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Abstract

Modern recommender systems (RSs) lie at the heart of com-
plex recommender ecosystems (RESs) that couple the behav-
ior of users, content providers, vendors, advertisers, and other
actors. Despite this, the focus of much RS research and de-
ployment is on the local, myopic optimization of the recom-
mendations made to individual users. This comes at a signif-
icant cost to the long-term utility that RSs generate for their
users. We argue that modeling the incentives and behaviors of
these actors, and the interactions among them induced by the
RS, is needed to maximize value and improve overall ecosys-
tem health. Moreover, we propose the use of economic mech-
anism design (MD), largely overlooked in RS research, as a
framework for developing such models. That said, one cannot
apply “vanilla” MD to RES optimization out of the box—the
use of MD raises a number of subtle and interesting research
challenges. We outline a number of these here, emphasizing
the need to develop nonstandard approaches to MD that in-
tersect with numerous areas of research, including preference
modeling, reinforcement learning and exploration, behavioral
economics, and generative AI, among others.

Why Model Recommender Ecosystems?
Recommender systems (RSs) play an ever-increasing role
in our daily lives, mediating the search for information, the
consumption of content, the purchase of goods and services,
and even communication between individuals. This ubiq-
uity amplifies the importance of research into effective mod-
els and algorithms that ensure RSs act in the best interests
of their users and society at large. The majority of RS re-
search and practice focuses on the local, myopic optimiza-
tion of recommendations to individual users, in which a rec-
ommendation to one user does not consider the impact it
might have on other users or interested actors. This over-
looks the fact that most RSs lie at the heart of complex rec-
ommender ecosystems (RESs), in which the RS mediates and
induces interactions between and among users, content cre-
ators, vendors, etc. These interactions, in turn, can impact—
both positively and negatively—the ability of the RS to make
high-quality recommendations in the future, a fact we illus-
trate below. (See Abdollahpouri et al. (2020) a comprehen-
sive overview of the multiagent perspective on RSs.)
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This leads to a set of research questions pertaining to such
RESs: (i) How should we analyze and model agent interac-
tions in an RES? (ii) How do we optimize RS policies in the
face of such dynamic interactions? (iii) What criteria and
objectives should be used to guide this optimization?

In this research challenges paper, we outline a research
agenda intended to develop a deeper understanding of RESs,
and encourage research into methods, models and algo-
rithms for the design of RS policies that maximize long-term
user utility and overall social welfare across the ecosystem.
An important part of this agenda is the incorporation of con-
cepts, methods and perspectives from economic mechanism
design (MD) (Hurwicz 1960). MD has played at best a mi-
nor role in the design of RSs,1 in large part due to the local,
single-user focus typical of RS research. When moving to
RESs, modeling and optimization in the presence of interact-
ing agents must account for: (i) their incentives and behav-
iors; (ii) potential information asymmetry; (iii) the potential
for strategic behavior; and (iv) tradeoffs in the value gen-
erated for different agents. The design of mechanisms (here,
RS policies) in such settings is precisely the province of MD.
However, the complexity of RESs poses unique challenges
for traditional MD, some of which we outline.

We begin by outlining a very stylized RS model to ground
our discussion, illustrating how local RS policies—those
that ignore RES interactions—degrade long-term user util-
ity. Next we describe key concepts of classical MD, and how
these map to elements of an RES. We then argue that decid-
edly “nonstandard” MD models are needed, describing four
classes of research challenges: (1) we first outline the sub-
tleties of agent incentives, preference modeling and elicita-
tion; (2) we then discuss private information and its role in

1With notable exceptions, a few of which we list. Of special
note is work using MD, game-theoretic or equilibrium analysis
(Ben-Porat and Tennenholtz 2018; Mladenov et al. 2020; Hron
et al. 2022; Jagadeesan, Garg, and Steinhardt 2022; Kurland and
Tennenholtz 2022; Ben-Porat et al. 2022; Cen and Ilyas 2022; Liu,
Mania, and Jordan 2020). Also of relevance is work on fairness in
RSs (Akpinar et al. 2022; Asudeh et al. 2019; Basu et al. 2020;
Biega, Gummadi, and Weikum 2018; Heuss, Sarvi, and de Rijke
2022; Wu et al. 2022; Mehrotra et al. 2018); and work on phenom-
ena such as filter bubbles, polarization, and popularity bias (Pariser
2011; Abebe et al. 2018; Amelkin, Bullo, and Singh 2017; Ribeiro
et al. 2020; Abdollahpouri et al. 2019).



