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The increasing use of group discounts has provided opportunities for buying groups with 
diverse preferences to coordinate their behavior in order to exploit the best offers from 
multiple vendors. We analyze this problem from the viewpoint of the vendors, asking 
under what conditions a vendor should adopt a volume-based price schedule rather than 
posting a fixed price. We consider both the case of monopolist vendors and cases where 
a vendor competes with other vendors. When vendors have uncertainty about buyers’ 
valuations specified by a known distribution, we show that a vendor is always better 
off posting a fixed price, provided that buyer types (valuations) are i.i.d. and that other 
vendors also use fixed prices. We also show that these assumptions cannot be relaxed: 
if buyer types are not i.i.d., or other vendors post discount schedules, then posting a 
schedule may yield a higher profit for the vendor. We provide similar results under a 
distribution-free uncertainty model, where vendors minimize their maximum regret over 
all type realizations.

Published by Elsevier B.V.

1. Introduction

Online services offering consumer group discounts represent an important and growing segment of online sales. Despite 
margin pressures, services such as Groupon, Living Social, and hundreds of others remain successful, offering consumers a 
choice of multiple, competing offers from vendors of identical or similar products. The move to offering large-scale group 
discounts is emerging in very sophisticated markets as well, as evidenced by programs in the UK, Australia, and other 
countries that encourage consumers to engage in coalitional buying activities for electricity, life insurance, and other such 
products and services.1 This abundance presents difficult decisions for the buyer, since the optimal purchase depends not 
only on her preferences, but also on the choices of other buyers (which determine the triggered price); intelligent search 
and coordination mechanisms allow mediators to assemble large group of buyers in order to take advantage of offered 
discounts (see Related Work). Vendors too face complex decisions in the face of strategic competitors and buyers (especially 
when the latter coordinate their purchases using online services): they must decide on a complete pricing strategy, setting 
volume-based prices instead of a single posted price.
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In this paper we assess the value of offering group discounts from the perspective of the vendors, and take some 
initial steps towards delineating conditions under which such discounts may increase vendor revenue. Our starting point 
is the group buying model recently proposed by Lu and Boutilier [17]. In this model (henceforth, the LB model), vendors 
of similar products each propose volume discounts for their product, and buyers each seek a single product from this 
set. Each buyer has preferences for the distinct products which, together with the final price—as triggered by purchase 
volume—determine her utility. Lu and Boutilier study various forms of stable assignment of buyers to specific vendors in 
this model, with and without transferable utility. They also develop algorithms for computing such stable assignments. 
However, they approach the problem from the perspective of the buying group or buying coalition, modeling the incentives 
for different buyers to coordinate their purchases with specific vendors. Critically, they take the (volume-discounted) vendor 
prices to be exogenously determined and fixed (independent of buyer behavior). As such, they do not address the incentives 
for vendors to offer such discounts in the first-place, nor strategic interactions involving the vendors.

Incentives for group discounts The discussion above leads to a natural question: why would a vendor offer price discounts 
based on the number of buyers of its product? There are at least three potential reasons. First, if a vendor has economies 
of scale (i.e., when the marginal costs of producing a good or offering a service decreases with the number of units sold), 
at least some of the cost savings induced by unit-sales volume can be passed on to consumers to increase total sales 
and revenues. Second, there may be implicit or explicit network effects, such as word of mouth advertising, where initial 
discounts that bring in large volumes of buyers can result in greater additional sales among further buyers at a future point 
in time. When customer acquisition costs are high through traditional channels, group discounts may induce buyers—in 
order to extract a better price—to recruit their friends who may be unaware of the product or service being offered.2 Finally, 
group discounts may allow for price discrimination between buyers with different preferences. This may be especially true in 
circumstances in which a vendor is uncertain about the valuations buyers have for her product or service, and can be used to 
extract more revenue from buyers of different types. While all three factors (and likely several others) play a role in driving 
volume discounts in real markets, in this work we focus exclusively on the third factor in order to study its effect on pricing 
strategies in isolation. We do so by assuming that production costs are linear (i.e., there are no economies of scale) and that 
the set of potential buyers is fixed and aware of all vendor offerings (i.e., there are no advertising or acquisition effects).

A two-stage competition Several models have been proposed that examine vendor incentives for offering volume-based 
discounts under a variety of utility and informational assumptions. We discuss these in depth in Section 1.1. Most such 
proposals adopt a two-stage model of interaction, along the lines of Stackelberg games, in which one or more vendors first 
commit to a pricing strategy, or discount schedule, and then buyers make individual or coordinated purchasing decisions. The 
LB model reflects the coordinated behavior of buyers in the presence of multiple discount schedules, a behavior that has 
become increasingly feasible using online services (e.g., Groupon, Living Social, Which? Switch) to assess preferences and 
form suitable buying groups. As such, it is natural to assess its fit within the “standard” two-stage framework, and analyze 
how such coordinated buyer behavior impacts vendor pricing strategies. Specifically, we analyze the conditions under which 
a vendor can derive value by using a discount schedule rather than a fixed price.

Since the LB model does not account for the incentives or behavior of vendors, we extend it to include vendors as 
strategic entities to form a game that reflects the strategic interactions of all participating parties. To do so, we must specify 
the structure of vendor utility functions, vendor beliefs about buyer valuations, and the relation between the two. We 
consider three natural models that differ in vendor information structure, each of which is elaborated below. Our complete 
information model assumes that vendors know the valuations (or types) of all buyers for their products. In our Bayesian 
model, vendor beliefs take the form of a distribution over buyers’ types and the utility of their strategies is determined 
using the expected response of the buyers to their prices and/or discounts. Finally, we analyze a distribution-free model, 
where vendors know only the set of possible buyer types, but not the frequency with which they occur. Here they try to 
maximize worst-case utility over possible realizations of buyer types. Despite the key informational difference, in all models, 
vendor utility remains linear in the number of units sold. In each setting, we analyze conditions under which a vendor may 
profit by offering group discounts when competing with other vendors.

To summarize our model, we study a two-stage game with multiple vendors and multiple buyers. In the first stage, 
vendors propose price schedules, exploiting available information about buyer types, which varies across the three models. 
Buyers then coordinate their buying behavior, based on their realized types (if unknown to the vendors), using the LB 
(non-cooperative) mechanism. Under this non-cooperative model of buyer behavior, buyers have full information about the 
offers and the types of other buyers, but cannot transfer payments or make binding agreements. Buyers form stable groups 
(as defined below), where no single buyer can benefit by switching to a different vendor.

1.1. Related work

Volume-based pricing has been studied extensively, but often using motivations different than ours. One line of research 
focuses on the effect of volume discounts on purchase management and the induced efficiencies in supply chains [20,15,25]. 

2 Such discounts are sometimes motivated by considering businesses in which customer acquisition costs are high, but where initial discounts pay for 
themselves by retaining newly acquired customers for future sales [8].
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For instance, quantity discounts can increase order quantities from a single or multiple buyers. Reduced setup, inventory 
and shipping costs can more than compensate suppliers for their reduced margins, while saving buyers money. The focus 
of such work is on optimizing pricing, though strategic elements are sometimes assessed. Edelman et al. [8] provide an 
analysis of group discounts that focuses on the value of discounts for customer acquisition. However, as noted above, we 
ignore the benefits of non-linear production costs and buyer acquisition in our work.

A different model was suggested by Anand and Aron [1], with motivations very similar to ours: buyer utility is quasi-
linear in price, and vendor utility is linear in the number of units sold (as in our model). Volume discounts are used to 
attract buyers that would otherwise refrain from purchase. The main difference with our model is their assumption of weak 
buyer coordination: buyers are uncertain of the valuations of others and do not coordinate their choices. Anand and Aron 
further limit their analysis to a monopolist (single vendor) and several very specific classes of buyers. Under a variety of 
conditions, they prove that a monopolist with a fixed marginal production cost cannot increase its profit by posting a discount 
schedule rather than a fixed price. However, a schedule may be the best strategy for a monopolist, for example, when facing 
buyers whose types are correlated by some signal that provides some indication of the quality of the product.

