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Abstract

Distance rationalizability is an intuitive paradigm for devel-
oping and studying voting rules: given a notion of consensus
and a distance function on preference profiles, a rationaliz-
able voting rule selects an alternative that is closest to being
a consensus winner. Despite its appeal, distance rationaliz-
ability faces the challenge of connecting the chosen distance
measure and consensus notion to an operational measure
of social desirability. We tackle this issue via the decision-
theoretic framework of dynamic social choice, in which a so-
cial choice Markov decision process (MDP) models the dy-
namics of voter preferences in response to winner selection.
We show that, for a prominent class of distance functions,
one can construct a social choice MDP, with natural prefer-
ence dynamics and rewards, such that a voting rule is (vote-
wise) rationalizable with respect to the unanimity consensus
for a given distance function iff it is a (deterministic) opti-
mal policy in the MDP. This provides an alternative rationale
for distance rationalizability, demonstrating the equivalence
of rationalizable voting rules in a static sense and winner se-
lection to maximize societal utility in a dynamic process.

1 Introduction
Social choice theory—the study of mechanisms for aggre-
gating the preferences of individual agents to determine a
suitable consensus outcome—has attracted considerable at-
tention in computer science and AI. It offers various models
and mechanisms for coordinating autonomous agent activi-
ties; for modeling user interactions; and for group-based de-
cision support. The standard social choice setting includes a
set of agents and a set of alternatives. Each agent’s vote is a
ranking of the alternatives; the collection of the agents’ votes
is called a preference profile. A voting rule takes a prefer-
ence profile as input, and outputs a single alternative as the
winner of the election. Decades of research has led to the
design of a variety of interesting voting rules, but judging
their relative desirability is still the subject of much debate.

In a recent paper, Meskanin and Nurmi (2008) introduced
the distance rationalizability (DR) framework, building on
ideas of 19th century mathematician and author Charles
Dodgson (better known as Lewis Carroll). Their key in-
sight is that a voting rule should select an alternative that
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is the “ideal” candidate in a profile satisfying some notion
of consensus that is “closest” to the current preference pro-
file, where proximity is measured by a distance function over
profiles. For specific notions of consensus, there is general
agreement on what constitutes an ideal candidate, so one
simply needs to select the appropriate notion of consensus
and distance measure to construct a voting rule. Therein lies
the attraction of DR: it recasts the debate surrounding the
suitability of various voting rules—which traditionally relies
on appeal to normative axioms—to one regarding, arguably,
more fundamental ingredients. The DR framework has been
studied in both social choice (Nurmi 2004; Meskanen and
Nurmi 2008) and AI (Elkind, Faliszewski, and Slinko 2009;
2010a; 2010b).

While DR has much to recommend it, it provides no ex-
plicit measure of the “societal benefit” associated with a
winner, nor does it directly define what it means for one can-
didate to be “closer” to being a winner than another, except
insofar as current societal preferences are closer to a pro-
file that supports the first candidate. If we take the notion
of closeness over profiles literally, one interpretation of the
DR framework is to treat winner selection as influencing the
preferences of individual voters in a way that moves soci-
ety toward consensus (hence rationalizable rules move soci-
ety toward the closest such consensus profile). Indeed, most
expositions of distance rationalizability informally explain
distance measures using phrases like “minimum number of
preference changes of voters” (Nurmi 2004). However, dis-
tances do not themselves provide an account of the prefer-
ence dynamics that give rise to such changes. In this work,
we propose an explicit model of preference dynamics and
societal utility for alternatives that supports certain forms of
DR. Exploiting the framework of dynamic social choice in-
troduced by Parkes and Procaccia (2010)—specifically, their
social choice Markov decision processes (MDPs)—we de-
velop a model in which individual voter preferences can
change in response to winner selection. Within our social
choice MDP, an optimal policy is one that maximizes ac-
crued reward (or societal utility) over time.

