Simultaneous Elicitation of Preference Features and Utity

Craig Boutilier Kevin Regan Paolo Viappiani
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science

University of Toronto University of Toronto University of Toronto

Toronto, ON, Canada Toronto, ON, Canada Toronto, ON, Canada

cebly@cs.toronto.edu kmregan@cs.toronto.edu paolo@cs.toronto.edu
Abstract In recent work we developed a model faubjective fea-
S ] ture elicitationthat queries users about the feature in ques-

Most frameworks for utility elicitation assume a predefined tion, so that utility tradeoffs can be assessed in termsef th

set of features over which user preferences are expressed.

We consider utility elicitation in the presencesafbjectiveor new feature (Boutilier, Regan, and Viappiani 2009a). As-

user-defined featuregvhose definitions are not known in ad- suming that the user's underlylng utility function is known
vance. We treat the problem of learning a user’s feature def-  @nd can be used to render judgements of relevance, the
inition as one otoncept learningbut whose goal is to learn model casts the problem as oneaufncept learning/An-

only enough about the concept definition to enable agood de-  gluin 1987; Hellerstein et al. 1996), but with the goal of
cision to be made. This is complicated by the fact that user  learningjust enoughabout the concept definition to make a
utility is unknown. We describe computational procedures good or optimal decision.

forref:r?égyc')?%gg]“mﬁ‘i'tag%‘i‘g‘r’]izv‘{' mggg;;{egfgg Edr;/el In this work we extend this model to the more realistic case
geveral heuristic quer))//strategies t?lat focus sirr%llyjltasigcmm In Whlph the utility function is not known in advance, henc_g
reduction ofrelevantconcept and utility uncertainty. requiring a model t.hat encompasses bOt.h feature and utility
elicitation. As we discuss below, separating these two form
of elicitation into different “phases” is problematic. As a
Introduction consequence, we must engagesimultaneoudeature and
utility elicitation. Our contributions are three-fold.rBt, we
define a model that allows simultaneous elicitation of user
utility and user features, making appropriate tradeoffs be
tween the two types of information. We usgnimax regret
(Boutilier et al. 2006) as our decision criterigiven con-
cept and utility uncertaintyallowing good decisions to be
made without complete specification of either component.
Second, we describe an integer program (IP) formulation
for computation of minimax regret in the case of conjunc-
tive concepts, along with a computationally effective con-
straint generation procedure for its solution. Third, wieof
several heuristic techniques for eliciting concepts ailiyut
that reduce minimax regret quickly. In contrast to standard
concept learning, we aim to reduce “relevant” concept un-
certainty w.r.t. the utility model, rather than learn anaete
concept definition for its own sake. Partially elaboraten-co
cept definitions also influence the choice of utility queries
This provides an integrated preference elicitation method

Assessing the preferences of users is a critical component
in any decision support or recommender system. Prefer-
ence assessment allows recommendations to be tailored to
the needs and desires of a particular user (Burke 2002;
Viappiani, Faltings, and Pu 2006; Boutilier et al. 2006;
Salo and Hamalainen 2001). In most work on adaptive util-
ity elicitation, one assumes the existence of a sahofersal
or catalog featurever which user preferences are speci-
fied. For instance, in product configuration, preferences ar
articulated in terms of product features and specifications
(e.g., color, engine size, fuel economy, available options
etc. in the case of a car). However, users can exhibit signif-
icant variation in the features over which their preference
are moshaturally expressed; and these may not be present
among the set of catalog features. For instance, in the auto-
motive domain, different users may be concerned about the
“degree of safety” of a car, but each may have different no-
e T (6.0, e wih 2 Yourd il ogy that alows  userto aynamical (and prtaly) spec
. : : . their ownutility-bearing product features.
etc., while a high-performance driver refers to the braking o ) )
system, roll bars, etc.). Furthermore, the user-spesific A preliminary, shorter version of this paper appeared as
jectivity of safety prevents one from adding it as a new fea- (Boutilier, Regan, and Viappiani 2009b).
ture to the catalog. However, if a user most naturally concep
tualizes her preferences in terms of this feature, the gyste

should allow expression of preferences using that feature. Background

Copyright(© 2010, Association for the Advancement of Artificial ~ We begin with relevant background material and a review of
Intelligence (www.aaai.org). All rights reserved. our earlier model for regret-based feature elicitation.



Underlying Decision Problem utility between the optimal configuration (undej andx.

