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Abstract thata may explain3, buta A v may not (e.g.P(8|«) may

We propose a natural model of abduction based on the revi- 2€ sufficiently high whileP(5|a A ~) may not). There have

sion of the epistemic state of an agent. We require that ex- 2€€N Proposals to address these issues in a more qualitative
planations be sufficient to induce belief in an observatipni ~Manner using 'OQ'C'baSE‘d frall‘mewo_rlfs_ 6}]50' Pelrce_(see
a manner that adequately accounts for factual and hypothet- Rescher (,1978)) d|sgusses the plau5|p|llty of explml

ical observations. Our model will generate explanatioas th @S do Quine and Ullian (1970). Consistency-based diagno-
nonmonotonically predican observation, thus generalizing SIS (Reiter 1987; de Kleer, Mackworth and Reiter 1990) uses
most current accounts, which require some deductive rela- 2Pn0rmality assumptions to capture the context dependence
tionship between explanation and observation. It also pro- Of_ e_xp_lananons; an_o_l preferred’explanatlons are _those that
vides a natural preference ordering on explanations, dkfine minimize abnormalities. Poole’s (1.989) assump.tl(.)n-llaased
in terms of normality or plausibility. We reconstruct theeFh framework captures some of thgse ideas by explicitly intro-
orist system in our framework, and show how it can be ex- ducing a set of default assumptions to account for the non-

tended to accommodate our predictive explanations and se-Monotonicity of explanations.

mantic preferences on explanations. We propose a semantic framework for abduction that cap-

. tures the spirit of probabilistic proposals, but in a qusiite
1 Introduction fashion, and in such a way that existing logic-based propos-
A number of different approaches to abduction have been als can be represented as well. Our account will take as cen-
proposed in the Al literature that model the concept of ab- tral subjunctive conditionals of the forsh = B, which can
duction as some sort of deductive relation between an expla- be interpreted as asserting that, if an agent were to believe
nation and the explanandum, the “observation” it purports A it would also believeB. This is the cornerstone of our
to explain (e.g., Hempel's (1966gductive-nomologicaix- notion of explanation: if believingl is sufficient to induce
planations). Theories of this type are, unfortunately,igbu  belief in B, then A explainsB. This determines a strong,
to the unrelenting nature of deductive inference. There are predictivesense of explanation. Semantically, such condi-
two directions in which such theories must be generalized. tionals are interpreted relative to an ordering of plaligjbi
First, we should not require that an explanation dedugtivel or normality over worlds. Our conditional logic, described
entail its observation (even relative to some backgrouedth in earlier work as a representation of belief revision and de
ory). There are very few explanations that do not admit ex- fault reasoning (Boutilier 1991; 1992b; 1992c), has the de-
ceptions. Second, while there may be many competing ex- sired nonmonotonicity and induces a natural preference or-
planations for a particular observation, certain of thesg m  dering on sentences (hence explanations). In the next sec-
be relatively implausible. Thus we require some notion of tion we describe our conditional logics and the necessary
preference to chose among these potential explanations.  logical preliminaries. In Section 3, we discuss the concept
Both of these problems can be addressed using, for exam- of explanation, its epistemic nature, and its definitionim o
ple, probabilistic information (Hempel 1966; de Kleer and framework. We also introduce the notion pfeferred ex-
Williams 1987; Poole 1991; Pearl 1988): we might sim- planations showing how the same conditional information
ply require that an explanation render the observation suf- used to represent the defeasibility of explanations insluce
ficiently probably and that most likely explanations be pre- a natural preference ordering. To demonstrate the expres-
ferred. Explanations might thussnmonotonién the sense sive power of our model, in Section 4 we show how Poole’s



Theorist framework (and Brewka'’s (1989) extension) can be
captured in our logics. This reconstruction explains seman
tically the non-predictive an@araconsistenhature of ex-
planations in Theorist. It also illustrates the correct mamn

in which to augment Theorist with a notion of predictive ex-

planation and how one should capture semantic preferences

on explanations. These two abilities have until now been
unexplored in this canonical abductive framework. We con-
clude by describing directions for future research, and how
consistency-based diagnosis also fits in our system.