Figure 1: (a) An initial myopic/local RS matching of users to con-
tent/creators; (b) the equilibrium induced by myopic matching; (c)
a non-myopic, ecosystem-aware matching (in equilibrium).

agent decision making; (3) next we address the potential for
strategic behavior by agents; and (4) finally we examine the
challenge of designing social choice functions. We refer to a
greatly expanded version of this paper (Boutilier, Mladenov,
and Tennenholtz 2023) for a more in-depth discussion of the
challenges discussed here, related problems, and additional
research directions.

Some Stage Setting
The Stylized Recommender. We assume a stylized RS,
which embeds its users U and items I in some latent em-
bedding space—we equate a user u and item i with their
respective embeddings. The RS uses cosine similarity, dot
products, or (inverse) distances to measure user u’s affinity
for item i. For now, we treat affinity as user utility.2

For expository purposes, we assume items embody some
form of content (e.g., news, music, video) and that each item
i ∈ I is generated by some content provider or creator
c(i) ∈ C (Konstan et al. 1997; Jacobson et al. 2016), though
everything that follows applies to other settings (e.g., prod-
uct recommendation).3 For ease of exposition, we assume
each c ∈ C creates a single item (which can be altered, see
below) and equate creators with their items. Similarly, user
affinity for items varies with their request, context, etc., and
embeddings are dependent on these factors, but for simplic-
ity, treat u as a latent point rather than a set or distribution.

Ecosystem Interactions: An Illustration. We first illus-
trate how even simple dynamics can induce complex multia-
gent interactions that require non-trivial optimization by the
RS. We adapt the stylized scenario of Mladenov et al. (2020)
to show how ignoring ecosystem interactions prevents the
RS from maximizing long-run user utility. Fig. 1(a) uses
(inverse) distance to reflect affinity between users (circles)
and the content of specific creators (rectangles): we have two
creators (P1 (red), P2 (blue)), and eight users (five (red) of
whom are closer to P1, and three (blue) closer to P2).

As users request recommendations, an omniscient, but
otherwise typical, RS matches each request to the creator
with which the user has greatest affinity (see Fig. 1(a)). This
matching is myopic—it maximizes immediate affinity for
the user—and local—it does not consider impact the rec-
ommendation might have on other users. If each user issues
a single request during a given time period, P1 engages with

2This captures, many forms of collaborative filtering, e.g.,
matrix factorization (Salakhutdinov and Mnih 2007) or dual
encoders/two-tower models (Yi et al. 2019; Yang et al. 2020).

3For instance, if the items are products for sale, one should read
“vendor” for “creator,” “sales” for “engagement,” etc.

five users, and P2 three. Now suppose that a creator who
does not attract four users per period abandons the RS (e.g.,
for monetary or social reasons). Here P2 abandons the sys-
tem after the first period, leaving the RS no choice but to
recommend P1 to the three blue users at all subsequent peri-
ods (Fig. 1(b)). At this point, the system is in equilibrium.

Unfortunately, this equilibrium leaves blue users worse
off than had P2 remained, showing that ignoring creator
behavior induced by the RS policy can negatively impact
users. By contrast, a non-local, non-myopic matching (see
Fig. 1(c) where red user u is matched to P2) anticipates the
distribution of user requests, and incentive-induced creator
behavior, to optimize overall user welfare in the long run.
Since u is nearly indifferent to P1 and P2, its small sacri-
fice in utility enables a large increase in the long-run utility
of the blue users. This equilibrium maximizes user (utilitar-
ian) social welfare, and is arguably more “fair”. However, it
imposes a small cost on u and P1. Indeed, optimality of this
equilibrium depends on the choice of objective, or in MD
terms, the social choice function.