Somewhat less related (but still within the two-stage framework) is the group buying auction model [6]. Here a vendor 
posts a discount schedule, then buyers arrive sequentially and can announce the price at which they are willing to buy 
(rather than just joining the group). These announcements, in turn, may affect the estimates of other buyers regarding the 
eventual price, and their decision to join the group. Chen et al. show that a monopolist facing i.i.d. buyers cannot benefit 
by offering volume discounts unless it is risk-seeking or has decreasing marginal costs. More recently, Chen et al. [7] have 
shown how to derive the optimal discount schedule for a vendor facing a particular class of (non-i.i.d.) buyers, both as a 
monopolist and when competing against other (fixed-price) vendors. Other discount-based auction mechanisms have also 
been developed [19,22].

The algorithmic aspects of finding a service that is most suitable for a group of buyers (including scenarios with group 
discounts) have been studied in the AI literature [23,18], where buyers are assumed to be fully cooperative.

Finally, various stable mechanisms for buyer coordination have been suggested assuming transferable utility [26,16,17], 
which requires the possibility that buyers can construct and engage in binding agreements. In our models, as in [1,6] and in 
the non-transferable-utility version of [17], we assume a non-cooperative setting that excludes monetary transfers among 
buyers, and focus on (one-shot) vendor revenue maximization.

1.2. Outline and contribution

Our main contribution in this work is an analysis of the impact of buyer coordination (in the LB model) on vendor 
pricing, in particular, in the presence of competing vendors. The remainder of the paper is organized as follows. In Section 2, 
we introduce our underlying model, elaborating on the range of buyer behaviors, reviewing the LB model and the behavior 
it induces within the buying group, and outline the pricing and discounting strategies available to vendors. We begin our 
analysis in Section 3, showing that with complete information there is no incentive for vendors to use group discounts. We 
outline the Bayesian (expected utility) model in Section 4, and prove that if buyer valuations are independent and identically 
distributed, and all other vendors use fixed prices, then fixed prices are optimal for any vendor. However, we show that if 
any of these conditions is relaxed, then a vendor may benefit by posting a discount schedule rather than a fixed price. With 
correlated buyers, this gain can grow linearly with the number of buyers. In Section 5, we provide a similar result in the 
distribution-free setting: a vendor facing buyers with identical sets of possible valuations—with other vendors offering fixed 
prices—should also post a fixed price in order to minimize regret. We conclude in Section 6 with some suggested future 
research directions, and offer some preliminary results on equilibrium analysis and ties to optimal auction theory.

2. Model and notation

Assume a set N of n buyers and a set M of m vendors. Vendors each offer a single product for sale, of which they have 
an “unlimited” supply (enough to satisfy the demands of all buyers). Each buyer i has a type V i , which is an m-vector of 
non-negative values, where vij represents i’s valuation for j’s product. We denote by Ai ⊆ R

m the set of possible types for 
buyer i. Each buyer has unit demand: she will buy at most one product from at most one vendor. Let v j denote the vector of 
values for vendor j (over all i ∈ N) and V = (vij)i∈N, j∈M be the matrix of all valuations. We can think of (V i)i∈N as the rows
of V, and (v j) j∈M as its columns.3 The set of all possible type matrices is denoted by A ⊆ R

n×m . Ai is thus the projection 
of A over the dimensions relevant to buyer i. Each vendor has a fixed cost c j for producing and/or distributing one unit of 
its product, which is common knowledge among vendors.

Two-stage interaction Vendors and buyers engage as follows: in the first stage of the game, each vendor posts a discount 
schedule, a non-increasing vector p j : [n] → R+ , where p j(t) is the price offered if t buyers each purchase j’s item [1]. 
Let P be the set of all possible discount schedules and P = (p1, . . . , pm) a profile of schedules, one per vendor. We refer to 
a schedule with a single fixed price as a trivial schedule, which for simplicity is denoted by p j ∈ R+ .

3 Throughout the paper, uppercase letters represent column vectors of length m (and also sets). Bold lowercase letters represent row vectors of length n. 
Bold uppercase letters represent n × m matrices. See Table 1 for an example.
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Table 1
The left columns show the valuation matrix V, where vij is the value in the ith row and the jth
column. For example, the type of Buyer b is Vb = (7, 3). The right columns show vendors and their 
current discount schedules P. Note that vendor 2 uses a fixed price of p2 = 3.

Valuations of v1v2 Price for p1p2

Buyer a
⎛
⎝ 7 3

7 3
3 4

⎞
⎠ 1 buyer

⎛
⎝ 8 3

4 3
1 3

⎞
⎠Buyer b 2 buyers

Buyer c 3 buyers

In the second stage of the game, each buyer selects a single vendor from whom to purchase a product, or decides to ab-
stain from a purchase. We will elaborate the mechanism by which buyers coordinate their purchases—the LB model—below. 
The selection of vendors can be modeled as an assignment μ : N → M ∪ {0} of buyers to vendors, where μ(i) = 0 reflects 
the fact that i abstains from purchase. It will be convenient to represent this assignment as a partitioning of the buyers 
into S = (S0, S1, . . . , Sm), where S j = μ−1( j) ⊆ N is the set of buyers assigned to j (and S0 are the abstainers). An outcome
(P, S) of the game comprises a set of schedules P = (p j) j∈M , and a partitioning S. Under a given outcome (P, S), a buyer 
i ∈ S j pays price p j(|S j |) for any j �= 0.

2.1. The Lu–Boutilier model

We now define the LB model in more detail. Following Lu and Boutilier [17], we assume buyers are strategic but vendors 
are not for the purposes of defining buyer behavior, and therefore assume that discount schedules posted by vendors are 
fixed. This is standard for a two-stage leader-responder game (or Stackelberg game). We will extend this basic setting 
in Section 2.2 by adding vendor utilities, strategies, and informational assumptions to model the strategic interactions of 
vendors.

Assume a profile of discount schedules P has been fixed by the vendors. Once buyers are assigned to specific vendors, 
the item prices are set by (P, S) as defined above. Buyer utility is quasi-linear in price: the utility of i ∈ S j is ui(P, S) =
vij − p j(|S j |). For ease of exposition we assume buyers are never indifferent between products (vendors); as such, we 
assume a predetermined ordering of vendors, specific to each buyer, that is part of its type V i . This is used to break ties 
between vendors for whom the buyer otherwise has the same utility.

Buyer behavior If P consists of fixed prices, every buyer has a strongly dominant strategy (recall we assume strict prefer-
ences). However, if one or more vendors post non-trivial discount schedules, the optimal behavior of one buyer may depend 
on the decisions of other buyers. When considered as a cooperative game where the utilities are either transferable or non-
transferable, Lu and Boutilier showed that the core of the game may be empty. That is, there are discount schedules where, 
given any partitioning of buyers, some coalition of buyers can do better by moving to a different vendor. Thus as in that 
work, we consider outcomes that are stable to unilateral deviations by buyers from a given outcome.

We assume that if buyer i switches from vendor j = μ(i) in outcome (P, S) to some other vendor j′ , she enjoys the 
(potentially reduced) price p j′ (|S j′ | + 1) induced by her deviation. Strong stability requires that no single buyer gains from 
such a deviation. For any profile of discount schedules P and type matrix V, there is some partition S that is strongly stable [17]. 
We refer to such a partition as a stable buyer partition (SBP). An SBP is, in fact, a pure Nash equilibrium in the second stage 
of our game. However, since our focus is on vendor behavior in this work, we reserve the term equilibrium for analysis of 
the first stage of the game (i.e., vendor play).

We note that there may be multiple SBPs in any game. We generally do not make any assumption about the selected 
SBP, however in Section 4.2 we will require that it is not Pareto-dominated by another SBP (we term this assumption the 
undominated SBP assumption). This is a rather weak assumption as it is likely that the SBP is reached with the help of some 
mediator, cheap-talk, or another mechanism that provides very mild coordination capabilities. From among undominated 
SBPs, we may select in an arbitrary, pre-defined way. For example, Lu and Boutilier [17] describe a method for finding SBPs 
that maximize social welfare, which could readily be incorporated into our model.

Nothing in our results depends on the means of selecting the SBP. Thus for every schedule P and type matrix V there is 
a unique outcome (P, S), where S = S(P, V) is an SBP induced by P, V.