2 Conditionals and Belief Revision

The problem of revising a knowledge base or belief set
when new information is learned has been well-studied in
Al. One of the most influential theories of belief revision
is the AGM theory(Alchourrén, Gardenfors and Makinson
1985; Gardenfors 1988). If we take an agent to have a (de-
ductively closed) belief sek’, adding new informationl to

K is problematic ifK - —A. Intuitively, certain beliefs in

K must be retracted beforé can be accepted. The AGM
theory provides a set of constraints on acceptable bekef re
vision functions«. Roughly, usingi’; to denote the belief
set resulting whetk is revised byA, the theory maintains
that the least “entrenched” beliefs i should be given up
and thenA added to thizontractedbelief set.
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Figure 1: CT40 and CO models

~Haa. Itis easy to verify that these connectives have the
following truth conditions: Ga (5(1) is true at a world if
« holds at some more plausible (less plausible) world;

(804) holds iff « holds at all (some) worlds, whether more
or less plausible.

The modal logic CT40 is a weaker version of CO, where
we weaken the condition of connectedness to be simple re-

Semantically, this process can be captured by considering flexivity. This logic is based on models whose structure is

a plausibility orderingover possible worlds. As described
in (Boutilier 1992b; Boutilier 1992a), we can use a fam-
ily of logics to capture the AGM theory of revision. The
modal logic CO is based on a propositional language (over
variablesP) augmented with two modal operatsandﬁ.
LcpL denotes the propositional sublanguage of this bimodal
languagd.g. The sentencBl is read as usual agis true
at all equally or more plausiblevorlds.” In contrastJa is
read ‘« is true at alless plausiblevorlds.”

A CO-model is a tripleM = (W, <, ¢), wherelV is a set
of worlds with valuation functiorp and < is a plausibility
ordering oveWV. If w < v thew is at least as plausible as
We insist that< be transitive and connected (that is, either
w < vorv < w forall w,v). CO-structures consist of a
totally-ordered set oflustersof worlds, where a cluster is
simply a maximal set of world§ C W such thatv < v for
eachw,v € C (that is, no extension af enjoys this prop-
erty). This is evident in Figure 1(b), where each large eircl
represents a cluster of equally plausible worlds. Satisfiac
of a modal formula atv is given by:

1. M E,, O« iff for eachv such that < w, M |, «.
2. M =, S iff for eachw such that not <w, Mk, a.

We define several new connectives as followso =4
N = R — <
—O0-a; Ca =¢f ~U-a; Ua =g Oa A U andCa =g¢

that of a partially-ordered set of clusters (see Figure)1(a)
Both logics can be extended by requiring that the set of
worlds in a model include every propositional valuationrove
P (so that every logically possible state of affairs is polsgib
The corresponding logics are denoted CO* and CT40*.
Axiomatizations for all logics may be found in (Boutilier
1992b; Boutilier 1992a). For a given model, we define the
following notions. We let|a|| denote the set of worlds satis-
fying formulaca (and also use this notion for sets of formu-
lae K'). We usemin(a) to denote the set ahost plausible
a-worlds?!

min(a) = {w : w = a, andv < w impliesv = a}

The revision of a belief sek’ can be represented using
CT40 or CO-models that reflect the degree of plausibility
accorded to worlds by an agent in such a belief state. To cap-
ture revision ofi(, we insist that any suck -revision model
be such that K|| = min(T); thatis,|| K|| forms the (unique)
minimal cluster in the model. This reflects the intuitionttha
all and onlyK -worlds are most plausible (Boutilier 1992b).
The CT40-model in Figure 1(a) is &-revision model for
K = Cn(—4, B), while the CO-model in Figure 1(b) is suit-
able forK = Cn(—A).

