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Abstract

Coalition formation is a problem of great interest in
Al, allowing groups of autonomous, individually ratio-
nal agents to form stable teams. Automating the nego-
tiations underlying coalition formation is, naturally, of
special concern. However, research to date in both Al
and economics has largely ignored the potential presence
of uncertainty in coalitional bargaining. We present a
model of discounted coalitional bargaining where agents
are uncertain about the types (or capabilities) of potential
partners, and hence the value of a coalition. We cast the
problem as a Bayesian game in extensive form, and de-
scribe its Perfect Bayesian Equilibria as the solutions to
a polynomial program. We then present a heuristic algo-
rithm using iterative coalition formation to approximate
the optimal solution, and evaluate its performance.

Introduction

in the coalitional bargaining game. Preliminary experiments
illustrate the performance of this heuristic approach.
Although there is a considerable body of work on coali-
tional bargaining, no existing models deal with explicit type
uncertainty. Okad47] suggests a form of coalitional bar-
gaining where agreement can be reached in one bargaining
round if the proposer is choseandomly Chatterjee et al.
[3] present a bargaining model with a fixed proposer or-
der, which results in a delay of agreement. Neither model
deals with type uncertainty—instead, they focus on calculat-
ing subgame-perfect equilibria (SPE). Suijs et ] intro-
ducestochastic cooperative games (SCE&smprising a set
of agents, a set of coalitional actions, and a function assign-
ing to each action a random variable with finite expectation,
representing action-dependent coalition payoff. Though they
provide strong theoretical foundations for games with this
restricted form of action uncertainty, they do not model ex-
plicitly a coalition formation process. Kraus et f] model
coalition formation under a restricted form of uncertainty re-

nomics[8], has attracted much attention in Al as means o 2 X
dynamically forming partnerships or teams of cooperatingt'owever’ type uncertainty is not captured; ratﬁ‘e“ the rrlean
agents. While most models of coalition formation (ecgali- ~ valué of coalitions ixommon knowledgand a "manager”
tional bargaining processgsassume that agents have full handles proposals (they also focus on social welfare maxi-
knowledge oftypesof their potential partners, in most nat- Mization rather than individual rationality).

ural settings this will not be the case. Generally, agents will Chalkiadakis and Boutilief2] propose an explicit model of

be uncertain about various characteristics of others (e.g., thei pe uncertainty and show how this translates into coalitional

capabilities), which in turn imposes uncertainty on the value'@/Ue uncertainty. We adopt their model in our paper. How-
ver, their results focus on stability concepts and how coali-

of any coalition. This presents the opportunity to learn about; ve duri ted int " ¢ duall
the types of others based on their behavior during negotiatiofi°"S EVOIVE during répeated interaction, as agents graduaily
earn more about each other’s capabilities (in reinforcement

and by observing their performance in settings where coali:

tions form repeatedly. Agents must be able to form coalitiond€2™iNg Stylé). The actual coalition formation processes used
and divide the generated value even in such settings are fairly simple and are not influenced by strategic consider-

Here we present a model of discounted coalitional bar_ations, nor do agents update their beliefs about other agents’

gaining under agent type uncertainty. We formulate this as fypes during bargamlng. Our work analyzes the actual bar-
Bayesian extensive game with observable acti8hswvhere gaining process in more depth.

the actions correspond to proposing choices of potential paré . " ..

ners and a payoff allocation, or accepting or rejecting suc Bayesian Coalitional Bargaining

proposals. Our model generalizes related bargaining modeld/e begin by describing the Bayesian coalition formation
by explicitly dealing with uncertainty about agent types (ormodel and then define our coalitional bargaining game.
capabilities) and coalitional values. We formulate the perfect We assume a set of agemts= {1,...,n}, and for each
Bayesian equilibrium (PBE) solution of this game as a de-agent: a finite set of possibléypesT;. Each agent has a
cidable polynomial program. The complexity of the programspecific typet € T;. We letT = x;cnyT; denote the set of
makes it intractable for all but trivial problems, so we proposeype profiles. Each knows its own typé€;, but not those of
an alternative heuristic algorithm to find good agent strategiesther agents. Ageris beliefsu; comprise a joint distribution



