

an observable one-hot vector 𝑣𝑑 ∈ {0, 1}𝐾 ∼ Categorical(𝑝) repre-
senting its topic and a scalar quality 𝑞𝑑 ∼ Truncated normal(𝜇, 𝜎 ,−1,1)
that is perceived by the user but is hidden to the agent. Both 𝑝 and

(𝜇, 𝜎) are content provider-dependent, with 𝑝 reflecting a provider’s
topic preference of future creation, which can shift during the

provider’s interaction with the platform.

5.2 User Updates
Each user 𝑢 is described by a unit vector 𝑣𝑢𝑡 ∈ R𝐾 that represents

her topic preference at time 𝑡 . The initial state 𝑣𝑢
0
is sampled from a

uniform distribution over the unit ball. After being recommended

some item, the user immediate reward 𝑟𝑢𝑡 is a linear combination

of the content’s relevance (defined as the inner product of user

topic preference 𝑣𝑢𝑡 and content topic 𝑣𝑑 ) and content quality 𝑞𝑑 ,

with 𝜂𝑢 denoting the user’s sensitivity to content quality: 𝑟𝑢𝑡 =

(1 − 𝜂𝑢 )⟨𝑣𝑑 , 𝑣𝑢𝑡 ⟩ + 𝜂𝑢𝑞𝑑 . User topic preference then shifts toward

the topic of the recommended content, weighted by how much the

user liked it, 𝑟𝑢 ; thus 𝑣𝑢
𝑡+1 ← 𝑣𝑢𝑡 + 𝛿𝑢𝑟𝑢𝑣𝑑 , with 𝛿𝑢 denoting the

degree to which the user’s topic preferences is influenced by the

recommended content.

5.3 Content Provider Updates
Each content provider 𝑐 is described by a vector 𝑣𝑐𝑡 ∈ R

𝐾
that

represents her topic preference for future creation at time 𝑡 . The

initial state 𝑣𝑐
0
is sampled from a uniform distribution over the unit

ball. Each provider starts with a fixed number of content items,

but the amount of content can increase over time if she decides to

create more.

Suppose that at time 𝑡 , provider 𝑐 receives𝑚 recommendations

of her content (𝑑1, . . . , 𝑑𝑚) and user rewards (𝑟𝑢1 , . . . , 𝑟𝑢𝑚 ). We

aggregate the recommender-induced exposure and user feedback

as

𝑝𝑐𝑡 = 𝜇
𝑐 + 𝜂𝑐

1
𝑚 + 𝜂𝑐

2

𝑚∑
𝑖=1

𝑟𝑢𝑚 , (14)

where 𝜂𝑐
1
, 𝜂𝑐

2
represent content provider sensitivity to content ex-

posure and user feedback respectively, and 𝜇𝑐 < 0 accounts for the

negative impact of no recommendation. Provider satisfaction at time

𝑡 is then defined as

𝑆𝑐𝑡 = 𝑓

(
𝑡∑
𝑠=0

𝑝𝑐𝑠

)
. (15)
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Here 𝑓 transforms the raw feedback into content provider satisfac-

tion. Different choices of 𝑓 can represent different content provider

characteristics, which we detail below.

Content provider reward is then defined to be incremental provider

satisfaction:

𝑟𝑐𝑡 = 𝑆𝑐𝑡 − 𝑆𝑐𝑡−1 . (16)

Specifically, when 𝑓 is the identity, the provider reward is sim-

ply the raw feedback 𝑝𝑐𝑡 . If her current reward 𝑟
𝑐
𝑡 is positive, the

provider will create more content, where the number of new items

is proportional to 𝑟𝑐𝑡 .

To model content providers adapting their topic preferences

based on user feedback, a content provider updates her topic prefer-

ence using the sum of her recommended content topics, weighted

by the corresponding user feedback:

𝑣𝑐𝑡+1 ← 𝑣𝑐𝑡 + 𝛿𝑐
𝑚∑
𝑖=1

𝑟𝑢𝑖 𝑣𝑑𝑖 , (17)

where 𝛿𝑐 represents how sensitive the content provider’s topic

preferences are to the user feedback.