This example suggests treating an RS policy more holis-
tically as an (online or offline) matching problem (Mehta
2013; Su, Bayoumi, and Joachims 2022). Of course, it is
unrealistic in the many assumptions required to induce equi-
librium. Among them: extremely simple creator preferences
and dynamics; stationary, simplistic user preferences for
content; no user dynamics; full information on the part of the
RS about user preferences and creator incentives/behavior;
lack of strategic behavior by creators or users; no outside
options (e.g., other RS platforms); and a simplistic objec-
tive function. Developing RS policies that work well when
we relax these assumptions poses numerous research chal-
lenges, and is critical if RSs are to act in the best interests of
users, creators, and society as a whole.

Why Mechanism Design?
The example above illustrates that the design of an RS in
the ecosystem context requires some form of optimization
that accounts for: (i) the preferences and incentives of all
actors (e.g., users and creators) that engage with the RS; (ii)
how these preferences—and the RS policy—influence their
behavior; and (iii) suitable tradeoffs over agent preferences.
Moreover, when we relax the strong informational assump-
tions embodied in the stylized model above, the RS must:
(i) handle incomplete and noisy information about the pref-
erences and other private information held by these actors
(e.g., their beliefs, abilities, behavioral and decision making
processes); (ii) take steps to extract or refine this information
when possible; and (iii) incentivize the actors to behave in a
way that advances the overall objectives of the RS.

This form of optimization is precisely the province of
market and mechanism design (Hurwicz and Reiter 2006)
which involves policies for interacting with—and making
decisions that impact—a set of self-interested agents—each
of whom holds some private information—to optimize some
objective that depends on the preferences of those agents.
We first describe classical MD, then outline how the MD
perspective can help in the design of complex RESs.



Classical Mechanism Design. Informally, classical MD
encompasses several key ingredients. We have an action
space A, where each a ∈ A induces a distribution over
some outcome space O. Each agent g ∈ G has preferences
over outcomes, or a utility function vg , which is unknown to
the mechanism M .4 M also has a social choice (or welfare)
function (SCF) C which, given any vector v = {vg}g∈G
of agent utility functions, determines the “social utility”
C(v, o) of any o ∈ O. The goal of M is to implement the
SCF by taking the action a∗v = argmaxa∈A EO C(v, o).
To do so, M must take steps to observe, elicit, estimate or
otherwise determine v by interacting with the agent by (a)
making available a set of strategies/agent actions; and (b)
specifying a mapping from the strategies selected by each
agent to a choice of outcome o ∈ O. An agent g may act
strategically to manipulate the selected o to maximize its
own utility vg(o), at the expense of C (and other agents).
As such, one attempts to design M so that, if agent strate-
gies are selected to be in (some form of) equilibrium, it will
(via M ’s outcome mapping) induce the outcome dictated by
the target SCF. This is known as implementation of the SCF.

Mapping RESs into MD. MD invokes critical concepts
that can be applied to the design of complex RESs, includ-
ing: (i) estimation of agent incentives; (ii) tradeoffs across
agent preferences in the SCF; (iii) information asymme-
try/sharing; and (iv) agent strategic behavior.

The mapping of an RES into a “standard” MD formaliza-
tion is prima facie straightforward. The agents (in the MD
sense) are those impacted by the actions of the RS. Here we
focus on users and content creators, but other actors of inter-
est include content distributors, product vendors, advertis-
ers, external organizations, regulatory bodies, other RS plat-
forms, etc. MD actions are RS actions. In our simple set-
ting above, these are recommendations to users; but actions
should be taken to be the joint set of recommendations made
to all users. More broadly, actions are the set of RS policies, a
term we use to emphasize the multi-stage nature of the RS’s
choices (e.g., across users or across time). These are distinct
from the agent actions available to users, creators, etc. (i.e.,
strategies in MD). The outcome space reflects the range of
effects RS actions can have on users and creators (in the MD
sense, the joint outcome over all actors). In simple settings
this might include the content consumed (user) or user en-
gagement (creator). Agent utilities reflect their preferences
over such outcomes (usually the parts of the outcome “rele-
vant” to them). Finally, the SCF encodes the RS’s objectives.