By aligning this reward function with standard notions
of consensus, and making certain assumptions about pref-
erence dynamics that directly reflect a distance metric of
interest, one might hope to justify specific forms of DR
in terms of dynamic social choice. Indeed, we take a step



in this direction with respect to an important class of dis-
tance rationalizable voting rules. Specifically, we define a
reward function—aligned with the consensus notion una-
nimity—and a class of preference dynamics—tailored to
any (votewise) distance function (Elkind, Faliszewski, and
Slinko 2010a)—that determine a social choice MDP whose
optimal policy (i.e., selection of winner for any configura-
tion of voter preferences) is exactly the voting rule given by
DR (specifically, using `1-votewise DR under unanimity).

Our contributions are several. First, our main result offers
a new perspective on a particular class of voting rules. More
broadly, our use of the dynamic social choice framework
provides an alternative interpretation of the DR paradigm,
one that views distances over profiles directly in terms of the
dynamic evolution of societal preferences, and consensus
notions as a surrogate for societal utility. Optimal policies
(or voting rules) in our model make appropriate tradeoffs be-
tween “nudging” society toward consensus (long-term util-
ity) and immediate utility. Finally, apart from the novel per-
spective that the AI-inspired dynamic social choice frame-
work brings to social choice, we suspect that the construc-
tion of policies governing the dynamic consensus choices of
groups of individuals, whose preferences change over time
in response to these choices, will be an important component
of decision support and recommender systems in a variety of
domains (social networks, groupware, etc.). Our framework
may justify the use of specific static voting rules in such dy-
namic contexts.

The paper is organized as follows: in Sec. 2 we briefly
give the necessary formal background on distance rational-
izability and dynamic social choice. In Sec. 3 we formulate
and prove our main result, and discuss some of its mathemat-
ical implications. We discuss more conceptual consequences
of our approach and our result in Sec. 4.

2 Preliminaries
The standard social choice setting includes a set of agents,
which we denote by N = {1, . . . , n}, and a set of alter-
natives A, |A| = m; we denote specific alternatives by
lower case letters x, y, etc. Each agent i ∈ N holds pref-
erences over A represented by a linear order Pi ∈ L, where
L = L(A) is the set of all linear orders over A. A vector
~P = (P1, . . . , Pn) ∈ Ln, which specifies the preferences
of all agents, is called a preference profile. A voting rule
f : Ln → A receives a preference profile as input, and
returns an alternative that is thereby designated as most de-
sirable. Given P ∈ L, let P [k] denote the alternative that is
ranked k’th in P . For ~P ∈ Ln, x ∈ A, we denote

top(~P , x) = {i ∈ N : Pi[1] = x}.

We also denote by P [x] the position in which alternative x
is ranked in P .

Positional scoring rules are voting rules that are induced
by a score vector of integers ~α = (α1, . . . , αm), where
αk ≥ αk+1 for all k. For each k = 1, . . . ,m, agent i ∈ N
awards αk points to the alternative Pi[k]; an alternative with
the most points is selected by the positional scoring rule.

Note that the same ~α can induce multiple positional scor-
ing rules due to tie breaking. Well-known positional scor-
ing rules include plurality, which is induced by the vector
(1, 0, . . . , 0), and Borda count, which is induced by the vec-
tor (m− 1,m− 2, . . . , 0).

2.1 Distance rationalizability
Let Q be a set. A function d : Q×Q→ R+ is a distance if
the following conditions hold for all p, q, r ∈ Q:

1. Identity of Indiscernibles: d(p, q) = 0⇔ p = q.
2. Symmetry: d(p, q) = d(q, p).
3. Triangle Inequality: d(p, r) ≤ d(p, q) + d(q, r).
A pseudodistance replaces Identity of Indiscernibles with
the weaker requirement d(q, q) = 0 (i.e., we may have
d(q, r) = 0 for q 6= r). A quasidistance satisfies the first
and third axioms, (i.e., d(p, q) 6= d(q, p) is permitted). For
R ⊆ Q and q ∈ Q we define d(q,R) = minr∈R d(q, r).
For convenience, we assume any distance function has range
N ∪ {0} (this is without loss of generality because the do-
main of these functions will be finite in what follows).