Each content provider also has a viability threshold; if their

satisfaction 𝑆𝑐𝑡 is below the threshold, they leave the platform.

Content Provider SatisfactionDesign. Asmentioned, content provider

dynamics are characterized by the function 𝑓 , transforming the

raw recommender and user feedback to content provider satisfac-

tion. While a linear transformation is the most intuitive, concave

functions such as logarithm (see Figure 4a), reflect the law of di-

minishing returns often seen in real life. For example, as discussed

in Section 3.3, one recommendation may not influence established

content providers much given their existing popularity base. In

contrast, for less established providers who are considering leaving

the platform due to insufficient prior exposure, a new recommen-

dation may change their mind and thus help the platform retain

them. With a concave satisfaction function, less established content

providers will derive more utility than more established providers

given the same amount of raw recommender and user feedback 𝑝𝑐𝑡 .

We often adopt this general assumption:

Assumption 2 (Saturated content provider satisfaction).

Content provider satisfaction gets saturated with accumulated recom-
mender and user feedback.

6 EXPERIMENTS
After defining our simulation environment, we now turn to our

experiment results.

6.1 Experiment Setup
During online learning, EcoAgent collects data by interacting with

a new environment with prespecified hyperparameters characteriz-

ing user and content provider dynamics described in Section 5. Each

new environment samples initial states of 50 users and 10 content

providers uniformly from the state spaces. Each content provider is

initialized with 20 content items which are sampled from 10 topics

based on provider’s topic preference
8
, and they have the choice

8
We design our environment to have more users than content providers, and the

number of items is larger than the number of users, following the statistics on current

content sharing platforms.

Figure 4: Two configurations for content provider satisfac-
tion function 𝑓 over accumulated recommender and user
feedback: (a) log function, saturating as recommender and
user feedback gets increased, (b) linear function, where
there is no difference of recommendation effect on con-
tent provider utilities between a less established content
provider versus an established content provider.

of creating more content or leaving the platform as described in

Section 5. New comers are not considered.

For each training epoch, EcoAgent interacts with 10 new envi-

ronments as set up above. The environment will be rolled out for

20 steps. At each time step of one rollout, all users receive recom-

mendations simultaneously, and the environment updates all users’

and content providers’ states. We then use collected data to update

EcoAgent with Adagrad optimizer. Throughout the experiments,

we consider long-term effects on users and content providers by

setting discount factors: 𝛾𝑢 = 𝛾𝑐 = 0.99.

6.1.1 Baselines. For each environment setup (user and content

provider dynamics), we consider EcoAgents with different 𝜆’s (con-

tent provider constant) varying from 0 to 1. We highlight three

baselines:

• user-only EcoAgent, where 𝜆 = 0. EcoAgent only optimizes

user utility;

• content provider-only EcoAgent, where 𝜆 = 1. EcoAgent
only optimizes content provider utility;

• random agent, where the agent recommends content ran-

domly from the candidate set of content items.

Conceptually, user-only EcoAgent should have the largest user

satisfaction, while content provider-only EcoAgent has the largest

content provider satisfaction. The random agent sets a baseline on

how EcoAgent learns user preference as well as on how content
provider aware (𝜆 > 0) EcoAgents help content providers.

For every agent considered, we use LSTM cells in utility models

with (32, 32, 16) hidden layers between LSTM output and utility

prediction, which are chosen by preliminary experiments to mini-

mize the loss of utility prediction. For actor model, we first embed

user states and candidate (content provider state, content) tuples

into weights using (32, 32, 32) fully-connected layers (again tuned

by preliminary experiments), then generate policy based on the

softmax of the dot product between user weight and candidate

weights. We tune EcoAgents with various learning rates and se-

lect the model that maximizes the objective function eq. 7 with

corresponding content provider constant 𝜆.
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Figure 5: A content provider oriented EcoAgent (𝜆 close to 1) helps content providers by improving content provider accumu-
lated reward and number of viable content providers as compared to a user-oriented EcoAgent (𝜆 close to 0).

