The Frame Problem and Bayesian Network
Action Representations

Craig Boutilier! and Moisés Goldszmidt?

! Dept. of Computer Science, University of British Columbia,
Vancouver, BC V6T 1Z4, CANADA
cebly@cs.ubc.ca
2 Rockwell Science Center, 444 High Street, Palo Alto, CA 94301, U.S.A.
motses@rpal.rockwell.com

Abstract. We examine a number of techniques for representing actions
with stochastic effects using Bayesian networks and influence diagrams.
We compare these techniques according to ease of specification and size
of the representation required for the complete specification of the dy-
namics of a particular system, paying particular attention the role of
persistence relationships. We precisely characterize two components of
the frame problem for Bayes nets and stochastic actions, propose several
ways to deal with these problems, and compare our solutions with Re-
iter’s solution to the frame problem for the situation calculus. The result
is a set of techniques that permit both ease of specification and compact
representation of probabilistic system dynamics that is of comparable
size (and timbre) to Reiter’s representation (i.e., with no explicit frame
axioms).

1 Introduction

Reasoning about action has been a central problem in artificial intelligence since
its inception. Since the earliest attempts to formalize this problem, the straight-
forward encoding of actions and their effects has been fraught with difficulties,
such as the frame, qualification and ramification problems. Representations such
as the situation calculus [20] and STRIPS [10], as well as various methodologies
for using these systems (e.g., [16, 28, 1, 25, 14]) have been proposed for deal-
ing with such issues. However, such problems are exacerbated by considerations
such as nondeterministic or stochastic action effects; the occurrence of exogenous
events, incomplete or uncertain knowledge, imprecise observations, and so on.
Increasing interest in stochastic and decision theoretic planning [8, 9], with
the objective of incorporating the above considerations into planning systems,
requires that attention be paid to the natural and effective representation of
actions with stochastic effects. A number of researchers have adopted for this
purpose a very efficient approach to representing and reasoning with probabil-
ity distributions, namely Bayesian networks (BNs) [21]. BNs provide a formal,
graphical way of decomposing a state of belief by exploiting probabilistic in-
dependence relationships. BNs can also be augmented to represent actions, for



instance, using the methods of influence diagrams (1Ds) [27, 21],3 or representa-
tions such as two-stage or dynamic BNs [7]. However, though considerable effort
has been spent in characterizing the representational power of BNs in general,
and developing good probabilistic inference algorithms that exploit the factored
representations they provide, relatively little effort has been devoted to the study
of the special features of action representations, especially with respect to clas-
sical problems such as the frame problem.

In this paper, we examine in detail the representation of actions in stochas-
tic settings with respect to issues such as the frame and ramification problems
(focusing primarily on the frame problem), providing some insight into how un-
certain knowledge impacts the effort required to specify and represent actions. In
particular, we provide a definition of (various aspects of) the frame problem in
the context of dynamic BNs or IDs, proposing this as a standard against which
future proposed solutions to the frame problem in stochastic environments can
be measured. We also propose a methodology for representing actions in BNs
in a very economical way, suggesting methods in which BNs and IDs can be
augmented to exploit additional independencies (and better deal with ramifica-
tions) based on the rule structure that is taken for granted in nonprobabilistic
representations. This bridges a wide gap between traditional probabilistic and
nonprobabilistic approaches to action representation.

Our goal is to provide a detailed comparison of probabilistic and nonproba-
bilistic representations of actions, attempting to identify the key similarities and
differences between these methods, and show the extent to which these different
approaches can borrow techniques from one another. Space precludes a detailed
survey and discussion of the work in this area and a number of interesting issues.
We defer such discussion to a longer version of this paper [6], though we will point
out some of these issues in the concluding section. In this paper, we concentrate
on the issues of naturalness and compactness of action specification, and the
frame problem in particular, focusing solely on the the situation calculus as the
classical action representation, and the relatively elegant treatment of the frame
problem proposed by Reiter [25]; from the probabilistic side, we deal exclusively
with dynamic BNs and IDs. We emphasize several ways for augmenting dynamic
BNs so that the size of representation and effort to specify the effects of actions
in stochastic domains is essentially equivalent to that of Reiter’s method.*

# 1Ds are representational tools used for optimal decision making in decision analysis.
Actions are usually referred to as decisions, but for our purposes the two can be
considered equivalent.

