
The Frame Problem and Bayesian NetworkAction RepresentationsCraig Boutilier1 and Mois�es Goldszmidt21 Dept. of Computer Science, University of British Columbia,Vancouver, BC V6T 1Z4, CANADAcebly@cs.ubc.ca2 Rockwell Science Center, 444 High Street, Palo Alto, CA 94301, U.S.A.moises@rpal.rockwell.comAbstract. We examine a number of techniques for representing actionswith stochastic e�ects using Bayesian networks and in
uence diagrams.We compare these techniques according to ease of speci�cation and sizeof the representation required for the complete speci�cation of the dy-namics of a particular system, paying particular attention the role ofpersistence relationships. We precisely characterize two components ofthe frame problem for Bayes nets and stochastic actions, propose severalways to deal with these problems, and compare our solutions with Re-iter's solution to the frame problem for the situation calculus. The resultis a set of techniques that permit both ease of speci�cation and compactrepresentation of probabilistic system dynamics that is of comparablesize (and timbre) to Reiter's representation (i.e., with no explicit frameaxioms).1 IntroductionReasoning about action has been a central problem in arti�cial intelligence sinceits inception. Since the earliest attempts to formalize this problem, the straight-forward encoding of actions and their e�ects has been fraught with di�culties,such as the frame, quali�cation and rami�cation problems. Representations suchas the situation calculus [20] and STRIPS [10], as well as various methodologiesfor using these systems (e.g., [16, 28, 1, 25, 14]) have been proposed for deal-ing with such issues. However, such problems are exacerbated by considerationssuch as nondeterministic or stochastic action e�ects, the occurrence of exogenousevents, incomplete or uncertain knowledge, imprecise observations, and so on.Increasing interest in stochastic and decision theoretic planning [8, 9], withthe objective of incorporating the above considerations into planning systems,requires that attention be paid to the natural and e�ective representation ofactions with stochastic e�ects. A number of researchers have adopted for thispurpose a very e�cient approach to representing and reasoning with probabil-ity distributions, namely Bayesian networks (BNs) [21]. BNs provide a formal,graphical way of decomposing a state of belief by exploiting probabilistic in-dependence relationships. BNs can also be augmented to represent actions, for



instance, using the methods of in
uence diagrams (IDs) [27, 21],3 or representa-tions such as two-stage or dynamic BNs [7]. However, though considerable e�orthas been spent in characterizing the representational power of BNs in general,and developing good probabilistic inference algorithms that exploit the factoredrepresentations they provide, relatively little e�ort has been devoted to the studyof the special features of action representations, especially with respect to clas-sical problems such as the frame problem.In this paper, we examine in detail the representation of actions in stochas-tic settings with respect to issues such as the frame and rami�cation problems(focusing primarily on the frame problem), providing some insight into how un-certain knowledge impacts the e�ort required to specify and represent actions. Inparticular, we provide a de�nition of (various aspects of) the frame problem inthe context of dynamic BNs or IDs, proposing this as a standard against whichfuture proposed solutions to the frame problem in stochastic environments canbe measured. We also propose a methodology for representing actions in BNsin a very economical way, suggesting methods in which BNs and IDs can beaugmented to exploit additional independencies (and better deal with rami�ca-tions) based on the rule structure that is taken for granted in nonprobabilisticrepresentations. This bridges a wide gap between traditional probabilistic andnonprobabilistic approaches to action representation.Our goal is to provide a detailed comparison of probabilistic and nonproba-bilistic representations of actions, attempting to identify the key similarities anddi�erences between these methods, and show the extent to which these di�erentapproaches can borrow techniques from one another. Space precludes a detailedsurvey and discussion of the work in this area and a number of interesting issues.We defer such discussion to a longer version of this paper [6], though we will pointout some of these issues in the concluding section. In this paper, we concentrateon the issues of naturalness and compactness of action speci�cation, and theframe problem in particular, focusing solely on the the situation calculus as theclassical action representation, and the relatively elegant treatment of the frameproblem proposed by Reiter [25]; from the probabilistic side, we deal exclusivelywith dynamic BNs and IDs. We emphasize several ways for augmenting dynamicBNs so that the size of representation and e�ort to specify the e�ects of actionsin stochastic domains is essentially equivalent to that of Reiter's method.43 IDs are representational tools used for optimal decision making in decision analysis.Actions are usually referred to as decisions, but for our purposes the two can beconsidered equivalent.4 There are a number of other representational methods that deserve analysis (e.g.,the event calculus [17], the A language of [12] and its variants, probabilistic STRIPSrules [18, 2], probabilistic Horn rules [24]) which unfortunately we cannot providehere; but see the full paper [6].



