
Coalitional Bargaining with Agent Type Uncertainty

Georgios Chalkiadakis and Craig Boutilier
Department of Computer Science

University of Toronto, Toronto, Canada
{ gehalk, cebly}@cs.toronto.edu

Abstract

Coalition formation is a problem of great interest in
AI, allowing groups of autonomous, individually ratio-
nal agents to form stable teams. Automating the nego-
tiations underlying coalition formation is, naturally, of
special concern. However, research to date in both AI
and economics has largely ignored the potential presence
of uncertainty in coalitional bargaining. We present a
model of discounted coalitional bargaining where agents
are uncertain about the types (or capabilities) of potential
partners, and hence the value of a coalition. We cast the
problem as a Bayesian game in extensive form, and de-
scribe its Perfect Bayesian Equilibria as the solutions to
a polynomial program. We then present a heuristic algo-
rithm using iterative coalition formation to approximate
the optimal solution, and evaluate its performance.

1 Introduction
Coalition formation, widely studied in game theory and eco-
nomics[8], has attracted much attention in AI as means of
dynamically forming partnerships or teams of cooperating
agents. While most models of coalition formation (e.g.,coali-
tional bargaining processes) assume that agents have full
knowledge oftypesof their potential partners, in most nat-
ural settings this will not be the case. Generally, agents will
be uncertain about various characteristics of others (e.g., their
capabilities), which in turn imposes uncertainty on the value
of any coalition. This presents the opportunity to learn about
the types of others based on their behavior during negotiation
and by observing their performance in settings where coali-
tions form repeatedly. Agents must be able to form coalitions
and divide the generated value even in such settings.

Here we present a model of discounted coalitional bar-
gaining under agent type uncertainty. We formulate this as a
Bayesian extensive game with observable actions[8], where
the actions correspond to proposing choices of potential part-
ners and a payoff allocation, or accepting or rejecting such
proposals. Our model generalizes related bargaining models
by explicitly dealing with uncertainty about agent types (or
capabilities) and coalitional values. We formulate the perfect
Bayesian equilibrium (PBE) solution of this game as a de-
cidable polynomial program. The complexity of the program
makes it intractable for all but trivial problems, so we propose
an alternative heuristic algorithm to find good agent strategies

in the coalitional bargaining game. Preliminary experiments
illustrate the performance of this heuristic approach.

Although there is a considerable body of work on coali-
tional bargaining, no existing models deal with explicit type
uncertainty. Okada[7] suggests a form of coalitional bar-
gaining where agreement can be reached in one bargaining
round if the proposer is chosenrandomly. Chatterjee et al.
[3] present a bargaining model with a fixed proposer or-
der, which results in a delay of agreement. Neither model
deals with type uncertainty—instead, they focus on calculat-
ing subgame-perfect equilibria (SPE). Suijs et al.[9] intro-
ducestochastic cooperative games (SCGs), comprising a set
of agents, a set of coalitional actions, and a function assign-
ing to each action a random variable with finite expectation,
representing action-dependent coalition payoff. Though they
provide strong theoretical foundations for games with this
restricted form of action uncertainty, they do not model ex-
plicitly a coalition formation process. Kraus et al.[4] model
coalition formation under a restricted form of uncertainty re-
garding coalitional values in arequest for proposaldomain.
However, type uncertainty is not captured; rather, the mean
value of coalitions iscommon knowledge, and a “manager”
handles proposals (they also focus on social welfare maxi-
mization rather than individual rationality).

Chalkiadakis and Boutilier[2] propose an explicit model of
type uncertainty and show how this translates into coalitional
value uncertainty. We adopt their model in our paper. How-
ever, their results focus on stability concepts and how coali-
tions evolve during repeated interaction, as agents gradually
learn more about each other’s capabilities (in reinforcement
learning style). The actual coalition formation processes used
are fairly simple and are not influenced by strategic consider-
ations, nor do agents update their beliefs about other agents’
types during bargaining. Our work analyzes the actual bar-
gaining process in more depth.

2 Bayesian Coalitional Bargaining
We begin by describing the Bayesian coalition formation
model and then define our coalitional bargaining game.