* There are a number of other representational methods that deserve analysis (e-g.,
the event calculus [17], the A language of [12] and its variants, probabilistic STRIPS
rules [18, 2], probabilistic Horn rules [24]) which unfortunately we cannot provide
here; but see the full paper [6].



2 Actions: Semantics and Basic Representations

2.1 Semantics

Before presenting various representations of actions, we present the semantic
model underlying these representations, namely that of discrete transition sys-
tems, a view common in dynamical systems and control theory, as well as com-
puter science.® A transition system consists of a set of states S, a set of actions
A, and a transition relation T. Intuitively, actions can occur (or be executed)
at certain system states, causing the state to change as described by the transi-
tion relation. The exact nature of the transition relation varies with the type of
system (or our knowledge of it).

A deterministic transition system is one where T' is a (possibly partial) func-
tion T : 8§ x A = S . If T(s,a) = t, then ¢ is the outcome of action a applied
at s; and if T(s,a) is undefined, then we take @ to be impossible at s . If T'
is a relation over § x A x & then the system is nondeterministic: the possible
outcomes of a at s are those states ¢ such that T'(s, a,t) holds (if the set of out-
comes is empty, @ is not possible at s). Finally, a stochastic transition function is
a function T': 8§ x A x 8§ — [0, 1]; the probability of outcome of state ¢ resulting
when a is applied at s is Pr(s,a,t) =q¢ T(s,a,t), the only requirement being
that >~, Pr(s,a,t) = 1 for each state s, and action a applicable at s. If a is not
applicable at s, we take Pr(s, a,t) = 0 for all {. We assume below that all actions
can be applied, or attempted, at all states (perhaps with trivial effects). We note
that this formulation assumes that the system is Markovian: the probability of
moving to state ¢ given a depends only on the current state s, not on past history.

The representation of actions in a transition system is relatively straightfor-
ward. In a deterministic system, each action a requires a tabular representation
associating an outcome state with each state in §. A nondeterministic action
can be represented in a 0-1 matrix of size |S| x |S|, where a 1 in entry (¢, )
indicates that state s; is a possible outcome of a at s;. A stochastic action can
be represented by a similar stochastic matriz, where entry (4, j) is the probability
of transition from s; to 5j.6

One difficulty with the direct semantic view of actions, from the point of view
of problem specification and representation, is that AT problems (e.g., planning
problems) are rarely described in terms of an explicit state space. Rather one
imagines a set of propositions, or predicates and domain objects, or random vari-
ables, that describe the system under investigation; and actions are viewed in
terms of their effects on these propositions. This view underlies almost all work
in action representation in AI. We assume that a set of propositional atoms P
characterize the system. The set of states induced by this language consists of

® Many of the ideas discussed here can be extended to continuous time, continuous
state systems (see, e.g., [23] for continuous time extensions of the situation calculus,
or [7] for continuous time action networks).

5 Clearly if the branching factor b of nondeterministic or stochastic actions is small,
sparse matrix methods can be used, requiring size O(|S§|b) representations.



the set of truth assignments to P, each a possible configuration of the system.”
A state space that can be factored in this way will often permit compact repre-
sentation of actions, as we now explore.

2.2 Situation Calculus

The situation calculus (SC) was among the first logical formalisms for repre-
senting (deterministic) actions adopted in AT [20] and continues to be the focus
of much research [16, 28, 1, 25, 14]. We adopt a somewhat simplified version of
SC here. SC is a typed first-order language with two classes of domain objects,
states and actions, a function symbol do mapping state-action pairs into states,
and a set of unary predicate symbols, or fluents corresponding to the proposi-
tions of the underlying problem, that take state arguments.® We write do(a, s)
to denote the successor state of state s when action a is performed, and write
F(s) to denote that fluent F' is true in state s.