overT_,, whereu;(t_;) is the probability; assigns to other adopt a suitabléehavioral strategyassociating with each
agents having type profile_;. Intuitively, i's type reflects its  node in the game tree at which it must make a decision a dis-
“abilities;” and its beliefs about the types of others capture itdribution over action choices fagach of its possible types
uncertainty about their abilities. For instance, if a carpenteFurthermore, since it is uncertain about the types of other
wants to find a plumber and electrician with whom to build agents, its observed history of other agents’ proposals and re-
a house, her decision to propose (or join) such a partnershigponses give it information about their types (assuming they
to engage in a specific type of project, and to accept a spere rational). Thus, the preferred solution concept is that of
cific share of the surplus generated should all depend on harperfect Bayesian equilibrium (PBEJ]. A PBE comprises
probabilistic assessment of their abilities. a profile of behavioral strategies for each agent as wejlsa

A coalitionC C N of members with actual typeég hasa tem of beliefdictating what each agent believes about the
valueV (t¢), representing the value this group can achieve bytypes of its counterparts at each node in the game tree. The
acting optimally. However, this simpleharacteristic func-  standard rationality requirements must also hold: the strategy
tion representation of the modgd] is insufficient, since this for each agent maximizes its expected utility given its beliefs;
value is not common knowledge. An agéman only assess and each agent’s beliefs are updated from stage to stage using
the expected valuef such a coalition based on its beliefs: Bayes rule, given the specific strategies being played. In this

Vi(C) = > i oere 1ilte)V (te). section, we formulate the constraints that must hold on both
A coalition structureCS partitions N into coalitions of  strategies and beliefs in order to form a PBE.
agents. Apayoff allocationP = (x;), given the stochas- Leto; denote a behavioral strategy fipmapping informa-

tic nature of payoffs in this setting, assigns to each agent ition sets (or observable historigpin the game tree at which
coalitionC' its shareof the value attained bg' (and must be ¢ must act into distributions over admissible actioh@). If
such thaty ;. z; = 1 for eachC < CS). Chalkiadakis i is a proposer ak (at stages), let A(h) = P, the finite set of
and Boutilier[2] define theBayesian coras a generalization proposals available at. Thenglhvti () denotes the (behav-
of the standard core concept, capturing an intuitive notion oforal strategy) probability that makes proposat € P ath
stability in the Bayesian coalition formation game. ___given its type isl;. If i is a responder &k, theno!' () is
While coalition structures and allocations can sometimeshe probability with which accepts the proposal on the table
be computed centrally_, in many situations they emerge as th aysyed ath (andagz,,ti, (n) =1 ot (y) is the probability
result of some bargaining process among the agents, why Lo G -
propose, accept and reject partnership agreenf@htswe ¢ Saysno). Let; denoter’s beliefs with ;" (¢ ;) beingi's
now definea (Bayesian) coalitional bargaining ganfier the ~ beliefs about the types of others/agiven its own type is;.
model above as Bayesian extensive game with observable Ve define the PBE constraints for the game by first defin-
actions The game proceeds in stages, with a randomly chold the values to (generic) agent each node and infor-
sen agent proposing a coalition and allocation of payments tation set in the game tree, given a fixed strategy for other

partners, who then accept or reject the proposal. agents, and the rationality constraints on his strategies and
A finite set ofbargaining actionss available to the agents. Peliefs. We proceed in stages. _
A bargaining action corresponds to either sopreposal (1) Let £ be a proposal node farat history/ at stages.