Example Consider the (second-stage) game among buyers described in Table 1. Suppose that every buyer selects her favorite 
vendor, ignoring prices and breaking ties lexicographically. Then we obtain the partition S = ({a, b}, {c}). Under partition S, 
we have ua(P, S) = ub(P, S) = 7 − p1(2) = 3; uc(P, S) = 4 − p2(1) = 1. S is not an SBP, as buyer c has an incentive to move 
to vendor 1. Indeed, in the partition S′ = ({a, b, c}, ∅) we have uc(P, S′) = 3 − p1(3) = 2 > uc(P, S). The partition S′ is an SBP, 
as no buyer has an incentive to deviate from it.

Note that S′ is not the only SBP. The partition S′′ where all buyers go with vendor 2 is also stable. Indeed, if buyer a
moves to vendor 1, her utility will drop from 3 − p2(3) = 0 to 7 − p1(1) = −1, and similarly for b and c. However, S′ is the 
only Pareto optimal (i.e., undominated) SBP. Thus S′ = S(P, V).
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2.2. Vendors as agents

Our focus in this work is on the strategic interactions among vendors. Once they select their prices and/or discount 
schedules, we assume that buyer behavior is dictated by the (nontransferable utility version of the) LB model above. We 
now turn our attention to the vendors.

Given an outcome (P, S), the utility of vendor j ∈ M is simply the revenue derived from the buyers assigned to it less 
the cost of the products sold: U j(P, S) = |S j | · (p j(|S j |) − c j), where c j is the cost of a single product to j. Recall that S(P, V)

is the SBP induced by the prices P. This allows us to write U j(P, V) ≡ U j(P, S(P, V)).

Vendor behavior Since the behavior of the buyers for any set of vendor discount schedules is well-defined, we can confine 
our analysis of the two-stage game to the first stage, where vendors announce prices. The incentives facing vendors in 
choosing their strategies depend critically on their knowledge of buyers’ types, as well as on their objective function. We 
consider three different models, which we briefly describe here (formal definitions appear in the sections that follow).

In the full information model, vendors know the precise buyer types and act to maximize their utility given the actions 
of other vendors. The Bayesian (or expected utility) model adopts a standard Bayesian game formulation: vendors have partial
information in the form of a commonly-known distribution D over (joint) buyer types, and act to maximize their expected
utility, taking expectations over outcomes (SBPs) with respect to possible realizations of buyer types. The strict uncertainty 
model assumes that vendors posses even less information about the buyers: they know only the possible set of buyer 
types (i.e., only the support of the distribution is known). In this model, expected utility is ill-defined, so we instead adopt 
a common approach for such settings and assume vendors try to minimize their worst-case regret over all possible type 
realizations.

Best response and equilibrium Informally, an equilibrium is a profile of vendor strategies (i.e., prices or discount schedules) 
such that no vendor prefers to use a different strategy, assuming that other vendors use their strategy in the profile, and 
the buyers behave as described above. Equivalently, a profile is not in equilibrium if some vendor has a best response, or 
alternative strategy, that it (strictly) prefers if other vendors use that profile. (The precise definition of “preferred strategy” 
depends on the model and how strategies are evaluated.)

Best responses are in some sense a more fundamental concept than equilibria, since analyzing equilibria depends on 
full understanding of available best responses. Furthermore, even in settings where we do not expect equilibria to emerge 
in the repeated interaction among vendors (or in settings where pure strategy equilibria may not exist, depending on 
the solution concept), an understanding of best-response dynamics provides natural insights into the likely outcomes of 
a game. Therefore, the main focus of this paper is the nature of vendor best responses to the actions of other vendors, 
and specifically the circumstances under which it is rational to respond with a non-trivial discount schedule rather than a 
fixed price. While not a focus of this work, all three models admit natural definitions of a vendor equilibrium, based on the 
corresponding best-response concept.

3. The full information model

A game G = 〈V, C〉 in the full information model is given by a buyer type matrix V = (vi, j) and vendors costs C = (c j). We 
will use this simple model to demonstrate a best-response by a vendor. Suppose that c1 = c2 = 0, and consider the example 
given in Table 1. Since by our assumption, under P, V buyers partition according to the SBP S′ (i.e., all buyers choose 
vendor 1), the utility of the vendors is U1 = 3 · p1(3) = 3; U2 = 0. This outcome is not an equilibrium for the vendors. For 
example, vendor 2 can change her discount schedule to p′

2 = (1, 1, 0), which would result in the SBP S(P′, V) = ({a, b}, {c})
with U ′

2 = 1. Vendor 1 can also post a better schedule, by raising his prices to, say, p′
1 = (8, 6, 2). Thus, given the strategy 

of vendor 2 (or, more generally, all vendors except vendor 1), it is natural to ask what is the best discount schedule that 
vendor 1 can post.

As it turns out, the full information model is not especially interesting from our perspective.

Proposition 1. In the full information model, there is always a fixed price p j that is a best response for vendor j to any strategy profile 
P− j of the other vendors.

Proof. If the vendors have full information, then they know exactly which buyer partitions will form given any profile of 
discounts P. Suppose that vendor j expects to have t buyers under some nontrivial schedule p j . That is, |S j | = t , where 
S = S((p− j, p j), V). Then j can post a fixed price p j = p j(t) and induce identical buyer behavior S.

Let P∗ = (p− j, p j). To see why S is still an SBP, assume toward a contradiction that some buyer i has a deviation from Sk
to Sk′ under prices P∗ . First, pk(|Sk|) = p∗

k (|Sk|). If k′ �= j, then pk′ (|Sk′ ∪ {i}|) = p∗
k′ (|Sk′ ∪ {i}|). If k′ = j, then

p j
(∣∣S j ∪ {i}∣∣) ≤ p j

(|S j|
) = p j = p∗

j

(∣∣S j ∪ {i}∣∣).
In either case, buyer i would also deviate under prices P, which is a contradiction. �
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This is not altogether surprising: the fact that some uncertainty is required to justify group discounts has previously 
been demonstrated, albeit in a somewhat different model, by Anand and Aron [1]. As a consequence, volume discounts are 
of no value when buyer types are known (at least in the one-shot game with a fixed population of buyers).

4. The Bayesian model

One reason for posting volume discounts rather than fixed prices is to hedge against uncertainty regarding the pref-
erences (hence decisions) of the buyers. Specifically, a vendor can “insure” itself against the possibility that fewer buyers 
are attracted to its product than expected by using volume discounts. In the Bayesian model we assume that there is some 
joint distribution over buyers’ types D = D(A) which is common knowledge among vendors. The game takes the form 
G = 〈D, C〉. In the first stage of the game, vendors choose discount schedules, not knowing the buyers’ types. In the second 
stage, a type matrix V = (vij)i∈N, j∈M is drawn from D. The goal of vendor j is to set a schedule p j that maximizes its 
expected utility:

U j(P,D) = EV∼D
[
U j(P,V)

] = EV∼D
[
U j

(
P,S(P,V)

)]
.

A special case we consider is the case of i.i.d. buyers, in which Ai = A for all i ∈ N . In other words, each buyer’s type is 
distributed according to a common distribution D̂(A); and D is the corresponding product distribution. We emphasize that 
within D̂(A), buyer i’s preferences over different vendors may in fact be probabilistically dependent (i.e., vij and vij′ can be 
correlated).

4.1. A single vendor

First consider the case of a single vendor: suppose a monopolist is faced with distribution D over buyer types. The 
simple example below demonstrates that a vendor can strictly increase its revenue, relative to any fixed price, using a 
non-trivial discount schedule. Assume two buyers, and a (discrete) type distribution that assigns probability 0.5 to each 
of two type matrices, (2, 2) and (3, 0). Note that buyers’ valuations are correlated in D. The optimal fixed price is p = 2, 
which guarantees revenue U (p, D) = 0.5 · 2 · 2 + 0.5 · 2 = 3 (two buyers in the first realization and one in the second). 
However, consider a discount schedule with a base price p(1) = 3, and a discounted price p(2) = 2. Its expected revenue, 
U (p, D) = 0.5 · 2 · 2 + 0.5 · 3 = 3.5, is greater than that of the optimal fixed price. More detailed examples are given in 
Sections 4.3 and 4.4.

By contrast, if buyer valuations are i.i.d., the monopolist is always at least as well off using a fixed price:

Proposition 2. Consider a single vendor facing n i.i.d. buyers with distribution D. Let p∗ be the optimal fixed price for the vendor. For 
any discount schedule p, U (p, D) ≤ U (p∗, D).