"We assume, for simplicity, that such a (limiting) set exfsis
eacha € Lcpy, though the following technical developments do
not require this (Boutilier 1992b).



To revise K by A, we construct the revised séf’ by
considering the sehin(A4) of most plausibleA-worlds in
M. In particular, we require thatK% || = min(A); thus
B € K} iff Bistrue at each of the most plausibleworlds.
We can define a conditional connecti¥esuch thatd = B
is true in just such a case:

(A= B) =ar D(A > O(AAD(A D B)))

Both models in Figure 1 satisty = B, sinceB holds at
each world in the shaded regiomajn(A), of the models.
Using theRamsey tedbr acceptance of conditionals (Stal-
naker 1968), we equatB € K% with M = A = B.
Indeed, for both models we have thAt; = Cn(A, B).

If the model in question is a CO*-model then this char-
acterization of revision is equivalent to the AGM model
(Boutilier 1992b). Simply using CT40*, the model satis-
fies all AGM postulates (Gardenfors 1988) but the eighth.
Properties of this conditional logic are described in B@rti
(1990; 1991).

We briefly describe theontractionof K by —A in this
semantic framework. To retract belief i#n4, we adopt the
belief state determined by the set of wor|ds || U min(A).
The belief setK_ , does not contaimA, and this opera-
tion captures the AGM model of contraction. In Figure 1(a)
K~ , = Cn(B), while in Figure 1(b)K_, = Cn(A D B).

A key distinction between CT40 and CO-models is illus-
trated in Figure 1: in a CO-model, all worldsnmn(A) must
be equally plausible, while in CT40 this need not be the

plausible tharB, then as we move away froff||, we will
find an A-world before aB-world; thus, A is qualitatively
“more likely” than B. In each model in Figure 14 A B is
more plausible thanl A —B.

3 Epistemic Explanations

Often explanations are postulated relative to some back-
ground theory, which together with the explanation entails
the observation. Our notion of explanation will be somewhat
different than the usual ones. We define an explanation rel-
ative to the epistemic state of some agent (or program). An
agent’s beliefandjudgements of plausibility will be crucial
in its evaluation of what counts as a valid explanation (see
Gardenfors (1988)). We assume a deductively closed belief
setK along with some set of conditionals that represent the
revision policies of the agent. These conditionals mayaepr
sent statements of normality or simply subjunctives (bglow
There are two types of sentences that we may wish to ex-
plain: beliefs and non-beliefs. |§ is a belief held by the
agent, it requires factualexplanation, some other belief
that might have caused the agent to acgepthis type of
explanation is clearly crucial in most reasoning applmatgi
An intelligent program will provide conclusions of various
types to a user; but a user should expect a program to be able
to explainhow it reached such a “belief,” to justify its rea-
soning. The explanation should clearly be given in terms of
other (perhaps more fundamental) beliefs held by the pro-
gram. This applies to advice-systems, intelligent datedas

case. Indeed, the CT40-model shown has two maximally tutorial systems, or a robot that must explain its actions.

plausible sets ofdi-worlds (the shaded regions), yet these

A second type of explanation ig/pothetical Even if 5 is

are incomparable. We denote the set of such incomparable not believed, we may want a hypothetical explanation for it,

subsets omin(A4) by Pi(A), so thatmin(4) = UPI(A).2

some new belief the agenbuld adopt that would be suffi-

Taking each such subset to be a plausible revised state ofcient to ensure belief i8. This counterfactual reading turns
affairs rather than their union, we can define a weaker no- out to be quite important in Al, for instance, in diagnosis

tion of revision using the following connective. It reflects
the intuition that asomeelement ofPI(A), C holds:

(A= C) =g B(~A) VE(AAT(ADC))

The model in Figure 1(a) shows the distinction: it satisfies
neitherA = C nor A = —C, but bothA — C andA —
—C. There is a set of comparable most plausiAlvorlds
that satisfies” and one that satisfiesC'. Notice that this
connective iparaconsistent the sense that bott and—C'
may be “derivable” from4, butC A —=C' is not. However—
and=- are equivalentin CO, singain(A) must lie within a
single cluster.

