2534 Lecture 6: Tractable Solutions of MDPs
and POMDPs

®"Discuss basic algorithms for POMDPs (from last time)
"POMDPs: Point-based Value lteration
= Structured Models of MDPs

" Announcements
* Asst.1 due today

* Project discussions slots on Tues, Thurs, Friday this week
= 20 minute time slots (come prepared)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Recap: POMDPs

"POMDPs offer a very general model for sequential
decision making allowing:
* uncertainty in action effects
* uncertainty in knowledge of system state, noisy observations
* multiple (possibly conflicting) objectives
* nonterminating, process-oriented problems

"]t Is the uncertainty in system state that distinguishes
them from MDPs

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Recap: POMDPs: Basic Model

=5As in MDPs: S, A, pi?, i, riT

=Observation space: Z (or Z.)

="(Observation probabilities: pﬁ‘z forzeZ,

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Recap: History-based Policies

" Information available at time t:
* initial distribution (belief state) b € A(S)

* history of actions, observations: al, zl, a2, 22,..., at'l, Zt-1

®"Thus, we can view a policy as a mapping:
7:A(S)xHET = A

"For given belief state b, it is a conditional plan

e.g.,

MN;MN;EX:-

(if Def:IN:MN:MN...
If Def:RP;MN...

else:MN:;MN;EX
else:MN...

\

* notice distinction with MDPs: can’t map from state to actions

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Recap: Belief States

"History-based policy grows exponentially with horizon
* infinite horizon POMDPs problematic

=Belief state b € A(S) summarizes history sufficiently [Aoki
(1965), Astrom (1965)]

"|_et b be belief state; suppose we take action a, get obs z
" et T(b,a,z) be updated belief state (transition to new b)
"If we let bj denote Pr(S = 1), we update:

T(b,a,z) =Pr(ila,zb)

=aPr(z|i,ab)Pr(i|lab)

2 biPi PR
Z]kbk pjak pjakZ

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Recap: Belief State MDP

="POMDP now an MDP with state space A(S)
"Reward: I =b-r*= Zi b.r:°
=Transitions: Py, =Pr(z|b,a) if b' = T(b,a,z); 0 o.w.

= Optimality Equations:

Qk(b)=b-ra 3, piyVH(b)
=%b [6°+ 3 P}, PRV (T (b,a,2))]

V¥ (b) = mngg (b)| |7*(b) = arg maxQX (b)

ture Slides (c) 2011-14, C. Boutilier

Recap: Belief State MDP Graphically

Pr(z1a.b) bl:T(b'aa
@ Pr(ZZIGIb) > bzzT(b,aa

P b
r(z3la,b) b3=T(b,a@

Belief State Transitions for Action a, Belief State b

ture Slides (c) 2011-14, C. Boutilier

Recap: PWLC Value Function

Value \
X
b(s;)=0 Belief State b(s,)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Recap: Representation of Q-function

PWLC Representation of Qg

o, corresponds to “"Do(a):
if z1, do(red);
if z2, do(green)"”

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Recap: Linear Support Graphically

Value at
withess wl

Value bt
withessjw?2

wl wl
Belief State

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 1 O

Sources of Intractability

=Size of a-vectors
* each is size of state space (exponential in number of variables)

"Number of a-vectors
* potentially grows exponentially with horizon

"Belief state monitoring

* must maintain belief state online in order to implement policy
using value function

* belief state representation: size of state space

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

11

Approximation Strategies

=Sizes of problems solved exactly are quite small
* various approximation methods developed
* often deal with 1000 or so states, not much more

"Grid-Based Approximations
* compute value at small set of belief states
* require method to “interpolate” value function
* require grid-selection method (uniform, variable, etc.)
* we'll discuss one method (Perseus/PBVI) today
"Finite Memory Approximations

* e.g., policy as function of most recent actions, observations
* can sometimes convert VF into finite-state controller

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 1 2

Approximation Strategies

"|_earning Methods
* assume specific value function representation
* e.g., linear value function, smooth approximation, neural net
* train representation through simulation
"Heuristic Search Methods
* search through belief space from initial state
* requires good heuristic for leverage
* heuristics could be generated by other methods
=Structure-based Approximations
* E.g., based on decomposability of problem