Proposition 2 in fact follows from a much more general result in auction design. Consider a vendor with an unlimited 
supply, facing i.i.d. bidders. It is known that no truthful auction yields more revenue, in expectation, than the optimal fixed 
price. It is not hard to see that any discount schedule is (equivalent to) a truthful auction mechanism (see also Section 6.2). 
For completeness, we provide a simple direct proof of Proposition 2 in Appendix A.

4.2. Multiple vendors

We now consider the best response of a vendor to the offers of other vendors. Suppose vendors other than j post 
discount schedules p− j . The best response of j is:

brEU
j (p− j) = argmax

p j∈P
U j

(
(p− j,p j),D

)
. (1)

Our main result in the Bayesian model is that, assuming buyer types are independent and drawn from the same distribution, 
a vendor cannot benefit by using a discount schedule instead of a fixed price unless other vendors also use schedules. Below 
we show that these conditions are minimal: a non-trivial schedule can be of value if any of these three conditions is relaxed.

Theorem 3. Let G = 〈D, C〉 be a game with i.i.d. buyers, which always select an undominated SBP. If all vendors except j post fixed 
prices, then there is a best response for vendor j that is also a fixed price.

Proof. W.l.o.g., we analyze the response of vendor 1 to fixed prices of the other vendors. Denote by q2, . . . , qm the (fixed) 
prices of all other vendors. Given distribution D̂ over a single buyer’s types (a distribution over vectors of size m), we define 
the following single parameter distribution D̂′:

Pr ̂′(v ≥ x) ≡ Pr ̂(∀ j ∈ {2, . . . ,m}, v1 − v j + q j � j x
)
, (2)
v∼D v∼D
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where � j should be interpreted as > if a buyer of type v prefers vendor j over 1 in case of a tie, and otherwise as ≥.4 For 
instance, in the special case where the buyer always prefers vendor 1, we have Prv∼D̂′ (v ≥ x) ≡ Prv∼D̂(v1 − max2≤ j≤m(v j −
q j) ≥ x).

Now, consider vendor 1 to be a monopoly, facing buyers that are sampled from distribution D′ (or, equivalently, each 
buyer is i.i.d. sampled from D̂′). An indifferent buyer (with v = p) always chooses to buy a product from vendor 1 over 
abstaining from purchase. The vendor can attract k buyers at price p iff there are k buyers for which vi,1 ≥ p. However, for 
every buyer i,

PrV ∼D′(buyer i buys from monopolist) = PrV ∼D′(vi ≥ p)

= Prvi∼D̂′(vi ≥ p)
(
since D′ = (

D̂′)n)
= Prvi∼D̂

(∀ j ∈ {2, . . . ,m}, vi,1 − vi, j + q j � j p
) (

by Eq. (2)
)

= PrV∼D
(∀ j ∈ {2, . . . ,m}, vi,1 − vi, j + q j � j p

) (
since D = (D̂)n)

= PrV∼D
(∀ j ∈ {2, . . . ,m}, vi,1 − p � j vi, j − q j

)
= PrV∼D(buyer i prefers vendor 1 over all others)

That is, vendor 1, when viewed as a monopolist, will attract the same set of buyers at the same price as in the multi-vendor 
game. Thus the revenue of any discount schedule p for the single vendor under distribution D′ is equal to the revenue 
it derives using p when faced with vendors posting prices q2, . . . , qm under distribution D. One subtle issue is that given 
pricing p1 = p in the multi-vendor game G , there may be several SBPs. However, the stable partition that extracts the best 
price (i.e., the one where the largest number of buyers select vendor 1, and is also stable) Pareto dominates all other SBPs. 
Thus according to the undominated SBP assumption S((p1, q2, . . . , qm), V ) is uniquely defined, and S1 coincides with the 
set of buyers that purchase in the single vendor setting.

Finally, by Proposition 2, the best strategy for the vendor is to post a fixed price p∗ , which entails that p∗ =
brEU

j (q2, . . . , qm). �
4.3. When discounts help

There are three main conditions underlying Theorem 3: (a) all buyers have the same marginal distribution of values; 
(b) buyer valuations are independent; and (c) all other vendors use fixed prices. We now show that these are, in a sense, 
minimal requirements for the optimality of fixed prices. Specifically, relaxing any of the three admits non-trivial schedules 
as best responses in some circumstances.

Proposition 4. For any pair of conditions taken from (a), (b) or (c), there is a game with two vendors and two buyers where the best 
response of one vendor is a non-trivial discount schedule.

We prove this proposition by deriving examples of such games that violate each of these conditions in turn, and showing 
that discount schedules do in fact serve as best responses in each case.

Relaxing condition (a) We first assume conditions (b) and (c) hold, but allow buyers to have different marginal distributions 
over valuations. Consider a simple counterexample with two vendors M = {1, 2} and two independent (but not i.i.d.) buyers 
N = {a, b}. Both vendors have zero cost. Buyer a prefers vendor 1: va1 = 10 + x, where x ∼ U (0, 1]; and va2 = 10. Buyer b
prefers vendor 2: vb1 = 10; and vb2 = 10 + y, where y ∼ U (0, 1].

Consider the fixed price profile P∗ = (1, 1). The expected revenue is U1(P∗) = U2(P∗) = 1 (in fact this occurs w.p. 1, as 
every vendor keeps exactly one buyer). We argue that if discounts are not allowed, then P∗ is an equilibrium, i.e., that no 
vendor can earn more than 1 by posting a fixed price. Indeed, suppose that vendor 1 announces some price q > 1, then it 
keeps buyer a w.p. (2 − q), and

U1(q,1) = (2 − q)q + (1 − q)0 = 2q − q2.

Similarly, if q < 1, then the vendor keeps buyer a for sure, and gains buyer b w.p. 1 − q. Thus

U1(q,1) = (1 − q)2q + q · q = 2q − q2.

In other words, in both cases U1(q, 1) = 2q −q2, which has a maximum at q∗ = 1 = p∗
1. The argument for the second vendor 

is the same.

4 Recall that according to our assumption every type implies a strict order over vendors that breaks ties.
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Nevertheless, if vendor 1 deviates to the non-trivial discount schedule q′
1 = (1, 3/4), then it can derive higher expected 

revenue. Vendor 1 keeps buyer a as before. W.p. 1/4, buyer b has a preference of less than 1/4 for vendor 2 (i.e., y < 1/4), 
and will select vendor 1 in the unique SBP S((q′

1, p2), V ). Hence:

U1
(
q′

1, p2
) = 1/4

(
2q′

2

) + 3/4 · q′
1 = 1/4(2 · 3/4) + 3/4 · 1

= 3/8 + 3/4 = 9/8 > 1 = U1
(

P∗).
Relaxing condition (b) Our next example shows that relaxing independence, but retaining conditions (a) and (c), also admits 
discounting as a best response. Consider the previous game, but with probability 1/2, swap the preferences (types) of both 
buyers. In other words, either: (i) a prefers vendor 1 and b prefers vendor 2 (with the valuations outlined in the previous 
example); or (ii) b prefers vendor 1 and a prefers vendor 2; and each of (i) and (ii) occurs with probability 1/2. This results 
in a symmetric distribution, but one that correlates their valuations of buyers a and b. The fixed profile P = (1, 1) remains 
a fixed price equilibrium. Moreover, since the best response of vendor 1 to price 1 is q1 = (1, 3/4) regardless of its type, it 
remains a best response in the new game.

Relaxing condition (c) Lastly, we describe a game with two i.i.d. buyers, maintaining conditions (a) and (b), but where 
the best response for vendor 1 to a discount schedule posted by vendor 2 is itself a schedule (the full analysis of this 
example appears in Appendix B). Let va1 = vb1 = 10, va2 = 10 + xa , and vb2 = 10 + xb , where xa and xb are sampled 
i.i.d. from D = U [−1, 1]. As long as prices are not too high (say, below 8) buyer i’s decision is determined only by the value 
difference xi between her value for the two vendors. It is not hard to verify that the best response of every vendor j to 
the fixed price p− j = 1 is p j = 1, even if schedules are allowed (i.e., P = (1, 1) is an equilibrium, see Section 6.1). However, 
suppose vendor 2 posts schedule q = (1, 0.8). Vendor 1’s best response is not a fixed price: it can be shown that its optimal 
fixed price is p∗ ∼= 0.922, yielding revenue of 0.93656, while the schedule (0.93, 0.914) yields slightly higher revenue of 
0.93675.