We assume a system is charged with the task of recom- The minimax optimal configuratiory;, minimizes this po-
mending an option to a user in some multiattribute space, tential loss. MR(x, W) tightly bounds the loss associated
for instance, the space of possible product configurations with x, and is zero ifx is optimal for allw € W.

from some domain (e.g., computers, cars, apartment rental, \inimax regret has been applied successfully to robust
etc.). Products are characterized by a finite set of atedbut  opimization given utility uncertainty in a variety of do-
& = {X1,..X,}, each with finite domaiDom (X;). Let mains, for decision problems involving large-scale mixed

X C Dom(X) denote the set ofeasible configurations : Y
For_instanc(e )attributes may correspond to th% features of INteger programs (MIPs) and pr_o_duct database_S (Boutilier
various cars. such as color engine size, fuel economy, etc. &t al. 2006; Braziunas and Boutilier 2007; Boutilier, Sand-

X is defined either by constraints on attribute combinations holm, and Shields 2004). While regret-optimization re-
(e.g., constraints on computer components that can be putquires the solution of a minimax problem with a quadratic
together) or by an explicit database of feasible configura- objective, the application of Benders’ decomposition,-con

tions (e.g., a rental database). The user hasligy func-
tion v : Dom(X) — R. For simplicity, we will as-
sumeadditive utility (Keeney and Raiffa 1976). The pre-
cise form ofw is not critical, only thatu(x; w) is linear
in the parameters (or weights). Thus our approach is

easily generalized to more general models, such as gener-

alized additive independent (GAI) models (Fishburn 1967;
Braziunas and Boutilier 2007). A simple additive model in
the car domain might be:

u(Car; w) = w1 f1(£/100km) + w2 f2(EngSz) + ws f3( Color).

The optimal produck;, for a user with utility parameters
is thex € X that maximizes:(x; w).

Regret-based Preference Elicitation

We will not generally have direct access to the user’s util-
ity parameterss. Thus some form of preference assess-
ment is required. We assume a regime in which the util-
ity function is (perhaps partially) elicited from the user
(Boutilier et al. 2006; Salo and Hamalainen 2001; Viap-
piani, Faltings, and Pu 2006; Gelain et al. 2010). Elici-
tation is used to refine its knowledge af However, de-
cisions will generally be made without full knowledge of
w for two key reasons (Boutilier et al. 2006). First, good
or optimal decisions can often be made with little utility
information. Second, the value of certain utility informa-
tion (w.r.t. impact on decision quality) is often not worth
the (cognitive, time, or computational) cost of obtainihg i

straint generation, and various reformulations rendees th
problem feasible, converting it to a (linear) IP. We adapt
these techniques below. It also provides for effective
means of utility elicitation (Boutilier et al. 2006; Braziu
nas and Boutilier 2007). One powerful heuristic strategy
is the current solution strategywhere preference queries
are asked that involve the current minimax-optimal product
xy,, and/or the adversarial configuration (itnes3. Unlike
volumetric-based approaches to elicitation (Toubia, ldgus
and Simester 2004), regret-based elicitation reduceisyutil
uncertainty only in the relevant regions of utility space; e
ploiting knowledge of which products are actually feasible

Subjective Feature Elicitation

It is often most natural to let a user specify her preferences
usingsubjective featurethat have a “personalized” (but un-
known) definition in terms of catalog features. Boutilier,
Regan, and Viappiani (2009a) treat subjective features as
(Boolean) concepts over the catalog features, which are par
tially learned by querying the user using concept queries
(specifically,membership querie@ngluin 1987)). Unlike
standard concept learning, the goal is not to learn the en-
tire concept definition, but simply to learn enough about it
to make a good recommendation. In constrast to the model
we develop here, the user’s utility function is given—each
product has &nown valuethat is independent of concept

Assume a decision must be made, but the system knows satisfaction, and honusif the concept is satisfied—and the

only thatw € W, i.e., the user’s utility function lies in
some spacéV. We useminimax regretfor making deci-
sions in the face of such utility uncertainty (Boutilier ét a

only uncertainty lies in the concept definition.

Minimax regret is then adapted to pure concept uncer-
tainty: a recommended product has some value, but may

2006). Minimax regret (Savage 1954) has been advocated as, may not satisfy the concept; and an adversary chooses the

a means for robust optimization in the presence of data un- ¢oncept (and an alternative product) so as to maximize the
certainty (Kouvelis and Yu 1997), and has been used for de- « 51, plus bonus” advantage over the recommended prod-

cision making with utility uncertainty (Boutilier et al. P8;
Salo and Hamalainen 2001). Given utility spa®e define
themax regretof x € X, theminimax regretof W and the
minimax optimal configuratioas follows:
/
MR(x; W) = Imax max u(x';w) — u(x; w)
MMR(W) = Irél)lf% MR(x, W)

* — : M
Xjy = argmin R(x, W)

Intuitively, MR(x, W) is the worst-case loss associated with
recommending; i.e., assuming an adversary will choose
the user’s utilityw from W to maximize the difference in

uct. Query strategies are investigated that refelevant
concept uncertainty, and it is shown that optimal recommen-
dations can be made with partial information about the ex-
act feature/concept definition. Since the model of Boutilie
Regan, and Viappiani (2009a) is a special case of ours, we
discuss it in more depth below.