6.1.2 Metrics. To compare different agent models, we test them

in 50 rollouts of new environments for 20 steps (with prespecified

user and content provider dynamics but different initial states). We

calculate the following statistics of each rollout, which summarize

how the agent influences users and content providers respectively:

• user accumulated reward:
∑
20

𝑡=1 𝑟
𝑢
𝑡 ;

• content provider accumulated reward:
∑
20

𝑡=1 𝑟
𝑐
𝑡 ;

• # viable content providers: number of providers in the

environment at the current time step.

Both accumulated rewards characterize how satisfied users and con-

tent providers are on the platform, and number of viable providers

reflects how agents help less established providers. In all the plots

below, we show the average and the standard error (error bar) of

these statistics across test rollouts.

6.2 When, and Why, EcoAgent helps both
Provider and User Utilities?

We start with presenting our results under the main environment

setup – saturated content provider satisfaction, which defines content
provider satisfaction following Assumption 2.

Does EcoAgent increase content provider satisfaction? The

first question is if the consideration of content provider utility

uplift can indeed lead to happier content providers. We vary the

content provider constant 𝜆 from 0 (user-only EcoAgent) to 1 (con-

tent provider-only EcoAgent) as shown in Figure 5. It can be seen

that content provider accumulated reward (Figure 5a) and number

of viable content providers (Figure 5b) are increased with content

provider oriented EcoAgents (𝜆 close to 1) as compared to user-

oriented EcoAgent (𝜆 close to 0). Particularly, content provider-only
EcoAgent (𝜆 = 1) generates recommendations only to maximize

content provider utility and thus has largest content provider satis-

faction as well as most viable content providers.

Recall that content provider reward is decided by number of

recommendations and user feedback on the recommended content.

Figure 6a shows the percentage of being recommended contributing

to provider reward, and Figure 6b shows the total user feedback

Figure 6: Decomposition of content provider reward with re-
spect to being recommended and user feedback. (a) With a
content provider aware EcoAgent, being recommended con-
tributes more to provider utilities as compared to that with
a user-only agent. (b) The user-feedback part of the reward
is higher for EcoAgents compared to a random agent, as the
latter ignores user preference.

Figure 7: Tradeoff between users and content providers ac-
cumulated reward. (a) A properly tuned content provider
aware EcoAgent can have a good balance between user util-
ity and content provider utility. (b) In a setup where there
exist two identical groups of providers, differing only in ini-
tial satisfaction, as expected, there is no tradeoff—we can in-
crease provider utility without sacrificing user utility.
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Figure 8: Illustration of environment setups with subgroup
content providers. Figure (a) shows an environment of sat-
urated content provider satisfaction, which is initialized
with two identical content provider subgroups except that
they have different starting points for satisfaction. Figure
(b) shows an environment of linear content provider satis-
faction, initialized with two identical content provider sub-
groups except that they have different rate in increasing sat-
isfactionwith incremental recommender anduser feedback.

contributing to provider reward. With a random agent, recommen-

dations aremore evenly distributed among content providers, which

results in a noticeable portion of provider reward coming from be-

ing recommended (Figure 6a); larger as compared to EcoAgents.
However, a random agent does not consider user preference, and

thus the user-feedback portion of provider reward is significantly

lower than EcoAgents as demonstrated in Figure 6b.

Will user satisfaction be sacrificed? The second question comes

naturally given that EcoAgent improves content provider satisfaction—

then how about users? As the Pareto curve in Figure 7a shows, a

heavily content provider aware EcoAgent (𝜆 close to 1), though im-

proving much on content provider accumulated reward, has notice-

ably smaller user accumulated reward as compared to a user-only

EcoAgent, which is yet still better than a random agent. However,

EcoAgents in the yellow circle of Figure 7a suggests that, for a

properly content provider aware EcoAgent (0 < 𝜆 ≤ 0.6), we can

improve content provider satisfaction without sacrificing user satis-

faction much. What is remarkable is that, with certain 𝜆 parameter

choices, not only content provider reward is increased, but also

user reward is higher compared to a user-only agent (𝜆 = 0).