4.4. Revenue bounds

As we have seen in the examples in Section 4.3, there are instances in which a vendor derives greater expected revenue 
by posting a discount schedule rather than a fixed price. It is thus natural to attempt quantify the potential benefit of using 
volume-based discounts. To simplify the approach, we limit our analysis to a monopolist vendor, and examine the potential 
increase in utility relative to the optimal fixed price. Our approach and bounds can easily be extended to any number of 
vendors.

When faced with n buyers, there are cases where a vendor can increase its profit by a factor of n by using group 
discounts; that is, the value of using discounts is unbounded as the number of buyers grows. The proof of the following 
proposition assumes that buyer valuations for the vendor’s product are correlated. However, the types of correlations used 
can occur quite naturally when publicly observable signals (such as product quality, product reviews, or network effects and 
externalities) influence buyer valuations.

Proposition 5. A vendor’s expected utility for using a discount schedule, when faced with n buyers, can be no more than a factor of 
n greater than the expected utility of the optimal fixed price. Moreover, there are instances where this improvement is realized by a 
discount schedule.

Proof. We first prove the upper bound, showing that no discount schedule improves on the optimal fixed price by more 
than a factor of n. Let p be any discount schedule. Let B j be the event that price p( j) realized.

n max
q

U (q,D) ≥
∑
j≤n

U
(

p( j),D
) =

∑
j≤n

p j EV∼D
[∣∣{i ∈ N : vi ≥ p( j)

}∣∣]

≥
∑
j≤n

p( j)EV∼D
[∣∣{i ∈ N : p( j + 1) > vi ≥ p( j)

}∣∣]

≥
∑
j≤n

p( j)PrD(B j)EV∼D
[∣∣{i ∈ N : p( j + 1) > vi ≥ p( j)

}∣∣|B j
]

≥
∑
j≤n

PrD(B j)p( j) j = U (p,D).

Thus the expected revenue maxq U (q, D) of the optimal fixed price is at least 1
n of that of any discount schedule p.

We now construct an example that achieves this factor n improvement. Consider n buyers who are uncertain about their 
valuation of the product, believing it to be of one of n different product types (e.g., the product has one of n different quality 
levels). Let ε > 0 be some constant.
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A product of type j ∈ [n] has j buyers who value it at v j = ε j−n

j , whereas all other buyers value it at 0. Note that when 
ε = 1, the average value of all buyers for every j is 1. We can think of event j as representing the level of detail in a 
product review: when j = n, no buyer knows anything about the product, so all buyers assign it an expected value of 1. 
As j decreases, the review becomes more detailed, providing additional information, so that n − j buyers realize they do 
not want this product, while expected value of other buyers increase.

We define Dε so that for each j < n the product is of type j with probability q j = εn− j . With the remaining probability 
mass qn = 1 − ε − ε2 − · · · − εn−1, the product is of type n. In the best case, the vendor can extract the full surplus under 
any product type. Note that this can be achieved with the schedule p∗( j) = v j , thus the optimal schedule p∗ extracts from 
any buyer her full expected value:

U
(
p∗,Dε

) =
n∑

j=1

q j p∗( j) j = qn +
n−1∑
j=1

εn− jε j−n = n − 1 + qn,

which approaches n as ε → 0.
Suppose instead that the vendor uses a fixed price. With any fixed price of the form p j = p∗( j) = v j, j ∈ [n]—clearly 

there is no reason to use any other price—the vendor will achieve revenue of:

U (p j,Dε) = p j

∑
j′≤ j

q j′ · j′ =
∑
j′< j

q j′ p j j′ + q j p j j

≤
∑
j′< j

εn + q j p j j ≤ εn2 + 1
ε→0→ 1.

Thus for any n, we can set ε sufficiently small so that the revenue from any fixed price is arbitrarily close to 1, whereas the 
best discount schedule attracts revenue that approaches n. �

What we see is that with such correlations, the vendor can effectively use group discounts to achieve price discrimi-
nation, which was impossible in the i.i.d. case. Another interesting question pertains to the maximum utility a vendor can 
gain by using discounts when facing buyers that are distinct but independent. The first part of Proposition 4 shows that a 
factor of at least 9

8 improvement is achievable; but it remains an open question as to whether a constant upper bound can 
be proven.

5. The strict uncertainty model

The assumption that vendors have distributional knowledge of buyers’ types may not be viable in certain situations. In 
this section, we consider an alternative model of uncertainty, the strict uncertainty model, where vendors know only the 
possible types that buyers may possess. The game is structured as in the Bayesian model, but rather than sampling buyer 
types from a distribution, arbitrary types from the type space A1 ×· · ·× An are chosen. This type of game is known variously 
as a game in informational form [11] or an incomplete information game with strict type uncertainty [12].

In such settings, one plausible objective for vendors is to select a strategy that, given the strategies of other vendors, 
maximizes its worst-case utility under all possible realizations of buyer types. However, such an approach is inappropriate 
in our setting. For example, if buyer valuations can fall below a vendor’s cost, that vendor’s worst-case utility is at most 0, 
regardless of its actions. We therefore consider a more natural objective, assuming each vendor selects a strategy that 
minimizes its worst-case or maximum regret over possible buyer types. The minimax regret approach has deep roots in 
decision making under strict uncertainty [24], has find use in robust optimization [14] and decision support [4,5], and has 
been applied in various game-theoretic contexts [12,2].

Notation We adapt the definitions of minimax regret of Hyafil and Boutilier [12] to our model. Recall that A ⊆ R
n×m is the 

set of possible types for buyers. The possible types Ai ⊂ R
m for buyer i take the form (vij) j∈M and must occur as a column 

in some V ∈ A. It is sometimes useful to think of A as the support of some distribution D, in which case Ai would be the 
support of the marginal distribution over buyer i’s types.

Once vendors select strategies (prices) P, suppose that the realized buyer types are given by V. This results in the buyer 
partition S = S(P, V). We define the regret Reg j(P, V) of vendor j relative to this outcome to be the difference between 
the maximum utility it could have achieved by choosing different prices given this type realization (taking other vendor 
strategies to be fixed) and its utility given its selected strategy:

Reg j(P,V) = max
p′

j∈R
U j

((
p′

j,p− j
)
,S

(
P′,V

)) − U j
(
P,S(P,V)

)
,

where P′ = (p′ , p− j). Note that w.l.o.g. the optimal schedule p′ can be taken to be a fixed price (by Proposition 1).
j j
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Given their uncertainty about the buyer’s types, and without a distribution over these types, we assume vendors assess 
the utility of a strategy by assuming a type profile realization that maximizes the degree to which that strategy is subopti-
mal. Specifically, let P be a strategy (pricing) profile, where vendor j uses p j . We define the maximum regret of vendor j to 
be:

MaxReg j(P) = max
V∈A Reg j(P,V).

The goal of each vendor is the selection of a strategy that minimizes its maximum regret given the strategies of other 
vendors. We define the minimax best response of vendor j to strategy profile p− j of its competitors to be:

brMR
j (p− j) = argmin

p j∈P
MaxReg j(p j,p− j).

Note that maximum regret is minimized with respect to the types of the buyers, not the actions of other vendors, which are 
assumed to be known. Minimax regret equilibrium can defined in the obvious way using this form of best response [12].

5.1. Independent types

We now assess the value of discounts in the strict uncertainty model, assuming vendors minimize max-regret.
As in the Bayesian model, we can identify restrictions on the type space A that allow us to derive strong restrictions 

on the form of best responses. First, we say that the buyer types A are symmetric if Ai = Ai′ for all i, i′ ∈ N; in other 
words, all buyers have identical sets of possible preferences. We say that buyer types A are independent if A =×i∈N Ai ; 
in other words, the realization of the type of a buyer does not restrict the possible realizations of any other buyer’s type. 
These notions are related to the i.i.d. assumptions in the Bayesian model. Suppose that A is the support of some unknown 
distribution D. Clearly if buyers have identical marginals in D then A is symmetric; and if buyers are independent in D
then A is also independent. However, the corresponding assumptions on A are much weaker, and may hold even if D does 
not have independence or identically distributed buyer types.