We assume a set of agentsN = {1, . . . , n}, and for each
agenti a finite set of possibletypesTi. Each agenti has a
specific typet ∈ Ti. We letT = ×i∈NTi denote the set of
type profiles. Eachi knows its own typeti, but not those of
other agents. Agenti’s beliefsµi comprise a joint distribution



overT−i, whereµi(t−i) is the probabilityi assigns to other
agents having type profilet−i. Intuitively, i’s type reflects its
“abilities;” and its beliefs about the types of others capture its
uncertainty about their abilities. For instance, if a carpenter
wants to find a plumber and electrician with whom to build
a house, her decision to propose (or join) such a partnership,
to engage in a specific type of project, and to accept a spe-
cific share of the surplus generated should all depend on her
probabilistic assessment of their abilities.

A coalitionC ⊆ N of members with actual typestC has a
valueV (tC), representing the value this group can achieve by
acting optimally. However, this simplecharacteristic func-
tion representation of the model[8] is insufficient, since this
value is not common knowledge. An agenti can only assess
the expected valueof such a coalition based on its beliefs:
Vi(C) =

∑
tC∈TC

µi(tC)V (tC).
A coalition structureCS partitionsN into coalitions of

agents. Apayoff allocationP = 〈xi〉, given the stochas-
tic nature of payoffs in this setting, assigns to each agent in
coalitionC its shareof the value attained byC (and must be
such that

∑
i∈C xi = 1 for eachC ∈ CS ). Chalkiadakis

and Boutilier[2] define theBayesian coreas a generalization
of the standard core concept, capturing an intuitive notion of
stability in the Bayesian coalition formation game.

While coalition structures and allocations can sometimes
be computed centrally, in many situations they emerge as the
result of some bargaining process among the agents, who
propose, accept and reject partnership agreements[3]. We
now definea (Bayesian) coalitional bargaining gamefor the
model above as aBayesian extensive game with observable
actions. The game proceeds in stages, with a randomly cho-
sen agent proposing a coalition and allocation of payments to
partners, who then accept or reject the proposal.

A finite set ofbargaining actionsis available to the agents.
A bargaining action corresponds to either someproposal
π = 〈C, PC〉 to form a coalitionC with a specific payoff
allocationPC specifying payoff sharesxi to eachi ∈ C, or
to the acceptance or rejection of such a proposal. The finite-
horizon game proceeds inS stages, and initially all agents are
active. At the beginning of stages ≤ S, one of the (sayn)
active agentsi is chosen randomly with probabilityγ = 1

n
to make a proposal〈C, PC〉 (with i ∈ C). Each otherj ∈ C
simultaneously(without knowledge of other responses) either
accepts or rejects this proposal. If allj ∈ C accept, the
agents inC are made inactive and removed from the game.
ValueVs(tC) = δs−1V (tC) is realized byC at s, and split
according toPC , whereδ ∈ (0, 1) is the discount factor.1

If any j ∈ C rejects the proposal, the agents remain active
(no coalition is formed). At the end of a stage, the responses
are observed by all participants. At the end of stageS, anyi
not in any coalition receives its discounted reservation value
δS−1V (ti) (discounted singleton coalition value).

3 Perfect Bayesian Equilibrium
The coalitional bargaining game described above is clearly an
extensive form Bayesian game. We assume each agent will

1Agents could have differentδ’s. As long as these are common
knowledge, our analysis holds with only trivial modifications.

adopt a suitablebehavioral strategy, associating with each
node in the game tree at which it must make a decision a dis-
tribution over action choices foreach of its possible types.
Furthermore, since it is uncertain about the types of other
agents, its observed history of other agents’ proposals and re-
sponses give it information about their types (assuming they
are rational). Thus, the preferred solution concept is that of
a perfect Bayesian equilibrium (PBE)[8]. A PBE comprises
a profile of behavioral strategies for each agent as well asys-
tem of beliefsdictating what each agent believes about the
types of its counterparts at each node in the game tree. The
standard rationality requirements must also hold: the strategy
for each agent maximizes its expected utility given its beliefs;
and each agent’s beliefs are updated from stage to stage using
Bayes rule, given the specific strategies being played. In this
section, we formulate the constraints that must hold on both
strategies and beliefs in order to form a PBE.