Since the only uncertainty in information setinvolves the

m = (C, Pc) to form a coalitionC with a specific payoff
) P . types of other agents, ea¢he h corresponds to one such
allocation P specifying payoff shares; to eachi € C, or tige vectort_, egT,Z-; let h?t,i) denote tFr)lis node ih. The

to the acceptance or rejection of such a proposal. The finitgjz e toi of a proposalr = (C, Pc) ath(t_;) is:

horizon game proceeds fstages, and initially all agents are ’ ’

active At the beginning of stage < S, one of the (say:) 0 () = phl D ()@ Valte) + th(tfi)(mr)qf/w/r,ti
active agents is chosen randomly with probability = % -

to make a proposdl’, Pc) (with i € C). Each othey € C

simultaneouslywithout knowledge of other responses) either where:pﬁﬁi‘”(w) is the probability that allj € C (other
accepts or rejects this proposal. If glle C accept, the than:) acceptr (this is easily defined in terms of their fixed
agents inC' are made inactive and removed from the gamestrategies);z; is i's payoff share inPs; r ranges over re-
Value Vi (tc) = 6° 'V (tc) is realized byC at s, and split  sponse vectors in which at least opec C refuses the
according toP¢, whered € (0,1) is the discount factor.  proposal;p"(t-)(, r) denotes the probability of such a re-

If any j € C rejects the proposal, the agents remain aCtiV%ponse; andf/w/r7ti denotes theontinuation payoffor i at
€Stages + 1 at the node /7 /r (following n after proposair

, . ) L : and responses. This continuation payoff is defined (recur-

not in any coalition receives its discounted reservation Va'“%ively) below. The value of at historyh (as opposed to a
o1 . . o i
6>~V (t;) (discounted singleton coalition value). node) is determined by taking the expectation w.r.t. possible
. L . hit; _ hit; N R(t—i).ts
3 Perfect Bayesian Equilibrium WI?;)S-;JZ- (m) =23 1 (d—z)qz‘t o[e (W)]-l(t -
" - . . uppose is a responder at nodg = _;) in his-

The coalitional bargaining game described above is clearly a PP P )

; ; ry h at stages. As above{ corresponds to specific ; in
extensive form Bayesian game. We assume each agent wiil "y o 4. we can assumiis the first responder (since all

Agents could have differerts. As long as these are common responses are simultaneous). plt (m) denote the prob-
knowledge, our analysis holds with only trivial modifications. ability that all other responders acceptWe then define the

are observed by all participants. At the end of stdganyi



value toi of acceptingr at¢ as: Finally, we add the obvious constraints specifying the domain
ht_i).ti » » rt, Of the various variables denoting strategies or beliefs (they
gt (y) = phlt ”(W)fﬂi‘/;(tC)JFZPh(t RO take values ifj0, 1] and sum up to 1 as appropriate).

. " . . This ends the formulation of the program describing the
where again ranges over response vectors in which at leaspBg. This is a polynomial constraint satisfaction problem:
onej € C, j # i, refusesr; p"(*~)(, r) is the probability  finding a solution to this system of constraints is equivalent
of such a response; a@é/y/“ti is the continuation payoff to deciding whether a system of polynomial equations and
for i at stages + 1 after responsesby its counterparts. The inequalities has a solutiofl]. The problem is decidable,
value of accepting di is given by the expectation over type but is intractable. For example, an algorithm for deciding

vectorsto W.rt. i's be”efsﬂh,ti as above. this problem has been proposed with exponential complex-
The value of rejectiner zatg ~ h(t_y) is the expected ity [1]. Specifically, the complexity of deciding whether a
continuation payoff at stage+ 1: ’ system ofs polynomials, each of degree at masin & vari-
h(t—i)ti h(t—) €/n/roti ables has a solution ig¥t1d°®), In our case, assuming a
g ) =D M (g random choice of proposer at eachsfounds, we can show

that if o is the number of pure strategie¥, the number of
(wherer ranges over all responses, including pure positiveagents,T” the number of types, then= O(N®),d = NS
responses, of the others). andk = O(aNT). This is due to a variety of combinatorial
(3) We have defined the value fortaking a specific ac- interactions evident in the constraints above, creating as they
tion at any of its information sets. It is now straightforward do interdependencies between belief and strategy variables.