Feature and Utility Uncertainty

Attributes over which a user forms her preferences will of-
ten not coincide with catalog features. We consislieb-
jective featureghat are objectively definable using catalog



attributes, but where the definition varies from user to.tiser
For instance, the notion of a “safe” car may differ for a par-
ent with small children, a young, single professional inter
ested in high-performance vehicles, and a family that takes
frequent trips to the mountains. Tleencept'safety” thus
haspersonalized definitionsThe user hapreferencedor
safety, just as she does for other attributes. A utility func
tion over this extended attribute space describes hermprefe
ences and determines the optimal vehicle. Hence, our rec-
ommender system must engagebioth preference elicita-
tion and feature elicitatiotto make a suitable recommenda-
tion.

This leads to interesting tradeoffs in elicitation. One
could engage in feature elicitation using well-known con-
cept learning techniques (Angluin 1987; Hellerstein et al.
1996) and then, with a full definition in hand, move to pref-
erence elicitation. But this could be wasteful: suppose we
learn that safety requires attribud& to be true (e.g., have
side airbags) but know nothing else about the concept. If we
engaged in preference elicitation simultaneously andrasce
tained that no cars in the user’s price range satisfy—or
that other more important features must be sacrificed to ob-
tain X;—then the full concept definition is not needed for
optimal allocation. Conversely, we could engage in prefer-
ence elicitation, using the subjective feature as an atgib
without knowing its definition, and then engage in feature
elicitation. However, without some idea of the concept def-
inition, early termination criterion using regret, and man
useful query strategies, can't be used; typically, muchemor
preference information than needed will be elicited. This
suggests thainterleavedfeature and utility elicitation can
be much more effective.

In this section, we first formalize our basic model of utility
and concept uncertainty. We then define the minimax regret
decision criterion for this case. Finally, we develop an IP
formulation for solving the computing minimax regret. We
turn to the question of elicitation in the next section.

Basic Model

Assume feature’ = {Xi,...X,} which we take to be
Boolean for ease of exposition (nothing critical depends on
this), and a feasible product skt C Dom/(X’). User util-

ity for any productx € X is decomposed into two com-
ponents. First, the user has some utilityreward w.r.t.
catalog features, denoted byx; w) wherew are the pa-
rameters of this reward function. We assumis additive
over X. This assumption is not critical, only thatis lin-

ear in whatever parameterizatian we adopt The user
also has a preference for configurations satisfying some tar
get concept oisubjective feature, an unknown Boolean
function overX: c¢(x) c(x1,...,%,).2 Assumec is

10ther subjective features may not be so definable (e.g., aes-
thetic, visual, or latent features); for this, data-infea<ollabora-
tive filtering techniques are more appropriate (Konstan &t397).

2Indeed, the techniques developed below can be applied di-
rectly to, say, generalized additive models using the nusthaf
Braziunas and Boutilier (2007).

3Allowing multivalued concepts is straightforward.

drawn from a particular function class or hypothesis space
H (e.g., the set of conjunctive concepts). We treat identifi-
cation ofc as a problem of concept learning (Angluin 1987;
Hellerstein et al. 1996), with some query €gtthat can

be used to refine the target concept. For instance, member-
ship queries would be quite natural (e.g., “do you consider
the following car to be safe?”). A value &wonusb is as-
sociated with any s.t. ¢(x) holds, representing user util-
ity for concept satisfaction. Let be the user’s subjective
feature or concepty her reward vector, antl her bonus.
Sinceb is simply another utility parameter, we incorporate
it into w (usingwy to denote its value im). Assuming util-

ity independence for concept satisfaction relative to othe
preferences, we define the utility &funder concept and
reward/bonus weight vector (or utility parametersjo be:

u(x;w, ¢) = r(x;w) + wpe(x)

(treatingc(x) as an indicator function). The utility of is
its reward, plus the bonusif x satisfiesc. The optimal
configuration isxj, . = arg max u(x; w, c).