Letσi denote a behavioral strategy fori, mapping informa-
tion sets (or observable historiesh) in the game tree at which
i must act into distributions over admissible actionsA(h). If
i is a proposer ath (at stages), let A(h) = P , the finite set of
proposals available ath. Thenσh,ti

i (π) denotes the (behav-
ioral strategy) probability thati makes proposalπ ∈ P at h
given its type isti. If i is a responder ath, thenσh,ti

i (y) is
the probability with whichi accepts the proposal on the table
(saysyes) ath (andσh,ti

i (n) = 1−σh,ti

i (y) is the probability
i saysno). Let µi denotei’s beliefs withµh,ti

i (t−i) beingi’s
beliefs about the types of others ath given its own type isti.

We define the PBE constraints for the game by first defin-
ing the values to (generic) agenti at each node and infor-
mation set in the game tree, given a fixed strategy for other
agents, and the rationality constraints on his strategies and
beliefs. We proceed in stages.

(1) Let ξ be a proposal node fori at historyh at stages.
Since the only uncertainty in information seth involves the
types of other agents, eachξ ∈ h corresponds to one such
type vectort−i ∈ T−i; let h(t−i) denote this node inh. The
value toi of a proposalπ = 〈C, PC〉 ath(t−i) is:

q
h(t−i),ti

i (π) = p
h(t−i)
acc (π)xiVs(tC) +

X
r

ph(t−i)(π, r)q
ξ/π/r,ti
i

where: p
h(t−i)
acc (π) is the probability that allj ∈ C (other

thani) acceptπ (this is easily defined in terms of their fixed
strategies);xi is i’s payoff share inPC ; r ranges over re-
sponse vectors in which at least onej ∈ C refuses the
proposal;ph(t−i)(π, r) denotes the probability of such a re-

sponse; andqξ/π/r,ti

i denotes thecontinuation payofffor i at
stages + 1 at the nodeξ/π/r (following n after proposalπ
and responsesr). This continuation payoff is defined (recur-
sively) below. The value ofπ at historyh (as opposed to a
node) is determined by taking the expectation w.r.t. possible
types:qh,ti

i (π) =
∑

t−i
µh,ti

i (t−i)q
h(t−i),ti

i (π).
(2) Supposei is a responder at nodeξ = h(t−i) in his-

tory h at stages. As above,ξ corresponds to specifict−i in
h. W.l.o.g. we can assumei is the first responder (since all
responses are simultaneous). Letp

h(t−i)
acc (π) denote the prob-

ability that all other responders acceptπ. We then define the



value toi of acceptingπ at ξ as:

q
h(t−i),ti

i (y) = ph(t−i)
acc (π)xiVs(tC)+

∑

r

ph(t−i)(π, r)qξ/y/r,ti

i

where againr ranges over response vectors in which at least
onej ∈ C, j 6= i, refusesπ; ph(t−i)(π, r) is the probability

of such a response; andqξ/y/r,ti

i is the continuation payoff
for i at stages + 1 after responsesr by its counterparts. The
value of accepting ath is given by the expectation over type
vectorstC w.r.t. i’s beliefsµh,ti

i as above.
The value of rejectingπ at ξ = h(t−i) is the expected

continuation payoff at stages + 1:

q
h(t−i),ti

i (n) =
∑

r

ph(t−i)(π, r)qξ/n/r,ti

i

(wherer ranges over all responses, including pure positive
responses, of the others).

(3) We have defined the value fori taking a specific ac-
tion at any of its information sets. It is now straightforward
to define the value toi of reaching any other stages node
controlled byj 6= i or by nature (i.e., chance nodes where a
random proposer is chosen).

First we note that, by assumingi responds “first” to any
proposal, our definition above means that we need not com-
pute the value toi at any response node (or information set)
controlled byj. For an information sethj wherej makes a
proposal, consider a nodeξ = hj(tj) wherej is assumed to

be of typetj . Then,j’s strategyσhj ,tj

j specifies a distribu-

tion over proposalsπ (determined given the valuesqhj ,tj

j (π)
which can be calculated as above, andj’s typetj). Agenti’s

valueq
ti,hj(tj)
i at this node is given by the expectation (w.r.t.

this strategy distribution) of its accept or reject values (or if it
is not involved in a proposal, its expected continuation value
at stages+1 given the responses of others). Its value athj is

thenQti

i (hj) =
∑

tj
µ

hj ,ti

i (tj)q
ti,hj(tj)
i . We defineQti

i (hi)
(wherei is the proposer) as in Case 1 above.