The distance rationalizability (DR) framework requires
two components: a distance d̃ over the space of prefer-
ence profiles Ln; and a notion of consensus (Meskanen and
Nurmi 2008). Although the framework can support any no-
tion of consensus, we focus on the well-studied notion of
unanimity. We say that an alternative x ∈ A is a unanimous
winner in ~P ∈ Ln if |top(~P , x)| = n (i.e., all agents rank x
first). Let

Ux = {~P ∈ Ln : |top(~P , x)| = n}

be the set of preference profiles where x is a unanimous win-
ner. A voting rule satisfies unanimity if it selects a unani-
mous winner whenever given a profile where one exists.

A voting rule f is distance rationalizable w.r.t. unanimity
via a distance d̃ if, for every ~P ∈ Ln, x minimizes d̃(~P ,Ux)
whenever f(~P ) = x. In other words, if f is rationalized by
d̃, it must select, in any profile ~P , the unanimous winner in
the d̃-closest profile ~PU that has a unanimous winner.

Previous work has considered voting correspondences
that return all alternatives that are closest to being consen-
sus winners. For ease of exposition, we only consider voting
rules that select one optimal alternative for each given pro-
file. However, our main result holds for any voting rule that
selects winners from the above correspondence, and hence is
completely independent of the tie-breaking method adopted.

We illustrate the concept of distance rationalizability us-
ing the common plurality rule, mentioned above, which se-
lects an alternative x ∈ A that maximizes |top(~P , x)|. De-
fine the Hamming distance d̃H between profiles to be:

d̃H(~P , ~P ′) = |{i ∈ N : Pi 6= P ′i}|

(i.e., the number of agents that have different preferences
under ~P and ~P ′). It is not hard to see that plurality is dis-
tance rationalizable with respect to unanimity via d̃H : sup-
pose alternative x is ranked first by k agents in a profile ~P



(the plurality score of x is k). By switching the votes of all
agents that do not rank x first in ~P to arbitrary rankings with
x on top, we obtain a new profile ~Px where x is a unani-
mous winner. The Hamming distance between the ~P and ~Px
is n − k, and clearly ~Px is a closest profile to ~P in which
x is a unanimous winner. Therefore, the larger the plurality
score k of an alternative, the smaller the Hamming distance
n− k to some profile satisfying unanimity.

Elkind et al. (2010a) show that any voting rule that satis-
fies unanimity can be distance rationalized w.r.t. unanimity
via some distance function. This severely limits the scope
of DR as a normative concept. They therefore suggest fo-
cusing on votewise distance rationalizability. A function
d̃ : Ln × Ln → N ∪ {0} is an `1-votewise distance if there
exists a distance function d on L (i.e., that takes individual
votes as input ) such that

d̃(~P , ~P ′) =

n∑
i=1

d(Pi, P
′
i )

(we say d̃ is the `1-votewise distance induced by d). Note
that Hamming distance is an `1-votewise distance. A voting
rule is `1-votewise distance rationalizable w.r.t. unanimity
via d iff it is distance rationalizable w.r.t. unanimity via the
`1-votewise distance induced by d. Elkind et al. (2010a) also
consider norms apart from `1, but the above definitions suf-
fice for our purposes.

2.2 Dynamic social choice
The dynamic social choice framework (Parkes and Procac-
cia 2010) can be used to model settings in which a set of
agents have dynamically changing preferences over a set of
alternatives. At the heart of this framework is the concept of
a social choice MDP; this will prove to be a valuable tool in
our analysis of DR. We first discuss MDPs more generally,
then describe social choice MDPs.

A (finite) Markov decision process (MDP) M =
(S, A,R, T ) comprises: a finite set of states S; a finite ac-
tion setA; a reward functionR : S×A→ R, whereR(s, a)
is the reward obtained when action a is taken in state s; and
transition function T , where T (s′|s, a) is the probability of
moving to state s′ when action a is taken in state s. A deter-
ministic (stationary) policy is a function π : S → A, spec-
ifying which action to take in each state. We assume a dis-
counted, infinite-horizon model, where our objective is to se-
lect a policy π that maximizes the expected discounted sum
of rewardsE(

∑∞
t=0 γ

tRt|π) w.r.t. discount factor γ ∈ [0, 1)
(here Rt denotes reward received at time t, and expectation
is taken w.r.t. the distribution over state-action trajectories
induced by π). The value of policy π is given by a value
function V π : S → R, where V π(s) is this expected sum
of rewards starting at S0 = s. Deterministic optimal poli-
cies exist and any optimal policy π∗ satisfies the Bellman
equations:

V π
∗
(s) = max

a∈A

[
R(s, a) + γ

∑
s′∈S

T (s′|s, a)·V π
∗
(s′)

]
, ∀s ∈ S.