Lemma 6. If all vendors use fixed prices P = (p1, . . . , pm), and A is symmetric and independent, then maximum regret for each 
vendor is realized when all buyers have the same type.

Proof. We need to show that if r = Reg j(P , V) is vendor j’s maximum regret, then there is a type V ∗ ∈ A (which depends 
on the strategy profile) such that Reg j(P , V∗) ≥ r, where every row in V∗ equals to V ∗ .

We break our analysis into two cases. Suppose first that j’s maximum regret is realized by a buyer type profile in which 
its best response is to ask a lower price than its price p j in P , which by definition must attract more buyers than p j . That 
is, there is a p′

j < p j s.t. |S ′
j | > |S j |, where S′ = S(P ′, V), P ′ = (p′

j, p− j). Then there is some buyer i ∈ S ′
j \ S j . Let V ∗ = V i . 

We now compute the regret at profile P when all buyers are of type V ∗ ∈ A.
Denote T = S(P , V∗) and T′ = S(P ′, V∗). Since i prefers vendor j under prices P ′ , we have that vij − p′

j ≥ vij′ − p j′ for all 
j′ �= j. As V ∗ = V i , in the partition T′ all buyers select j, and thus |T ′

j| = n ≥ |S ′
j |.

Likewise, under prices P , buyer i prefers some other vendor j′ over j, i.e. vij′ − p j′ ≥ vij − p j . Thus in T all buyers select 
j′ �= j, and |T j | = 0 ≤ |S j |.

Bringing these inequalities together, we have:

Reg j

(
P ,V∗) ≥ U j

(
P ′,T′) − U j(P ,T)

= ∣∣T ′
j

∣∣(p′
j − c j

) − |T j|(p j − c j) ≥ ∣∣S ′
j

∣∣(p′
j − c j

) − |S j|(p j − c j)

= U j
(

P ′,V
) − U j(P ,V) = r.

In other words, regret is maximized in a type profile in which all buyers have identical valuations.

The remaining case is when vendor j’s regret is maximized under some profile in which its best response p′
j is to increase

its price, potentially losing some buyers, but increasing its margins on those it keeps. Thus p′
j > p j , and 0 < |S ′

j| ≤ |S j|. 
(In contrast to the previous case, here we require that p′

j is the optimal price in retrospect.) In this case, there must be a 
buyer i ∈ S ′

j of type V ∗ = V i . Again we consider the regret given type matrix V∗ (where every row equals to V ∗). Since i

still prefers j in P ′ , we have that vij − p′
j ≥ vij′ − p j′ for all j′ �= j. Thus in T′ all buyers still prefer j, and |T ′

j| = n ≥ |S ′
j|. 

Since p j < p′
j , then clearly |T j| = n as well. As a result:

r = U j
(

P ′,V∗) − U j
(

P ,V∗) = ∣∣S ′
j

∣∣(p′
j − c j

) − |S j|(p j − c j)

≤ |S j|
(

p′ − c j
) − |S j|(p j − c j) = |S j|

(
p′ − p j

) ≤ n
(

p′ − p j
)

j j j
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On the other hand,

Reg j
(

P ,V∗) ≥ U j
(

P ′,T′) − U j(P ,T)

= ∣∣T ′
j

∣∣(p′
j − c j

) − |T j|(p j − c j) = n
(

p′
j − p j

) ≥ r.

Again regret is maximized when all buyers have the same type.
We emphasize that the type V ∗ depends on the profile P , and for every profile there may be a different “worst-case” 

type. �
Our main result in analyzing the strict uncertainty model is similar in spirit to Theorem 3.

Theorem 7. Let G = 〈A, C〉 be a game where A is symmetric and independent. If all vendors except j use fixed prices, then there is a 
best response for vendor j that is also a fixed price.

Proof. Let q j be the schedule that is the best response to p− j , i.e., MaxReg j(q j, p− j) is minimal. Let p j = q j(n), i.e., the 
price induced by that schedule when j attracts n buyers, and let P = (p j, p− j). We show that MaxReg j(P ) = r is also 
minimal. Intuitively, the proof shows that the only part of j’s strategy that impacts its utility (in the worst case) is the price 
set in the schedule for all n buyers. Thus, the fixed price p j = q j(n) is as good as schedule q j .

Consider MaxReg j(p j, p− j) as a function of p j . For any p j , there is some type matrix V∗ where maximum regret under P
is realized, i.e., Reg j(P , V∗) = MaxReg j(P ) = r. There is an optimal price p′

j for V∗ such that Reg j(P , V∗) = U j((p′
j, p− j), V∗) −

U j(P , V∗). By Lemma 6, w.l.o.g. all buyers have the same type in V∗ , and thus either S j = S j(P , V∗) includes all buyers or S j
is empty.

Suppose MaxReg j(q j, p− j) < r. By definition Reg j((q j, p− j), V) < r for any V, in particular for the profile V∗ . However, 
in V∗ either |S j | = n or |S j | = 0 for any prices. Recall that S = S(P , V∗) and denote S′ = S((p′

j, p− j), V∗); T = S((q j, p− j), V∗). 
In particular, |T j | ∈ {0, n}.

If |T j| = 0, then |S j | = 0 as well, since at price p j = q j(n) vendor j does not attract any buyer of type V ∗ . If |T j | = n, 
then the vendor attracts all buyers of type V ∗ at price p j and thus |S j | = n = |T j|, and∣∣T j

∣∣(q j
(|T j|

) − c j
) = |S j|

(
q j(|n|) − c j

) = |S j|(p j − c j).

Note that in either case |T j |(q j(|T j |) − c j) = |S j|(p j − c j). Thus for some p′
j ,

Reg j
(
(q j, p− j),V∗) = U j

(
p′

j, p− j,V∗) − U j
(
(q j, p− j),V∗)

= ∣∣S ′
j

∣∣(p′
j − c j

) − |T j|
(
q j

(|T j|
) − c j

)
= ∣∣S ′

j

∣∣(p′
j − c j

) − |S j|(p j − c j)

= U j
((

p′
j, p− j

)
,V∗) − U j

(
P ,V∗)

= Reg j
(

P ,V∗).
Therefore,

r = MaxReg j(P ) = Reg j
(

P ,V∗) ≤ MaxReg j(q j, p− j).

In other words, p j ∈ brMR
j (p− j), as required. �

5.2. Distinct and correlated types

With identical types spaces, we see that discounts provide no value to a vendor if other vendors use fixed prices. 
However, analogous to the Bayesian model, if the type spaces of some buyers differ from those of others, then the maximum 
regret of a vendor can be (strictly) minimized by posting a non-trivial schedule. More specifically, as in the expected utility 
model, if we relax either symmetry or independence, the result above no longer holds.

Proposition 8. There are discount games in which a vendor minimizes its maximum regret by posting a non-trivial schedule if either 
(a) A is asymmetric and independent; or (b) A is symmetric and non-independent.

Proof. We begin with part (a). Consider a game with a single vendor having zero cost and with three buyers. The possible 
valuations (types spaces) for the buyers are A1 = [6, 12]; A2 = A3 = [0, 6], and A = A1 × A2 × A3.

We first show that the optimal fixed price is p∗ = 4, and that MaxReg(4) = 8. Clearly p∗ ≤ 6, since for every p > 6 the 
types (6, 6, 6) lead to a utility of 0, whereas a price of p′ = 6 would give the maximum possible utility of 18; hence the 
maximum regret of any p > 6 is 18.
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For every p ≤ 6, the maximum regret is attained for the types v = (p − ε, p − ε, 12). Note that U (p, v) = p, whereas 
U (p − ε, v) = 3p − 2ε and U (12, v) = 12. Thus MaxReg(p) ≥ Reg(p, v) = max{12 − p, 3p − 2ε − p} ∼= max{12 − p, 2p}. The 
latter term is minimized when 12 − p = 2p, hence for p∗ = 4, maximum regret is 8.

Next, we show that the schedule p = (6, 4, 4) has maximum regret of at 6. We consider three cases:

• If v2, v3 ≥ 4, then the realized price is 4, and U (4, v) ≥ 3 · 4 = 12. On the other hand, the maximum utility is 18, thus 
Reg(4, v) ≤ 18 − 12 = 6.