2 Actions: Semantics and Basic Representations2.1 SemanticsBefore presenting various representations of actions, we present the semanticmodel underlying these representations, namely that of discrete transition sys-tems, a view common in dynamical systems and control theory, as well as com-puter science.5 A transition system consists of a set of states S, a set of actionsA, and a transition relation T . Intuitively, actions can occur (or be executed)at certain system states, causing the state to change as described by the transi-tion relation. The exact nature of the transition relation varies with the type ofsystem (or our knowledge of it).A deterministic transition system is one where T is a (possibly partial) func-tion T : S � A ! S. If T (s; a) = t, then t is the outcome of action a appliedat s; and if T (s; a) is unde�ned, then we take a to be impossible at s . If Tis a relation over S � A � S then the system is nondeterministic: the possibleoutcomes of a at s are those states t such that T (s; a; t) holds (if the set of out-comes is empty, a is not possible at s). Finally, a stochastic transition function isa function T : S �A�S ! [0; 1]; the probability of outcome of state t resultingwhen a is applied at s is Pr(s; a; t) �df T (s; a; t), the only requirement beingthat PtPr(s; a; t) = 1 for each state s, and action a applicable at s. If a is notapplicable at s, we take Pr(s; a; t) = 0 for all t. We assume below that all actionscan be applied, or attempted, at all states (perhaps with trivial e�ects). We notethat this formulation assumes that the system is Markovian: the probability ofmoving to state t given a depends only on the current state s, not on past history.The representation of actions in a transition system is relatively straightfor-ward. In a deterministic system, each action a requires a tabular representationassociating an outcome state with each state in S. A nondeterministic actioncan be represented in a 0-1 matrix of size jSj � jSj, where a 1 in entry (i; j)indicates that state sj is a possible outcome of a at si. A stochastic action canbe represented by a similar stochastic matrix, where entry (i; j) is the probabilityof transition from si to sj .6One di�culty with the direct semantic view of actions, from the point of viewof problem speci�cation and representation, is that AI problems (e.g., planningproblems) are rarely described in terms of an explicit state space. Rather oneimagines a set of propositions, or predicates and domain objects, or random vari-ables, that describe the system under investigation; and actions are viewed interms of their e�ects on these propositions. This view underlies almost all workin action representation in AI. We assume that a set of propositional atoms Pcharacterize the system. The set of states induced by this language consists of5 Many of the ideas discussed here can be extended to continuous time, continuousstate systems (see, e.g., [23] for continuous time extensions of the situation calculus,or [7] for continuous time action networks).6 Clearly if the branching factor b of nondeterministic or stochastic actions is small,sparse matrix methods can be used, requiring size O(jSjb) representations.