Sincec is definable in terms of catalog features, we could
in principle elicit utilities using only catalog featurddow-
ever, allowing a user to articulate her preferences in t&fms
natural composite features can dramatically reduce the bur
den of elicitation; furthermore, the addition of such aggre
gate features with suitable definitions can greatly in@eas
the degree of (conditional) utility independence in a model
We focus our presentation assuming a single concept for
ease of exposition. Naturally, a user may have multiple
subjective features over which she conceives of her prefer-
ences. The extension to multiple features is conceptually
straightforward, though does increase computational and
query complexity. We point out briefly below how our for-
mulation should be generalized to handle multiple concepts

Minimax Regret

During elicitation, we are uncertain about the true utitity

and the true concept Hence, we cannot generally identify
the optimal produck;, .; but we can make a decision with
partial utility and concept information. Lél/ be the set

of feasible utility functions, those consistent with anyopr
information we have about user preferences and user query
responsed¥ is generally a convex polytope given by linear
constraints on utility parameters (as discussed below). Le
version spacd/ C H represent our current set of consis-
tent hypotheses w.r.t. (Mitchell 1977), i.e., those that re-
spect any prior knowledge about the concept and responses
to queries (as discussed below). Defmi@imax regretw.r.t.

utility and feature uncertainty as follows:

Definition 1 Given utility spacel’ and version spacé’,
themax regrebfx € X, theminimax regreof (W, V) and
theminimax optimal configuratioare:

MR(x; W, V) = max max max u(x’; w, ¢) — u(x;w,c) (1)
weW ceV x'eX

MMR(W,V) = Hélg MR(x; W, V) (2)

X,y = arg min MR(; W, V) (3)



Should we recommend optiot, max regretVR(x; W, V) While_thi_s MIP has i_nfinitely many constraints_, regret will
bounds (tightly) how far this decision could be from optimal ~ 0& maximized at vertice® of polytopelV, so this can be

Intuitively, an adversary selects the user’s utility fuantw replaced by a finite MIP with(| P|[V']) constraints. How-
and the intended subjective feature definiticio maximize ever, even this gives a MIP of unreasonable sizean grow
the difference in utility between our choigeand the optimal ~ €xponentially in'|; andV" is exponential ifX'| with con-

choicex?, , (notice that the adversary’s maximizing config- junctive concepts (and can have doubly exponential size for
uration must be optimal undéw, ¢)). A minimax optimal other hypothesis spaces). Fortunately, regret conssréint
choice is any product that minimizes max regret in the pres- mostw € W,c € V" will be inactive, so we use constraint

ence of such an adversary, and its max regret is the minimax generation to search through the space of adversariautili
regret given our current un,certainty. functions and concepts. Léten C WXV be a (small) set of

This definition can be generalized in the obvious way if the l(fgi’nc)'gg'ritgmglgfi S|relg(lée1)p(§;1r|1rl), ;’(V)? tsh%l\é; a )releaxgd MIP
version spacé” and utility spacdl’ are linked bycompli- Let z?* andx* be the };glution to){he reIaxeéiCMIP V\Zl.test
cating constraintsThis can arise, for example, if the choice for violated constraints by solving the max rearet oroblem
of ¢ € V limits the choice ofw € W (we will see how this MR(x*; W, V), detailed byelow |?MR(X* W ‘9) >p5*
arises for certain queries below). Itis also easily geizgdl the utilitv-concept paifw’. ¢ \—obroduced as a witness in
to the presence of multiple subjective features: we assume a Uttty pt pai(w’, ¢’)—produ Wi !

version spacé&’; for each feature and max regret is defined th*e t?;ri( ;igzet cg)rr;plgatlgr}nbde;(é\év—itozfgrrf elsargﬁa getg(;)r(i:];or
by selecting a concept from each. x ylw, ¢ o ' b

maximally violated constraint in the relaxed MIP. So we add
(w', ') to Gen and resolve. IfMR(x*; W, V) = §*, x* is
the optimal solution ta/ MR (W, V).

The MIP can easily be generalized to multiple subjective
features. We simply assume a different version spader
each featuré. The max regret subproblem generates con-
straints consisting of a utility and concept; for each fea-
ture. Indicator variables are required for each: if we hawe
' subjectives features, the number of such variables grows by
factorm. In practice, we expeet. to be small.

Computing Regret: Conjunctive Concepts

We assume that the underlying configuration problem is rep-
resented as a MIBiaxxcx u(x). We then incorporate util-
ity uncertainty (in the form of a bounded polytofé) into
the MIP, following Boutilier et al. (2006), and feature unce
tainty in the form of a version spadé, following Boutilier,
Regan, and Viappiani (2009a). However, in the latter case
the formulation depends critically on the form of the cortcep
and query classes one admits. We illustrate the formulation ] ] ]
for (nonmonotone) conjunctive concepts. Generating Violated Constraints We compute the max-
Assume target is a conjunction of literals over variables imally violated constramtl‘or the MIP above by solving the
X;. Memberships queries asksif € c for some product ~ Max regret problemd/E(x"; ¥, V') for the current relaxed
x. Let B+ (E-) be the set of positive (negative) examples solutionx*. This too can be formulated as a MIP that, given
acquired by these queries, and (nonempfy)he induced  X*» chooses an (adversarial) concepitility w and a con-
version space. Instead of representingsing most general figuration(X§, .., X2). For the concept, let binary indicator

and most specific concepts, we encdéte and E~ directly variable!(z;) (resp.,I(z;)) denote that featur&; is pos-
in our MIP (e.g., negative examples can directly represent itive (resp., negative) in the (adversarially selected)aept
the most general conceptsiin(Hirsh 1992)). definition ¢ (if both indicators are false, catalog featuXe

