2534 Lecture 6: Tractable Solutions of MDPs
and POMDPs

®"Discuss basic algorithms for POMDPs (from last time)
"POMDPs: Point-based Value lteration
= Structured Models of MDPs

" Announcements
* Asst.1 due today

* Project discussions slots on Tues, Thurs, Friday this week
= 20 minute time slots (come prepared)
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Recap: POMDPs

"POMDPs offer a very general model for sequential
decision making allowing:
* uncertainty in action effects
* uncertainty in knowledge of system state, noisy observations
* multiple (possibly conflicting) objectives
* nonterminating, process-oriented problems

"]t Is the uncertainty in system state that distinguishes
them from MDPs
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Recap: POMDPs: Basic Model

=5As in MDPs: S, A, pi?, i, riT

=Observation space: Z (or Z.)

="(Observation probabilities: pﬁ‘z forzeZ,
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Recap: History-based Policies

" Information available at time t:
* initial distribution (belief state) b € A(S)

* history of actions, observations: al, zl, a2, 22,..., at'l, Zt-1

®"Thus, we can view a policy as a mapping:
7:A(S)xHET = A

"For given belief state b, it is a conditional plan

e.g.,

MN;MN;EX:-

(if Def:IN:MN:MN...
If Def:RP;MN...

else:MN:;MN;EX
else:MN...

\

* notice distinction with MDPs: can’t map from state to actions
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Recap: Belief States

"History-based policy grows exponentially with horizon
* infinite horizon POMDPs problematic

=Belief state b € A(S) summarizes history sufficiently [Aoki
(1965), Astrom (1965)]

"|_et b be belief state; suppose we take action a, get obs z
" et T(b,a,z) be updated belief state (transition to new b)
"If we let bj denote Pr(S = 1), we update:

T(b,a,z) =Pr(ila,zb)

=aPr(z|i,ab)Pr(i|lab)

2 biPi PR
Z]kbk pjak pjakZ
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Recap: Belief State MDP

="POMDP now an MDP with state space A(S)
"Reward: I =b-r*= Zi b.r:°
=Transitions: Py, =Pr(z|b,a) if b' = T(b,a,z); 0 o.w.

= Optimality Equations:

Qk(b)=b-ra 3, piyVH(b)
=%b [6°+ 3 P}, PRV (T (b,a,2))]

V¥ (b) = mngg (b)| |7*(b) = arg maxQX (b)
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Recap: Belief State MDP Graphically

Pr(z1a.b) bl:T(b'aa
@ Pr(ZZIGIb) > bzzT(b,aa

P b
r(z3la,b) b3=T(b,a@

Belief State Transitions for Action a, Belief State b
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Recap: PWLC Value Function

Value \
X
b(s;)=0 Belief State b(s,)
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Recap: Representation of Q-function

PWLC Representation of Qg

o, corresponds to “"Do(a):
if z1, do(red);
if z2, do(green)"”
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Recap: Linear Support Graphically

Value at
withess wl

Value bt
withessjw?2

wl wl
Belief State
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Sources of Intractability

=Size of a-vectors
* each is size of state space (exponential in number of variables)

"Number of a-vectors
* potentially grows exponentially with horizon

"Belief state monitoring

* must maintain belief state online in order to implement policy
using value function

* belief state representation: size of state space
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Approximation Strategies

=Sizes of problems solved exactly are quite small
* various approximation methods developed
* often deal with 1000 or so states, not much more

"Grid-Based Approximations
* compute value at small set of belief states
* require method to “interpolate” value function
* require grid-selection method (uniform, variable, etc.)
* we'll discuss one method (Perseus/PBVI) today
"Finite Memory Approximations

* e.g., policy as function of most recent actions, observations
* can sometimes convert VF into finite-state controller
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Approximation Strategies

"|_earning Methods
* assume specific value function representation
* e.g., linear value function, smooth approximation, neural net
* train representation through simulation
"Heuristic Search Methods
* search through belief space from initial state
* requires good heuristic for leverage
* heuristics could be generated by other methods
=Structure-based Approximations
* E.g., based on decomposability of problem
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Grid-based Approximations

"High level motivation:

* number of a vectors grows exponentially (even in practice) with
horizon (one of biggest impediments to solving POMDPS)

* intuitively, need optimal policies for every belief point

* instead, we could select a finite sample (or grid) of belief points
on the n-dimensional simplex and compute optimal value
function (or policy) for those points