See Puterman (1994) for further background on MDPs.

Now assume some social choice setting with agents
N = {1, . . . , n} and alternatives A. In a social choice
MDP (Parkes and Procaccia 2010), the state set S is the set
Ln of preference profiles over A, and the action set is just
the set A of alternatives. Intuitively, state transitions reflect
the changing preferences of the agents, and an action a taken
at state (or profile) s represents the selection of a winning al-
ternative. Crucially, this means that a deterministic policy in
a social choice MDP coincides with a voting rule: it selects
an action (alternative) given a state (preference profile).1 No-
tice that actions, i.e., selection of winners, can influence how
agent preferences evolve. Let si be the preferences held by
agent i in state s. In the sequel we use the terms “state” and
“preference profile”, the terms “policy” and “voting rule”,
and their corresponding notation, interchangeably. We also
focus on social choice MDPs with independent agent transi-
tion functions. In particular, for each P, P ′ ∈ L and x ∈ A,
let p(P ′|P, x) be the probability of an agent with preferences
P moving to P ′ when action x is taken. Then

T (s′|s, x) =
∏
i∈N

p(s′i|si, x).

In other words, each agent transitions independently accord-
ing to p.2 Conceptually, when alternative x is selected as a
winner, each agent’s preferences evolve stochastically (and
independently) to reflect its revised beliefs about the relative
quality of the alternatives.

While we draw on some of the basic technical frame-
work of Parkes and Procaccia (2010), we require none of
their technical results. More importantly, conceptually our
motivation is quite different. Their approach is construc-
tive/algorithmic: they automatically construct decision poli-
cies that perform well in dynamic settings (e.g., public pol-
icy advocacy), designing algorithms that compute optimal
policies for given social choice MDPs. Implementation of
their approach in practice faces several obstacles: most cru-
cially it may be difficult, or even impossible, to obtain the
agent transition models. In contrast, our approach is descrip-
tive: we use a known social choice MDP, with a simple opti-
mal policy, to describe and interpret a distance rationalizable
rule (rather than taking a social choice MDP as input to some
algorithm).

3 Interpreting Distance Rationalizability Via
Dynamic Social Choice

We now develop a social choice MDP that will allow us
to interpret specific forms of distance rationalizable voting
rules in a dynamic fashion. In particular, we show below
that rules that are `1-votewise distance rationalizable with
respect to unanimity, via any underlying distance function
d over votes, are precisely the optimal policies in a social
choice MDP defined relative to d.

The two components that need to be specified to define
our MDP are the reward function and the transition function.

1We restrict our attention to stationary policies (which are inde-
pendent of the history); here this restriction plays a crucial role.

2Since all agents have the same transition model, in the termi-
nology of Parkes and Procaccia (2010) they have the same type.



The properties of the transition function will be detailed in
the proof of Thm. 1 below, but intuitively, when an alterna-
tive x is selected, an agent’s ranking P will transition with a
particular probability to the d-closest ranking at which x is
top-ranked (otherwise it is unchanged).

Our reward function is the plurality reward function R∗,
whereR∗(s, x) = |top(s, x)|. This is one rather natural mea-
sure of (immediate) societal utility: an agent contributes to
overall societal utility at any stage of the process if the (cur-
rent) winner is its (currently) top-ranked choice. Further-
more, in our dynamic context, suppose we attempt to “steer”
society towards a consensus profile where x is a unanimous
winner. Since each agent contributes a (discounted) utility
of one per stage if they rank x first (and zero otherwise), the
faster all agents agree on x, the higher the total reward; in
this sense, R∗ sends a stronger positive signal the closer so-
ciety is to unanimity (consensus). A technical advantage of
the plurality reward function, compared to a coarser reward
function that provides a positive reward when x is a unani-
mous winner and zero reward otherwise, is that it separates
the agents and hence facilitates the mathematical analysis.