Finally, we define theplausibility of a proposition. A is
at least as plausible & just when, for everyB-world w,
there is somel-world that is at least as plausible@s This

is expressed il asﬁ(B D OQA). If Ais (strictly) more

2PI(A) = {min(A) NC : Cis a cluste}.

tasks (see below), planning, and so on (Ginsberg 1986). For
example, ifA explainsB in this sense, it may be that ensur-
ing A will bring aboutB. If « is to count as an explanation

of 5 in this case, we must insist thatis also not believed.

If it were, it would hardly make sense as a predictive expla-
nation, for the agent has already adopted belief without
committing toB. This leads us to the following condition on
epistemic explanations: if is an explanation fof thena
and S must have the same epistemic status for the agent. In
other wordsp € K iff 3 € K and—a € K iff -3 € K.2

3This is at odds with one prevailing view of explanation, vhic
takes only non-beliefs to be valid explanations: to off@uaent
belief« as an explanation is uninformative; abduction should be an
“inference process” allowing the derivationmméwbeliefs. We take
a somewhat different view, assuming that observationsatr@isu-
ally) accepted into a belief set until some explanation isxtband
accepted. In the context of its other beligfds unexpected. An ex-
planation relieves this dissonance when it is acceptedd@éors
1988). After this process both explanation and observatierbe-



Since our explanations are to be predictive, there has to be
some sense in which is sufficient to cause acceptance of
5. On our interpretation of conditionals (using the Ramsey
test), this is the case just when the agent believes the condi
tionala = (. So fora to count as an explanation gf(in
this predictive sense, at least) this conditional relatiarst
hold* In other words, if the explanation were believed, so
too would the observation.

Unfortunately, this conditional is vacuously satisfied
when g is believed, once we adopt the requirement that
be believed too. Anyx € K is such thaty = 3; but surely
arbitrary beliefs cannot count as explanations. To detami
an explanation for somg € K, we want to (hypotheti-
cally) suspend belief ir5 and, relative to this new belief
state evaluate the conditional = /5. This hypothetical be-
lief state should simply be theontractionof K by 5. The
contracted belief sek(; is constructed as described in the
last section. We can think of it as the set of beliefs held by
the agent before it came to accept In general, the con-
ditionals an agent accepts relative to the contracted st ne
not bear a strong relation to those in the original set. Fortu
nately, we are only interested in those conditionals> 3
wherea € K. The AGM contraction operation ensures that
—a ¢ K4 . This means that we can determine the truth of
a = [ relative to K, by examining conditionals in the
original belief set. We simply need to checkifs = -«
relative to K. This is our final criterion for explanation. If

the observation had been absent, so too would the explana-

tion.

We assume, for now, the existence of a madethat cap-
tures an agent’s objective belief g€tand its revision poli-
cies (e.g.M completely determinek’;, K, and accepted
conditionals4 = B). When we mention a belief séf, we
have in mind also the appropriate modé!| All conditionals
are evaluated with respect 10 unless otherwise indicated.
We can summarize the considerations above:

Definition A predictive explanatioof g € L¢p, relative to
belief setK is anya € Lcpp such that: (1 € K iff
B € Kand—«a € K iff -8 € K; (2) a« = ; and (3)
-8 = —a.

lieved. Thus, the abductiyarocessshould be understood in terms
of hypotheticalexplanations: when it is realized whetuld have
caused belief in an (unexpected) observation, both obsemand
explanation are incorporatedractual explanations are retrospec-
tive in the sense that they (should) describe “histori¢allijat ex-
planation wasctuallyadopted for a certain belief.