Constraint Generation ~We formulate the minimax IS not part of the concept). We also introduce binary vari-
problem Eq. 2 as a semi-infinite minimization. Let ablesB® andB“ indicating that and the witness allocation

(X1,---,X,) be configuration variables over our fea- (X¢, .., X%), respectively, satisfy.

tures: their instantiation denotes the minimax optimabpro Because of utility uncertainty, the components of
uct. Let constanb(x, w,c) = w, if c(x) and O otherwise. ;" are variables, and the straightforward encoding of
Let indicator variable ¢, for eachc € V, denote that con- MR(x; W, V) in Eq. 1 gives rise to a quadratic objective:
figuration(Xy, - - - , X,,) satisfies:; and writez’ € ¢ (resp., ey

max .., w;i X7 +wp,B® —r(x;w) — w,B*. We use a
standard reformulation to convert the product of a continu-
ous and a binary variable into a continuous variable, giving

T; € c) to denote that variablé(; occurs positively (resp.,
negatively) inc. Then MMR(W, V') is given by:

min § us the linear objective in the MIP below. Usimjj% to de-
S48 > r(xy 0, w) (X1, - Xn) note thejth literal of x, this MIP givesMR(x; W, V):
. + b(Xop,c, w, ) —wpI® VeeV,YweW 4) max Zyj Lz Z wix|f] = Z°
I° < X; Vee V,Vx; €c (5) i<n i
I"<1-X; Ve eV,VT; €c (6) SLB 4+ I(z)) < X! +15 Vj<n @)
For anyfixedconcept and utility functionw € W, the ad- B*+1@;)<(1-Xj)+15 Vj<n (8)
versary maximizes the regret @k, - - - , X,,) with witness BT >1_ Z 1(z,) - Z i) (9
fl J J

productx;, .. The MIP above minimizes against the “worst-
case” choice of the adversary, with (4) ensuring MMR is as
great as regret given arye V,w € W; and (5, 6) encoding > I(-y[jl)=0 VyeE" (10)
whether(X;,--- , X,,) satisfiesc. J

j:x[j] positive j:x[j] negative



ZI(—'y[j]) >1 VyeE™ (11) Responses to these queries impose linear constraints on

J W when subjective features are absent. But the situation
Y; < Xfwjil; Yy <w; Vi<n (12) is more complex with feature uncertainty. If a user states
7% < Bwi;  Z° < ws (13) :ha_'; shetpr]:afetr_z to ¥,t:]hefgr?ater u'lt'irlwiw ofk CO‘:'% be dute g
Bounl < 7% Bwi < Z° + wi] — wy (14) o its satisfaction of the feature. is cannot be capture

" " within W alone, but requires complicating constraints that
(w1, wn,wp) € W5 (XT,---, Xn) € X (19) tie W andV together. One simple solution to this problem
Herew, andw,| denote (constant) upper and lower bounds s to ask two concept queries whenever one asks a compar-
on w;. Y; represents the produet; X ¢, and takes that  ison query: if a user is asked whether she prefecs y, a
meaning due to constraint (12), and the fact fiais max- membership query for each outcome is asked as well (e.g.,
imized in the objectiveZ® represents produet, B* (con- is x safe? )._ Thls_ IS reasonabl_y_ natural, since preference
straint 13). Z* represents produgtB”* (14 and its mini- a}ssessmentlllkely |n\_/olves cognitive appraisal of the_e.m-bj
mization in the objective). Constraints (7,8) ensure thatt  UVe feature in question. We call such a quergambined
adversary does not get the concept bony§.e., cannotset ~ comparison/membership (CCMery. This allows us to
B® = 1) unless(X¢, - - - , X?) satisfies the concept dictated impose .va_lld linear constramts_ oW'; e.g., ifx is preferred
by the-variables. Similarly, (9) ensures that the input con- and satisfies the concept, whijedoes not, then we have

figurationx cannot be denied the bonus (i.e., the adversary wﬁ;—vfe;elruyiﬁw% want a bure comparison query without
cannot seB” = 0) unlessx violates at least one conjunctin ! P P query