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

13

Grid-based Approximations

"High level motivation:

* number of a vectors grows exponentially (even in practice) with
horizon (one of biggest impediments to solving POMDPS)

* intuitively, need optimal policies for every belief point

* instead, we could select a finite sample (or grid) of belief points
on the n-dimensional simplex and compute optimal value
function (or policy) for those points

* for any other belief points not on grid, use some interpolation
scheme

* can define a simple value iteration scheme based on this idea

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 1 4

Belief Grid (2-D, 3-D), with VF (2-D)

b1 b, bs bs 4
P(s1)

o)

2 state POMDP (50,51)

P(s2)

0 P(s1) 1

3 state POMDP (So,Sl,Sz)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

15

Grid-based Value lteration

= Given value function V(k-1) on grid B
= Compute value V(k) at grid points in usual way

Qk(b)=3yb [r2+3 pax, PRV (T(b,a,z))]

= Problem: T(b,a,z) not usually on grid evenif b is
= Solution: use some form of interpolation over V(k-1)

0]

byb, bs b
V(k-1)

bib, by bs

o)
V(k)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

16

Point-based Value lteration

= Grid-based methods expensive, performance debatable
* Selecting suitable grid, interpolation can be expensive

"But recall approximation based on Cheng’s linear support
* just use a subset of a-vectors

"PBVI methods combine the two insights

* select a small subset of belief points

* but compute/backup a-vectors instead of just values

* no interpolation, use collection of a-vectors as VF representation
"Briefly, let’s look at:

* Pineau’s original PBVI

* Spaan and Vlassis Perseus

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 1 7

Point-based Value lteration

= Main idea (roughly)
* fix a small set of belief points B
* assume approximate set of a-vectors V(k-1)
* do backups for each b in B, using V(k-1), to construct V(k)
* can prune (remove dominated vectors)

* can expand set of belief points in an anytime fashion (add new belief
points if you want, as time permits)

b1y bz b3 by b1y bz bz by

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

18

PBVI. Which Belief States (Grid)?

" |nitial belief states B

* starting at by, consider updated T(b,z,a) reached by taking action a and
sampling a random observation z (sample z with Pr(z|b,a))

* take belief state from one of these actions, the one that is greatest
distance (L1 or L2) from any belief point in the set

= aim: trying to get maximum coverage of belief space (diversity, but
informed by reachability considerations)

= Repeat as time permits, consider expanding belief set B by
* using same process as above, for each b in B

* double size of belief set at each iteration until you are “satisfied” with
coverage (or number of belief states reaches some threshold)

= Paper discusses other methods for generating belief points
* experiments don’t show large differences except for one (large) domain

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 1 9

PBVI: Observations

" Time complexity: each backup takes O(SAOVB) ~O(SAOB?)
* each backup requires AO belief projections

* each projection required V value evaluations (to determine which vector
has max value)

* each projection/evaluation takes O(S) time
* B points to backup (and V is bounded by B)
= Error can be bounded based on density of belief grid
* result is straightforward, bound is a bit too loose to be useful

Theorem 1 For any belief set B and any horizon n, the error
of the PBVI algorithm 0, = ||V.B — V*||« is bounded by

Introduce an error by pruning
R — Roin)€
Ny < (Bmas m;n) B away alpha vectors at each
(1—=) stage of:
Rmax-Rmin*eps / (1-gamma)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 20

PBVI:
Performance
(works pretty
well)

Name

Method Goal% Reward Tiume(s) B
Maze33 / Tiger-Grid

QMDP[*] n.a. 0.198 0.19 n.a.
Grid [Brafman. 1997] n.a. 0.94 n.V. 174
PBUA [Poon, 2001] n.a. 2.30 12116 660
PBVI[*] n.a. 225 3448 470
Hallway

QMDP[#] 47 0.261 0.51 1n.a.
QMDP [Littman et al.., 1995] 47.4 n.v. 1.V. n.a.
PBUA [Poon, 2001] 100 0.53 450 300
PBVI[*] 96 0.53 288 36
Hallway2