Finally, i’s value at information seth that defines the stage
s continuation game (i.e., where nature chooses proposer) is

qh,ti

i =
1
m

∑

j≤m

Qti

i (hj)

wherem is the number of active agents, andhj is the infor-
mation set followingh in which j is the proposer.

(4) We are now able to define the rationality constraints.
We require that the payoff from the equilibrium behav-
ioral strategyσ exceeds the payoffs of using pure strategies.
Specifically, in PBE, for alli, ti ∈ Ti, all h that correspond
to one ofi’s information sets, and all actionsb ∈ A(h), we
have:X
t−i

µh
i (t−i)

X
a∈A(h)

σh,ti
i (a)q

h(t−i),ti

i (a) ≥
X
t−i

µh
i (t−i)q

h(t−i),ti

i (b)

We also add constraints for the Bayesian update of belief
variables for any agenti regarding typetκj of agentj perform-
ing aj at anyh (for all i, ti ∈ Ti, all h and allaj):

µ
h∪aj ,ti

i (tκj ) = µh,ti

i (tκj )σ
h,tκ

j

j (aj)/
∑

tk
j∈Tj

µh,ti

i (tkj )σ
h,tk

j

j (aj)

Finally, we add the obvious constraints specifying the domain
of the various variables denoting strategies or beliefs (they
take values in[0, 1] and sum up to 1 as appropriate).

This ends the formulation of the program describing the
PBE. This is a polynomial constraint satisfaction problem:
finding a solution to this system of constraints is equivalent
to deciding whether a system of polynomial equations and
inequalities has a solution[1]. The problem is decidable,
but is intractable. For example, an algorithm for deciding
this problem has been proposed with exponential complex-
ity [1]. Specifically, the complexity of deciding whether a
system ofs polynomials, each of degree at mostd in k vari-
ables has a solution issk+1dO(k). In our case, assuming a
random choice of proposer at each ofS rounds, we can show
that if α is the number of pure strategies,N the number of
agents,T the number of types, thens = O(NS), d = NS
andk = O(αNT ). This is due to a variety of combinatorial
interactions evident in the constraints above, creating as they
do interdependencies between belief and strategy variables.

In summary, the formulation above characterizes the PBE
solution of our coalitional bargaining game as a solution of a
polynomial program. However, it does not seem possible that
this solution can be efficiently computed in general. Never-
theless, this PBE formulation may prove useful for the com-
putation of a PBE in a bargaining setting with a limited num-
ber of agents, types, proposals and bargaining stages.

4 Approximations
The calculation of the PBE solution is extremely complex due
to both the size of the strategy space (as a function of the size
of the game tree, which grows exponentially with the problem
horizon), and the dependence between variables representing
strategies and beliefs, as explained above. We present an ap-
proximation strategy that circumvents these issues to some
degree by: (a) performing only a small lookahead in the game
tree in order to decide on a action at any stage of the game;
and (b) fixing the beliefs of each agent during this process.
This latter approach, in particular, allows us to solve the game
tree by backward induction, essentially computing an equilib-
rium for this fixed-beliefs game. Note that while beliefs are
held fixed during the lookahead (while computing an imme-
diate action), they do get updated once the action is selected
and executed, and thus do evolve based on the actions of oth-
ers (this is in the spirit of receding horizon control). Further-
more, we allow sampling of type vectors in the computation
to further reduce the tree size.

More precisely, at any stage of the game, with a particular
collection of active agents (each with their own beliefs), we
implement the following steps:

1. An agent (e.g., proposer) constructs a game tree consisting of
the nextd rounds of bargaining (for some smalllookaheadd).2

All active agents are assumed to have fixed beliefs at each node
in this tree corresponding to their beliefs at the current stage.
The agent computes its optimal action for the current round us-
ing backward induction to approximate an equilibrium (similar
in nature to anSPE) of this limited depth game. (We elaborate
below.) Furthermore, theysamplepartners’ types when calcu-
lating the values of coalitions and proposals.

2If less thand rounds remain, the tree is suitably truncated.



2. Each player executes its action computed for the current round
of bargaining. If a coalition is formed, it breaks away, leaving
the remaining players as active.