. ; the corresponding membership queries, we can still impose
the chosen concept. Finally, the concept has to be consisten valid, completeconditional constrainten 17/, based on the

with all known positive and negative instances (10, 11). whetherx, y satisfy the concept, thus linking’ andV'. In-
The generalization of the subproblem MIP to the case of tuitively, we have the following conditional constrainta o

multiple subjective features is straightforward. The aador W when we learn ik is preferred tgy:

variables that define concept satisfactionf@nd the adver- wx —wy > 0 if e(x),c(y) (16)

sary’s chosen configuration simply need to be replicated for

each subjective feature. wx +b—wy >0 if c(x),-c(y) 17)
wx —wy —b>0 if —¢(x),c(y) (18)
Simultaneous Feature and Utility Elicitation wx —wy >0 if =e(x), ~e(y) (19)

While mini i id i f K In the case of conjunctive concepts, we linearize these con-
lle minimaxregret provides an appealing means for mak- - gjtional constraints without introducing new variablese W

!ng decisions under utility and feature uncertainty, oun ai _illustrate with constraint (17), which is encoded as:
is to learn enough about a user’s preferences and underlying

concept to make good (or even optimal) recommendations, wx+b—wy > [>_ I(=x[j))+(1 = I(-y[k])] Al Vk <n
asking as few queries as possible. In this section, we dis- jsn

cuss the different forms of queries and develop severalquer
strategies that can quickly redu¢&V/R(W, V).

(20)

Here Al < 0 is any lower bound on the (negative) differ-
ence in utility of any two outcomes; it can be computed as

Queries and Constraints ! — u, wherel is any (crude) lower bound andan upper
With respect to explicit concept queries we restrict atten- bound on the utility of any configuration. Constraint 20 im-
tion to membership queriesf the form “doesx satisfy poseswx + b — wy > 0 if the multiplier of A| is zero,
conceptc?” (e.g., “Do you consider cax to be safe?”).  andisvacuous otherwis®Z,_, I(—x[j]) = 0 only if ¢(x),

Such queries are quite natural in this setting, arguably and is at least 1 if~c(x); hence the constraint is vacu-
much more so than equivalence, subset and other queriesous if —c(x); and—c(y) iff I(—yl[k]) for somek < n iff
commonly considered in concept learning (Angluin 1987; the term(1 — I(—y[k]) = 0 for somek. Thus this con-
Hellerstein et al. 1996). Each membership query gives rise straint is binding at zero iff(x) and—c(y). The other three
to a positive or negative concept example, and the version conditional constraints can be encoded in a similar fash-
space can be encoded in a variety of ways depending on theion. These are imposed on the solution of the subproblem
hypothesis class (Hirsh 1992) (e.qg., see our encoding in the MR(-; W, V); they are not required for the master problem
MIP above). There are a variety of query types that can be (since only valid pairsv, c are generated by the subproblem
used to refine one’s knowledge of a user’s utility function and “posted” to the master problem). Thus the response to
(we refer to (Keeney and Raiffa 1976; Boutilier et al. 2006; a comparison query can be encoded using quadratic number
Braziunas and Boutilier 2007) for further discussion).Hist of constraints, as opposed to a single constraint in the case
work, we focus ortomparison queriesa user is asked if she  with no concept uncertaingy.
prefers one product to anothery.* The solution the the subproblem can become more com-
- plex in the case of multiple concepts. Specifically, the num-
4Such comparisons can be localized to specific attributesrin o ber of conditional constraints of the form (16-19) that need
additive case, or subsets of attributes in GAl models (Birzers -
and Boutilier 2007), and can be generalized to choice setsooé 5If concept membership of or y is certain givenV and W,
than two products (Viappiani and Boutilier 2009) (as is camnrn then only the relevant conditional constraints are postedoth
conjoint analysis (Toubia, Hauser, and Simester 2004)). are certain, the original, unconditional constraint isd)se



to be represented in the subproblem can grow exponentially  Given this, we examine six plausible query strategies. Two
in the number of subjective concepts. However, we expect arephased strategiethat first attempt to learn the concept
that no more than a handful of subjective features will typi- and then refine the utility function. The first is dubbed

cally be required in practice. Ph(H,CCSSand initially uses the halving algorithm (mem-
o ] bership queries) to determine the precise concept definitio
Elicitation Strategies and then uses CCSS (comparisons) to refine utility function

We now develop elicitation strategies for simultaneouls uti ~ uncertainty. The second phased straté&jyMCSS,CCSS)

ity and feature uncertainty. To select comparison queries, asks an MCSS query whenever > 0. If neither x*

we adopt thécomparison) current solution strategy (CCSS) nor x“ is (W, V')-uncertain, we ask a CCSS comparison

(Boutilier et al. 2006): given the minimax optimal solution ~ query, so this strategy is not strictly “phased,” but only bi

x}y, 1 and the adversarial witness, the user is asked which ~ ased toward membership queries. Gnterleaved strate-

of these two products is preferred. giesask a membership query if concept regret exceeds re-
To select membership queries, we examine two meth- ward regret at the current solution, and a comparison query

ods explored by Boutilier, Regan, and Viappiani (2009a). if reward regret is greater. They use CCSS to generate