QMDP[#] 22 0.109 1.44 1n.a.
QMDP [Littman et al.. 1995] 259 n.v. .V. n.a.
Grid [Brafinan. 1997] 98 n.v. n.v. 337
PBUA [Poon, 2001] 100 0.35 27898 1840
PBVI[*] 98 0.34 360 95
Tag

QMDP[#] 17 -16.769 13.55 1n.a.
PBVI[*] 59 -9.180 180880 1334

n.a.=not applicable

ST O] A

Tiger-grid
Hallway
Hallway2

Tag

33 17 D
57 21
89 L7 15
870 30 D

@]

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

n.v.=not available

21

PERSEUS

®"Perseus makes a small but useful tweak on PBVI
* fixes a set of belief states B
* given V(k-1), does not update all belief states to get V(k), instead:
= select a random b from B

= do a point-based backup to get a new a-vector «(b) for b
 if new a-vector not improving, use best old one from V(k-1)

= if a(b) improves any other b’ in B, then do not backup b’
= continue until all belief states b’ in B have “improved”, either
through their own backup or by that of some other b
="Simple idea: don’t waste backups on b in B if other
backups have improved its value anyway

* little you can prove about this, but it keeps the size of the sets
V(K) of a-vectors much smaller in practice

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 2 2

Perseus Performance (TAG domain)

4
_6—
8
= —10r
> g -12F
S 14
15
'18
0 f’E} N T R R B =20, T e
<I' = 1° 10t 10° 10 10° 10 10° 10°
time (s) time (s)
(a) State space. (b) Value. (c) Reward.
I 10000
2 10k ﬂA
! 3 8000
P i
g [6000 Kl
© 107 L
4 ; <] 4000
i 2000 |-
0
-10 e 1 f nan | vl L1 0 nl T | Ll vl L1
10° 100 10 10° 1 10t 100 10
time (s) time (s)
(d) Nr. of vectors. (e) Policy changes.

Figure 2: Tag: (a) state space with chasing and opponent robot: (b)—(e) performance of
PERSEUS.

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 2 3

Perseus Performance (Comparative)

Tiger-grid R || T -
— Hallway R || I
HSVI 235 4860 10341 - :
‘ _ | PBVI 0.53 86 288
PERsEUs 234 134 104
_ o PBUA 053 300 450
PBUA 230 660 12116 o
) _ HSVI 0.52 1341 10836
PBVI 225 470 3448 _
_ PErsEus 051 55 35
BPI w/b 222 120 1000 . _ |
_ BPI w/b 0.51 3 185
Grid 0.94 174 n.a. O 0.97 134
oN 27 n.a. e
Osmpe 023 ma. 276 o
(b) Results for Hallway.
(a) Results for Tiger-grid.
) Tag R Jr] T
Hallway2 R || I - -
: PErseus =617 280 1670
PErRsEUs 0.3 56 10 . o
. o HSVI —6.37 1657 10113
HSVI 0.35 1571 10010 J - o
i BPI w/b —6.65 17 250
PBUA 0.35 1840 27898 o .
) BBSLS ~ —-8.3 30 10°
PBVI 0.34 95 360 J _ -
, _ i BPIn/b =918 940 59772
BPIw/b 032 60 790] _ . |
_ PBVI =918 1334 180830
(—L)I‘\{TDP [](]9 11.4a. 223

Owvipp —16.9 n.a. 16.1

(c) Results for Hallway2.
(d) Results for Tag.

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

24

State Space Explosion

"For MDPs/POMDPs, state space explosion is a key issue
* MDPs, POMDPs: transition, reward, obs rep’n are O(S2), O(S)
* MDPs: value functions and policies: O(S)
* POMDPs: each a-vector (just a VF): O(S)

®"Most problems (in Al especially) are feature-based
* S is exponential in number of variables
* Specification/representation of problem in state form impractical
* EXxplicit state-based dynamic programming impractical
=" Require structured representations
* exploit regularities in probabilities, rewards

®"Require structured computation

e exploit regularities in policies, value functions
* can aid in approximation (anytime computation)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 25