SC can be used to describe the effects of actions quite compactly, in a way
that exploits regularities in the effects actions have on particular propositions.
A typical effect axiom is:

Vs holding(s) A fragile(s) D broken(do(drop, s)) A ~holding(do(drop, s)) (1)

which states that broken holds (e.g., of some object of interest), and holding
doesn’t, in the state that results from performing the action drop if it was held
in state s and is fragile. Because of the Markovian assumption in our semantics,
we assume that the only state term occurring in the antecedent is a unique
state variable (e.g., s) and that each state term in the consequent has the form
do(a, s) for some action term a. Note that Axiom (1) describes a property of a
large number of state transitions quite concisely; however, it does not uniquely
determine the transitions induced by the action drop, a point to which we return
below. Furthermore, it is a natural description of (some of ) the effects of dropping
an object.

2.3 Dynamic Bayesian Networks and Influence Diagrams

In a stochastic setting, the effect of an action a at a given state s; determines a
probability distribution over possible resulting states. With respect to the rep-
resentation discussed in Section 2.1, row ¢ of the stochastic matrix for a is the
(conditional) distribution over the resulting states when action a is executed,
given that s; was the initial state. Given that states can be factored proposi-
tionally, and this distribution is in fact a joint distribution over P, we would like
to employ a representation that takes advantage of this factorization. Bayesian
networks (BNs) [21] are one such representation.

7 Multi-valued random variables are treated similarly.

8 The restriction to unary predicates means that the underlying domain is described
using propositions rather than predicates itself. We adopt this merely for simplicity
of exposition — rarely i1s the assumption made in practice.
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Fig. 1. Bayes Nets: (a) Without Action Node; (b) With Action Node

A BN is a directed acyclic graph (dag), where nodes represent the random
variables of interest (in this case the fluents) and the arcs represent direct influ-
ences or dependencies between random variables. A BN encodes the following
assumption of probabilistic independence: any node in a BN 1s probabilistically
independent of its non-descendants, given the state of its parents in the network.”
A BN can compactly capture a distribution P by representing independence re-
lationships in its graphical structure. To represent the distribution, we annotate
each node in the network with a conditional probability table (CPT) denoting the
conditional distribution of each variable given its parents in the network. Given
the assumptions of independence, any state of belief can be simply computed by
multiplying entries in these tables.

The BN (or fragment of a BN) corresponding to Axiom (1) is pictured in
Figure 1(a). In general, to represent the effect of action a, we have a set of
variables corresponding to certain fluents in the state prior to the performance
of the action, and variables corresponding to fluents after the action. In our
example, the B on the left denotes the proposition broken(s), while the B on the
right denotes broken(do(drop, s)). The arcs indicate that Pr(broken(do(drop, s)))
depends on the truth or falsity of broken, holding and fragile in state s, but does
not depend on the value of a fourth fluent G (hasglue), nor on the values of
fluents in state do(drop,s)) given that one knows their values in s. The CPT on
the right denotes the magnitude of this influence on broken: for each assignment
to its parents, the probability that broken(do(drop, s)) is true must be specified
(here the effect is deterministic).

Several remarks are in order at this point. First, we do not require prior
probabilities on the “pre-action” nodes in the network. If they existed, we could
use standard techniques to determine the probability of any post-action node.
Thus, this network does not represent a complete probability distribution. The
intent is to represent the stochastic matrix for a given action; therefore the
network is schematic in the sense that it describes the effect of the action for

® The details of algorithms for testing independence is beyond the scope of this paper.
We refer to [21][Chapter 3] for details.



any state, or assignment to pre-action variables. This coincides with the classical
view of action representation. Second, such a network is sometimes called a
dynamic BN or two-stage BN [7], since it should be viewed as schematic across
time. The restriction to two stages (corresponding to states s and do(a, s)) is
appropriate given our semantics. We also point out that, as with our description
of the situation calculus, such a BN does not uniquely specify a transition matrix
for action a (more in the next section).

Finally, influence diagrams (IDs) [13, 27] have been used in probabilistic in-
ference and decision analysis to represent decision problems. Similar in structure
to BNs, they have additional types of variables, represented by value nodes and
decision nodes; we are only interested in decision nodes here. A decision node (or
action node) is a random variable denoting the action that was executed causing
the state transition. This is denoted by the square node in Figure 1(b), a vari-
able Act that can take on possible actions as values (in this case, repair, drop).
Since the state of a fluent after an action is executed will depend on the action
chosen, the additional dependencies between Act and the other fluents must be
represented. We examine the impact of these additional influences below.