to define the value té of reaching any other stagenode In summary, the formulation above characterizes the PBE
controlled by;j # ¢ or by nature (i.e., chance nodes where asolution of our coalitional bargaining game as a solution of a
random proposer is chosen). polynomial program. However, it does not seem possible that

First we note that, by assumingresponds “first” to any this solution can be efficiently computed in general. Never-
proposal, our definition above means that we need not contheless, this PBE formulation may prove useful for the com-
pute the value té at any response node (or information set) putation of a PBE in a bargaining setting with a limited num-
controlled byj. For an information set; wherej makes a  ber of agents, types, proposals and bargaining stages.
proposal, consider a node= h;(t;) wherej is assumed to

be of typet;. Then,j’s strategyo?”t’ specifies a distribu- 4 Approximations

tion over proposals (determined given the valquj’“ (m) The calculation of the PBE solution is extremely complex due

which can be calculated as above, gisttypet ;). Agenti’s to both the size of th_e strategy space (as a function of the size
bk (L)) i . ) of the game tree, which grows exponentially with the problem

valueg; at this node is given by the expectation (W.I.t. h4rizon), and the dependence between variables representing
this strategy distribution) of its accept or reject values (or if ityrategies and beliefs, as explained above. We present an ap-
is not involved in a proposal, its expected continuation valug,oximation strategy that circumvents these issues to some

at stages + 1 given the responses of others). lts valuals  gegree by: (a) performing only a small lookahead in the game
thenQ} (hj) = 3, 1t ()l " %) We defineQ' (h;)  tree in order to decide on a action at any stage of the game;
(wherei is the proposer) as in Case 1 above. and (b) fixing the beliefs of each agent during this process.
Finally, i’s value at information séfi that defines the stage This latter approach, in particular, allows us to solve the game

s continuation game (i.e., where nature chooses proposer) i§'ee by backward induction, essentially computing an equilib-

rium for this fixed-beliefs game. Note that while beliefs are

qf“t"’ = 1 Z Q% (hy) held fixed during the lookahead (while computing an imme-

mo diate action), they do get updated once the action is selected

wherem is the number of active agents, ahglis the infor- ~and executed, and thus do evolve based on the actions of oth-
mation set following in which j is the proposer. ers (this is in the spirit of receding horizon control). Further-

(4) We are now able to define the rationality constraints.more, we allow sampling of type vectors in the computation
We require that the payoff from the equilibrium behav- to further reduce the tree size. _ ,
ioral strategys exceeds the payoffs of using pure strategies. More precisely, at any stage of the game, with a particular
Specifically, in PBE, for alk, ¢; € T}, all h that correspond collection of active agents (each with their own beliefs), we
to one ofi’s information sets, and all actiorise A(h), we  implement the following steps:

have: 1. An agent (e.g., proposer) constructs a game tree consiséting of
hy, ht; h(t_i).t; Ry oy h(E—i)ts the nextd rounds of bargaining (for some smkdbkaheadd).
bt oti(a)q, a) > ht_)q, b _ gaining \ !

; i ( )a§h) (@) (a) 2 ; wi (t-0)a, ®) All active agents are assumed to have fixed beliefs at each node

in this tree corresponding to their beliefs at the current stage.
We also add constraints for the Bayesian update of belief The agent computes its optimal action for the current round us-

variables for any agentegarding type” of agentj perform- @ng backward induction to ’c_lpproximate an equilibrium (similar

. J

ing a; at anyh (for all 4, ¢; € T}, all h and alla;): in nature to arSPH of this limited depth g’ame. (We elaborate
below.) Furthermore, theysamplepartners’ types when calcu-

hUa;,t; hots ht% Bty ke otk lating the values of coalitions and proposals.

SRER) = ey (@) Y () (ag) 2 Prop

theT; 2If less thand rounds remain, the tree is suitably truncated.