3. All active agents update their beliefs, given the observed ac-
tions of others in the current round, using Bayesian updating.
Further, each agent keeps track of the belief updates that any
other agent of a specific type would perform at this point.

4. The next bargaining round is implemented by repeating these
steps until a complete coalition structure is determined or the
maximum number of bargaining rounds is reached.

We stress that the algorithm above does not approximate
the PBE solution; getting good bounds for a true PBE approx-
imation would only be likely by assuming belief updating at
everynode of the game tree mentioned in Step 1. However,
if our algorithmic assumptions are shared by all agents, each
can determine their best responses to others’ (approximately)
optimal play, and thus their play approximates an equilibrium
of the fixed-beliefs game. Indeed, we can define asequential
equilibrium under fixed beliefs (SEFB)as an extension of the
SPE and a restriction of the PBE for a fixed-beliefs bargaining
game, and can show the following (stated informally here):

Theorem 1 If the Bayesian core (BC) of a Bayesian coalitional
gameG [2] is non-empty, and so is the BC of each one ofG’s
subgames, then—regardless of nature’s choice of proposers —there
is an SEFB strategy profile of the corresponding fixed-beliefs dis-
counted Bayesian coalitional bargaining game that produces a BC
element; and conversely, if there is an order independent3 SEFB
profile for a Bayesian coalitional bargaining game, then it leads to
a configuration that is in the BC of the underlyingG.

This result describes some notion of equivalence between co-
operative and non-cooperative Bayesian coalition formation
solution concepts, and is similar to results (e.g., Moldovanu
et al. [5]) for non-stochastic environments. It also motivates
further Step 1 of our heuristic algorithm, equating fixed be-
lief equilibrium computation with determination of (i’s part
of) the Bayesian core. We now elaborate on this process.

We assume that the agents proceed to negotiations that
will last d rounds (corresponding to the algorithm’s looka-
head valued) under the assumption that all beliefs will remain
fixed to their present values throughout the (Step 1) process.
We will present the deliberations of agenti during negotia-
tions. Forfixedtypest−i of possible partners, drawn accord-
ing toµi, i will reason about the game tree and assume fixed
beliefs of other agents. (Agentswill track of the updates of
other agents’ beliefs after this stage of bargaining; see Step 2
above). Then,i can calculate the optimal action of anytj
agent (including himself) at any information set by taking ex-
pectations over the corresponding tree nodes.

We begin our analysis at the last staged of negotiations. In
any nodeξ after historyh wherei of type ti is a responder
to proposalπ ∈ P and assumes a specific type vector for
partners, he expects a value for accepting that is different to
his (discounted) reservation value only if all other responders
accept the proposal as well:

q
h(t−i),ti

i (y) =


xiVd(tC) if all t−i ∈ tC accept
Vd(ti) otherwise

(1)

3A strategy profile isorder independentiff when played it leads
to a specific〈CS , P 〉, independently of the choice of proposers.

However, to evaluate this acceptance condition,i would need
to know the other responders’ strategies (which in turn de-
pend oni’s strategy). Therefore,i will make the simplifying
assumption that all other respondersj evaluate their response
to π by assuming that the rest of the agents (includingi) will
accept the proposal. Thus, anyj with tj ∈ t−i is assumed byi
to accept if he evaluates his expected payoff from acceptance
as being greater than his (discounted) reservation payoff:

xj

X
t−j∈tC

µj(t−j)Vd({tj , t−j}) ≥ Vd(tj) (2)

With this assumption,i is able to evaluate the accep-
tance condition in Eq. 1 above, and so calculate a specific
q

h(t−i),ti

i (y) value. Note that the use of this assumption can
sometimes lead to an overestimate of the value of a node.