Our main result is the following theorem. Its proof de-
tails the construction of the required social choice MDP, and
demonstrates more than the statement of the theorem (as we
discuss below).
Theorem 1. Let d : L × L → N ∪ {0} be a dis-
tance function on votes and D = maxP,P ′∈L d(P, P

′) be
an upper bound on d. Assume a discount factor satisfy-
ing γ > 1 − 1/D.3 Then there is a social choice MDP
M(d) = (S, A,R∗, T (d)) such that voting rule π is `1-
votewise distance rationalizable w.r.t. unanimity via d if and
only if π is an optimal deterministic policy forM(d).

Proof. We only need to specify the transition function T (d).
We construct transitions such that an agent i holding a rank-
ing P , when action x ∈ A is selected, will either transition
to a ranking denoted S(P, x) which is the d-closest rank-
ing with x ranked first, or will maintain its current rank-
ing P . More formally, for each P ∈ L, let S(P, x) ∈
argminP ′: P ′[1]=xd(P, P

′). Note, if x is ranked first in P ,
then S(P, x) = P .

Define d̂ : L × A by d̂(P, x) = d(P, S(P, x)). We first
show that d̂ satisfies a variant of the triangle inequality.
Specifically, for every P ∈ L, x, y ∈ A,

d̂(P, x) ≤ d̂(P, y) + d̂(S(P, y), x). (1)

Indeed, it holds that

d̂(P, y) + d̂(S(P, y), x)

= d(P, S(P, y)) + d(S(P, y), S(S(P, y), x)).

Hence, by the triangle inequality for d,

d(P, S(S(P, y), x)) ≤ d̂(P, y) + d̂(S(P, y), x).

But in S(S(P, y), x) alternative x is ranked first, and by def-
inition d̂(P, x) ≤ d(P, S(S(P, y), x)). This establishes (1).

3This assumption is mild: the discount factor can be bounded
away from 1 by a constant that depends only on D, rather than
approaching one as the number of agents or alternatives grows.

We next show, given s ∈ S and x ∈ A, that

min
s′∈Ux

∑
i∈N

d(si, s
′
i) =

∑
i∈N

d̂(si, x). (2)

Indeed, ∑
i∈N

d̂(si, x) =
∑
i∈N

d(si, S(si, x)),

and (S(s1, x), . . . , S(sn, x)) ∈ Ux, therefore

min
s′∈Ux

∑
i∈N

d(si, s
′
i) ≤

∑
i∈N

d̂(si, x)

The inequality in the other direction follows by noting that
for each s′ ∈ Ux and i ∈ N , s′i[1] = x, and hence

d(si, s
′
i) ≥ d(si, S(si, x)) = d̂(si, x).

We can therefore conclude that a voting rule that is `1-
votewise distance rationalized by d must select alternatives
that minimize the expression on the right hand side of (2).

We now turn to constructing the transition function T (d)
of M(d). We define p̂(P, x) and set p(S(P, x)|P, x) =
p̂(P, x) and p(P |P, x) = 1 − p̂(P, x) if P [1] 6= x, and
p(P |P, x) = 1 otherwise. Informally, we wish to define
p̂(P, x) such that, if the action x is selected repeatedly, the
expected “cost” — in the sense of lost reward — that we pay
for the agent’s preferences to transition is exactly d̂(P, x).
More precisely, For P ∈ L and x ∈ A such that P [1] 6= x,
we want p̂(P, x) to satisfy:

d̂(P, x) =

∞∑
k=0

[
p̂(P, x)(1− p̂(P, x))k

(
k∑
l=0

γl
)]

=

∞∑
k=0

p̂(P, x)(1− p̂(P, x))k 1− γ
k+1

1− γ

=
p̂(P, x)

1− γ

(
∞∑
k=0

(1− p̂(P, x))k − γ
∞∑
k=0

((1− p̂(P, x))γ)k
)

=
p̂(P, x)

1− γ

(
1

p̂(P, x)
− γ · 1

1− (1− p̂(P, x))γ

)
=

1

1− γ

(
1− p̂(P, x)γ

1− γ + γp̂(P, x)

)
.