the set of truth assignments to P, each a possible con�guration of the system.7A state space that can be factored in this way will often permit compact repre-sentation of actions, as we now explore.2.2 Situation CalculusThe situation calculus (SC) was among the �rst logical formalisms for repre-senting (deterministic) actions adopted in AI [20] and continues to be the focusof much research [16, 28, 1, 25, 14]. We adopt a somewhat simpli�ed version ofSC here. SC is a typed �rst-order language with two classes of domain objects,states and actions, a function symbol do mapping state-action pairs into states,and a set of unary predicate symbols, or 
uents corresponding to the proposi-tions of the underlying problem, that take state arguments.8 We write do(a; s)to denote the successor state of state s when action a is performed, and writeF (s) to denote that 
uent F is true in state s.SC can be used to describe the e�ects of actions quite compactly, in a waythat exploits regularities in the e�ects actions have on particular propositions.A typical e�ect axiom is:8s holding(s) ^ fragile(s) � broken(do(drop; s)) ^ :holding(do(drop; s)) (1)which states that broken holds (e.g., of some object of interest), and holdingdoesn't, in the state that results from performing the action drop if it was heldin state s and is fragile. Because of the Markovian assumption in our semantics,we assume that the only state term occurring in the antecedent is a uniquestate variable (e.g., s) and that each state term in the consequent has the formdo(a; s) for some action term a. Note that Axiom (1) describes a property of alarge number of state transitions quite concisely; however, it does not uniquelydetermine the transitions induced by the action drop, a point to which we returnbelow. Furthermore, it is a natural description of (some of) the e�ects of droppingan object.2.3 Dynamic Bayesian Networks and In
uence DiagramsIn a stochastic setting, the e�ect of an action a at a given state si determines aprobability distribution over possible resulting states. With respect to the rep-resentation discussed in Section 2.1, row i of the stochastic matrix for a is the(conditional) distribution over the resulting states when action a is executed,given that si was the initial state. Given that states can be factored proposi-tionally, and this distribution is in fact a joint distribution over P, we would liketo employ a representation that takes advantage of this factorization. Bayesiannetworks (BNs) [21] are one such representation.7 Multi-valued random variables are treated similarly.8 The restriction to unary predicates means that the underlying domain is describedusing propositions rather than predicates itself. We adopt this merely for simplicityof exposition | rarely is the assumption made in practice.
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(b)Fig. 1. Bayes Nets: (a) Without Action Node; (b) With Action NodeA BN is a directed acyclic graph (dag), where nodes represent the randomvariables of interest (in this case the 
uents) and the arcs represent direct in
u-ences or dependencies between random variables. A BN encodes the followingassumption of probabilistic independence: any node in a BN is probabilisticallyindependent of its non-descendants, given the state of its parents in the network.9A BN can compactly capture a distribution P by representing independence re-lationships in its graphical structure. To represent the distribution, we annotateeach node in the network with a conditional probability table (CPT) denoting theconditional distribution of each variable given its parents in the network. Giventhe assumptions of independence, any state of belief can be simply computed bymultiplying entries in these tables.The BN (or fragment of a BN) corresponding to Axiom (1) is pictured inFigure 1(a). In general, to represent the e�ect of action a, we have a set ofvariables corresponding to certain 
uents in the state prior to the performanceof the action, and variables corresponding to 
uents after the action. In ourexample, the B on the left denotes the proposition broken(s), while the B on theright denotes broken(do(drop; s)). The arcs indicate that Pr(broken(do(drop; s)))depends on the truth or falsity of broken, holding and fragile in state s, but doesnot depend on the value of a fourth 
uent G (hasglue), nor on the values of
uents in state do(drop; s)) given that one knows their values in s. The CPT onthe right denotes the magnitude of this in
uence on broken: for each assignmentto its parents, the probability that broken(do(drop; s)) is true must be speci�ed(here the e�ect is deterministic).Several remarks are in order at this point. First, we do not require priorprobabilities on the \pre-action" nodes in the network. If they existed, we coulduse standard techniques to determine the probability of any post-action node.Thus, this network does not represent a complete probability distribution. Theintent is to represent the stochastic matrix for a given action; therefore thenetwork is schematic in the sense that it describes the e�ect of the action for9 The details of algorithms for testing independence is beyond the scope of this paper.We refer to [21][Chapter 3] for details.