In (Boutilier and Becher 1993) we explore a weakening of this
condition on epistemic status. Preferences on explarsafsse be-
low) then play a large role in ruling out any explanation wdos
epistemic status differs from that of the observation.

4See the below for a discussion of non-predictive explanatio

SWe do not require that this muattually be the case.

More
Plausible
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Figure 2: Explanations for “Wet Grass”

As a consequence of this definition, we can have the follow-
ing property of factual explanations:

Proposition 1 If a, 5 € K thena explainsg iff « = g is
accepted ink ;.

Thus factual explanations satisfy our desideratum reggrdi
contraction bys. Furthermore, for both factual and hypo-
thetical explanations, only one of conditions (2) or (3)aee
to be tested, the other being superfluous:

Proposition 2 (i) If «, 5 € K thena explainsg iff =5 =
—a; (i) If o, ¢ K thena explainsg iff o = g.

Figure 2 illustrates both factual and hypothetical
explanations. In the first model, wet gra$g) is explained
by rain (R), sinceR = W holds in that model. Similarly,
sprinkler.S explainsi¥, as doesS A R. Thus, there may
be competing explanations; we discuss preferences on these
below. Intuitively,« explainss just wheng is true at the
most plausible situations in whiah holds. Thus, explana-
tions aredefeasible W is explained byR; but, R together
with C (the lawn is covered) does not explain wet grass, for
R AN C = —W. Notice thatR alone explainsW, since
the “exceptional” conditior” is normally false wherR (or
otherwise), thus need not be stated. This defeasibility is a
feature of explanations that has been given little attentio
many logic-based approaches to abduction.

The second model illustrates factual explanationgfar
SincelV is believed, explanations must also be believid.
and—.S are candidates, but on§ satisfies the condition on
factual explanations: if we give up belief Wy, addingR is
sufficient to get it back. In other words)/W/ = —R. This
does not hold for~S because-W = S is false. Notice
that if we relax the condition on epistemic status, we might



acceptS as a hypothetical explanation for factual belief
This is explored in (Boutilier and Becher 1993).

Semantic PreferencesPredictive explanations are very
general, for anyy that induces belief i satisfies our con-
ditions. Of course, some such explanations should be ruled
out on grounds of implausibility (e.g., a tanker truck explo
ing in front of my house explains wet grass). In probabilis-
tic approaches to abduction, one might prefer most probable
explanations. In consistency-based diagnosis, exptamati
with the fewest abnormalities are preferred on the grounds
that (say) multiple component failures are unlikely. Prefe
ences can be easily accommodated within our framework.
We assume that thé to be explained is not (yet) believed
and rank possible explanations f6° An adopted expla-
nation is not one that simply makes an observation less sur-
prising, but one that is itself as unsurprising as possiiie.
use the plausibility ranking described in the last section.

Definition If o anda’ both explains thena is at least as
preferred asy’ (writtena <p o) iff M = <ﬁ(o/ D <Ca).
Thepreferred explanationsf 5 are thosex such that not
o' <p «for all explanations)’.

Preferred explanations are those that are most plaudilale, t
require the “least” change in belief skt in order to be ac-
cepted. Examining the hypothetical model in Figure 2, we
see that while?, S andR A S each explairiV, R andS are
preferred toR A S (I may not know whether my sprinkler
was on or it rained, but it's unlikely that my sprinkler was
on in the rain). If we want to represent the fact, say, that
the failure of fewer components is more plausible than more
failures, we simply rank worlds accordingly. Preferred ex-
planations of3 are those that predi¢t and presume as few
faults as possiblé.We can characterize preferred explana-
tions by appealing to their “believability” givef:

Proposition 3 « is a preferred explanation fof iff M =

=(8 = —a).

In the next section, we discuss the role-effurther.