Solving for p̂(P, x), we obtain

p̂(P, x) =
1

γ

(
1

d̂(P, x)
− (1− γ)

)
. (3)

Our assumption that γ > 1−1/D ensures p̂(P, x) ∈ (0, 1).
The rest of the proof establishes thatM(d) is as stated in

the theorem, i.e., that the set of deterministic optimal poli-
cies contains exactly the policies that in state s select an al-
ternative x ∈ A that (using (2)) minimizes

∑
i∈N d̂(si, x).

We first claim that, if π∗ is such a policy, then

V π
∗
(s) =

n

1− γ
−min
x∈A

∑
i∈N

d̂(si, x). (4)

The intuition behind (4) is simple. If x is the unanimous win-
ner in state s, the sum of discounted rewards is:

n ·
∞∑
k=0

γk =
n

1− γ
.



However, given the way we constructed the transition proba-
bilities inM(d) we pay an expected cost of d̂(si, x) for each
agent i ∈ N that does not rank x first; subtracting these costs
from n/(1− γ) gives (4).

To formally establish the correctness of (4), let

a ∈ argminx∈A
∑
i∈N

d̂(si, x).

We must verify that

V π
∗
(s) = R(s, a) + γ

∑
s′∈S

(
p(s′|s, a) · V π

∗
(s′)
)

= |top(s, a)|+ γ
∑
s′∈S

(
p(s′|s, a) · V π

∗
(s′)
)
.

(5)

We argue that if a is selected in s then a also minimizes the
sum of distances in every possible next state s′. On the one
hand, if agent i transitions when a is selected, we have:

0 = d̂(s′i, a) = d̂(si, a)− d̂(si, a),

that is, the sum of distances decreases by d̂(si, a). On the
other hand, by (1), for any x ∈ A, we have:

d̂(s′i, x) ≥ d̂(si, x)− d̂(si, a),

because s′i = S(si, a). In other words, the sum of distances
to x decreases by at most d̂(si, a). Therefore, it is sufficient
to consider the expected sum of distances

∑
i∈N d̂(s

′
i, a) for

the next state s′:∑
s′∈S

(
p(s′|s, a) · V π

∗
(s′)
)

=
n

1− γ −
∑

i/∈top(s,a)

(1− p̂(si, a))d̂(si, a)

=
n

1− γ −
1

γ

∑
i/∈top(s,a)

(
1− 1

d̂(si, a)

)
· d̂(si, a)

=
n

1− γ −
1

γ

∑
i∈N

d̂(si, a) +
n− top(s, a)

γ
,

where the second equality follows from (3), and the third
holds since d̂(si, a) = 0 for all i ∈ top(s, a). Thus, as re-
quired, the right hand side of (5) equals:

n+
γ

1− γ · n−
∑
i∈N

d̂(si, a) =
n

1− γ −
∑
i∈N

d̂(si, a).

By the Bellman optimality equations, to show that
only policies minimizing

∑
i∈N d̂(si, x) in every state

are optimal, we must show that for every b /∈
argminx∈A

∑
i∈N d̂(si, x),

V π
∗
(s) > |top(s, b)|+ γ

∑
s′∈S

(
p(s′|s, b) · V π

∗
(s′)
)
. (6)

Indeed, above we have established that V π
∗
(s) is the opti-

mal value in state s. Equation (6) states that for any b that
does not minimize the sum of distances, the value of choos-
ing b as a winner and then acting optimally is strictly smaller

than the value of acting optimally. Hence any policy that
chooses such an alternative b violates the fixed point require-
ment of Bellman optimality.