• If v2 ≥ 4 > v3 (or vice versa), then the realized price is 4, and U (4, v) ≥ 2 · 4 = 8. However, the maximum utility in this 
case is obtained by either selling one item at price 12, or two items at price 6 (since v3 < 6), or three items at price 
4 − ε. In each case the optimal utility is no more than 12, and thus Reg(4, v) ≤ 12 − 8 = 4.

• If v2, v3 < 4, then the realized price is 6, and U (6, v) ≥ 6. The optimal strategy under this realization is to either sell a 
single item at price 12, or all three items at price 4 − ε. Therefore, Reg(6, v) ≤ 12 − 6 = 6. The maximum regret of this 
discount schedule is less than that of the fixed price with minimax regret.

For the proof of part (b), note that for any number of buyers and vendors we can easily impose symmetry (at the expense 
of independence), similarly to the randomized swap in the Bayesian model. Formally, we define A′ = {π(V) | V ∈A, π ∈ Sn}
(i.e., all possible buyer permutations over the allowed type matrices). Since vendors experience the same regret regardless 
of the chosen permutation, a vendor’s utility under A and A′ is always the same. By applying this construction to the above 
example, we get the proof for (b). �

In contrast to the Bayesian model, it is an open question whether fixed prices are still dominant when the restriction on 
other vendors is relaxed.

6. Discussion

We have investigated conditions under which vendors may benefit from posting group or volume discounts for groups of 
buyers—assuming that buyers can coordinate their purchasing activities—relative to the posting of fixed prices. We showed 
that, when facing i.i.d. buyers that use the coordination mechanism of Lu and Boutilier [17], complex discount schedules 
cannot yield greater revenue than that generated using the optimal fixed price. This holds whether vendors know the 
distribution of buyer types or simply the support of this distribution. This is consistent with similar findings in other 
models of group buying (see Section 1.1). This robust result highlights the fact that the design of effective pricing schemes 
for group buying should focus on settings where group discounts provide vendor value, including domains where buyer 
valuations are correlated by unobservable factors (such as perceived quality or advertising impact), marginal production 
costs are decreasing, vendors are risk-seeking, or where discounts have viral or long-term acquisition benefits.

We now outline several directions for future research, with an emphasis on equilibrium analysis and the connection to 
optimal auctions.

6.1. Vendor equilibria

While this paper focused on the structure of a vendor’s best-response, natural questions arise regarding to the existence 
and properties of (pure) Nash equilibria in our model. Since our game has two steps, the appropriate solution concept is a 
subgame perfect equilibrium.

Equilibrium concepts Formally, a (pure) subgame perfect equilibrium (SPE) of a complete information game G = 〈V, C〉 is a 
profile of discount schedules P ∈ Pm such that no vendor j prefers S = S(P, V ) over S′ = S((p− j, p′

j), V ), for any p′
j ∈ P . 

A fixed subgame perfect equilibrium (FSPE) in G is defined similarly, with the exception that only trivial (fixed price) schedules 
are allowed. Note that an FSPE is neither a special case nor more general than an SPE since the restriction applies both the 
profile P and to the deviation p′

j . However, by Proposition 1, the existence of an SPE in the full information model entails 
the existence of an FSPE with the same utilities for each vendor; and any FSPE is also an SPE in the full information model.

To illustrate, consider a game with two vendors (with zero costs), and two buyers. Buyer a has preferences va = (3, 1)

(i.e., a prefers vendor 1), whereas vb = (1, 3). The fixed profile P = (3, 3) (i.e., p1 = 3, p2 = 3) is an FSPE. Each vendor has 
utility Ui = 3. Any p′

i > 3 will result in a utility of 0, whereas setting the price low enough to attract both buyers will result 
in a utility of at most 2.

When we consider the more complex models of partial information, we can construct similar definitions of SPE and 
FSPE using the already-defined concepts of best response. For example, in the Bayesian model P is an SPE in the game 
G = 〈D, C〉 if p j ∈ brEU

j (p j, G) for all j ∈ M . Due to Theorems 3 and 7, we know that under an i.i.d. distribution any FSPE in 
the Bayesian/Distribution-free model is also an SPE. However, this does not hold when the distribution is not i.i.d.: in the 
examples described in proof of Proposition 4(a) and (b), the fixed profile P∗ = (1, 1) is an FSPE but not an SPE. Also note 
that the existence of an SPE does not entail the existence of an FSPE, since the best response to a discount schedule might 
not be a fixed price (see Proposition 4(c)).
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A game with no pure equilibrium It is interesting to note that, in general, a (pure) SPE/FSPE may not exist at all—even in the 
complete information model and even when discounts are forbidden.

We now describe an example with two vendors and four buyers with known types that does not admit an FSPE (and by 
Proposition 1, no SPE). Buyer types are: a1 = (9, 0); a2 = (0, 9); b1 = b2 = (5, 5). Buyer bi , i ∈ {1, 2}, has a weak preference 
to vendor i in the case of a tie. Both vendors have zero cost. It can be verified by detailed case analysis that given any fixed 
price profile P = (p1, p2) there is at least one vendor who would raise or lower her price to improve her utility.

Let x, y be the fixed prices offered by vendors 1 and 2, respectively. We break our analysis into several cases, and show 
in each that at least one vendor can increase her utility by changing her price.

• If x > 9 or y > 9 then the relevant vendor has no buyers and will lower his price to 9.
• If 9 > x > 5 then x′ = 9 is an improvement. Likewise for 9 > y > 5.
• If x = y = 9 then y′ = 5 brings the utility of vendor 2 from 9 · 1 to 5 · 3 = 15.
• If x = 9, y < 5, then y′ = 5 is an improvement. Likewise for y = 9, x < 5.
• If x = 9, y = 5, then x′ = 5 increases the utility of vendor 1 to 5 · 2 = 10 > 9. Similarly for x = 5, y = 9.
• If x = y ∈ (4, 5] then x′ = 4 improves the utility of vendor 1 from 2x ≤ 10 to 3(x′) = 12. Similarly, the higher vendor 

will deviate to 4 for any x, y ∈ (4, 5].
• If y ≤ x ≤ 4 then x′ = 9 improves the utility of vendor 1 from (at most) 2x ≤ 8 to 9. Similarly for vendor 2 if x ≤ y ≤ 4.
• The last case is y ≤ 4, x ∈ (4, 5]. Then x′ = 9 improves the utility of vendor 1 from x ≤ 5 to 9. Similarly for vendor 2 if 

x ≤ 4, y ∈ (4, 5].

Intuitively, the market can be understood as follows. Each vendor has some “core buyers” (a1, a2 in our example), and 
“flexible buyers” that have no vendor preference and are influenced only by price (b1, b2). Suppose we start from a state 
where both prices are high. The vendors compete for the flexible buyers by lowering prices, until at some point it is more 
worthwhile to one of the vendors (say 1) to opt out of the competition. Then vendor 1 increases the price, keeping only its 
core buyers. Now vendor 2 can also raise its price since there is no competition, and we are back in the start state.

Developing conditions under which pure SPE and FPSE exist is of great interest, especially in cases where all vendors use 
group discounts.

6.2. Group discounts and optimal auctions

In his seminal study on optimal auctions, Myerson [21] characterized truthful auction mechanisms, showing that when a 
seller with a single good faces i.i.d. buyers, the optimal mechanism is effectively a second-price auction with a fixed reserve 
price. In a related analysis of a model closer to our model, Goldberg et al. [10] show that the worst-case revenue of using 
a fixed price to sell digital goods (i.e., unlimited supply) is at least as great as that any other truthful “auction” mechanism. 
They also provided bounds on the revenue attainable by such a mechanism when compared to a variety of benchmarks, 
which later became standard in the literature.

Consider the following auction rule that sets a price for bidder i, when submitted bids are (b1, . . . , bn): “if there are at 
least k − 1 other bidders s.t. b j ≥ p(k), then allocate an item to i for a price of pi = q(k)”. Clearly the outcome of such an 
auction is equivalent to the outcome of posting the discount schedule q. Moreover, the allocation rule is monotone in the 
bid, and the price pi is independent of bi . Thus according to Myerson, this auction is truthful. While the Goldberg et al. 
paper does not deal with a Bayesian setting, it is known that the result still holds when bidder valuations are sampled i.i.d. 
from some distribution.