2. Each player executes its action computed for the current roundHowever, to evaluate this acceptance conditiampuld need
of bargaining. If a coalition is formed, it breaks away, leaving to know the other responders’ strategies (which in turn de-
the remaining players as active. pend oni’s strategy). Therefore,will make the simplifying

3. All active agents update their beliefs, given the observed acSSumption that all other respondgevaluate their response
tions of others in the current round, using Bayesian updating!© 7 by assuming that the rest of the agents (includngill

Further, each agent keeps track of the belief updates that ar?ccept the proposal. Thus, apwith ¢; € ¢_; is assumed by
other agent of a specific type would perform at this point. 0 accept if he evaluates his expected payoff from acceptance

ing gr r than his (di n reservation ff:
4. The next bargaining round is implemented by repeating thes‘e’le being greater than his (discounted) reservation payo

steps until a complete coalition structure is determined or the ; Z i (t— ) WVal{ts t—;}) > Va(t)) )
maximum number of bargaining rounds is reached.

We stress that the algorithm above does not approximate, . . . S
the PBE solution; getting good bounds for a true PBE approx- With this assumption,i is able to evaluate the accep-
imation would only be likely by assuming belief updating at tance condition in Eq. 1 above, and so calculate a specific
everynode of the game tree mentioned in Step 1. However, Z_h(t—im (y) value. Note that the use of this assumption can
if our algorithmic assumptions are shared by all agents, eacfymetimes lead to an overestimate of the value of a node.
can determine their best responses to others’ (approximately) at node¢ = n(t_;), i can also evaluate his refusal value
optimal play, and thus their play approximates an equilibrium_ =, ") 3 i )
of the fixed-beliefs game. Indeed, we can defisequential asq; " '(n) = Va(t;) in this last round. Then, respon-
equilibrium under fixed beliefs (SEFB} an extension of the deri's actual strategy ak can be evaluated as the strategy
SPE and arestriction of the PBE for a fixed-beliefs bargainingnaximizingi’s expected value give,mf:ti;
game, and can show the following (stated informally here): )

hity h,t; h(t—:),t:
o;"" = arg max { Z (i), (r)}

re{yn}, =
—

t_jEtc

Theorem 1 If the Bayesian core (BC) of a Bayesian coalitional
gameG [2] is non-empty, and so is the BC of each oneGt$
subgames, then—regardless of nature’s choice of proposers —there If i is aproposerof typet, deliberating at = h(t_;), the
is an SEFB strategy profile of the corresponding fixed-beliefs disvalue of making proposat is:

counted Bayesian coalitional bargaining game that produces a BC s

element; and conversely, if there is an order indeperd&EFB h(t—i):t; (r) = { x:Va(te) if o, =y, Vj ®)
profile for a Bayesian coalitional bargaining game, then it leads to ¢ Va(ti)  otherwise

nfiguration that is in the BC of the underlyi . . . .
a configuration thatis in the BC of the underlying (i.e., ¢ will get his reservation value unless all the respon-

This result describes some notion of equivalence between calers of the specific type configuration agree to this proposal).
operative and non-cooperative Bayesian coalition formatiorFurthermore;’s expected valuelf““ (7) from making pro-

solution concepts, and is similar to results (e.g., Moldovambosm7T to coalition C' at  can be determined give,mh’“.
et al.[5]) for non-stochastic environments. It also motivate

S : coali
Thus, the best proposal thaof type ¢; can make to coali-
further Step 1 of our heuristic algorithm, equating fixed be prop yb
lief equilibrium computation with determination of§ part

“tion C' is the one with maximum expected payoff " =

of) the Bayesian core. We now elaborate on this process. argmaxr 9 f () with expected payoff; """, .

We assume that the agents proceed to negotiations that However,i can also propose to other coalitions/a@as
will last d rounds (corresponding to the algorithm’s looka- Well. Therefore, the coalition™ to whichi should propose
head valuel) under the assumption that all beliefs will remain iS the one that guarantees him the maximum expected pay-
fixed to their present values throughout the (Step 1) proceseff: C* = argmaxc{q{ ™"}. If P* is the payoff alloca-
We will present the deliberations of agendluring negotia- tion associated with that proposal, then the optimal coalition-
tions. Forfixedtypest_; of possible partners, drawn accord- allocation pair that; can propose in this subgame (that starts
ing to y;, ¢ will reason about the game tree and assume fixeavith i proposing at) is: ot — {C*, P*} with maximum