To upper-bound
∑
s′∈S

(
p(s′|s, b) · V π∗(s′)

)
, it suffices

to lower-bound E[minx∈A
∑
i∈N d̂(s

′
i, x)], given that b is

selected in state s. Note that agents i ∈ top(s, b) do not
transition. For agents i /∈ top(s, b) it holds by (1) that
d̂(s′i, x) ≥ d̂(si, x) − d̂(si, b), where s′i = S(si, b). That
is, for each agent i that transitions, the sum of distances to
each x ∈ A can decrease by at most d̂(si, b). To derive a
lower bound, we start from the minimum sum of distances∑
i∈N d̂(si, a) and decrease it by d̂(si, b) for every agent

i ∈ N that transitions. Therefore, we can upper-bound the
right hand side of (6) by

|top(s, b)|+γ

 n

1− γ −

∑
i∈N

d̂(si, a)−
∑

i/∈top(s,b)

p̂(si, b)d̂(si, b)


= |top(s, b)|+ n

γ

1− γ − γ
∑
i∈N

d̂(si, a)

+
∑

i/∈top(s,b)

(
1− (1− γ)d̂(si, b)

)
= |top(s, b)|+ (n−|top(s, b)|) + n

γ

1− γ − γ
∑
i∈N

d̂(si, a)

− (1− γ)
∑

i/∈top(s,b)

d̂(si, b)

=
n

1− γ − γ
∑
i∈N

d̂(si, a)− (1− γ)
∑
i∈N

d̂(si, b)

<
n

1− γ −
∑
i∈N

d̂(si, a)

= V π
∗
(s).

The third equality follows from the fact d̂(si, b) = 0 for
every i ∈ top(s, b), while the fourth inequality is implied by
the assumption that

∑
i∈N d̂(si, a) <

∑
i∈N d̂(si, b).

Thus, given any `1-votewise distance rationalizable rule r
with respect to unanimity via some distance d over votes, a
social choice MDP can be constructed whose optimal poli-
cies correspond to r.

Eq. (4) and its proof can easily be adapted to yield a
stronger claim: in M(d), when starting from state s ∈ S ,
the value of the policy that repeatedly selects action x ∈ A
is

n

1− γ
−
∑
i∈N

d̂(si, x) =
n

1− γ
− min
s′∈Ux

∑
i∈N

d(si, s
′
i).

Because the term n/(1−γ) is independent of the policy, this
demonstrates that the distance of any alternative x from con-
sensus (i.e., the distance to the closest profile in which x is
the unanimous winner) is exactly the social cost incurred by
a policy that tries to make x a unanimous winner. In fact, the
social choice MDP need not explicitly select an alternative
at each stage. A “one shot policy” can be used that selects
an alternative just once; from that point, the MDP simply
reflects the evolution of agent preferences over time while



the selected “incumbent” remains in place. On this view, the
distance-minimizing alternative in the DR sense is the alter-
native selected by the optimal “one-shot” policy given our
model of preference dynamics.

Note that our proof does not actually require d to be a
distance—it is sufficient that d be a quasidistance (sym-
metry is not needed). More precisely, we require only the
following properties: (i) the triangle inequality; (ii) for ev-
ery P ∈ L, d(P, P ) = 0; and (iii) if P [1] 6= P ′[1] then
d(P, P ′) > 0. Properties (ii) and (iii) are implied by Identity
of Indiscernibles, and are implicitly used in the definition of
p̂ to ensure that these probabilities are well-defined.

Elkind, Faliszewski, and Slinko (2009) (see also (Elkind,
Faliszewski, and Slinko 2010b, Theorem 4.9)) show that po-
sitional scoring rules are `1-votewise rationalizable with re-
spect to unanimity via the following pseudodistance:

d~α(P, P
′) =

∑
x∈A
|αP [x] − αP ′[x]|.

For P 6= P ′ it may be that d~α(P, P ′) = 0 (i.e., Identity of
Indiscernibles is violated). However, if α1 > α2, dα satisfies
the weaker property (iii) above (this is true for, e.g., plurality
and Borda count). Hence, we have the following corollary:

Corollary 2. Let ~α be a score vector with α1 > α2, let
d~α be defined as above, and let D = maxP,P ′∈L d~α(P, P

′)
be an upper bound on d~α. Assume that the discount factor
satisfies γ > 1 − 1/D. Then there exists a social choice
MDP M(d~α) = (S, A,R∗, T (d~α)) such that π is a posi-
tional scoring rule induced by ~α if and only if π is an optimal
deterministic policy inM(d~α).