* for any other belief points not on grid, use some interpolation
scheme

* can define a simple value iteration scheme based on this idea

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 1 4



Belief Grid (2-D, 3-D), with VF (2-D)

b1 b, bs  bs 4
P(s1)

o)

2 state POMDP (50,51)

P(s2)

0 P(s1) 1

3 state POMDP (So,Sl,Sz)
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Grid-based Value lteration

= Given value function V(k-1) on grid B
= Compute value V(k) at grid points in usual way

Qk(b)=3yb [r2+3 pax, PRV (T(b,a,z))]

= Problem: T(b,a,z) not usually on grid evenif b is
= Solution: use some form of interpolation over V(k-1)

0]

byb, bs b
V(k-1)

bib, by bs

o)
V(k)

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

16



Point-based Value lteration

= Grid-based methods expensive, performance debatable
* Selecting suitable grid, interpolation can be expensive

"But recall approximation based on Cheng’s linear support
* just use a subset of a-vectors

"PBVI methods combine the two insights

* select a small subset of belief points

* but compute/backup a-vectors instead of just values

* no interpolation, use collection of a-vectors as VF representation
"Briefly, let’s look at:

* Pineau’s original PBVI

* Spaan and Vlassis Perseus
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Point-based Value lteration

= Main idea (roughly)
* fix a small set of belief points B
* assume approximate set of a-vectors V(k-1)
* do backups for each b in B, using V(k-1), to construct V(k)
* can prune (remove dominated vectors)

* can expand set of belief points in an anytime fashion (add new belief
points if you want, as time permits)

b1y bz b3 by b1y bz bz by
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PBVI. Which Belief States (Grid)?

" |nitial belief states B

* starting at by, consider updated T(b,z,a) reached by taking action a and
sampling a random observation z (sample z with Pr(z|b,a) )

* take belief state from one of these actions, the one that is greatest
distance (L1 or L2) from any belief point in the set

= aim: trying to get maximum coverage of belief space (diversity, but
informed by reachability considerations)

= Repeat as time permits, consider expanding belief set B by
* using same process as above, for each b in B

* double size of belief set at each iteration until you are “satisfied” with
coverage (or number of belief states reaches some threshold)

= Paper discusses other methods for generating belief points
* experiments don’t show large differences except for one (large) domain
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PBVI: Observations

" Time complexity: each backup takes O(SAOVB) ~O(SAOB?)
* each backup requires AO belief projections

* each projection required V value evaluations (to determine which vector
has max value)

* each projection/evaluation takes O(S) time
* B points to backup (and V is bounded by B)
= Error can be bounded based on density of belief grid
* result is straightforward, bound is a bit too loose to be useful

Theorem 1 For any belief set B and any horizon n, the error
of the PBVI algorithm 0, = ||V.B — V*||« is bounded by

Introduce an error by pruning
R — Roin )€
Ny < (Bmas m;n) B away alpha vectors at each
(1—=) stage of:
Rmax-Rmin*eps / (1-gamma)
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PBVI:
Performance
(works pretty
well)

Name

Method Goal% Reward Tiume(s) B
Maze33 / Tiger-Grid

QMDP[*] n.a. 0.198 0.19 n.a.
Grid [Brafman. 1997] n.a. 0.94 n.V. 174
PBUA [Poon, 2001] n.a. 2.30 12116 660
PBVI[*] n.a. 225 3448 470
Hallway

QMDP[#] 47 0.261 0.51 1n.a.
QMDP [Littman et al.., 1995] 47.4 n.v. 1.V. n.a.
PBUA [Poon, 2001] 100 0.53 450 300
PBVI[*] 96 0.53 288 36
Hallway2

QMDP[#] 22 0.109 1.44 1n.a.
QMDP [Littman et al.. 1995] 259 n.v. .V. n.a.
Grid [Brafinan. 1997] 98 n.v. n.v. 337
PBUA [Poon, 2001] 100 0.35 27898 1840
PBVI[*] 98 0.34 360 95
Tag

QMDP[#] 17 -16.769 13.55 1n.a.
PBVI[*] 59 -9.180 180880 1334

n.a.=not applicable

ST O] A

Tiger-grid
Hallway
Hallway2

Tag

33 17 D
57 21
89 L7 15
870 30 D

@]
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PERSEUS

®"Perseus makes a small but useful tweak on PBVI
* fixes a set of belief states B
* given V(k-1), does not update all belief states to get V(k), instead:
= select a random b from B