At nodeξ = h(t−i), i can also evaluate his refusal value

as q
h(t−i),ti

i (n) = Vd(ti) in this last round. Then, respon-
der i’s actual strategy ath can be evaluated as the strategy
maximizingi’s expected value givenµh,ti

i :

σh,ti

i = arg max
r∈{y,n}

{
∑

t−i∈tC

µh,ti

i (t−i)q
h(t−i),ti

i (r)}

If i is aproposerof typeti deliberating atξ = h(t−i), the
value of making proposalπ is:

q
h(t−i),ti

i (π) =


xiVd(tC) if σ

h,tj

j = y, ∀j
Vd(ti) otherwise

(3)

(i.e., i will get his reservation value unless all the respon-
ders of the specific type configuration agree to this proposal).
Furthermore,i’s expected valueqh,ti

i (π) from making pro-
posalπ to coalitionC at h can be determined givenµh,ti

i .
Thus, the best proposal thati of type ti can make to coali-
tion C is the one with maximum expected payoff:σC;h,ti

i =
arg maxπ qh,ti

i (π) with expected payoffqC;h,ti

i .
However, i can also propose to other coalitions ath as

well. Therefore, the coalitionC∗ to which i should propose
is the one that guarantees him the maximum expected pay-
off: C∗ = argmaxC{qC;h,ti

i }. If P ∗ is the payoff alloca-
tion associated with that proposal, then the optimal coalition-
allocation pair thatti can propose in this subgame (that starts
with i proposing ath) is: σ∗;h,ti

i = {C∗, P ∗} with maximum

expected payoffqC∗;h,ti

i . Finally, if there exist more than one
optimal proposal fori, i randomly selects any of them (this is
taken into account in agents’ deliberations accordingly).

Of course, when the subgame starts an agenti does not
know who the proposer in this subgame will be; andi has
only probabilistic beliefs about the types of his potential part-
ners. Thus,i has to calculate hiscontinuation payoffqd:ξ,ti

i at
staged (that starts at nodeξ) with m participants, in the way
explained in the previous section. This is straightforward, as
i can calculate his expected payoffs from participating in any
subgame where somej proposes, given that anyi can calcu-
late the optimal strategies (and associated payoffs) for anyj
in this roundd subgame.

Now consider play in a subgame starting in periodd − 1,
again with the participation ofm agents. The analysis for
this round can be performed in a way completely similar to



the one performed for the last round of negotiations. How-
ever, there is one main difference: the payoffs in the case of
a rejection are now the continuation payoffs (for agents of
specific type) from the last round subgame. We have to in-
corporate this difference in our calculations. Other than that,
we can employ a similar line of argument to the one used for
identifying the equilibrium strategies in the last period. Pro-
ceeding in this way, we define the continuation payoffs and
players’ strategies for each prior round, and finally determine
the first round actions for any proposeri of type ti or any
responderj of typetj responding to any proposal.

5 Experimental Evaluation
To evaluate our approach, we first conducted experiments
in two settings, each with 5 agents having 5 possible types.
Agents repeatedly engage inepisodesof coalition formation,
each episode consisting of a number of negotiation rounds.
We compare our Bayesian equilibrium approximation method
(BE) with KST, an algorithm inspired by a method presented
by Kraus et al.[4]. Though their method is better tailored
to other settings, focusing on social welfare maximization, it
is a rare example of a successfully tested discounted coali-
tional bargaining method under some restricted form of un-
certainty, which combines heuristics with principled game
theoretic techniques. It essentially calculates an approxima-
tion of a kernel-stable allocation for coalitions that form in
each negotiation round with agents intentionally compromis-
ing part of their payoff in order to form coalitions. Like[4],
our KSTuses a compromise factor of0.8, but we assume no
central authority, only one agent proposing per round, and
coalition values estimated given type uncertainty.

During an episode, agents progressively build a coalition
structure and agree on a payment allocation. The action exe-
cuted by a coalition at the end of an episode (thecoalitional
action) results in one of three possible stochastic outcomes
o ∈ O = {0, 1, 2} each of differing value. Each agent’s
type determines its “quality” and the “quality” of a coalition
is dictated by the sum of the quality of its members less a
penalty for coalition size.4 Coalition quality then determines
the odds of realizing a specific outcome (higher quality coali-
tions have greater potential). Finally, the value of a coalition
given member types is the expected value w.r.t. the distribu-
tion over outcomes.

In our first setting, singleton coalitions receive a penalty of
-1 quality points. We compare BE and KST under various
learning models by measuring average total reward garnered
by all coalitions in 30 runs of 500 formation episodes each,
with a limit of 10 bargaining rounds per episode and a bar-
gaining discount factor ofδ = 0.9. We also compare average
reward to the reward that can be attained using the optimal,
fixed “kernel-stable” coalition structure{〈1, 2, 3, 4〉, 〈0〉}.