To gain further understanding on the trade-off between user

and provider utilities, we consider an additional environment setup

where there are two provider groups, who have identical features

except for the initial content provider satisfaction—Group A has

a smaller starting point, while group B has a larger starting point,

as shown in Figure 8a. Conceptually, group A should be recom-

mended more by EcoAgent, since doing so brings more content

provider utility uplift; but this should not impact user satisfaction

much, since these two groups are identical except the initial con-

tent provider satisfaction. Figure 7b verifies our conjecture: these

EcoAgents with 𝜆 ≤ 0.6 increase provider accumulated reward

without sacrificing user accumulated reward, that is, a content

provider aware EcoAgent with an appropriate provider constant

can achieve a good balance between user and content provider

satisfactions, verifying the promise of the approach in this setting.

Figure 9: Content provider utility uplift versus content
provider satisfaction. In an environment with log (and thus
saturated) content provider satisfaction shown in Figure
4a, predicted content provider utility uplift by EcoAgent is
inversely proportionally to content provider satisfaction.
EcoAgent promotes less established content providers more
to gain more content provider utility uplift, which thus in-
creases overall content provider utilities.

Why does content provider utility uplift help?We next exam-

ine the rationale behind content provider utility uplift. In an envi-

ronment with saturated content provider satisfaction, the predicted

content provider utility uplift by EcoAgent is inversely propor-

tional to content provider satisfaction as shown in Figure 9. In such

cases, less established content providers have larger ground truth

content provider utility uplift as compared to established content

providers (Figure 4a). By predicting content provider utility uplift,

EcoAgent can identify and promote those less established content

providers who need recommendation most, which increases overall

content provider utilities and also helps platform have more content

providers viable, as we already discussed in Figure 5.

6.3 When, and why, EcoAgent does not lead to a
healthier system?

Until this point, one can clearly see that EcoAgent helps content
providers, as long as content provider satisfaction gets saturated. It

raises a natural question on how sensitive EcoAgent is to environ-

mental setup and what happens in the opposite scenarios.

What if content provider satisfaction does not get saturated?
We consider an environment with linear content provider satisfaction.
As opposed to saturated content provider satisfaction function 𝑓

such as logarithm, here we consider 𝑓 to be linear, where content

provider satisfaction 𝑆𝑐𝑡 and accumulated recommender and user

feedback

∑𝑡
𝑠=1 𝑝

𝑐
𝑡 are exactly in proportion: 𝑆𝑐𝑡 = 𝑓 (∑𝑡𝑠=1 𝑝𝑐𝑠 ) =

𝜂
∑𝑡
𝑠=1 𝑝

𝑐
𝑠 , as demonstrated in Figure 4b. Content provider utility

uplift thus remains the same across different content providers.

As expected, EcoAgent would not help here as shown in Figure

10, since there is no guidance for EcoAgent to distinguish less

established content providers from established content providers.

Is there any setup that content provider aware EcoAgent per-
forms differently to a user-only EcoAgent, under the linear
content provider satisfaction setting? The answer is positive as
long as content providers with different satisfaction have different

increasing rates with respect to accumulated recommender and

user feedback. This allows EcoAgents to identify and recommend

content providers with larger satisfaction increasing rate, which
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Figure 10: Performance of EcoAgents when content provider
satisfaction does not get saturated. In an environment of lin-
ear provider-satisfaction shown in Figure 4b, EcoAgents with
varying 𝜆 (content provider constant) achieve similar results
on provider accumulated reward. This is because there is
no difference on provider uplift utilities among different
providers, so that EcoAgents cannot identify less established
providers versus established providers.

brings more provider utility uplift. To achieve this, we again con-

sider two identical provider groups with linear provider satisfaction,

expect that the slope of each provider satisfaction function differs:

• group A content providers: 𝑆
𝑐𝐴
𝑡 = 𝜂𝐴

∑𝑡
𝑠=1 𝑝

𝑐𝐴
𝑡 ;

• group B content providers: 𝑆
𝑐𝐵
𝑡 = 𝜂𝐵

∑𝑡
𝑠=1 𝑝

𝑐𝐵
𝑡 ,

where 𝜂𝐵 > 𝜂𝐴 such that group B content providers increase

their utilities faster than group A content providers, as shown

in Figure 8b. By design, EcoAgent can identify these two groups

based on predicted content provider utility uplift—group B should

have larger uplift. Figure 11a shows that content provider aware

EcoAgents increase content provider satisfaction as compared to

a user-only EcoAgent. This is because EcoAgents can gain more

content provider utility uplift by promoting group B more (shown

in Figure 12), thus improving overall content provider satisfaction.

However, does EcoAgent really help keep many viable con-
tent providers this time? Surprisingly, Figure 11b shows that the
number of viable content providers with content provider aware

EcoAgents instead decreases, even though these EcoAgents have
larger content provider accumulated reward as compared to a user-

only EcoAgent (Figure 11a). The problem originates from the in-

capability of utility uplift to capture the difference between less

established content providers and established content providers,

when the saturated satisfaction is violated. This leads to our re-

flection on EcoAgent objective, which uses content provider utility

uplift to optimize overall content provider utilities. Such objective

is rational as long as content provider utility can fully characterize

the happiness of each content provider individual, or the platform

fairness with respect to content providers. However, if one’s ulti-
mate goal is to maintain a healthy multi-stakeholder platform of more
content providers and users, only resorting to maximizing content
provider utility can be biased. In such cases, EcoAgent objective

needs to be adjusted correspondingly, such as including content
provider viability uplift—the difference of content provider viability
probabilities between being recommended versus not.

Figure 11: Performance of EcoAgents for subgroups of
content providers with different linear satisfaction func-
tions. Consider an environment with subgroups of content
providers who have different rates in increasing satisfaction
with respect to accumulated recommender and user feed-
back, as shown in Figure 8(b). (a) EcoAgent improves con-
tent provider accumulated reward as compared to a user-
only agent. (b) However, this reduces number of viable
content providers on the platform, which results from the
EcoAgent’s unfair favor of those content providers who are
more sensitive to environment but otherwise have no differ-
ence from the others.

Figure 12: Accumulated recommendations of content
provider subgroups A and B of Figure 8(b): (a) for group A
with the slower satisfaction increasing rate, (b) for group B,
with the faster satisfaction increasing rate. EcoAgents with
higher 𝜆 (content provider constant) learn to recommend
group B more, since doing so results in larger provider
utility uplift; this in turn leads to more group B viable
providers, but fewer group A viable providers—with a
decreased number of total (group A+B) viable providers.

7 DISCUSSION
In this paper we study a content provider aware recommender

agent that aims at maximizing the combined user and content

provider utilities, which we refer to as EcoAgent. We show that

maximizing the utility uplift of the provider associated with the

chosen content is equivalent to maximizing utilities of all relevant

content providers under a mild condition, which merits the scala-

bility of our algorithm. To evaluate EcoAgent, we develop a Gym

environment that allows for complex interactions among users,

content providers, and agent. We conducted a series of experiments



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zhan et al.

to identify scenarios under which a content provider aware RL rec-

ommender can lead to longer term user satisfaction and healthier

multi-stakeholder recommender systems.

A number of important research directions remain open. For ex-

ample, how to adapt EcoAgent to optimize different metrics, such as

number of viable providers or the number of content items. One can

modify the lift measurement of utility to alternatives such as model-

ing the lift of viability probability or content uploading frequencies.

Another interesting direction is to consider interference among

providers, which violates the no-content-provider-externality As-

sumption 1.

Together, we hope that this study can motivate future research

in understanding the impact of recommendation on different enti-

ties on the recommendation platforms and building healthy multi-

stakeholder recommender systems.
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