This approach to preferred explanations is very general,
and is completely determined by the conditionals (or de-
faults) held by an agerit. We needn't restrict the ordering
to, say, counting component failures. It can be used to rep-
resent any notion of typicality, normality or plausibilitg-
quired. For instance, we might use this model of abduction

SWe adopt the view that an agent, when accepfinglso ac-
cepts its most plausible explanation(s). There is no ndwh, tto
rank factual explanations according to plausibility — adpkana-
tions in K are equally plausible. In fact, the only explanations in
K can be those that are preferredy .

"In consistency-based systems, explanations usually dareot
dict an observation without adequate fault models (more ontthis i
the concluding section).

8Direct statements of belief, relative plausibility, intiég con-
straints, etc. irLg may also be in an agent¢B.

in scene interpretation to “explain” the occurrence of @asi
image objects by the presence of actual scene objects (Re-
iter and Mackworth 1989). Preferred explanations are those
that match the data best. However, we can also introduce an
extra level of preference to capture preferred interpicaiat
those scenes that amost likelyin a given domain among
those with the best fit.

We should point out that we do not require a complete
semantic model to determine explanations. For a given
incomplete theory, one can simply use the derivable condi-
tionals to determine derivable explanations and prefea®nc
This paper simply concentrates on the semantics of this pro-
cess. All conditions on explanations can be tested as ebject
level queries on an incomplet€B. However, should one
have in mind a complete ordering of plausibility (as in the
next section), these can usually be represented as a compact
object-level theory as well (Boutilier 1991).

Other issues arise with this semantic notion of explana-
tion. Consider the wet grass example, and the following
conditionals:R = W, S = W andS A R = W (note
that the third does not follow from the others). We may be
in a situation where rain is preferred to sprinkler as anaxpl
nation for wet grass (it is more likely). But we might be in a
situation wherek andsS are equally plausible explanatiohs.
We might then havél” = (S = —R). Thatis,S andR are
the only plausible “causes” fol (and are mutually exclu-
sive). Notice thatS = —R is a preferred explanation fov,
as isS v R. We saya is acovering explanatiorfor 3 iff
« is a preferred explanation such that= «. Such ana
represents all preferred explanations fof”

Pragmatics: We note thaf3 is always an explanation for
itself. Indeed, semantically is as good as any other expla-
nation, for if one is convinced of thisivial explanation, one
is surely convinced of the proposition to be explained. €her
are many circumstances in which such an explanation is rea-
sonable (for instance, explaining the value of a root node in
causal network); otherwise we would require infinite regres
or circular explanations.

The undesirability of such trivial explanations, in centai
circumstances, is not due to a lack of predictive power or
plausibility, but rather itaininformativenature. We think it
might be useful to rule out trivial explanations as a matfer o
the pragmaticsof explanation rather than semantics, much
like Gricean maxims (but see also Levesque (1989)). But,
we note, that in many cases, trivial (or overly specific) ex-

“We can ensure tha A S is less likely, e.g., by asserting=
—RandR = —S.

10gpace limitations preclude a full discussion (see (Bartdind
Becher 1993)), but we might think of a covering explanatisn a
the disjunction of all likely causes ¢f in a causal network (Pearl
1988). We are currently investigatirigusal explanationg our
conditional framework and how a theory might be used to @eriv
causal influences (Lewis 1973; Goldszmidt and Pearl 1992).



planations may be desirable. We discuss this and other prag-
matic issues (e.g., irrelevance) in the full paper (Boetili
and Becher 1993). We note that in typical approaches to di-
agnosis this problem does not arise. Diagnoses are usually
selected from a pre-determined set of conjectures or com-
ponent failures. This can be seen as simply another form
of pragmatic filtering, and can be applied to our model of
abduction (see below).

4 Reconstructing Theorist

Poole’s (1989) Theorist system is an assumption-based
model of explanation and prediction where observations are
explained (or predicted) by adopting certain hypothesats th
together with known facts, entail these observations. We
illustrate the naturalness and generality of our abductive
framework by recasting Theorist in our model. It shows why
Theorist explanations are paraconsistent and non-prealict
how they can be made predictive, and how a natural account
of preferred explanation can be introduced to Theorist (and
Brewka’s (1989) extension of it). Our presentation of Theo-
rist will be somewhat more general than that found in (Poole
1989), but unchanged in essential detail.