We compared BE and KST using agents that update their
prior over partner types after observingcoalitionalactions—
thus learning by reinforcement (RL) after each episode—and
those that do not (No RL). In all cases, BE agents update
their beliefs after observing the bargaining actions of others

4We omit the details here. We only note that agent 0 (of type 0)
is detrimental to any coalition (in our 2 first settings).

during each negotiation round. There are 388 proposals a
BE agent considers when negotiating in a stage with all five
agents present (fewer in other cases).

Table 1(a) shows performance when each agent has a
uniform prior regarding the types of others. TheBE al-
gorithm consistently outperformsKST, even thoughKST
promotes social welfare (i.e., is well-aligned with total re-
ward criterion) rather than individual rationality. KST
agents without RL always converge to the coalition struc-
ture {〈4〉, 〈3〉, 〈2〉, 〈0, 1〉}; this is due to the fact that they
are discouraged from cooperating due to the lack of infor-
mation about their counterparts. When KST agents learn
from observed actions after each episode (KST-Uni-RL) they
form the coalitions{〈2, 3, 4〉, 〈0〉, 〈1〉} in the last episode
in 16 of 30 runs. BE agents, in contrast, form coalitions
based on evolving beliefs about others, and do not form
the optimal structure{〈1, 2, 3, 4〉, 〈0〉}.5 Rather they tend
to form coalitions of 2 or 3 members which exclude agent
0 from being their partner. In addition, payoff division for
BE agents is more aligned with individual rationality than it
is with KST. The shares of (averaged) total payoff of KST-
Uni-RL agents 0–4 are0.8%, 0.7%, 28.8%, 29.6%, 40.1%,
respectively, while for BE-Uni-RL (SS:10, LA:2) they are
1.3%, 13.4%, 18.8%, 29.5%, 37%; this more accurately re-
flects thepower [6] of the agents. BE results are reason-
ably robust with changing sample size and lookahead value
(at least in this environment with 3125 possible type vectors
in a 5-agent coalition).

We attribute the poor performance of KST agents to the
fact that they make their proposals without in any way tak-
ing into consideration the changing beliefs of others. With
the beliefs of the agents varying, negotiations drag (up to the
maximum of 10 rounds) due to refusals, resulting in reduced
payoffs. BE agents do not suffer from this problem, since they
keep track of all possible partners’ updated beliefs, and use
them during negotiation. Thus, they typically form a coali-
tion structure within the first four rounds of an episode.

We also experimented with a second setting in which sin-
gleton coalitions receive a penalty of -2 quality points (rather
than -1 above), and whereq(~tC) =

∑
ti∈~tC

q(ti)/|C| (as
coalitions get bigger they get penalized to reflect coordina-
tion difficulties). This setting makes the quality of coalitions
more difficult to distinguish. Here, a near-optimal configura-
tion contains the structure{〈4, 3〉, 〈2, 1〉, 〈0〉}. We use three
different priors:uniform, misinformed(agents have an initial
belief of 0.8 that an agent with typet has typet + 2 ), and
informed(belief0.8 in the true type of each other agent).

The results (Table 1(b)) indicate that KST agents again
do not do very well, engaging in long negotiations due
to unaccounted-for differences in beliefs among the vari-
ous agents. KST-Uni-RL agents, for example, typically use
all ten bargaining rounds; in contrast, BE-Uni-RL usually
form structures within 3 rounds. Even when KST uses in-
formed priors, the fact that the expected value of coalitions
is not common knowledge takes its toll. BE agents, on
the other hand, derive the true types of their partners with

5Nor should they, given bargaining horizon andδ—the kernel
and other stability concepts do not consider bargaining dynamics.