Structured Representation

= States decomposable into state variables

S=X{ XX, X..X,

= Structured representations the norm in Al
* STRIPS, Sit-Calc., Bayesian networks, etc.
* Describe how actions affect/depend on features
* Natural, concise, can be exploited computationally

"Same ideas can be used for MDPs

* actions, rewards, policies, value functions, etc.
* dynamic Bayes nets [Deankanazawa89,BouDeaGol95]
* decision trees and diagrams [BouDeaGol95,Hoeyetal99]

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

26

Action Representation — DBN/ADD

J - Joe needs coffee
L - robot in printer room
P - robot has printout

PiCkUp Pr'inTOUT E - robot gripper empty
J | J(r+1) J(1+1)

'0 O 0 f:(JT+, Tt+1)

| oo

‘ TTT| 1.0 0.0
] FTT| 1.0 00
\ T F 7| 1.0 0.0 fp(L+ P+ Et Pie1)
------ FFT| 1.0 00
= T TF| 0.8 0.2
FTF| 00 1.0
TFF| 0010
@ €) rfles

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 27

Action Representation — DBN/ADD

Pr(J+.1,Lt+1,Pt+1,Ere1 | Jt,Lt,P+.Et)
= f3(J+ T1+1) * fp(L+ Pt Et Pte1)

@ : @ * f (Lt Lt+e1) * Fe(Et Ete1)

@ - Only 28 parameters vs.

®\\ 256 for matrix 5152 ... 5256

$1/09005 ... 00
e - s:2 00020 __ 01
‘)< 5;6 0100 ... 00
@ R @ -Removes global exponential

' dependence

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Action Representation — DBN/ADD

Pickup Printout » Algebraic

Decision
Diagram
0 —© oD
@ P('r+1) P('r+1) P(t+1)
‘\\‘ 1. o 0. o 0.8 o 2
@X@ - ADDs, decision trees, Horn rules,

- both compact and natural

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

DBN Remarks

"Dynamic Bayes net action representation
* each state variable occurs at time t and t+1
* dependence of time t+1 variables on time t variables

= can also depend on other time t+1 variables (provided the
DBN remains acyclic) to capture correlations in action effects

* no quantification of time t variables is specified (since we don’t
care about prior)

* s0 DBN represents a family of conditional distributions over
the time t+1 variables given the time t variables

* compact representation of CPTs using trees, ADDs, Horn rules
exploits context-specific independence [BFGK96]

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 30

Reward Representation

"Rewards represented similarly
* save on 2" size of vector rep’n

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

JC - Joe has coffee
JP - Joe has printout
CC - Craig has coffee
CP - Craig has printout
BC- Battery charged

JC
CP

cC

JP BC/\JP
SETe

1

31

Reward Representation

"Rewards represented similarly
* save on 2" size of vector representation

= Additive independent (or GAI) reward
also very common
* as in multi-attribute utility theory

* offers more natural and concise
representation for many types of
problems

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

cC

/N

20

10

CT

CP

32

Structured Computation

= (Given compact representation, can we solve MDP
without explicit state space enumeration?

=Can we avoid O(|S|)-computations by exploiting
regularities made explicit by DBNs/ADDs?

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

33

State Space Abstraction

= General method: state aggregation
* group states, treat aggregate as single state
e commonly used in OR [SchPutKin85, BertCast89]
* viewed as automata minimization [DeanGivan96]

= Abstraction is a specific aggregation technique
* aggregate by ignoring details (features)
* ideally, focus on relevant features

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

34

Graphical View of Abstraction

‘A \zs A
7\
- B
. 7= 7"\
ABC | C
> 2 7\
ABC
_ J L y

Value function (or policy choice) depends only on a small
subset of variables (A,B,C) and not others (D,E,F,..);
and may do so in a "structured” fashion.

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

35

Decision-Theoretic Regression

®"(Goal regression a classical abstraction method

* Regr(G,a) is a logical condition C under which a leads to G
(aggregates C states and ~C states)

"Decision-theoretic analog: given “logical description” of
V1 produce such a description of VVt or optimal policy
(e.g., using ADDs)

= Cluster together states at any point in calculation with
same best action (policy), or with same value (VF)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 3 6

| A Graphical View of DTR

Q'(a)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

37

Functional View of DTR

=Generally, Vt*1 depends on only a subset of variables
(usually in a structured way)

®\What is value of action a at time t (at any s)?