The full complexity of realistic RESs, of course, presents
a rather different picture. When designing RS policies to
maximize the long-term benefit to users, creators and other
participants, the space of outcomes must be enriched sub-
stantially. Models of user and creator preferences are much
more complex as a result, which renders preference assess-
ment more difficult; this, in turn requires RS policies to ac-
tively explore/elicit and act under incomplete information.
Finally, committing to an explicit SCF is challenging given

4More generally, each agent has private information encoded in
its type, which reflects any information not known to the designer
or other agents (e.g., a content creator’s “skill”).

this preference complexity, as well as the need to account for
social objectives. We now turn to some of the research chal-
lenges that need to be addressed to manage this complexity.

Agent Preferences & Incentives
We first outline some of the challenges associated with man-
aging realistic agent preferences in complex RESs

Outcome Spaces. Maximizing utility for users, creators
and other agents requires capturing the true complexity of
outcomes induced by the RS, beyond one-shot engagement
metrics. For instance, the utility-bearing outcomes for a user
often comprises an extended consumption stream. Utility for
the sequence may not be decomposable into scores of iso-
lated items (e.g., a user who values topic diversity). Thus, the
RS action space is complex, as it must adapt its recommen-
dations suitably; it comprises the set of policies that map the
current user interaction history (in general, that of all users)
to the choice of recommendation for a specific user.

In some cases, the (utility-bearing) outcomes may not be
directly observable to the RS. For example, if a user ac-
cepts a product recommendation by purchasing the product
(e.g., a camera), their ultimate utility will depend on the de-
gree to which the product, its features and its functionality
serves their needs over time (i.e., means vs. ends objectives
(Keeney 1992)). Latent factors also play a role in user out-
comes, e.g., a user’s true satisfaction with a music playlist
is generally not observable. Some latent factors may reflect
user utility, while others may be directly outcome-related,
e.g., a user’s state of knowledge, influenced by consumption
of news content on some issue.

For creators, outcomes may extend beyond cumulative
user engagement, and capture temporal or other properties
of that engagement over time. A creator may value smooth-
ness in the user traffic, or user diversity across their audi-
ence. This requires an enriched outcome space beyond that
typically considered in either MD or RS research.

Passive Preference Assessment. Unlike classic MD pref-
erence revelation, RSs often estimate user preferences from
the past behavior (e.g., clicks, views, consumption) of both
the user in question and other users (e.g., collaborative fil-
tering (Koren, Rendle, and Bell 2011)). Of course, outcome-
space complexity makes such estimation challenging.

The problem of incentivizing agents to reveal private in-
formation truthfully when it is to be aggregated in a predic-
tive model is studied under incentive-compatible machine
learning (Dekel, Fischer, and Procaccia 2010; Vorobeychik
2023). Adapting such models to the complexity of RESs
would be fruitful, though strategic reporting on the part of
users may be rare in RESs. That said, generalization error
should be accounted for in any assessment of user prefer-
ences. Moreover, the assumption that user behavior (e.g.,
item choice) indicates their preferences ignores potential
cognitive biases (Camerer, Loewenstein, and Rabin 2003),
position or popularity bias, etc. The noise, biases and in-
completeness of affinity models demands richer optimiza-
tion techniques than those usually considered in MD.



Active Exploration. Passive preference assessment above
takes no explicit steps to reduce RS uncertainty about a
user’s preferences; models are trained on “organic” user be-
havior. This stands in contrast to MD, where explicit actions
induce (possibly indirect) revelation of preferences. Active
exploration is common in RSs, e.g., using (contextual) ban-
dit methods to present novel items to users to refine mod-
els of their preferences (Li et al. 2010). Active exploration
can be viewed as incremental, indirect preference revela-
tion in the MD sense. Generalization across users remains
important, which raises questions of a multiagent nature,
since the value of making an exploratory recommendation
to one user—one not predicted to be best for that user in
the moment—may depend on how it improves estimates of
other users’ preferences. Recent work has begun to consider
strategic elements that emerge in exploration (e.g., Liu, Ma-
nia, and Jordan 2020).