3 Single Actions: Structure and the Frame Problem

As alluded to above, neither the SC nor BN description of action effects will gen-
erally provide a complete and unambiguous specification of a transition system.
We focus first on the SC formulation, and compare the usual BN methods.

3.1 Frame Axioms in the Situation Calculus

There are two difficulties with Axiom (1) as a specification of the action drop.
The first 1s that, while it describes the effect of drop on the fluents holding and
broken (under some conditions), it fails to describe its effect on other fluents.
For example, to completely specify the transition function for drop, one must
also assert the effect drop has on other fluents in the domain (such as hasglue).
Unfortunately, there are a typically a great many fluents that are completely
unaffected by any given action, and that we do not consider part of the natural
specification of an action’s effects. Intuitively, we would like the user to specify
how the action influences affected fluents, and assume that other fluents persist.
We call this the problem of persistence of unaffected fluents (PUF). A second
difficulty is that while Axiom (1) describes the effect of drop on holding and
broken under the condition holding(s) A fragile(s), it fails to specify what happens
when this condition is false. Once again, it is usually taken to be desirable not to
force the user to have to say a fluent is unaffected in other circumstances, leaving
it as a tacit assumption. We call this the problem of persistence of affected fluents
(PAT).

The frame problem [20] is that of easing the user from the burden of having to
specify conditions under which an action does not affect a fluent: PUF and PAF
are two instances of this problem. One possible solution is to provide a means



to automatically derive explicit frame axioms given the user’s specification. For
example, given the input

Vs holding(s) A fragile(s) D broken(do(drop, s)) A —holding(do(drop, s)) (2)
Vs holding(s) A —fragile(s) D —holding(do(drop, s)) (3)

one could, under the assumption that this describes all effects of drop, generate
axioms such as

Vs (—holding(s) V —fragile(s)) A broken(s) D broken(do(drop, s)) (4
Vs (—holding(s) V —fragile(s)) A —broken(s) D —broken(do(drop,s)) (b
Vs hasglue(s) D hasglue(do(drop, s)) (

Vs —hasglue(s) D —hasglue(do(drop, s)) (7

(@]

)
)
)
)

Axioms (4) and (5) deal with the PAF problem, while axioms (6) and (7) handle
PUF. In general, we require 2|P| such frame axioms, describing the lack of effect
of a on each fluent in P; or 2|P||.A| such axioms for the entire set of action A.

Other approaches deal not just with the specification problem, but also with
the sheer number of axioms required. One example is the solution proposed by
Reiter [25], extending the work of Pednault [22] and Schubert [26]. The aim is
to directly encode the “assumption” that all conditions under which an action
affects a fluent have been listed. This is accomplished by building a disjunction
of all the conditions under which an action A affects a fluent F', asserting the
F changes as dictated when these conditions hold, and that it retains its value
otherwise. More precisely, let v# ,(s) (resp., v 4(s)) denote the disjunction of
the antecedents of the effect axioms for action A in which F appears positively
(resp., negatively) in the consequent. We know that

Vs 'y;A(s) D F(do(A,s)) and Vs VE,A(S) D —F(do(A, s))

both follow from the action specification. Under natural conditions, we can en-
sure the persistence of F' under all other conditions by writing:

Vs F(do(A, ) = v 4(5) V (F(s) A=vp 4 ()

If we assert one such axiom for each fluent F', it is not hard to see that we
uniquely determine a (deterministic) transition function for action A over the
state space. In our example, these closure arioms for action drop (with some
simplification) include:

Vs holding(do(drop, s)) = L (8)
Vs broken(do(drop, s)) = [(holding(s) A fragile(s)) V broken(s)] (9)
Vs hasglue(do(drop, s)) = hasglue(s) (10)

We require |P| axioms to characterize an action in this way. This is not
a substantial saving over the use of explicit frame axioms, for we require |.A|
such axiom sets (one per action). However, as we see below, Reiter’s method
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Fig.2. (a) A Dynamic BN, and (b) Compact Representation of the CPT

avoids the repetition of these axioms in multiple action settings. The size of the
axioms is also of interest. Imagine some (presumably small) number f of fluents
is affected by a, that the average action condition has ¢ conjuncts, and that
affected fluents appear in an average of e effect axioms. Then we can expect the
f closure axioms for affected fluents to be roughly of size ce, while the remaining
|P| — f axioms are of constant size.