The first is a simplénalving strategy adapted from standard comparisons; but the first(H,CCSS) generates member-

conjunctive concept learning (Hellerstein et al. 1996): we ship queries via halving, while the seconMCSS,CCSS)

ask random memberships queries until a positive example uses MCSS. ThECM strategy uses combined comparison-

is found; then queries are asked by negating literals one membership queries, with CCSS to generate the compari-

by one in the (unique) most specific conjunctive hypoth- son, and asking membership queries of hotrandx*.

esis. Once a positive example is found, this converges to Finally, we consider anyopically optimalstrategyWR

the true conjunctive concept using a number of queries lin- Which asks the query that guarantees the greatest regret re-

ear in the number of catalog featufe®f course, we need ~ duction over possible responses. Ik, V) be the joint

not identify the concept exactly; we terminate once mini- Utility-version space. Given any (comparison or member-

max regret reaches an acceptable level. We also explore theSMNiP) Queryq, yesandno responses induce refined spaces

: : ; X (W,V|q = y) and (W, V|q = n), respectively; and these
current solution strategy for memb_ershlp queries (MCSS) partition (W, ). The(posterior) worst-case regreff ¢ is:
this selects a query based on which of the optimal prod-

uct xjyy, or withessx® satisfy the adversary’s choice of WR(q; W, V) =max[MMR(W, V|qg=1y), MMR(W,V |g=n)]

conceptc® in the current solution. He*(xiy 1), ¢*(x*), The myopically optimal query:,, minimizes this pos-

H Y0 Q (% a (a0 WR
then CSS asks membership quefyif —c (xjy 1), ¢ (x*), terior worst-case regret; hence it maximizes regret reduc-
then CSS asks quesy;, ; otherwise CSS asks a query de-  tjon (given its worst-case response). Viappiani and Biautil
pending on the whethet” is 1/-consistent (see (Boutilier,  (2009) show how compute such myopically optimal queries
Regan, and Viappiani 2009a) for further details and moti- without enumerating the space of queries in the case of util-
vation). To avoid asking useless queries, the system only ity uncertainty. These ideas can be adapted to our joint
queries(WW, V)-uncertain allocations. - utility-concept uncertainty setting. Because of theifeif
~Unlike the cases of pure utility or pure feature elicita-  ent semantics, myopically optimal comparison and member-
tion, in the simultaneous case we must also make a deci- ship queries are determined independently (using a IP).
sion at each stage regarding which type of query to ask, \while the optimization for the WR strategy is impractical
membership or comparison. In several of the strategies be- for larger problems, its ability to determine the best (&g
low, we rely on our ability to decompose max regret of the  query provides a useful benchmark against which to com-

current solution intaeward regretand concept regret Let pare our heuristic methods. A more scalabiiéclimbing

(x*,x*,w,c) be the current solution. Max regret &f is optimization (Viappiani and Boutilier 2009) can be used

rr + cr (reward regret plus concept regret), where to choose a comparison query: given an initial compari-
rr=r(x%w) —r(x*;w);  cr = wp(e(x®) — c(x¥)). sonlqueryql = (x,y) (do you preferx to y?), a new pair

Intuitively, rr tells us how much utility uncertainty is con- fJH - (Xzﬁwvvlqi:y)’,X?W,V\qi:,n)) |s.cons.tructed, consist-
tributing to the max regret of*, while cr does the same for ~ ing of the regret-optimal configurations in each of the two
concept uncertainty. In our “interleaved” strategies belo ~ response-induced partitions. This process is iterated, an
we use these measures to determine whether to ask a com-can be shown thaVR(¢"*"; W, V) < WR(q"; W, V).

parison (utility) query or a membership (concept) query, de

pending on W_hich is larger; moreover a memt_)ership query Empirical Evaluation

is asked only if eithex* or x* is (W, V')-uncertain.

We experiment with the query strategies above, comparing
them on randomly generated configuration problems of two
sizes. Queries are posed to simulated users, each of which
has a randomly generated utility function and a subjective

bIf we are able to seed the process with an initial positiverexa
ple, we can accelerate the halving process rapidly, reditio a
linear number of queries.

"Configurationx is (W, V)-uncertainfor version spacé” and
utility spacelV iff there arec, ¢’ € V s.t.c(x) and—c’(x), and for -
somew,w’ € W, both (¢, w) and(¢’,w’) satisfy user response 8Roughly, we formulate a MIP where the player chooses a
constraints. In other words, does not have its concept statles triplet (for membership queries): the query itetti and the rec-
terminedunambiguously by the curreft andV'. ommendationsk? andx™ associated with both answers.
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Figure 1:Normalized minimax regret, small concepts (30 runs).
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Figure 2:Normalized minimax regret, large concepts (50 runs).