@ ‘@ f1(T+.Tte1) vrd

-
@ ’@ fL(L+ L++1) [\
‘>‘ fo(L+. Pt E+ Prai) ZO/E\O
@ @ fe(E+ Etr.1)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

38

Functional View of DTR

" Assume VF V%1 is structured: what is value of doing
action a attimet ?

= Use variable elimination!

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

39

Functional View of DTR

" Assume VF V%1 is structured: what is value of doing
action a at time t ? (Use variable elimination!)

Qat(Jt, Lt,Pt Et)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Functional View of DTR

" Assume VF V%1 is structured: what is value of doing
action a at time t ? (Use variable elimination!)

Qat(Jt, Lt,Pt Et)

=R+ 2 peen) Pro@ee,Less, Ped Bt | It Lt PeEr) Visa(Jest, Lest, Pest Eena)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

41

Functional View of DTR

" Assume VF V%1 is structured: what is value of doing
action a at time t ? (Use variable elimination!)

Qat(Jt, Lt,Pt Et)
=R+ 2 peen) Pro@ee,Less, Ped Bt | It Lt PeEr) Visa(Jest, Lest, Pest Eena)

=R+ 2| pew) Fa(Jeden) fo(LePeEePrsa) fi(LeLera) fe(EeErt) Vira(Pesa Evea)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

42

Functional View of DTR

" Assume VF V%1 is structured: what is value of doing
action a at time t ? (Use variable elimination!)

Qat(Jt, Lt,Pt Et)
=R+ ZJ,L,P,E(t+1) Pré(Jes1,Lest,Pest vt | I, L, Pt Er) Vier(Jee, Les1, Prst Ersa)
=R+ 2| pew) Fa(Jeden) fo(LePeEePrsa) fu(LeLera) fe(EtEet) Vira(Pess Evea)

=R+ 2| pgiep) fr(LePtEePrsa) fu(LeLera) fe(ErEet) Vira(Pess Evea)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

43

Functional View of DTR

Qat(Jt, Lt,Pt Et)
=R+ 2 peen) Pro(ee,Les, Pet Eeet | It Lt PeEr) Vesa (Jeet, Lest, Pest Etn)
=R+ 25| peen) F(Jtde) (Lo PLEePesa) fi(LiLiss) fe(EeEer) Visa(Per Eve)

=R+ 2 pew) fr(LtPuEtPesa) fi(LeLes) fe(EtErst) Visa(Pera Evea)

=\When V"1 depends on subset of variables:

. Qt(a) usually depends on subset of variables as well

* Computation can be structured without exponential blowup (VE)
* Further enhancements: Each function represented as ADD

e ... and ADD operations allow structure to be preserved

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

44

Structured Value lteration

= Assume compact representation of VK
* start with R at stage-to-go O (say)

"For each action a, compute Qk+1 using variable
elimination on the two-slice DBN
* eliminate all k-stage-to-go variables, leaving only k+1 variables
* use ADD operations when initial representation (Pr, R) are ADDs

=Compute VK+1 = max, Qk+1
* use ADD operations again to preserve structure, efficiency
"Policy iteration can be approached similarly

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 45

Structured Policy and Value Function

HCU /HCU\)
No{\H R w HCR
Pol Lo 9.0010.00 [¢ Loc
DelC w BuyC VV/\VV VV/\VV
A NA VAN
R 745 R 664 p 519 58 p
\ N\ \ N N\
/U\ U U U U
Go GetU 8\1./458 36 7¢./64 6.81 (jf195 62 64,/33 6.10