3.2 The Frame Problem in Bayesian Networks

The BNs shown in Figure 1 do not completely characterize a transition system
for the same reasons described for SC above. Unlike the work in classical reason-
ing about action, the use of BNs for representing dynamical systems typically
assumes that a complete specification of the action’s effects, on all variables and
under all conditions, is given. A (complete) dynamic BN for the action drop is
shown in Figure 2(a) (we have left out CPTs for H, F).1°

Most BN models of action assume this network is explicitly specified by the
user; however we have used broken arcs in Figure 2(a) to indicate persistence
relations among unaffected fluents (the CPT for node G shows persistence ex-
plicitly). Furthermore, the starred entries in the CPT for node B denote the
persistence of fluent broken under the condition —holding V —fragile. The fact
that a user must specify these persistence relationships explicitly is the obvious
counterpart of the PUF and PAF problems in the situation calculus. Therefore,
we can take the frame problem for Bayesian networks to be exactly the need to
make these relationships explicit.

As described above, there are two possible perspectives on what constitutes
a solution to this problem: relieving the user of this burden, and minimizing
the size of the representation of such persistence. The first type of solution is
not especially hard to deal with in this representation. A rather simple idea
1s to have the user specify only the unbroken arcs in the network and only
those unhighlighted probabilities in the CPTs. It is a simple matter to then
automatically add persistence relationships.

1% Although not used yet, arcs are allowed between post-action variables (see below, on
ramifications).



3.3 Adding Further Structure to Bayesian Networks

The size of the dynamic BN for an action (regardless whether the persistence
relations are generated automatically) is then comparable to that of Reiter’s
solution (with one substantial proviso). Again, assume that f fluents are affected
by a, and that the average fluent is influenced by ¢ preaction fluents. The CPTs
for each of the f affected fluents will be of size 2¢, whereas the remaining |P|— f
CPTs are of constant size. The important factor in the comparison to the Reiter’s
solution is the difference in the affected fluent representation, with this method
requiring a representation of size roughly f-2%, while SC requires a representation
of size fee. Here k is the number of relevant preaction fluents for a typical affected
fluent I, those that are part of some condition that influences the action’s effect
on F (i.e., the number of parents of F' in the BN). Note that k& < ce. The
exponential term for the BN formulation is due to the fact that CPTs require
a distribution for the affected fluent for each assignment to its parents. For
instance, since B, F and H are relevant to predicting the effect of drop on
broken, we must specify this effect for all eight assignments to {B, F, H }.

Axiom (2), and more significantly the closure Axiom (9), are much more com-
pact, requiring only that the single positive effect condition be specified, with
persistence under other circumstances being verified automatically. CPTs in BNs
are unstructured, and fail to capture the regularities in the action effects that
fall out naturally in SC. Only recently there is work attempting to represent
regularities in BN matrices [11], and in particular, structures such as logical for-
mulae, decision trees and rooted decision graphs have been explored as compact
representations for matrices [3, 5]. Examples of representations that capture this
regularity are the decision tree and decision graph shown in Figure 2(b), corre-
sponding to the original CPT for variable B. The broken arrows indicate the
persistence relationships that can be added automatically when left unspecified
by the user.

In general, it will be hard to compare the relative sizes of different represen-
tations, and the logic-based method of Reiter, since this depends crucially on
exact logical form of the action conditions involved. For instance, decision trees
can be used to represent certain logical distinctions very compactly, but others
can require trees of size exponentially greater than a corresponding set of logical
formulae. However, one can also use graphs, logical formulae and other repre-
sentations for CPTs—each has particular advantages and disadvantages with
respect to size and speed of inference [5]. For example, Poole [24] has used Horn
rules with probabilities as a way of representing Bayes nets. In general, we can
see that appropriate representations of CPTs can exploit the same regularities
as logical formulae; thus BNs augmented in this way are of comparable size to
Reiter’s model.