We assume the existence of a gebf defaults a set of
propositional formulae taken to be “expectations,” or $act
that normally hold (Boutilier 1992c). We assurie is
consistent! Given a fixed set of defaults, we are interested
in what follows from a given (known) finite set of fack;
we useF' to denote its conjunction. &cenariofor F is any
subsetD of D such thatF U D is consistent. Arextension
of F is any maximal scenario. Aexplanatiorof 3 given F
is anya such thafa} UF U D |= 3 for some scenari® of
{a} U F.12 Finally, 3 is predictedgiven F iff F U D = 3
for each extensio of F.

In the definition of prediction in Theorist, we find an im-
plicit notion of plausibility: we expect some maximal subse
of defaults, consistent withf, to hold. Worlds that violate
more defaults are thus less plausible than those that giolat
fewer. We define a CT40*-model that reflects this.

Definition For a fixed set of default®, and a possible
world (valuation)w, the violation setfor w is defined
asV(w) = {d € D : w = —~d}. TheTheorist model
for Dis Mp = (W, <, ) whereW andy are as usual,
and < is an ordering of plausibility such that < w iff
V(v) CV(w).

Thus,Mp ranks worlds according to the sets of defaults they
violate. We note thafi/p is a CT40*-model, and ifD is
consistentMp has a unique minimal cluster consisting of
those worlds that satisfy each default. It should be cleatr th

" Nothing crucial depends on this however.
2Theorist explanations are usually drawn from a given set of
conjectures, but this is not crucial.

TBS TBS TBS
TBS TBS

Figure 3: A Theorist Model

worldsw, v are equally plausible ifi’ (w) = V' (v), so that
each cluster inV/p is the set of worlds that violate a partic-
ular subsetD C D. Thea-worlds minimal inMp are just
those that satisfy some maximal subset of defaults consiste
with a.

Theorem 4 § is predictedgivenF iff Mp = F = .

Thus, predictions based of correspond to the belief set
obtained wherD is revised to incorporat&. This is the
view of default prediction discussed in (Boutilier 1992c).

We now turn our attention to explanations. Theorist ex-
planations are quite weak, for explainsg whenever there
existsany set of defaults that, together witlh, entailss.
This means that might explain bothg and—3. Such expla-
nations are in a sense paraconsistentapfoannot usually be
used to explain the conjunctighA —f. Furthermore, such
explanations are not predictive: df explains contradictory
sentences, how can it be thought to predict either? Consider
a set of defaults in Theorist

D={T>STAB>-S}

which assert that my car will star6] when | turn the key
(T), unless my battery is dead]. The Theorist model/p

is shown in Figure 3. Suppose our set of faEthas a single
elementB. When asked to explaifi, Theorist will offerT".
When asked to explainS, Theorist will again offefl". If |
want my car to start | should turn the key, and if | do not want
my car to start | should turn the key. There is certainly some-
thing unsatisfying about such a notion of explanation. Such
explanations do, however, correspond precisehy¢ak ex-
planationsin CT40 using—.

Theorem 5 « is a Theorist explanation of given F iff
MpEaANF — B

This illustrates the conditional and defeasible semantic u
derpinnings of Theorist's weak (paraconsistent) explana-
tions in the conditional framework.

In our model, the notion of predictive explanation seems
much more natural. In the Theorist model above, there is a
possibility thatl’ A B gives.S and a possibility thal” A B



gives—S. Therefore,I' (given B) explainsneither possi-
bility. One cannot use the explanation to ensure belief in
the “observation”’S. We can use our notion of predictive
explanation to extend Theorist with this capability. Clgar
predictive explanations in the Theorist modé} give us:

Definition « is apredictive explanatioffor g given F iff
is predicted (in the Theorist sense) giverJ {a}.