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 46

Example Action Reward/Representation

™\ T\ _.o----"" APU| AP - .
@ - APU"__ T[10 _> /N MKE} falsa
- Floo 10 00 /A

-)
BPU | =(BPU .G
_/ s € PL APU BPU ADR BDRBO |C’ \\
/T TF TF TF TF TF TF|09 L’ \
e S F T T T TF TFT |09 M '.\
[PL 3 F T T T TF TFF |00 ; ARU
\,_/ F T T F TF TFTF|00 P N) ‘\ {/—\
’ F T F TFE T T T |09 po BB [P '/C
F T F TF T T F |00 —, Mo | | / 3
/ k‘f F T FE TF T F TF|oo —> AI}{‘ || \ N~ REWARD P 00
F T F TF F TFTF|oo Y BDR | | .f/ \ /' 1 5,0}0
™, F F TF TF T T T |09 Vo o
N F F TF TF T T F |00 Vo \'go \\ \—/
(ADR |ADR . F F TF TF T F TF|oo Vo \
\, / F F TF TF F TFTF|oo VL
'Rl
//"\ - 0.0 0.9
| BDR éDR
_/ -
R (N\
6&'0 —-\lin
N\ :
N (N Matrix ADD Reward
| P Py Representation Representation Network
N N
(a) (b) ()

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 47

ADD:

Example Value Function

C
/ s \
P*-.
/ N '/
18.1 9.05 PL PL
SN
’/APU ; i APU
BPU N .’J BPU
IR R T }
AN
BDR . | BDR
‘/ \\ I, : \\
BO X 1[,' BO
/ \i 7 g \
8.1 =0, 0 4.05

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

48

SPUDD Results

Example State space size SPUDD - Value SPI - Value ratio of
Name variables states time (s) mternal leaves equiv. tume (s) internal leaves tree nodes:
ternary total nodes tree nodes ADD nodes
leaves
factory 3 14 55296 - - - - 2210.6 6721 7879 8.12
0 17 131072 78.0 828 147 8937 2188.23 9513 9514 11.48
factory0 3 16 221184 - - - - 57631 15794 18451 13.89
0 19 524288 111.4 1137 147 14888 6238.4 22611 22612 19.89
factoryl 3 18 884736 - - - - 147319 31676 37315 14.60
0 21 2097132 279.0 2169 178 49558 15430.6 44304 44305 20.43
factory2 3 19 1769472 - - - - 14742.4 31676 37315 14.60
0 22 4194304 4621 2169 178 49558 15465.0 44304 44305 20.43
factory3 4 21 10616832 - - - - 98340.0 138056 168207 2931
0 25 33554432 3609 4 4711 208 242840 |112760.1 193318 193319 41.04
factory4 4 24 63700992 - - - - - - - -
0 28 268435456 | 14651.5 7431 238 707890 - - - -

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

49

Decision-theoretic Regression: Relative Merits

= Adaptive, nonuniform, exact abstraction method
* provides exact solution to MDP

* much more efficient on certain problems (time/space)
* see SPUDD package

"Some drawbacks

* produces piecewise constant VF

* some problems admit no compact solution representation
(though ADD overhead “minimal”)

* approximation may be desirable or necessary

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 50

Approximate Decision-theoretic Regression

= Straightforward to approximate solution using DTR

= Simple pruning of value function
e Can prune trees [Boubearden96] OF ADDS [StAubinHoeyBou00]

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

51

A Pruned Value ADD

HCU HCU

T T

w HCR [9.00, 10.00] HCR

A AN

Loc [5.19, 6.19]

N A AN\

w W 5.19 R [7.45, 8.45] [6.64, 7.64]
/\ /\ N
7.45 R 6.64 R U
’\U \U (;1TI95 62

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 52

Approximate Decision-theoretic Regression

= Straightforward to approximate solution using DTR

= Simple pruning of value function
e Can prune trees [Boubearden96] OF ADDS [StAubinHoeyBou00]

= (ives regions of approximately same value

=Can derive simple error bounds as well

* e.g., for pruned versions of value iteration (with discount factor g,
stopping criterion £ and maximum approximation span .

Vs

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 5 3

B 23(20 +¢)
=13

Approximate DTR: Relative Merits

= Relative merits of ADTR

* fewer regions implies faster computation
* can provide leverage for optimal computation
= e.g., start with aggressive pruning, then relax (exploit contraction)

* allows fine-grained control of time vs. solution quality with dynamic (a
posteriori) error bounds

* technical challenges: variable ordering, convergence, fixed vs. adaptive
tolerance, etc.