beliefs of other agents. (Agentsll track of the updates of expected payoﬁff*;h,ti_ Finally, if there exist more than one

other agents’ b'eliefs after this stage of_ bargainjng; see Step 3ptima| proposal fof, i randomly selects any of them (this is
above). Then; can calculate the optimal action of afly  (aken into account in agents’ deliberations accordingly).
agent (including himself) at any information set by taking ex- ¢ course, when the subgame starts an agefdes not
pectations over the corresponding tree nodes. know who the proposer in this subgame will be; anilas
We begin our analysis at the last stagef negotiations. In - oy hrobabilistic beliefs about the types of his potential part-
any nodet after historyh wherei of typet; is a responder ners. Thus; has to calculate hisontinuation payofa}(_;z:g,t,; at

Dalners, he expects a value for accepting ot Vd?f‘é‘e?éé?igaged (that starts at nod) with m partcipants, in the way
his (discounted) reservation value only if all other responder xplameld ||n thiprewous sgctmn.ﬁTTs Is straightforward, as
accept the proposal as well: 1 can calculate his exﬂpecte payofts from part.|C|pat|ng In any
subgame where sonjeproposes, given that ariycan calcu-
_ . , late the optimal strategies (and associated payoffs) forjany
g () = { %‘éii()tc) g;z”e:;)zsee teaccept (1) in this roundd subgame.
Now consider play in a subgame starting in peribod 1,

3A strategy profile isorder independeriff when played it leads ~ again with the participation ofr agents. The analysis for

to a specific{ CS, P), independently of the choice of proposers.  this round can be performed in a way completely similar to



the one performed for the last round of negotiations. How-during each negotiation round. There are 388 proposals a
ever, there is one main difference: the payoffs in the case dBE agent considers when negotiating in a stage with all five
a rejection are now the continuation payoffs (for agents ofagents present (fewer in other cases).

specific type) from the last round subgame. We have to in- Table 1(a) shows performance when each agent has a
corporate this difference in our calculations. Other than thatuniform prior regarding the types of others. TBE& al-

we can employ a similar line of argument to the one used fogorithm consistently outperformkST, even thoughKST
identifying the equilibrium strategies in the last period. Pro-promotes social welfare (i.e., is well-aligned with total re-
ceeding in this way, we define the continuation payoffs andvard criterion) rather than individual rationality. KST
players’ strategies for each prior round, and finally determineagents without RL always converge to the coalition struc-
the first round actions for any proposeof type¢; or any  ture {(4), (3),(2), (0,1)}; this is due to the fact that they

respondey of typet; responding to any proposal. are discouraged from cooperating due to the lack of infor-
mation about their counterparts. When KST agents learn
5 Experimental Evaluation from observed actions after each episode (KST-Uni-RL) they

i . form the coalitions{(2, 3, 4), (0), (1)} in the last episode
To evaluat_e our aprp])ro:_;ur:]hé we flrsthcor_ldu%ted exglerlmentﬁ] 16 of 30 runs gE age>nt<s> ié] >c};)ntrast form cF())aIitions
in two settings, each with 5 agents having 5 possible types, > ; ’ '
L = : ased on evolving beliefs about others, and do not form
Ager:\ts r_ep(ejatedly (_angage?plsodeﬁf co?lmon formation, d he optimal structgre{ﬂ 2,3,4),(0)}.° Rather they tend
each episode consisting of a number of negotiation rounds, g AR . ;
We compare our Bayesian equilibrium approximation methoiO form coalitions of 2 or 3 members which exclude agent