4 Multiple Actions: The Frame and Ramification
Problems

4.1 Compact Solutions to the Frame Problem

While the proposals above for individual actions relieve the user from explicitly
specifying persistence, it did little to reduce the size of the action representation
(compared to having explicit frame axioms). In Reiter’s method, each action
requires |P| axioms, with f axioms having size ce and |P| — f axioms having
constant size. To represent a transition system with action set .4 thus requires
|A||P]| axioms. This is only a factor of 2 better than using explicit frame axioms.

Fortunately, Reiter’s solution is designed with multiple actions in mind. Re-
iter exploits the fact that, since they are terms in SC, one can quantify over
actions. His procedure will (under reasonable conditions) produce one axiom of
the form

Vs,a F(do(a,s)) =vf(a,s)V (F(s) A=vg(a,s))

for each fluent F'. Here 'y}';(a,s) denotes the digjunction of the formulae a =
AN 'y;A(s) for each specific action A which affects fluent F' positively (similar
remarks apply to vz (a,s)). Thus, we see instead of having |A||P| axioms, we
have only |P| axioms, and the axiom for fluent F' contains only reference to
actions that influence it. If each fluent is affected by n actions (presumably n is
much smaller than |.A4]), each action condition has ¢ conjuncts, and each affected
fluents appear in e effect axioms for any action, then we expect this specification
of the transition system to be of size |P|nce. In our example, the axiom for fluent
broken is:

Vs broken(do(a,s)) = [(a = drop A holding(s) A fragile(s))
V(=(a = repair A holding(s) A fragile(s)) A broken(s))] (11)

Notice that actions like paint and move that have no influence (positive or neg-
ative) on broken are not mentioned.

Similar problems plague BNs when we consider the size of the representation
of all actions in a transition system. Having a separate network for each action
will require a representation of size |A|(2(|P| — f) + f - 2¥) (where f is the
expected number of fluents affected by an action, & the number of conditions
relevant to each affected fluent). The usual way to represent a transition system
1s to use an action node and condition each post-action variable on the action
variable (we assume every variable can be influenced by some action). Figure 3
shows our example in this format.

The difficulty with this representation is the fact that, since (most or) every
fluent is affected by some action, the action node becomes a parent of each
post-action node, increasing the size of each CPT by a factor of |A| (as if we
had a separate network for each action). Indeed, this representation, standard in
decision analysis, is in fact worse, because any preaction variable that influences
a post-action variable under any action must be a parent. Since the size of
the representation i1s exponential in the number of parents, this will virtually
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always be a substantially less compact representation than that required by a
set of | A| action networks. In general, it will have size |A||P|2™, where m is the
expected number of fluents that are relevant to a post-action node under any
action (typically much larger than k above). In this example, (G is a parent of B
(because it is relevant for repair), and its value must be considered even when
we specify the effect of drop (for which it is actually not relevant).

In order to alleviate this problem we can use compact representations such
as decision trees or decision graphs as shown in Figure 4. The broken arcs and
marked nodes represent persistence relations that can be generated automati-
cally if unspecified by the user. The tree representation provides some savings,
but requires that each fluent have a separate subtree for each possible action,
failing to alleviate the |P||.A4]| factor in the size of the representation. However, a
decision graph can provide considerable savings, as shown, especially if we allow
an “else” branch to exit the Act node (see Figure 4). This technique allows one
to specify only the actions that actually influence a fluent, and only the condi-
tions under which that effect is nontrivial, leaving the persistence relation to be
filled in automatically on the “else” branch (all other actions) and for unspecified
conditions for the mentioned actions. Using a graph rather than a tree means
that all unfilled branches will connect to the (single) persistence subgraph. Tt is
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not hard to see that (assuming conjunctive action conditions) that the size of
this representation will be exactly the same as that proposed by Reiter.