Theorem 6 « is a predictive explanation fof given F iff
Mp EaANF = g(ie, iff FUDU{a} | g foreach
extensionD).

Taking thosen-worlds that satisfy as many defaults as pos-
sible to be the most plausible or typicaiworlds, it is clear
that revising bya should result in acceptance of those sit-
uations, and thus should (predictively) explairg iff 3
holds in each such situation. Such explanations are often
more useful than weak explanations for they suggest
ficient conditionsa thatwill (defeasibly) lead to a desired
belief 5. Weak explanations of the type originally defined in
Theorist, in contrast, merely suggest conditions thaght
lead tog.

Naturally, given the implicit notion of plausibility deter
mined byD, we can characterizereferredexplanations in
Theorist. These turn out to be exactly those explanations
that force the violation of as few defaults as possible.

Definition Let o, o’ be predictive explanations fgt given
F. «ais at least as preferred ag’ (written o <x ') iff
each extension oF U{«/} is contained in some extension
of F U {a}.

Theorem 7 o < ' iff Mp = E((o/ A F) D O(a A F)).

So the notion of preference defined for our concept of epis-
temic explanations induces a preference in Theorist for pre
dictive explanations that are consistent with the greatast
sets of defaults; that is, those explanations that are most
plausible or most normal (see Konolige (1992) who pro-
poses a similar notion).

This embedding into CT40 provides a compelling seman-
tic account of Theorist in terms of plausibility and belief r
vision. But it also shows directions in which Theorist can
be naturally extended, in particular, with predictive ex-
tions and with preferences on semantic explanations, metio
that have largely been ignored in assumption-based explana
tion.

In (Boutilier and Becher 1993) we show how these ideas
apply to Brewka’s (1989) prioritized extension of Theorist
by ordering worlds in such a way that the prioritization re-
lation among defaults is accounted for. If we have a pri-
oritized default theoryD = Dy U --- D, we still cluster
worlds according to the defaults they violate; but should
violate fewer high priority defaults than even if it violates

more low priority defaultsw is considered more plausible
thanv. This too results in a CT40*-model; and prediction,
(weak and predictive) explanation, and preference on expla
nations are all definable in the same fashion as with Theo-
rist. We also show that priorities on defaults, as proposed
by Brewka, simply prune away certain weak explanations
and make others preferred (possibly adding predictive ex-
planations). For instance, the counterintuitive expliamat

T above, forS given B, is pruned away if we require that
the defaultl” > S be given lower priority than the default

T A B D —S. A model for such a prioritized theory simply
makes the world"BS less plausible thaff BS. We note,
however, that such priorities need not be provided explic-
itly if the Theorist model is abandoned and defaults are ex-
pressed directly as conditionals. This preference is dbhéy

in CT40 from the conditional¥’ = S andT A B = -5
automatically.

5 Concluding Remarks

We have proposed a notion of epistemic explanation based
on belief revision, and preferences over these explaration
using the concept of plausibility. We have shown how The-
orist can be captured in this framework. In (Boutilier and
Becher 1993), we show how this model can be axiom-
atized. We can also capture consistency-based diagnosis
in our framework, though it does not usually require that
explanations be predictive in the sense we describe. In-
stead, consistency-based diagnosis is characterizerhis te
of “might” counterfactuals, oexcuseshat make an obser-
vation plausible, rather than likely (Boutilier and Becher
1993). Of course, fault models describing how failures are
manifested in system behavior make explanations more pre-
dictive, in our strong sense. However, the key feature af thi
approach is not its ability to represent existing models of
diagnosis, but its ability to infer explanations, whethae-f
tual or hypothetical, from existing conditional (or defgul
knowledge. We are also investigating the role of causal
explanations in abduction, and how one might distinguish
causal from non-causal explanations using only conditiona
information.
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