; . A from being their partner. In addition, payoff division for
BE) with KST, an algorithm inspired by a method presented . : L . ; .
EJyEI)Oaus et al[4] 'gll'hough theﬁr metﬁ/od is bettef tailored OF a%elgtss_rls_rr?]orehallgnedfv(vlth mdng)ual r?tlonalfl;y tfh;g_;_t
Lk . : oo IS wit . The shares of (averaged) total payoff o -

to other settings, focusing on social welfare maximization, It ni-RL agents 0-4 ar®.8%, 0.7%, 28.8%, 29.6%, 40.1%,

is a rare example of a successfully tested discounted coal- . ; - i ’
tional bargaining method under some restricted form of un_respectlvely, while for BE-Uni-RL (SS:10, LA'2) they are

= . i _
certainty, which combines heuristics with principled game1'3%’ 13.4%, 18.8%,29.5%, 37%; this more accurately re

theoretic techniques. It essentially calculates an approxima{l—ects thepower [6] of the agents. BE results are reason-

tion of a kernel-stable allocation for coalitions that form in ably robust with changing sample size and lookahead value

each negotiation round with agents intentionally compromis?(at least in this environment with 3125 possible type vectors

. : X i ; in a 5-agent coalition).
ing part of their payoff in order to form coalitions. LiKd], .
our KSTuses a compromise factor 6f, but we assume no We attribute the poor performance of KST agents to the

. . act that they make their proposals without in any way tak-
ggg}irt?(;r? \lj;rllﬁégyés?{:rllya'z:r:jegi/%in:yggogr? c?é:nr?aieg round, am?ng intc_) consideration the ch_anging be_lie_fs of others. With
During an episode, agents progressively build a coalitiorjfhe beliefs of the agents varying, negotiations drag (up to the

structure and agree on a payment allocation. The action exgraximum of 10 rounds) due to refusalg, resulting in reduced
cuted by a coalition at the end of an episode tbalitional payoffs. BE agents do not suffer from this problem, since they

action) results in one of three possible stochastic outcomegfep track of all possible partners’ updated beliefs, and use
o € O = {0,1,2) each of differing value. Each agent's 0 em during negotiation. Thus, they typically fo_rm a coali-
type determines its “quality” and the “quality” of a coalition tion structure W'th'n the f|rst. four rounds of an eP'SOd‘?- .
is dictated by the sum of the quality of its members less a YW also experimented with a second setting in which sin-
penalty for coalition sizd. Coalition quality then determines 9/€ton coalitions receive a penalty of -2 quality points (rather
the odds of realizing a specific outcome (higher quality coalithan -1 above), and wheigtc) = >, -z a(t:)/|C| (as
tions have greater potential). Finally, the value of a coalitionco@litions get bigger they get penalized to reflect coordina-
given member types is the expected value w.r.t. the distribution difficulties). This setting makes the quality of coalitions
tion over outcomes. more difficult to distinguish. Here, a near-optimal configura-
In our first setting, singleton coalitions receive a penalty oftion contains the structurg(4, 3), (2, 1), (0)}. We use three
-1 quality points. We compare BE and KST under variousd'ﬁ?re”t priors:uniform, mlsmformec{agents have an initial
learning models by measuring average total reward garnereiglief of 0.8 that an agent with type has typet + 2 ), and
by all coalitions in 30 runs of 500 formation episodes eachinformed(belief0.8 in the true type of each other agent).
with a limit of 10 bargaining rounds per episode and a bar- The results (Table 1(b)) indicate that KST agents again
gaining discount factor of = 0.9. We also compare average do not do very well, engaging in long negotiations due
reward to the reward that can be attained using the optimal® unaccounted-for differences in beliefs among the vari-

fixed “kernel-stable” coalition structurg(1, 2,3, 4), (0)}. ous agents. KST-Uni-RL agents, for example, typically use
We compared BE and KST using agents that update thefll ten bargaining rounds; in contrast, BE-Uni-RL usually
prior over partner types after Observiuga|itiona| actions— form structures within 3 rounds. Even when KST uses in-

thus learning by reinforcemerR() after each episode—and formed priors, the fact that the expected value of coalitions
those that do notNo RL). In all cases, BE agents update IS not common knowledge takes its toll. BE agents, on
their beliefs after observing the bargaining actions of othershe other hand, derive the true types of their partners with

“We omit the details here. We only note that agent O (of type 0)  ®Nor should they, given bargaining horizon afid-the kernel
is detrimental to any coalition (in our 2 first settings). and other stability concepts do not consider bargaining dynamics.