It would be interesting to study the relationship between optimal truthful mechanisms and group discount mechanisms 
in more depth in various settings.5

6.3. Other directions

Within our current model, further research is needed to understand the full impact of group discounts when buyer 
valuations are correlated by signals—such as product quality, vendor reputation, or advertising.

Even for a monopolist, the question of computing optimal discount schedules (given a correlated distribution over buyer 
types) is non-trivial. When facing competing vendors the problem becomes even more complex. It is therefore important to 
identify natural classes of distributions where optimal or near-optimal schedules can be computed efficiently.

Another interesting question is what to expect when buyers use stronger coordination mechanisms, such as those that 
allow transferable utility [26,17]. We conjecture that our main result about the optimality of a fixed price when buyers are 
i.i.d. still holds under different variations such as transferable utility.

Network externalities is the common name for the phenomenon where buyers assign utility to sharing a vendor or a 
service (such as a cellular provider or online social network) [13,3,9]. One way to think of group discounts is in terms 
of adding indirect network externalities to the interaction among buyers—the interactions are indirect in the sense that 

5 We thank Brendan Lucier for highlighting this connection.
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they mediated by the vendors (or by arbitrators of buying groups) and depend on vendor strategies, with the buyers 
themselves potentially even unaware of the choices of other buyers. Incorporating network structure into our model of 
group discounts may also be very relevant, as such structure may determine which groups of buyers are able or are likely 
to coordinate—especially in the context of transferable utility.

Appendix A. Proof of Proposition 2

W.l.o.g., the optimal fixed price p∗ can be set deterministically (i.e., randomized pricing cannot do better). Let r∗ =
p∗PrD(v > p∗) be the optimal expected revenue that can be extracted from a single buyer. Applying the optimal fixed price 
p∗ to all n buyers gives an expected revenue of nr∗ .

Assume, by way of contradiction, that some discount schedule p = (p(1), . . . , p(n)) yields strictly greater revenue 
than nr∗ . Let ri be the expected revenue extracted from buyer i using p. Then 

∑
i ri > nr∗ , i.e., there is at least one buyer 

(w.l.o.g. assume buyer n) s.t. rn > r∗ . We now construct a pricing strategy that yields revenue rn from buyer n. Independently 
sample n − 1 values from D, simulating the first n − 1 buyers, and sort values so that v1 ≥ · · · ≥ vn−1. Now select price p(1)

iff v1 < p(1), p(2) iff v2 < p(2) ≤ v1, and more generally p(k) iff vk < p(k) ≤ vk−1. These events are pairwise disjoint and 
cover the entire event space (since the union of events 1 to k holds iff least n − k buyers have values below p(k)).

Let Ak denote the kth event, and Bk the corresponding event when actual buyer values are drawn from Dn−1. Clearly 
Pr(Ak) = Pr(Bk). Moreover, when Bk occurs, exactly k − 1 buyers have value at least p(k). Thus buyer n purchases iff vn ≥
p(k) as well, and pays p(k) if so. However, this is exactly the purchase probability and price paid by a single buyer when 
the proposed price is p(k). Thus the revenue is 

∑n
k=1 Pr(Ak)Pr(v ≥ p(k)|Ak)p(k) (from the single buyer), i.e.,

n∑
k=1

Pr(Bk)Pr
(

vn ≥ p(k)
∣∣ Bk

)
p(k) = rn > r∗.

Thus p extracts more than r∗ from a single buyer (a contradiction).

Appendix B. Proof of Proposition 4

Although this is not required for the proof, we show that in all three examples there is an FSPE. The value of discounts 
in the first two cases (relaxing (a) and relaxing (b)) has been shown in full in the main text, so we only show FSPE.

Lemma 9. Consider the game described in Proposition 4(a). P = (p1 = 1, p2 = 1) is an FSPE.

Proof. Note that in profile P , w.p. 1 buyer a will go to vendor 1, and buyer b will go to vendor 2, thus u1(1) = u2(1) = 1.
Suppose that vendor 1 announces some price q > 1, then it keeps client a w.p. (2 − q), and

u1(q) = (2 − q)q + (1 − q)0 = 2q − q2.

Similarly, if q < 1, then the vendor keeps client a for sure, and gains client b w.p. 1 − q. Thus

u1(q) = (1 − q)2q + q · q = 2q − q2.

I.e. in both cases u1(q) = 2q − q2, which has a maximum in q∗ = 1 = p1. The argument for the second vendor is the 
same. �

−1 ← xa → 1

−1 a always prefers vendor 1 a always prefers vendor 1 a always prefers vendor 1
↑ b always prefers vendor 1 b prefers vendor 1 given that a does b always prefers vendor 2

xb b always prefers vendor 1 Each buyer prefers vendor i b always prefers vendor 2
↓ a prefers vendor 2 given that b does if the other buyer does a prefers vendor 2 given that b does

1 a always prefers vendor 2 a always prefers vendor 2 a always prefers vendor 2
b always prefers vendor 1 b prefers vendor 2 given that a does b always prefers vendor 2

By using the same argument as in the main text, P = (1, 1) is also an FSPE in the game described in Proposition 4(b).

Relaxing condition (c) Lastly, we describe a game with two i.i.d. buyers (i.e. holding conditions (a), (b)), where the best 
response to a schedule posted by vendor 2 is also a schedule.

We recall the definitions from the main text. Both buyers have va1 = vb1 = 10. The preference for vendor 2 is va2 =
10 + xa; vb2 = 10 + xb , where xa and xb are sampled i.i.d. from D = U [−1, 1]. Note that as long as prices are not too high 
(say, below 8) the decision of buyers is determined only by the difference between preference to vendor 1 and to vendor 2, 
i.e. by the values xa and xb .
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Lemma 10. The profile P = (1, 1) is an FSPE. The expected revenue in P is 1 to each vendor.

Proof. Clearly in P each vendor gets every buyer w.p. 1/2. Thus Ui(P , D) = 1/2 ·1 +1/2 ·1 = 1. Suppose that vendor 2 switches 
to p′

2 �= p2 = 1. For any 2 > p′
2 > 0, the revenue from each buyer is p′

2pr(xib > p′
2 − 1). Thus

U2
(

p1, p′
2

) = 2p′
2pr

(
xib > p′

2 − 1
) = 2p′

2

(
2 − p′

2

)
/2 = 2p′

2 − (
p′

2

)2
< 2 = U2(P ).

For p′
2 /∈ [0, 2] the revenue is even lower, thus p2 = brEU

2 (p1). The same analysis holds for vendor 1, thus P = (1, 1) is 
an FSPE. �
Lemma 11. Suppose that vendor 2 posts the schedule q = (1, 0.8). Then the best response of vendor 1 is not a fixed price.

Proof. Denote the strategies of vendors 1 and 2 by p = (p, p′) and q = (q, q′), respectively. The revenue of vendor 1 can be 
written as a function of p and q. The prices divide the type space (and thus the probability space) to 9 regions as follows.

In each cell we know exactly how many buyers bought from vendor 1 and at what price. It remains to compute the 
probability of each cell. We denote the rows by T = top, M = med, B = bottom, and the columns by L = left, M = med, 
R = right. We assume that in the middle cell MM both buyers select the same vendor, with equal probability to each 
vendor.

When the maximal distance between prices is no more than 1,

U1(P,D) = 2p′pr(TL) + 2p′pr(TM) + 2p′pr(ML)

+ p · pr(TR) + p · pr(BL) + 1/2 · 2p′pr(MM)

= 1

4

[
2p′(q′ − p + 1

)2 + 4p′(q′ − p + 1
)(

q − q′ + p − p′)
+ 2p

(
q′ − p + 1

)(
p′ − q + 1

) + p′(q − q′ + p − p′)2]
.

Now, suppose that vendor 2 posts the schedule q = (1, 0.8). Using the formula, it can be verified that the best fixed response 
to q (i.e. under the constraint p′ = p) is p∗ ∼= 0.922, which yields a revenue of U1((p∗, q), D) ∼= 0.93656. However, the 
schedule p = 0.93, p′ = 0.914 yields a slightly higher revenue of 0.93675. While this is not a large improvement, it still 
indicates that condition (a) is necessary for Theorem 3. �
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