any state, or assignment to pre-action variables. This coincides with the classicalview of action representation. Second, such a network is sometimes called adynamic BN or two-stage BN [7], since it should be viewed as schematic acrosstime. The restriction to two stages (corresponding to states s and do(a; s)) isappropriate given our semantics. We also point out that, as with our descriptionof the situation calculus, such a BN does not uniquely specify a transition matrixfor action a (more in the next section).Finally, in
uence diagrams (IDs) [13, 27] have been used in probabilistic in-ference and decision analysis to represent decision problems. Similar in structureto BNs, they have additional types of variables, represented by value nodes anddecision nodes; we are only interested in decision nodes here. A decision node (oraction node) is a random variable denoting the action that was executed causingthe state transition. This is denoted by the square node in Figure 1(b), a vari-able Act that can take on possible actions as values (in this case, repair, drop).Since the state of a 
uent after an action is executed will depend on the actionchosen, the additional dependencies between Act and the other 
uents must berepresented. We examine the impact of these additional in
uences below.3 Single Actions: Structure and the Frame ProblemAs alluded to above, neither the SC nor BN description of action e�ects will gen-erally provide a complete and unambiguous speci�cation of a transition system.We focus �rst on the SC formulation, and compare the usual BN methods.3.1 Frame Axioms in the Situation CalculusThere are two di�culties with Axiom (1) as a speci�cation of the action drop.The �rst is that, while it describes the e�ect of drop on the 
uents holding andbroken (under some conditions), it fails to describe its e�ect on other 
uents.For example, to completely specify the transition function for drop, one mustalso assert the e�ect drop has on other 
uents in the domain (such as hasglue).Unfortunately, there are a typically a great many 
uents that are completelyuna�ected by any given action, and that we do not consider part of the naturalspeci�cation of an action's e�ects. Intuitively, we would like the user to specifyhow the action in
uences a�ected 
uents, and assume that other 
uents persist.We call this the problem of persistence of una�ected 
uents (PUF). A seconddi�culty is that while Axiom (1) describes the e�ect of drop on holding andbroken under the condition holding(s)^fragile(s), it fails to specify what happenswhen this condition is false. Once again, it is usually taken to be desirable not toforce the user to have to say a 
uent is una�ected in other circumstances, leavingit as a tacit assumption.We call this the problem of persistence of a�ected 
uents(PAF).The frame problem [20] is that of easing the user from the burden of having tospecify conditions under which an action does not a�ect a 
uent: PUF and PAFare two instances of this problem. One possible solution is to provide a means



to automatically derive explicit frame axioms given the user's speci�cation. Forexample, given the input8s holding(s) ^ fragile(s) � broken(do(drop; s)) ^ :holding(do(drop; s)) (2)8s holding(s) ^ :fragile(s) � :holding(do(drop; s)) (3)one could, under the assumption that this describes all e�ects of drop, generateaxioms such as8s (:holding(s) _:fragile(s)) ^ broken(s) � broken(do(drop; s)) (4)8s (:holding(s) _:fragile(s)) ^ :broken(s) � :broken(do(drop; s)) (5)8s hasglue(s) � hasglue(do(drop; s)) (6)8s :hasglue(s) � :hasglue(do(drop; s)) (7)Axioms (4) and (5) deal with the PAF problem, while axioms (6) and (7) handlePUF. In general, we require 2jPj such frame axioms, describing the lack of e�ectof a on each 
uent in P; or 2jPjjAj such axioms for the entire set of action A.Other approaches deal not just with the speci�cation problem, but also withthe sheer number of axioms required. One example is the solution proposed byReiter [25], extending the work of Pednault [22] and Schubert [26]. The aim isto directly encode the \assumption" that all conditions under which an actiona�ects a 
uent have been listed. This is accomplished by building a disjunctionof all the conditions under which an action A a�ects a 
uent F , asserting theF changes as dictated when these conditions hold, and that it retains its valueotherwise. More precisely, let 
+F;A(s) (resp., 
�F;A(s)) denote the disjunction ofthe antecedents of the e�ect axioms for action A in which F appears positively(resp., negatively) in the consequent. We know that8s 
+F;A(s) � F (do(A; s)) and 8s 
�F;A(s) � :F (do(A; s))both follow from the action speci�cation. Under natural conditions, we can en-sure the persistence of F under all other conditions by writing:8s F (do(A; s)) � 
+F;A(s) _ (F (s) ^ :
�F;A(s))If we assert one such axiom for each 
uent F , it is not hard to see that weuniquely determine a (deterministic) transition function for action A over thestate space. In our example, these closure axioms for action drop (with somesimpli�cation) include:8s holding(do(drop; s)) � ? (8)8s broken(do(drop; s)) � [(holding(s) ^ fragile(s)) _ broken(s)] (9)8s hasglue(do(drop; s)) � hasglue(s) (10)We require jPj axioms to characterize an action in this way. This is nota substantial saving over the use of explicit frame axioms, for we require jAjsuch axiom sets (one per action). However, as we see below, Reiter's method