Method Reward

“Optimal” CS 33890 (expected)
Method Reward KST-Uni-NoRL | 20201.4(59.6)% Method o) ATB
“Optimal” CS 65800 (expected)|| KST-Uni-RL 20157.7(59.5)%) KST-NoRL-095 215383 T 1.07
KST-Uni-NoRL 32521.3(49.4%) | BE-UN-NoRL | 31762.1(93.7%) | gE-NoRT-0.05 35695 1 171
KST-Uni-RL 44274.4(67.3%) BE-Uni-RL 32275.9(95.2%) KST—NORL-b 5 6 33 4'26
BE-Uni-NoRL SS=20, LA=3| 60037.7(91.2%) KST-Mis-NoRL | 20193.2(59.6)% BE-NoRL-0 5 8 1 1 5
BE-Uni-RL SS=20, LA=3 57775.4(87.8%) KST-Mis-RL 21642.5(63.9)% KST-RL-0 9'5 3 26384 > '25
BE-Uni-NoRL SS=10, LA=2| 61444.3(93.4%) BE-Mis-NoRL 31716.6(93.5%) BE-RL-0 9'5 4.83322 1 v
BE-Uni-RL SS=10, LA=2 60086.7(91.3%) BE-Mis-RL 32293.7(95.3%) KST—RL-b 5 '2 9 3 '15
BE-Uni-NoRL SS=3, LA=2 61269(93.1%) KST-Inf-NoRL 22241.5(65.6%) BE-RL-0 5 9.96 1'43
BE-Uni-RL SS=3, LA=2 60301.1(91.6%) KST-Inf-RL 24748.1(73%) . - -

. BE-Inf-NORL 31688.3(93.3%) (c) Setting C; Uniform Priors; BE
(a) Setting A BE-Inf-RL 32401(95.6%) uses SS=5, LA=2: A/B denotesb-

(b) Setting B: (BE uses SS=10, LA=2) servedrelative power of A over B

Table 1: Settings’ results (average).“SS”:sample size;“LA":lookahead;"Uni”:uniform,“Mis”:misinformed,“Inf”:informed prior.

certainty in all experiments, and typically form profitable iterative coalition formation with belief updating based on the
configurations with structures such &, 3), (2,1),(0)} or ~ observed actions of others during bargaining, and is moti-
{{(4,2),(3,1),(0)}. We can also see that RL enhances thevated by our formulation of the PBE solution of a coalitional
performance of BE agents slightly, helping them further dif-bargaining game. The algorithm performs well empirically,
ferentiate the quality of various partners. and can be combined with belief updates after observing the
We also report briefly on the results in a setting with 8results of coalitional actions (in reinforcement learning style).
agents, of 2 possible types per agent (4 agents of type A, Future and current work includes implementing a contin-
4 of type B). The relative power of type A over B is5.° uous bargaining action space version of our algorithm, and
In this setting, forming coalitions by mixing agent types is also incorporating it within a broader RL framework facili-
detrimental, with the exception of thed, A, B, B) (“opti- tating coalition formation and sequential coalitional decision
mal”), (4, A, B) and(A, B) coalitions. There are 2841 pro- making under uncertainty. We are also investigating approxi-
posals an agent considers when negotiating in a stage with athation bounds for our heuristic algorithm.
8 agents present. The setting makes discovery of opponent
types difficult, and thus rational agents should settle for subAcknowledgments
optimal coalitions (hopefully using them as stepping stone
to form better ones later). We also varied the bargaining
(0.95 and 0.5). Agents do not accumulate much reward i
this setting, bargaining for many rounds. Instead of reportingR
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6 Concluding Remarks and Future Work

We proposed an algorithm for coalitional bargaining underé
uncertainty about the capabilities of potential partners. It useg]

®Relative power A/B is the expected payoff of A in coalitions
excluding B, over the expected payoff of B in coalitions without A.