Another compact representation of multiple actions that does not require
the use of else branches involves the use of proxy nodes that we called “oc-
currence variables”. Occurrence variables are new nodes corresponding to the
proposition that a given action has taken place (see Figure 5). Instead to being
directly connected to the action node, each fluent has as parents the occurrence
variables for actions that directly affect them. The occurrence variables signify
that a particular A has “occurred” and are children of the action (or decision)
node. Assuming that exactly one occurrence variable is true at any time, this
representation permits CPTs to be of roughly the same size those using graphs
with else branches, and more compact than graphs without else branches.

4.2 The Ramification Problem

To this point, we have ignored the issue of ramifications. Space precludes a full
discussion of this problem (see [6]), but we mention the main issues. Ramifica-
tions or domain constraints are synchronic constraints on possible state config-
urations (as opposed to diachronic constraints — of the type we’ve discussed -
that relate features of one state to features of its successor). When represent-
ing multiple actions, domain constraints allows compact specification of regular
effects that are independent of the action being performed. For instance, if the
location of the contents of a briefcase are always the same as the location of
the briefcase itself, a statement to this effect relieves one from explicitly stating
that every action a that changes the location of the briefcase also changes the
location of it contents. We would like this effect (or ramification) of moving,
dropping, throwing or otherwise dislocating a briefcase to be derived from the
effect these actions has on the briefcase itself.
In SC, domain constraints can easily be expressed; for instance:

Vs in(xz,b,5)) D loc(x, s) = loc(b, x) (12)



The ramification problem has to do with the interaction of such constraints with
possible solutions to the frame problem. Solutions have been proposed by Lin
and Reiter [19], Kartha and Lifschitz [15] among others.

A domain constraint is represented in a BN as an arc between two post-
action variables, representing the dependency between two fluents in a single
state. Note that the constraints imposed by the limited language in a BN, plus
the restriction on the acyclicity of the underlying graphs limits some of the
problems of including ramifications. In particular we only have to worry about
modifying the specification of an action whenever a synchronic fluent becomes
a new parent. Still the problem is similar to the case of SC: how to specify such
domain constraints independently of a particular action, and then impose these
relationships on the action network(s) in such a way that automatically derived
persistence relationships account for these ramifications directly. The general
ideas used for SC solutions (especially those based on “compiling” ramifications
into effect axioms automatically [19]) can be applied to the BN case and are
discussed in the full paper.

5 Concluding Remarks

In this paper we have taken a close look at representational issues in encoding
actions in stochastic domains using Bayesian networks. In the process we de-
fined two aspects of the frame problem for BNs, proposed possible solutions,
and compared these to Reiter’s method for SC. We have demonstrated that
the usual models of stochastic actions have not provided the compact or natu-
ral specification methodology provided in the classical/logical setting; but that
the use of “automatic” filling in of persistence relationships and the use of the
compact CPT representations recently adopted in [3, 5] allow solutions to the
frame problem of similar size, structure and timbre to Reiter’s. In this sense,
we have proposed a starting point for a methodology for the natural, compact
representation of actions in BNs. The advantages of BNs as representations for
probabilistic actions will be enhanced by the incorporation of such techniques.
An important issue that deserves further attention is that of nondeterminism
and correlated effects. BNs are designed to take exploit independence in action
effects, since this is the only way to have compact representation when effects
are possibly correlated, as they can be when any sort of nondeterminism comes
into play. Thus, while representing ramifications as synchronic constraints are a
convenience in deterministic settings (one can do without these at the expense
of additional axioms), they must be used in any nondeterministic representation
where correlated effects are possible. Thus, the methodology reflected in BNs has
an important role to play in informing the extension of classical representations
such as SC to handle nondeterministic actions.!! We discuss this further in [6].
Finally, we shouldn’t forget that BNs are designed to facilitate efficient in-
ference. The use of dynamic BNs in inference 1s very flexible—standard BN

1 Nondeterministic actions are addressed in, e.g., [15]; the difficulties with correlations
are addressed in [4].



algorithms can be used to answer queries with respect to temporal projection
and explanation, for action sequences of arbitrary (finite) length, and can be
used for plan generation [3, 27]. In this regard, an important question is whether
the compact representations of actions proposed here can enhance computation
for probabilistic queries about the effects of actions, temporal projection, and
planning in stochastic domains. Certain aspects of this question are investigated
in [5] (in the context of BNs without actions) and [3] (with dynamic BNs).
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