For instance, consider ~α = (m − 1,m − 2, . . . , 0), the
score vector corresponding to the Borda count. For each P ∈
L and x ∈ A, if P [1] 6= x we let S(P, x) = P ′, where P ′
is identical to P except for switching the positions of x and
P [1]. Then d̂(P, x) = 2(α1−αP [x]), and this is used directly
to define p̂(P, x) using (3).

4 Discussion
What are the conceptual conclusions one can draw from
Theorem 1? The theorem and its proof provide an explicit
interpretation of distances in terms of rewards and expected
societal costs, albeit one that is rather specific. In particu-
lar, the plurality reward function R∗—when viewed from
the perspective of the expected cumulative discounted re-
wards accrued under the proposed model of preference
dynamics—provides an operational measure of the quality
of an alternative. The value of the optimal policy (or an
optimal alternative in the one-shot case), directly measures
societal utility—both the rate at which ultimate consensus
is reached, and the degree of consensus attained along the
way—in an arguably natural way. Interestingly, some real-
life settings require specific forms of consensus to reach a
decision; in particular, in criminal law jury trials in many
jurisdictions need a unanimous verdict. In multiagent sys-
tems achieving unanimity may be especially desirable as it
is extremely robust to failures.

A recent line of work deals with approximating (in the
standard multiplicative sense) the score of alternatives ac-
cording to prominent distance rationalizable voting rules
(see, e.g., (Kenyon-Mathieu and Schudy 2007; Caragiannis
et al. 2009)), including positional scoring rules (Procaccia
2010). Under these functions, the score of an alternative is
exactly its distance from consensus, and therefore the dis-
tance rationalizability framework provides a way to quantify
the trade-off between approximation quality and desirabil-
ity of the outcome. For example, 2-approximating the score
singles out an alternative that is at most twice as far from
consensus. Our approach seems useful in the context of ap-
proximation; the specific interpretation suggested by our re-
sults is that if x is twice as close as y to being a unanimous
winner then the societal cost of disagreement in the dynamic
process when making x a unanimous winner is half as large
as that of y.

Our approach hinges crucially on several details. First, we
consider only one specific reward function R∗, though one
we believe can be justified. Second, a possible criticism of
our approach is that Theorem 1 holds only for the very spe-
cific social choice MDPs, and especially the specific tran-
sition functions that are constructed in its proof. Of course,
in centrally-designed multiagent systems, agent preference
revision processes can be constructed to support such tran-
sition models. Nevertheless, in characterizing the behavior
of truly autonomous agents (human or artificial), a social
choice MDP might reflect the preference dynamics exhibited
in the domain of interest. The results in this paper should be
seen as a proof of concept. An interesting direction for future
research is to characterize the social choice MDPs where
distance rationalizable voting rules and optimal policies co-
incide. But we need not be bound by current approaches in
the DR framework. For example, if we allow that different
agents have different preference revision mechanisms, vote-
wise distances should be generalized to admit different dis-
tance functions over rankings for different agent types. In
this way, the dynamic social choice perspective can drive the
development of new distance models, and as a consequence,
new voting rules.

From a more technical perspective, it may be possible to
obtain similar results for votewise distance rationalizability
under other prominent norms, such as `∞ (where the maxi-
mum distance between votes rather than the sum of distances
is considered). The mathematical advantage of the `1 norm
when used in conjunction with R∗ is that agents are fully
decoupled via the linearity of expectation, whereas the `∞
norm inevitably couples the agents. Computing the value of
a state then involves estimating the maximum of geometric
distributions, which may lead to difficulties in providing ex-
act values as we do in the proof of Theorem 1.

Similarly, an extension of Theorem 1 to other consensus
classes, such as Condorcet or majority, is highly nontriv-
ial. One would have to redefine the reward function to give
higher reward the closer one gets to the consensus notion un-
der consideration. Unfortunately, when determining whether
x ∈ A is a Condorcet or majority winner in a given profile,
one cannot consider each agent separately (whereas this is
possible for unanimity, as one simply needs to verify that



each agent ranks x first). Therefore, once again, some of the
independence assumptions that we rely on in our proof break
down. This is a technically challenging direction for future
research.
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