Fig. 2 shows normalized MMR in our second setting (ini-

our strategies by examining regret reduction as a function o  tial MMR averages a loss of 55% of the adversary’s utility).

the number of queries. In our first setting, problems have 20 The interleaved strategy I(MCSS,CCSS) again dominates,
Boolean variables with random binary constraints to reflect pbut Ph(MCSS,CCSS) performs reasonably well. After 100
the realistic assumption that the space of feasible predsict  queries, minimax regret is reduced to about a sixth of its
relatively sparse: on average, about 2100 configuratians ar original value. The halving-based strategies and CCM per-

feasible. Conjunctive concepts are randomly drawn from a form significantly worse that the MCSS-based strategies.

pool of 5 variables, with each variable occurring in the con-
cept positively (probability.33), negatively (0.33), or not
at all (0.33): as a result, the average conjunctive concept

These results suggest that the current solution heuris-
tic, which selects both membership and comparison queries
in a way that refines concept or utility knowledge of

has 3.33 conjuncts. In the second setting, a larger hypothe- the minimax-optimalx}, . or the adversarial witness, is
sis space is used, with conjunctive concepts defined over 10 quite effective. In addition, the use of reward and con-

variables, with average concept size of 6.67 conjuncts.

Fig. 1 shows reduction in MMR in the first setting.
MMR is normalized w.r.t. the initial regret (i.e., prior to
the first query); initial MMR or loss averages about 60%
of the adversary’s utility. We consider Ph(MCSS,CCSS),
I((MCSS,CCSS), CCM and WR, the latter implemented us-
ing hillclimbing for comparison queries and exact MIP
computation for membership queries. Given our inter-
est inanytimerecommendations, strategies whose recom-
mended product has lower max regret at any point during
the interaction cycle are preferred. The interleavedeat

cept regret to decide between comparison and membership
queries is somewhat useful. Examining the behavior of
I(MCSS,CCSS) reveals that user sessions tend to start with
comparison queries; once reward regret is reduced suffi-
ciently, membership queries are mostly asked until a final
short period during which the query types roughly alter-
nate. CCM does not perform that well since each interac-
tion involves 3 queries (a comparison and two membership
queries). However, they involve the same three outcomes,
thus the cognitive cost might be significantly less than 3
queries. A “leftward compression” of the CCM curve would

|(MCSS,CCSS) reduces regret by half in as few as around make the Strategy somewhat more Competitive_

12 queries. It dominates CCM significantly, but is only
slightly (and not significantly) better than Ph(MCSS,CCSS)
Computation of the myopocally optimal WR strategy is too
slow to admit real-time response, and is included only as
a benchmark in the small concept setting. Interestingly,

I((MCSS,CCSS) performs better than WR, and has much

faster query selection time (0.5s versus 60s on average).

°The subjective-feature-independemiward component of a
user utility function is assumed to be linear function of tiaa-
log variables. Each featut¥; is randomly assigned a local value
weightr; ~ U[0, 10]. The system is given initial bounds on each
of these weights, representing partial prior knowledgéefuser’s
utility parameters: these bounds lie (randomly) in the santegval
[0, 10] and span 50% of the interval. The upper bowndfor the
bonus weightw, was fixed at 10, with no prior information given
to the system beside that the bonus must ligjr0].

While the number of queries seems large, the problems
are generated randomly to test our strategies with velg litt
prior information. Our queries and strategies also do net ex
ploit the additive nature of utility. Additive (or GAI) stod
ture (Fishburn 1967; Keeney and Raiffa 1976) can greatly
simplify utility queries and ease elicitation burden. More
over, the recommended product will be much closer to op-
timal in practice than indicated by its max regret. Indeed,
we may discover the optimal product long before being
able to prove its optimality for the user. Fig. 3 illustrates
the true regret(or actual loss) associated with the recom-
mended configuration, i.e., the difference between its true
utility (given the user’s utility function) and the utilityf the
user’s true optimal configuration. We plot it normalized rel
ative to initial regret. Notice that in as few as 10 queries
with I[(MCSS,CCSS) and WR, true regret drops to roughly
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2% of initial regret, and that the optimal product is found in
roughly 30 queries on average.

We note that MMR computation is initially very fast, un-
der 1s. (resp. 2s.) in the first setting (resp. second); but it
is slowed by conditional constraints: after 50 comparisons
gueries, MMR computation takes around 10s. in the second
problem set. From this perspective, CCM offers the fastest
computation. Overall these results suggest that MMR is a
very effective means of determining good decisions in the
face of simultaneous utility and feature uncertainty. Fert
more, it is a very effective driver of elicitation. Our inter
leaved, CSS-based approach seems especially effective.

Concluding Remarks
We have presented a model for utility elicitation that aliaav

and concepts, and real-valued domains.
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