Explicit Preference Elicitation. Methods for explicit
preference elicitation, studied in RSs and other areas (Salo
and Hämäläinen 2001; Rashid et al. 2002; Boutilier 2002;
Toubia, Hauser, and Simester 2004; Pu and Chen 2008),
question a user about their preferences for items, akin to
incremental, direct revelation in MD. Critiquing methods
(Burke 2002) can also be viewed as a form of elicitation with
more direct user control: when an item is recommended, a
user can critique one of its attributes (e.g., a less expensive
restaurant, more upbeat music). Handling open-ended item
critiquing has become increasingly important as conversa-
tional recommenders become more prominent (see below).
This poses new challenges for RSs in assessing user prefer-
ences, including: understanding how open-ended utterances
reflect a user’s underlying preferences; and dealing with the
subjective nature of attribute usage (Radlinksi et al. 2022).

Interpreting user responses to direct elicitation queries
must account for the types of cognitive biases mentioned
above. While the revelation principle has meant that direct
revelation is most widely studied in MD, much research con-
siders the role of incremental and partial revelation, espe-
cially in complex outcome spaces (e.g., combinatorial auc-
tions (Sandholm and Boutilier 2006)). The principles under-
lying such mechanisms should play a central role in MD for
RESs. Another challenge is the fact that most preferences
are contextual (i.e., depending on a user’s current context,
e.g., location, activity, companions, mood) and conditional;
sequential recommendations are an important special case.

Conversational recommenders (Christakopoulou, Radlin-
ski, and Hofmann 2016) allow more flexibility in a user’s
interactions with an RS, including open-ended dialogue;
richer forms of steering, critiquing, preference elicitation;
and user probing/exploration. This enables the RS to develop
a more nuanced understanding of a user’s preferences and
context. While generative and foundation models (Devlin
et al. 2018; Radford et al. 2018; Thoppilan et al. 2022) hold
promise for highly performative conversational RSs, signif-
icant challenges remain, including developing models that
are inherently personalized by blending the rich, behavior-
based models of users and items commonly used in CF-
based RSs with the semantic understanding of items and

users afforded by large language models (LLMs). Incorpo-
rating multi-modal interactions into RSs also offers new op-
portunities, e.g., using text-to-image models (Ramesh et al.
2021) to synthesize new content or stylistic variations of
products for more efficient user exploration or critiquing.

Preference construction (Lichtenstein and Slovic 2006)
may play a role in MD, since users (and providers) often
do not have fully formed preferences (e.g., due to unfamil-
iarity with the item corpus). Handling dynamic construction
of preferences, especially when these are influenced by the
RS itself, is an important challenge.

Creator Incentives. While we focused on user prefer-
ences above, similar arise when assessing or eliciting the
preferences (and other private information) of providers
(e.g., creators, vendors). Moreover, engaging with providers
is more likely to involve both strategic revelation and infor-
mation sharing, topics we address below.

Information & Effective Decision Making
The “health” of an RES is typically evoked to refer to the
ability of an RS to generate diverse recommendations for
its users. We take a broader view, equating RES health with
the ability of the RS to generate significant value for all of
its participants over the long run. Importantly, we think of
health not as a snapshot of utility generation, but rather as
the RS’s ability to anticipate and respond to fundamental
changes in the underlying ecosystem (e.g., as user prefer-
ences/tastes evolve, as new creation or production capabil-
ities emerge, or as user/creator communities form and dis-
band). Moreover, we expect an RS to take actions to pro-
mote, or at least facilitate, beneficial changes.