= do a point-based backup to get a new a-vector «(b) for b
 if new a-vector not improving, use best old one from V(k-1)

= if a(b) improves any other b’ in B, then do not backup b’
= continue until all belief states b’ in B have “improved”, either
through their own backup or by that of some other b
="Simple idea: don’t waste backups on b in B if other
backups have improved its value anyway

* little you can prove about this, but it keeps the size of the sets
V(K) of a-vectors much smaller in practice
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Perseus Performance (TAG domain)

_4_
_6—
_8_
= —10r
> g -12F
S 14
_15_
_'18_
0 f’E} N T R R B =20, T e
<I' = 1° 10t 10° 10 10° 10 10°  10°
time (s) time (s)
(a) State space. (b) Value. (c) Reward.
I 10000
2 10k ﬂA
! 3 8000
P i
g [ 6000 Kl
© 107 L
4 ; <] 4000
i 2000 |-
0
-10 e 1 f nan | vl L1 0 nl T | Ll vl L1
10° 100 10 10° 1 10t 100 10
time (s) time (s)
(d) Nr. of vectors. (e) Policy changes.

Figure 2: Tag: (a) state space with chasing and opponent robot: (b)—(e) performance of
PERSEUS.
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Perseus Performance (Comparative)

Tiger-grid R || T -
— Hallway R || I
HSVI 235 4860 10341 - :
‘ _ | PBVI 0.53 86 288
PERsEUs 234 134 104
_ o PBUA 053 300 450
PBUA 230 660 12116 o
) _ HSVI 0.52 1341 10836
PBVI 225 470 3448 _
_ PErsEus 051 55 35
BPI w/b 222 120 1000 . _ |
_ BPI w/b 0.51 3 185
Grid 0.94 174 n.a. O 0.97 134
oN 27 n.a. e
Osmpe 023 ma. 276 o
(b) Results for Hallway.
(a) Results for Tiger-grid.
) Tag R Jr] T
Hallway2 R || I - -
: PErseus =617 280 1670
PErRsEUs 0.3 56 10 . o
. o HSVI —6.37 1657 10113
HSVI 0.35 1571 10010 J - o
i BPI w/b  —6.65 17 250
PBUA 0.35 1840 27898 o .
) BBSLS ~ —-8.3 30 10°
PBVI 0.34 95 360 J _ -
, _ i BPIn/b =918 940 59772
BPIw/b 032 60 790 ] _ . |
_ PBVI =918 1334 180830
(—L)I‘\{TDP [](]9 11.4a. 223

Owvipp  —16.9  n.a. 16.1

(c) Results for Hallway2.
(d) Results for Tag.
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State Space Explosion

"For MDPs/POMDPs, state space explosion is a key issue
* MDPs, POMDPs: transition, reward, obs rep’n are O(S2), O(S)
* MDPs: value functions and policies: O(S)
* POMDPs: each a-vector (just a VF): O(S)

®"Most problems (in Al especially) are feature-based
* S is exponential in number of variables
* Specification/representation of problem in state form impractical
* EXxplicit state-based dynamic programming impractical
=" Require structured representations
* exploit regularities in probabilities, rewards

®"Require structured computation

e exploit regularities in policies, value functions
* can aid in approximation (anytime computation)
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Structured Representation

= States decomposable into state variables

S=X{ XX, X..X,

= Structured representations the norm in Al
* STRIPS, Sit-Calc., Bayesian networks, etc.
* Describe how actions affect/depend on features
* Natural, concise, can be exploited computationally

"Same ideas can be used for MDPs

* actions, rewards, policies, value functions, etc.
* dynamic Bayes nets [Deankanazawa89,BouDeaGol95]
* decision trees and diagrams [BouDeaGol95,Hoeyetal99]
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Action Representation — DBN/ADD

J - Joe needs coffee
L - robot in printer room
P - robot has printout

PiCkUp Pr'inTOUT E - robot gripper empty
J | J(r+1) J(1+1)

'0 O 0 f:(JT+, Tt+1)

| oo

‘ TTT| 1.0 0.0
] FTT| 1.0 00
\ T F 7| 1.0 0.0 fp(L+ P+ Et Pie1)
------ FFT| 1.0 00
= ...... T TF| 0.8 0.2
FTF| 00 1.0
TFF| 0010
@ €) rfles
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Action Representation — DBN/ADD

Pr(J+.1,Lt+1,Pt+1,Ere1 | Jt,Lt,P+.Et)
= f3(J+ T1+1) * fp(L+ Pt Et Pte1)

@ : @ * f (Lt Lt+e1) * Fe(Et Ete1)

@ - Only 28 parameters vs.