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Decision Tree Decision GraphFig. 2. (a) A Dynamic BN, and (b) Compact Representation of the CPTavoids the repetition of these axioms in multiple action settings. The size of theaxioms is also of interest. Imagine some (presumably small) number f of 
uentsis a�ected by a, that the average action condition has c conjuncts, and thata�ected 
uents appear in an average of e e�ect axioms. Then we can expect thef closure axioms for a�ected 
uents to be roughly of size ce, while the remainingjPj � f axioms are of constant size.3.2 The Frame Problem in Bayesian NetworksThe BNs shown in Figure 1 do not completely characterize a transition systemfor the same reasons described for SC above. Unlike the work in classical reason-ing about action, the use of BNs for representing dynamical systems typicallyassumes that a complete speci�cation of the action's e�ects, on all variables andunder all conditions, is given. A (complete) dynamic BN for the action drop isshown in Figure 2(a) (we have left out CPTs for H, F ).10Most BN models of action assume this network is explicitly speci�ed by theuser; however we have used broken arcs in Figure 2(a) to indicate persistencerelations among una�ected 
uents (the CPT for node G shows persistence ex-plicitly). Furthermore, the starred entries in the CPT for node B denote thepersistence of 
uent broken under the condition :holding _ :fragile. The factthat a user must specify these persistence relationships explicitly is the obviouscounterpart of the PUF and PAF problems in the situation calculus. Therefore,we can take the frame problem for Bayesian networks to be exactly the need tomake these relationships explicit.As described above, there are two possible perspectives on what constitutesa solution to this problem: relieving the user of this burden, and minimizingthe size of the representation of such persistence. The �rst type of solution isnot especially hard to deal with in this representation. A rather simple ideais to have the user specify only the unbroken arcs in the network and onlythose unhighlighted probabilities in the CPTs. It is a simple matter to thenautomatically add persistence relationships.10 Although not used yet, arcs are allowed between post-action variables (see below, onrami�cations).



3.3 Adding Further Structure to Bayesian NetworksThe size of the dynamic BN for an action (regardless whether the persistencerelations are generated automatically) is then comparable to that of Reiter'ssolution (with one substantial proviso). Again, assume that f 
uents are a�ectedby a, and that the average 
uent is in
uenced by c preaction 
uents. The CPTsfor each of the f a�ected 
uents will be of size 2c, whereas the remaining jPj�fCPTs are of constant size. The important factor in the comparison to the Reiter'ssolution is the di�erence in the a�ected 
uent representation, with this methodrequiring a representation of size roughly f �2k, while SC requires a representationof size fce. Here k is the number of relevant preaction 
uents for a typical a�ected
uent F , those that are part of some condition that in
uences the action's e�ecton F (i.e., the number of parents of F in the BN). Note that k � ce. Theexponential term for the BN formulation is due to the fact that CPTs requirea distribution for the a�ected 
uent for each assignment to its parents. Forinstance, since B, F and H are relevant to predicting the e�ect of drop onbroken, we must specify this e�ect for all eight assignments to fB;F;Hg.Axiom (2), and more signi�cantly the closure Axiom (9), are much more com-pact, requiring only that the single positive e�ect condition be speci�ed, withpersistence under other circumstances being veri�ed automatically.CPTs in BNsare unstructured, and fail to capture the regularities in the action e�ects thatfall out naturally in SC. Only recently there is work attempting to representregularities in BN matrices [11], and in particular, structures such as logical for-mulae, decision trees and rooted decision graphs have been explored as compactrepresentations for matrices [3, 5]. Examples of representations that capture thisregularity are the decision tree and decision graph shown in Figure 2(b), corre-sponding to the original CPT for variable B. The broken arrows indicate thepersistence relationships that can be added automatically when left unspeci�edby the user.In general, it will be hard to compare the relative sizes of di�erent represen-tations, and the logic-based method of Reiter, since this depends crucially onexact logical form of the action conditions involved. For instance, decision treescan be used to represent certain logical distinctions very compactly, but otherscan require trees of size exponentially greater than a corresponding set of logicalformulae. However, one can also use graphs, logical formulae and other repre-sentations for CPTs|each has particular advantages and disadvantages withrespect to size and speed of inference [5]. For example, Poole [24] has used Hornrules with probabilities as a way of representing Bayes nets. In general, we cansee that appropriate representations of CPTs can exploit the same regularitiesas logical formulae; thus BNs augmented in this way are of comparable size toReiter's model.