Since the value created by the RS depends on both the
production decisions of creators and the consumption deci-
sions of users, the RS can impact ecosystem health directly
by supporting this decision making. One impediment to ef-
fective decision making is the substantial information asym-
metry that exists between the RS and creators (or vendors,
etc.). The RS has rich models of user preferences over the
existing item corpus that often generalize out-of-corpus to
some degree, serving as model of latent user demand. The
RS also has a holistic view of the corpus itself, and insight
into the abilities of providers to source/create new items,
giving a deep understanding of both current and potential
supply of content. No provider has the same breadth of in-
sight into global demand or supply; this information asym-
metry limits a creator’s ability to make informed content
generation decisions, and is a key source of economic ineffi-
ciency. For example, a creator whose content does not attain
the desired user engagement may not be able to determine
the cause, such as: (i) no demand for this type of content;
(ii) content quality that makes it unattractive to most users;
or (iii) numerous other creators offering similar items. By
contrast the RS can distinguish these causes.

Breaking the information asymmetry through some form
of direct or indirect information sharing can improve creator
decision making and drive significant improvements in both
user and creator utility. For instance, if the competitive land-
scape limits a creator’s audience (cause (iii) above), the RS



could communicate this directly, or provide more indirect
guidance by “steering” the creator to a less well-supplied
part of content space with high predicted demand. Such in-
formation sharing poses numerous research challenges:

• Direct information sharing may not be feasible, e.g., if
it reveals personal user data, strategically important in-
formation about “competitors,” or sensitive information
about RS policies. Indirect or implicit sharing may be
more acceptable (e.g., predicted aggregate audience for
new content). Leakage of private information must be
safeguarded of course, even in indirect methods (Dwork
et al. 2012; Chien et al. 2021).
• Sharing information alone may not suffice to induce

welfare-improving changes by a creator. Costs and un-
certainty (e.g., due to lack of experience, access to re-
sources) may discourage a creator from generating truly
novel content. Mechanisms must be investigated that in-
centivize new content production, de-risk creator explo-
ration and facilitate development of new skills.
• Generative models, such as LLMs (Thoppilan et al.

2022), or text-to-image models (Ramesh et al. 2021),
may be used to synthesize language descriptions, item
features, evocative images, etc. to guide the creator.
• RS steering or advice must be coordinated across the

entire set of creators (e.g., an RS may not want to pro-
pose generation of the same novel content to multiple
creators).
• Strategic creator responses may arise (see below).

Information sharing is tied directly to the revelation com-
ponent of MD, since the RS may be best served by elic-
iting/assessing private information about a creator’s skills,
beliefs, costs, and decision-making processes to better de-
cide how to encourage welfare-improving decisions.

Strategic Behavior
By strategic behavior, we refer to actions taken by an agent
that anticipate the actions/reactions of others. Handling, or
obviating the need for, strategic manipulations of the type
below is a vital component of MD in RECs.

User Strategic Behavior. We largely expect users to be-
have non-strategically. When presented with several recom-
mendations, a user will (perhaps noisily) select their most
preferred option. In sequential settings, this may be trickier
since an item’s value may depend on future recommenda-
tions, and may influence future recommendations that user
receives. This requires the user be sequentially rational (i.e.,
plan)—but not strategic—and possibly invoke a “mental
model” of the RS policy to explicitly influence subsequent
recommendations (Guo et al. 2021); e.g., a user selecting a
(non-preferred) music track by some artist to induce future
recommendations of (preferred) tracks by that artist.

Strategic behavior might involve spam-like activity to
promote the popularity of a favorite musical artist, news
outlet, or content creator; or to provide excessive ratings
or glowing product reviews to increase the odds of certain
items being recommended to others. Likewise, responses to

preference elicitation queries may intentionally be inaccu-
rate to manipulate the RS’s future recommendations to the
user in question, to other users, or to impact the providers
of the recommended items (either positively or negatively).
That said, user strategic behavior, if existent, is likely to ex-
hibit a degree of bounded rationality w.r.t. full RES com-
plexity. We note that the increased use of explicit two-way
communication about a user’s preferences, as advocated
above, should increase transparency and user trust, and in
turn reduce incentives for users to expend cognitive effort
for “non-strategic” manipulation of an RS policy.