®\\ 256 for matrix 5152 ... 5256

$1/09005 ... 00
e - s:2 00020 __ 01
‘)< 5;6 0100 ... 00
@ R @ -Removes global exponential

' dependence
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Action Representation — DBN/ADD

Pickup Printout » Algebraic

Decision
Diagram
0 —© oD
@ P('r+1) P('r+1) P(t+1)
‘\\‘ 1. o 0. o 0.8 o 2
@X@ - ADDs, decision trees, Horn rules,

- both compact and natural
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DBN Remarks

"Dynamic Bayes net action representation
* each state variable occurs at time t and t+1
* dependence of time t+1 variables on time t variables

= can also depend on other time t+1 variables (provided the
DBN remains acyclic) to capture correlations in action effects

* no quantification of time t variables is specified (since we don’t
care about prior)

* s0 DBN represents a family of conditional distributions over
the time t+1 variables given the time t variables

* compact representation of CPTs using trees, ADDs, Horn rules
exploits context-specific independence [BFGK96]
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Reward Representation

"Rewards represented similarly
* save on 2" size of vector rep’n

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

JC - Joe has coffee
JP - Joe has printout
CC - Craig has coffee
CP - Craig has printout
BC- Battery charged

JC
CP

cC

JP BC/\JP
SETe

1
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Reward Representation

"Rewards represented similarly
* save on 2" size of vector representation

= Additive independent (or GAI) reward
also very common
* as in multi-attribute utility theory

* offers more natural and concise
representation for many types of
problems

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

cC

/N

20

10

CT
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Structured Computation

= (Given compact representation, can we solve MDP
without explicit state space enumeration?

=Can we avoid O(|S|)-computations by exploiting
regularities made explicit by DBNs/ADDs?

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier
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State Space Abstraction

= General method: state aggregation
* group states, treat aggregate as single state
e commonly used in OR [SchPutKin85, BertCast89]
* viewed as automata minimization [DeanGivan96]

= Abstraction is a specific aggregation technique
* aggregate by ignoring details (features)
* ideally, focus on relevant features
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Graphical View of Abstraction

‘A \zs A
7\
- B
. 7= 7"\
ABC | C
> 2 7\
ABC
\_ J L y

Value function (or policy choice) depends only on a small
subset of variables (A,B,C) and not others (D,E,F,..);
and may do so in a "structured” fashion.
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Decision-Theoretic Regression

®"(Goal regression a classical abstraction method

* Regr(G,a) is a logical condition C under which a leads to G
(aggregates C states and ~C states)

"Decision-theoretic analog: given “logical description” of
V1 produce such a description of VVt or optimal policy
(e.g., using ADDs)

= Cluster together states at any point in calculation with
same best action (policy), or with same value (VF)
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| A Graphical View of DTR

Q'(a)
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Functional View of DTR

=Generally, Vt*1 depends on only a subset of variables
(usually in a structured way)

®\What is value of action a at time t (at any s)?

@ ‘@ f1(T+.Tte1) vrd

-
@ ’@ fL(L+ L++1) [\
‘>‘ fo(L+. Pt E+ Prai) ZO/E\O
@ @ fe(E+ Etr.1)
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Functional View of DTR

" Assume VF V%1 is structured: what is value of doing
action a attimet ?

= Use variable elimination!
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Functional View of DTR

" Assume VF V%1 is structured: what is value of doing
action a at time t ? (Use variable elimination!)

Qat(Jt, Lt,Pt Et)
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Functional View of DTR

" Assume VF V%1 is structured: what is value of doing
action a at time t ? (Use variable elimination!)

Qat(Jt, Lt,Pt Et)

=R+ 2 peen) Pro@ee,Less, Ped Bt | It Lt PeEr) Visa(Jest, Lest, Pest Eena)
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Functional View of DTR

" Assume VF V%1 is structured: what is value of doing
action a at time t ? (Use variable elimination!)