Method Reward
“Optimal” CS 65800 (expected)
KST-Uni-NoRL 32521.3(49.4%)
KST-Uni-RL 44274.4(67.3%)
BE-Uni-NoRL SS=20, LA=3 60037.7(91.2%)
BE-Uni-RL SS=20, LA=3 57775.4(87.8%)
BE-Uni-NoRL SS=10, LA=2 61444.3(93.4%)
BE–Uni-RL SS=10, LA=2 60086.7(91.3%)
BE-Uni-NoRL SS=3, LA=2 61269(93.1%)
BE-Uni-RL SS=3, LA=2 60301.1(91.6%)

(a) Setting A

Method Reward
“Optimal” CS 33890 (expected)
KST-Uni-NoRL 20201.4(59.6)%
KST-Uni-RL 20157.7(59.5)%)
BE-Uni-NoRL 31762.1(93.7%)
BE-Uni-RL 32275.9(95.2%)
KST-Mis-NoRL 20193.2(59.6)%
KST-Mis-RL 21642.5(63.9)%
BE-Mis-NoRL 31716.6(93.5%)
BE-Mis-RL 32293.7(95.3%)
KST-Inf-NoRL 22241.5(65.6%)
KST-Inf-RL 24748.1(73%)
BE-Inf-NoRL 31688.3(93.3%)
BE-Inf-RL 32401(95.6%)

(b) Setting B; (BE uses SS=10, LA=2)

Method Q A/B
KST-NoRL-0.95 2.15383 1.17
BE-NoRL-0.95 3.7698 1.71
KST-NoRL-0.5 6.88 4.26
BE-NoRL-0.5 8.4 1.5
KST-RL-0.95 2.20384 2.25
BE-RL-0.95 4.83322 1.7
KST-RL-0.5 2.96 3.15
BE-RL-0.5 9.96 1.43

(c) Setting C; Uniform Priors; BE
uses SS=5, LA=2; A/B denotesob-
servedrelative power of A over B

Table 1: Settings’ results (average).“SS”:sample size;“LA”:lookahead;“Uni”:uniform,“Mis”:misinformed,“Inf”:informedprior.

certainty in all experiments, and typically form profitable
configurations with structures such as{〈4, 3〉, 〈2, 1〉, 〈0〉} or
{〈4, 2〉, 〈3, 1〉, 〈0〉}. We can also see that RL enhances the
performance of BE agents slightly, helping them further dif-
ferentiate the quality of various partners.

We also report briefly on the results in a setting with 8
agents, of 2 possible types per agent (4 agents of type A,
4 of type B). The relative power of type A over B is1.5.6

In this setting, forming coalitions by mixing agent types is
detrimental, with the exception of the〈A, A, B, B〉 (“opti-
mal”), 〈A, A, B〉 and〈A, B〉 coalitions. There are 2841 pro-
posals an agent considers when negotiating in a stage with all
8 agents present. The setting makes discovery of opponent
types difficult, and thus rational agents should settle for sub-
optimal coalitions (hopefully using them as stepping stones
to form better ones later). We also varied the bargainingδ
(0.95 and 0.5). Agents do not accumulate much reward in
this setting, bargaining for many rounds. Instead of reporting
reward, we reportexpected valueQ of formation decisions,
Q =

∑
C fCV (C), with fC being the observed average fre-

quency with which coalitionC forms andV (C) its expected
value. Results (Table 1(c)) show that BE agents outperform
KST agents both in terms of social welfare and individual ra-
tionality (the observed relative power of types—the fraction
of respective observed payoffs—is close to the true power),
and that RL updates are quite beneficial. Further, lowering the
discount rate to 0.5 forces the agents to form coalitions early,
but also contributes to better decisions, because it enables the
agents to discover the types of opponents with more accu-
racy, effectively reducing the number of possible opponent re-
sponses during bargaining (intuitively, given more time, both
a “strong” and a “weak” type might refuse a proposal, while if
time is pressing the “weak” might be theonlyone to accept).

6 Concluding Remarks and Future Work
We proposed an algorithm for coalitional bargaining under
uncertainty about the capabilities of potential partners. It uses

6Relative power A/B is the expected payoff of A in coalitions
excluding B, over the expected payoff of B in coalitions without A.

iterative coalition formation with belief updating based on the
observed actions of others during bargaining, and is moti-
vated by our formulation of the PBE solution of a coalitional
bargaining game. The algorithm performs well empirically,
and can be combined with belief updates after observing the
results of coalitional actions (in reinforcement learning style).

Future and current work includes implementing a contin-
uous bargaining action space version of our algorithm, and
also incorporating it within a broader RL framework facili-
tating coalition formation and sequential coalitional decision
making under uncertainty. We are also investigating approxi-
mation bounds for our heuristic algorithm.
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