Provider Strategic Behavior. Strategic reasoning is more
likely to play a role in the behavior of item providers. Dis-
regarding direct intervention by the RS, a product vendor
offers products that it predicts to have reasonable demand
and to be sufficiently differentiated from those of other ven-
dors (in equilibrium). Price setting will likewise be strate-
gic. Similar considerations arise in content RSs even if users
do not (directly) pay for content. An RS that tries to maxi-
mize some form of social welfare must account for provider
strategic behavior; indeed, the RS matching policy itself
can induce strategic behavior (Ben-Porat and Tennenholtz
2018). Extending such MD approaches to richer user and
creator preferences is of great import.

Direct elicitation of private information may also induce
manipulation. To wit, in our example, where a provider re-
quires a minimum audience, directly eliciting this target
gives the provider a prima facie incentive to overstate their
target, but not by too much (else they risk being shut out
completely), much like a first-price auction. While any di-
rect revelation should account for equilibrium provider be-
havior, content RSs often cannot use monetary transfer. This
falls within the area of MD without money (Procaccia and
Tennenholtz 2009), and can be especially challenging.

Strategic considerations may also emerge when an RS
takes steps to induce providers to generate new items that
will improve overall social welfare (see above). For instance,
consider two creators producing content designed to appeal
to the same audience, which they split. The RS might prompt
the first creator to make slightly different content, to the ben-
efit of the user population as well as both creators. However,
the first creator might refuse in the hopes that the RS might
then suggest that the second creator “move” instead, thus
sparing it the potential cost and risk of this change.

Incentivizing welfare-improving behavior across a di-
verse set of strategic or semi-strategic providers requires
significant effort involving many aspects of MD. While di-
rect (e.g., auction-like) mechanisms may work in simple do-
mains, complex settings need detailed modeling of provider
private information (utilities, costs, skills, beliefs, etc.) and
how these elements shape their strategies, especially when
providers exhibit bounded rationality.

Tradeoffs and the Social Choice Function
One of the thorniest problems in the use of MD for RESs is
the adoption of a particular SCF. The ecosystem perspective
makes clear that an RS must trade off the utility it generates
for different actors (users, creators, vendors, etc.), whose in-



centives will not be fully aligned. We consider two classes
of tradeoffs: those involving preferences of the individual
actors, and those that we refer to as “social tradeoffs.”

Actor Utility Tradeoffs. A key principle of MD is the use
of an SCF to encode the tradeoffs the designer makes over
the utilities of its participants. Our stylized example illus-
trates this for RESs, where even maximizing simple utilitar-
ian user welfare requires such tradeoffs (the large increase in
blue-user utility imposes a small cost on red users; likewise
for the providers). The use of MD and an SCF to optimize
RS policies forces the RS designer to explicitly articulate
the tradeoffs they are prepared to make—which outcomes,
across all actors in the system, they consider more or less
desirable—rather than leaving them to chance.

While we used (user) utilitarian welfare (or sum of user
utilities) in our motivating example, this is only for illus-
tration. Naturally, creator utility can be incorporated. But
more broadly, a variety of factors can be used in the con-
struction of an SCF: overall welfare; distribution of utility
(worst-case, in expectation); fairness w.r.t. welfare, opportu-
nity, etc.; regret considerations (e.g., relative to a local base-
line policy); and many others. This raises the question of
who should engineer the SCF, and how. Unfortunately, there
is no “universal” SCF that embodies incontrovertible princi-
ples for preference aggregation (Arrow 1950). Even seem-
ingly uncontroversial conditions like Pareto optimality can
be called into question on philosophical grounds (Sen 1970).

The use of an SCF poses challenges for specification, elic-
itation, assessment, measurement, and optimization. For in-
stance, most RSs rarely take steps to assess true user or cre-
ator utility, instead relying on proxy measurements (e.g., re-
turn engagement). The self-interested nature of the RES par-
ticipants renders explicit assessment or elicitation especially
challenging, since it may not be possible to incentivize par-
ticipants to reveal their preferences (or other private infor-
mation) truthfully (Gibbard 1973; Satterthwaite 1975).