Qat(Jt, Lt,Pt Et)
=R+ 2 peen) Pro@ee,Less, Ped Bt | It Lt PeEr) Visa(Jest, Lest, Pest Eena)

=R+ 2| pew) Fa(Jeden) fo(LePeEePrsa) fi(LeLera) fe(EeErt) Vira(Pesa Evea)
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Functional View of DTR

" Assume VF V%1 is structured: what is value of doing
action a at time t ? (Use variable elimination!)

Qat(Jt, Lt,Pt Et)
=R+ ZJ,L,P,E(t+1) Pré(Jes1,Lest,Pest vt | I, L, Pt Er) Vier(Jee, Les1, Prst Ersa)
=R+ 2| pew) Fa(Jeden) fo(LePeEePrsa) fu(LeLera) fe(EtEet) Vira(Pess Evea)

=R+ 2| pgiep) fr(LePtEePrsa) fu(LeLera) fe(ErEet) Vira(Pess Evea)
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Functional View of DTR

Qat(Jt, Lt,Pt Et)
=R+ 2 peen) Pro(ee,Les, Pet Eeet | It Lt PeEr) Vesa (Jeet, Lest, Pest Etn)
=R+ 25| peen) F(Jtde) (Lo PLEePesa) fi(LiLiss) fe(EeEer) Visa(Per Eve)

=R+ 2 pew) fr(LtPuEtPesa) fi(LeLes) fe(EtErst) Visa(Pera Evea)

=\When V"1 depends on subset of variables:

. Qt(a) usually depends on subset of variables as well

* Computation can be structured without exponential blowup (VE)
* Further enhancements: Each function represented as ADD

e ... and ADD operations allow structure to be preserved
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Structured Value lteration

= Assume compact representation of VK
* start with R at stage-to-go O (say)

"For each action a, compute Qk+1 using variable
elimination on the two-slice DBN
* eliminate all k-stage-to-go variables, leaving only k+1 variables
* use ADD operations when initial representation (Pr, R) are ADDs

=Compute VK+1 = max, Qk+1
* use ADD operations again to preserve structure, efficiency
"Policy iteration can be approached similarly
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Structured Policy and Value Function

HCU /HCU\)
No{\H R w HCR
Pol Lo 9.0010.00 [ ¢ Loc
DelC w BuyC VV/\VV VV/\VV
A NA VAN
R 745 R 664 p 519 58 p
\ N\ \ N N\
/U\ U U U U
Go GetU 8\1./458 36 7¢./64 6.81 (jf195 62 64,/33 6.10
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Example Action Reward/Representation

™\ T\ _.o----"" APU| AP - .
@ - APU"__ T[10 _> /N MKE} falsa
- Floo 10 00 /A

- )
BPU | =(BPU .G
\\_/ s € PL APU BPU ADR BDRBO |C’ \\
/T TF TF TF TF TF TF|09 L’ \
e S F T T T TF TFT |09 M '.\
[ PL 3 F T T T TF TFF |00 ; ARU
\,_/ F T T F TF TFTF|00 P N ) ‘\ {/—\
’ F T F TFE T T T |09 po BB [ P '/C
F T F TF T T F |00 —, Mo | | / 3
/ k‘f F T FE TF T F TF|oo —> AI}{‘ || \ N~ REWARD P 00
F T F TF F TFTF|oo Y BDR | | .f/ \ /' 1 5,0}0
™, F F TF TF T T T |09 Vo o
N F F TF TF T T F |00 Vo \'go \\ \—/
( ADR |ADR . F F TF TF T F TF|oo Vo \
\, / F F TF TF F TFTF|oo VL
'Rl
//"\ - 0.0 0.9
| BDR éDR
_/ -
R ( N\
6&'0 —-\lin
N\ :
N ( N Matrix ADD Reward
| P Py Representation Representation Network
N N
(a) (b) ()

CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier 47



ADD:

Example Value Function

C
/ s \
P*-.
/ N '/
18.1 9.05 PL PL
SN
’/APU ; i APU
BPU N .’J BPU
IR R T }
AN
BDR . |  BDR
‘/ \\ I, : \\
BO X 1[ ,' BO
/ \i 7 g \
8.1 =0, 0 4.05
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SPUDD Results