4 Multiple Actions: The Frame and Rami�cationProblems4.1 Compact Solutions to the Frame ProblemWhile the proposals above for individual actions relieve the user from explicitlyspecifying persistence, it did little to reduce the size of the action representation(compared to having explicit frame axioms). In Reiter's method, each actionrequires jPj axioms, with f axioms having size ce and jPj � f axioms havingconstant size. To represent a transition system with action set A thus requiresjAjjPj axioms. This is only a factor of 2 better than using explicit frame axioms.Fortunately, Reiter's solution is designed with multiple actions in mind. Re-iter exploits the fact that, since they are terms in SC, one can quantify overactions. His procedure will (under reasonable conditions) produce one axiom ofthe form 8s; a F (do(a; s)) � 
+F (a; s) _ (F (s) ^ :
�F (a; s))for each 
uent F . Here 
+F (a; s) denotes the disjunction of the formulae a=A ^ 
+F;A(s) for each speci�c action A which a�ects 
uent F positively (similarremarks apply to 
�F (a; s)). Thus, we see instead of having jAjjPj axioms, wehave only jPj axioms, and the axiom for 
uent F contains only reference toactions that in
uence it. If each 
uent is a�ected by n actions (presumably n ismuch smaller than jAj), each action condition has c conjuncts, and each a�ected
uents appear in e e�ect axioms for any action, then we expect this speci�cationof the transition system to be of size jPjnce. In our example, the axiom for 
uentbroken is: 8s broken(do(a; s)) � [(a = drop ^ holding(s) ^ fragile(s))_(:(a = repair^ holding(s) ^ fragile(s)) ^ broken(s))] (11)Notice that actions like paint and move that have no in
uence (positive or neg-ative) on broken are not mentioned.Similar problems plague BNs when we consider the size of the representationof all actions in a transition system. Having a separate network for each actionwill require a representation of size jAj(2(jPj � f) + f � 2k) (where f is theexpected number of 
uents a�ected by an action, k the number of conditionsrelevant to each a�ected 
uent). The usual way to represent a transition systemis to use an action node and condition each post-action variable on the actionvariable (we assume every variable can be in
uenced by some action). Figure 3shows our example in this format.The di�culty with this representation is the fact that, since (most or) every
uent is a�ected by some action, the action node becomes a parent of eachpost-action node, increasing the size of each CPT by a factor of jAj (as if wehad a separate network for each action). Indeed, this representation, standard indecision analysis, is in fact worse, because any preaction variable that in
uencesa post-action variable under any action must be a parent. Since the size ofthe representation is exponential in the number of parents, this will virtually
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uents that are relevant to a post-action node under anyaction (typically much larger than k above). In this example, G is a parent of B(because it is relevant for repair), and its value must be considered even whenwe specify the e�ect of drop (for which it is actually not relevant).In order to alleviate this problem we can use compact representations suchas decision trees or decision graphs as shown in Figure 4. The broken arcs andmarked nodes represent persistence relations that can be generated automati-cally if unspeci�ed by the user. The tree representation provides some savings,but requires that each 
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etc.Fig. 5. The Use of Occurrence Variablesnot hard to see that (assuming conjunctive action conditions) that the size ofthis representation will be exactly the same as that proposed by Reiter.Another compact representation of multiple actions that does not requirethe use of else branches involves the use of proxy nodes that we called \oc-currence variables". Occurrence variables are new nodes corresponding to theproposition that a given action has taken place (see Figure 5). Instead to beingdirectly connected to the action node, each 