= Some drawbacks
* (still) produces piecewise constant VF
* doesn’t exploit additive structure of VF at all
= Many other ways of exploiting structure, DBNSs, etc.

* function approximation (especially linear approximations)
* decompositions (sub-problem structure, etc.)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 54

State-based Decomposition

*"MDP may have weakly or non-interacting subcomponents

* E.g., policy for running several assembly lines, robots, ...
= Actions taken for one may have no (or little) impact on others
= Can solve for policies independently if no interaction

= |[f some interaction, use “independent” policies and values to guide
the coordination (e.g., interaction limited to occasional assignment of
resources to each assembly line)

O—0—=0—
0= 0= 0=
QRO
/l /’ /’
0—0=0=
0= 0= 0=
e

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

55

Temporal Abstraction

= Solve local MDPs over specific “regions” of state space
* Macro-actions, “local policies,” temporally-extended actions
* Use the local policies as actions in an smaller abstract MDP
* Fast value propagation, small abstract MDP, prior knowledge, ...

* |ssues: which macros, computing macro-models (state space),
transferability/reuse for new domains/objectives, ...

From Sutton, Precup, Singh, AlJ-99

4 stochastic
MLWAYS ——1 primitive actions
| e Primitive
left right Falds% options
D=
f % 5, down C "4
I
N G, 8 multi-step options
0, = (to each room’s 2 hallways)
Hallway
Target ofptlo ns
Hallway O=H

Initial Values lteration #1 lteration #2

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 56

Linear Value Function Approximation

= Set of basis functions: B = {by, by, ..., by}

* Each b;: S — R assigns value to states, compact (e.g., depends
only on a few state features)

" Approx. V with linear combination: V(s) = Y, w;b;(s)
* Compact representation: weight vector w and small basis f'ns
* Limits VF to fall within space spanned by B
= Approx. value iteration: sequence w®) of k-stage-to-go VFs

* Run Bellman back up on w®to produce w**1 = [(wk))

* Trick: w1 ysually falls out of B-space, but still compact; project
back into B-space before moving to next iteration

* |ssues: good set of basis functions? Keeping computation tractable
(Bellman backup, projection), e.g., exploiting DBNs? etc.

"Policy iteration, etc. can also be used

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

57

	2534 Lecture 6: Tractable Solutions of MDPs and POMDPs
	Recap: POMDPs
	Recap: POMDPs: Basic Model
	Recap: History-based Policies
	Recap: Belief States
	Recap: Belief State MDP
	Recap: Belief State MDP Graphically
	Recap: PWLC Value Function
	Recap: Representation of Q-function
	Recap: Linear Support Graphically
	Sources of Intractability
	Approximation Strategies
	Approximation Strategies
	Grid-based Approximations
	Belief Grid (2-D, 3-D), with VF (2-D)
	Grid-based Value Iteration
	Point-based Value Iteration
	Point-based Value Iteration
	PBVI: Which Belief States (Grid)?
	PBVI: Observations
	PBVI: Performance (works pretty well)
	PERSEUS
	Perseus Performance (TAG domain)
	Slide Number 24
	State Space Explosion
	Structured Representation
	Action Representation – DBN/ADD
	Action Representation – DBN/ADD
	Action Representation – DBN/ADD
	DBN Remarks
	Reward Representation
	Reward Representation
	Structured Computation
	State Space Abstraction
	Graphical View of Abstraction
	Decision-Theoretic Regression
	A Graphical View of DTR
	Functional View of DTR
	Functional View of DTR
	Functional View of DTR
	Functional View of DTR
	Functional View of DTR
	Functional View of DTR
	Functional View of DTR
	Structured Value Iteration
	Structured Policy and Value Function
	Example Action Reward/Representation
	ADD: Example Value Function
	SPUDD Results
	Decision-theoretic Regression: Relative Merits
	Approximate Decision-theoretic Regression
	A Pruned Value ADD
	Approximate Decision-theoretic Regression
	Approximate DTR: Relative Merits
	State-based Decomposition
	Temporal Abstraction
	Linear Value Function Approximation