Example State space size SPUDD - Value SPI - Value ratio of
Name variables states time (s) mternal leaves equiv. tume (s) internal leaves tree nodes:
ternary total nodes tree nodes ADD nodes
leaves
factory 3 14 55296 - - - - 2210.6 6721 7879 8.12
0 17 131072 78.0 828 147 8937 2188.23 9513 9514 11.48
factory0 3 16 221184 - - - - 57631 15794 18451 13.89
0 19 524288 111.4 1137 147 14888 6238.4 22611 22612 19.89
factoryl 3 18 884736 - - - - 147319 31676 37315 14.60
0 21 2097132 279.0 2169 178 49558 15430.6 44304 44305 20.43
factory2 3 19 1769472 - - - - 14742.4 31676 37315 14.60
0 22 4194304 4621 2169 178 49558 15465.0 44304 44305 20.43
factory3 4 21 10616832 - - - - 98340.0 138056 168207 2931
0 25 33554432 3609 4 4711 208 242840 |112760.1 193318 193319 41.04
factory4 4 24 63700992 - - - - - - - -
0 28 268435456 | 14651.5 7431 238 707890 - - - -
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Decision-theoretic Regression: Relative Merits

= Adaptive, nonuniform, exact abstraction method
* provides exact solution to MDP

* much more efficient on certain problems (time/space)
* see SPUDD package

"Some drawbacks

* produces piecewise constant VF

* some problems admit no compact solution representation
(though ADD overhead “minimal”)

* approximation may be desirable or necessary
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Approximate Decision-theoretic Regression

= Straightforward to approximate solution using DTR

= Simple pruning of value function
e Can prune trees [Boubearden96] OF ADDS [StAubinHoeyBou00]
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A Pruned Value ADD
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Approximate Decision-theoretic Regression

= Straightforward to approximate solution using DTR

= Simple pruning of value function
e Can prune trees [Boubearden96] OF ADDS [StAubinHoeyBou00]

= (ives regions of approximately same value

=Can derive simple error bounds as well

* e.g., for pruned versions of value iteration (with discount factor g,
stopping criterion £ and maximum approximation span .

Vs
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Approximate DTR: Relative Merits

= Relative merits of ADTR

* fewer regions implies faster computation
* can provide leverage for optimal computation
= e.g., start with aggressive pruning, then relax (exploit contraction)

* allows fine-grained control of time vs. solution quality with dynamic (a
posteriori) error bounds

* technical challenges: variable ordering, convergence, fixed vs. adaptive
tolerance, etc.

= Some drawbacks
* (still) produces piecewise constant VF
* doesn’t exploit additive structure of VF at all
= Many other ways of exploiting structure, DBNSs, etc.

* function approximation (especially linear approximations)
* decompositions (sub-problem structure, etc.)
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State-based Decomposition

*"MDP may have weakly or non-interacting subcomponents

* E.g., policy for running several assembly lines, robots, ...
= Actions taken for one may have no (or little) impact on others
= Can solve for policies independently if no interaction

= |[f some interaction, use “independent” policies and values to guide
the coordination (e.g., interaction limited to occasional assignment of
resources to each assembly line)

O—0—=0—
0= 0= 0=
QRO
/l /’ /’
0—0=0=
0= 0= 0=
e
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Temporal Abstraction

= Solve local MDPs over specific “regions” of state space
* Macro-actions, “local policies,” temporally-extended actions
* Use the local policies as actions in an smaller abstract MDP
* Fast value propagation, small abstract MDP, prior knowledge, ...

* |ssues: which macros, computing macro-models (state space),
transferability/reuse for new domains/objectives, ...

From Sutton, Precup, Singh, AlJ-99

4 stochastic
MLWAYS ——1 primitive actions
| e Primitive
left right Falds% options
D=
f % 5, down C "4
I
N G, 8 multi-step options
0, = (to each room’s 2 hallways)
Hallway
Target ofptlo ns
Hallway O=H

Initial Values lteration #1 lteration #2
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Linear Value Function Approximation

= Set of basis functions: B = {by, by, ..., by}

* Each b;: S — R assigns value to states, compact (e.g., depends
only on a few state features)

" Approx. V with linear combination: V(s) = Y, w;b;(s)
* Compact representation: weight vector w and small basis f'ns
* Limits VF to fall within space spanned by B
= Approx. value iteration: sequence w®) of k-stage-to-go VFs

* Run Bellman back up on w®to produce w**1 = [ (wk))

* Trick: w1 ysually falls out of B-space, but still compact; project
back into B-space before moving to next iteration

* |ssues: good set of basis functions? Keeping computation tractable
(Bellman backup, projection), e.g., exploiting DBNs? etc.

"Policy iteration, etc. can also be used
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