uent has as parents the occurrencevariables for actions that directly a�ect them. The occurrence variables signifythat a particular A has \occurred" and are children of the action (or decision)node. Assuming that exactly one occurrence variable is true at any time, thisrepresentation permits CPTs to be of roughly the same size those using graphswith else branches, and more compact than graphs without else branches.4.2 The Rami�cation ProblemTo this point, we have ignored the issue of rami�cations. Space precludes a fulldiscussion of this problem (see [6]), but we mention the main issues. Rami�ca-tions or domain constraints are synchronic constraints on possible state con�g-urations (as opposed to diachronic constraints { of the type we've discussed {that relate features of one state to features of its successor). When represent-ing multiple actions, domain constraints allows compact speci�cation of regulare�ects that are independent of the action being performed. For instance, if thelocation of the contents of a briefcase are always the same as the location ofthe briefcase itself, a statement to this e�ect relieves one from explicitly statingthat every action a that changes the location of the briefcase also changes thelocation of it contents. We would like this e�ect (or rami�cation) of moving,dropping, throwing or otherwise dislocating a briefcase to be derived from thee�ect these actions has on the briefcase itself.In SC, domain constraints can easily be expressed; for instance:8s in(x; b; s)) � loc(x; s) = loc(b; x) (12)



The rami�cation problem has to do with the interaction of such constraints withpossible solutions to the frame problem. Solutions have been proposed by Linand Reiter [19], Kartha and Lifschitz [15] among others.A domain constraint is represented in a BN as an arc between two post-action variables, representing the dependency between two 
uents in a singlestate. Note that the constraints imposed by the limited language in a BN, plusthe restriction on the acyclicity of the underlying graphs limits some of theproblems of including rami�cations. In particular we only have to worry aboutmodifying the speci�cation of an action whenever a synchronic 
uent becomesa new parent. Still the problem is similar to the case of SC: how to specify suchdomain constraints independently of a particular action, and then impose theserelationships on the action network(s) in such a way that automatically derivedpersistence relationships account for these rami�cations directly. The generalideas used for SC solutions (especially those based on \compiling" rami�cationsinto e�ect axioms automatically [19]) can be applied to the BN case and arediscussed in the full paper.5 Concluding RemarksIn this paper we have taken a close look at representational issues in encodingactions in stochastic domains using Bayesian networks. In the process we de-�ned two aspects of the frame problem for BNs, proposed possible solutions,and compared these to Reiter's method for SC. We have demonstrated thatthe usual models of stochastic actions have not provided the compact or natu-ral speci�cation methodology provided in the classical/logical setting; but thatthe use of \automatic" �lling in of persistence relationships and the use of thecompact CPT representations recently adopted in [3, 5] allow solutions to theframe problem of similar size, structure and timbre to Reiter's. In this sense,we have proposed a starting point for a methodology for the natural, compactrepresentation of actions in BNs. The advantages of BNs as representations forprobabilistic actions will be enhanced by the incorporation of such techniques.An important issue that deserves further attention is that of nondeterminismand correlated e�ects. BNs are designed to take exploit independence in actione�ects, since this is the only way to have compact representation when e�ectsare possibly correlated, as they can be when any sort of nondeterminism comesinto play. Thus, while representing rami�cations as synchronic constraints are aconvenience in deterministic settings (one can do without these at the expenseof additional axioms), they must be used in any nondeterministic representationwhere correlated e�ects are possible. Thus, the methodology re
ected in BNs hasan important role to play in informing the extension of classical representationssuch as SC to handle nondeterministic actions.11 We discuss this further in [6].Finally, we shouldn't forget that BNs are designed to facilitate e�cient in-ference. The use of dynamic BNs in inference is very 
exible|standard BN11 Nondeterministic actions are addressed in, e.g., [15]; the di�culties with correlationsare addressed in [4].
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