The fact that agent utility should be measured over ex-
tended horizons presents MDP and RL-style optimization
challenges, as well as important questions w.r.t. dynamic
MD (Parkes 2007). Other challenges pertain to interpersonal
comparison of utilities (Harsanyi 1955). Reducing prefer-
ences to individual comparable utilities provides significant
traction, but it remains to be seen what one loses in terms
of generality. While monetary transfers and quasi-linearity
obviates this concern in many MD settings (e.g., auctions),
RESs fall within the realm of MD design without money.

Fairness is an area where tradeoffs across individuals and
groups has gotten much attention is RSs (see, e.g., Ekstrand
et al. 2022; Li et al. 2023), both from the perspective of users
(e.g., equitable quality of models of user preferences) and
creators/vendors (e.g., fairness of exposure). These methods
can be seen to promote certain social outcomes without an
explicit SCF. However, an explicit MD approach at the level
of outcomes, rather than (say) interventions on models, may
prove to be more powerful.

Social Objectives. Some elements of the SCF may not
be readily or naturally definable w.r.t. individual actor util-
ities, e.g., when the SCF uses properties of joint outcomes

over, say, users, but where each user is concerned only with
their “local” outcome. For instance, an SCF might try to
minimize the emergence of filter bubbles due the potential
for induced social fragmentation across the user population
(Pariser 2011; Aridor, Goncalves, and Sikdar 2020).5 Other
phenomena of this sort include polarization (Ribeiro et al.
2020), personal diversity of consumption, “echo chambers,”
and the like. We also note the potential interaction between
social objectives and fairness; e.g., rich-get-richer feedback
loops can induce popularity bias, which is often seen as un-
desirable w.r.t. fairness. Yet, economies of scale induced by
this effect may actually offer utilitarian benefits, especially
if well-managed by the RS (e.g., via information sharing).

Determining a suitable SCF may be one of the most
daunting tasks in the application of MD to the design of
RESs. For any given SCF, simply predicting its ultimate im-
pact on the realized outcomes of an RS policy, and the real-
ized expected utility generated for RES players, is tremen-
dously complex. The development of analytical, simulation,
visualization and scenario-analysis tools should prove vital
in helping the designer(s) explore the space of SCFs. SCFs
will also play a crucial role in the transparency of RS designs
and their consequences for individuals and societal groups.

Finally, while we have focused on the design of RSs that
maximize (say) user utility and well-being, the RS itself typ-
ically derives value from its matching of users to items over
time. This utility can be included in the SCF by treating the
RS as an actor/agent, but conflicts might emerge if the RS
acts as the mechanism designer as well. This may require the
introduction of both policy constraints in the SCF, and more
subtle modeling of ecosystems dynamics (e.g., the influence
of recommendations on user preference construction or evo-
lution (Lichtenstein and Slovic 2006; Carroll et al. 2022).

Concluding Remarks

We have defined an ambitious research program, consist-
ing of a set of challenging—but potentially immensely
impactful—research problems in the arena of recommender
ecosystems. Given the pervasive nature of recommender
systems, and their ever-increasing scope and influence on
our daily lives, success in addressing these research chal-
lenges will have broad implications for scientists studying
RSs, practitioners who deploy RSs, the alignment of future
RSs with the needs and preferences of its users, creators,
providers, etc., and ultimately broad societal dynamics and
values. We refer to the extended paper for a more in-depth
treatment (Boutilier, Mladenov, and Tennenholtz 2023).
Acknowledgements: We thanks the reviewers for their
helpful comments on the original submission.

5Whether filter bubbles are problematic depends on the nature
of the content in question: fragmentation in music consumption
may be unproblematic; but fragmentation involving diverse per-
spectives on key social or civic issues of significant social import,
may be of greater concern, and be viewed as a societal value, where
these consumption patterns have a negative societal externality,
e.g., preventing meaningful civic discourse.
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