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2534 Lecture 5: Partially Observable MDPs

Discuss algorithms for MDPS (from last time)
Introduce partially observable MDPs (POMDPs): the 

basic model and algorithms
Announcements

• Asst.1 posted yesterday, due in two weeks (Oct.13)
• See web page for handout on course projects: email today with 

times for project discussion (20 minute time slots via Doodle)
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Partially Observable MDPs (POMDPs)

POMDPs offer a very general model for sequential 
decision making allowing:

• uncertainty in action effects
• uncertainty in knowledge of system state, noisy observations
• multiple (possibly conflicting) objectives
• nonterminating, process-oriented problems

It is the uncertainty in system state that distinguishes 
them from MDPs
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Potential Applications

Because of generality, potential applications of POMDPs 
are numerous

• maintenance scheduling, quality control
• medical diagnosis, treatment planning
• finance, economics
• robot navigation
• assistive technologies
• Web site control of information, interaction
• and a host of others

But only tiny problems are solvable!
• limited practical experience with general methods

3CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier



4

COACH*
POMDP for prompting Alzheimer’s patients

• solved using factored models, value-directed compression of 
belief space

Reward function (patient/caregiver preferences)
• indirect assessment (observation, policy critique)
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Example: Machine Maintenance (Sondik 73)

Machine makes 1 product/hr
• machine has 2 components (each subj. to failure)
• each failed component damages product independently (p=0.5)

Each hour you choose either:
• let machine run (MF)
• MF and examine (at a cost) output for defects (EX)
• inspect machine components; replace faulty component(s) (IN)
• simply replace both components (RP)

What is optimal course of action (given uncertainty about 
status of machine components)?
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Example: Robot Navigation (Hauskrecht 97)

Task: from uncertain start state, reach goal
Four “basic” actions, two “sensing” actions

• Both types are stochastic
What is optimal control policy for goal attainment?

Add you own favorite domain: medical, finance, IR, product 
recommendation, …
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Common Ingredients

Actions change system state (stochastically)
• MF produces (damaged?) part; component may fail

States/actions more or less rewarding/costly
• prefer undamaged parts; few inspections, replacements

Uncertainty about true state of system
• but some actions provide (noisy, partial) information about state
• EX (examine product) gives some info about component status
• IN (inspect machine) gives full info about component status

Policy must take into account this uncertainty
• act differently if component likely/not likely failed

POMDPS a suitable model for such problems
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Partially-Observable MDPs

MDP model assumes system state is known
• but this is unrealistic in many settings
• policy                    not implementable if state unknown

• Would you ever makes sense to take the action EXAMINE/INSPECT in 
an MDP?

• Extend model to allow incomplete state information
• Extend notion of policy to deal with such uncertainty
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POMDPs: Basic Model

As in MDPs: S, A,     ,     ,

Observation space: Z (or )

Observation probabilities:         for 
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Machine Replacement Example

States S: 0, 1, 2 (number of failed components)
Transitions         for actions MN and EX given by:

• IN and RP fix any faulty components: go to state 0 with Pr=1.0

Observations: Null (N), Defective (D), Working (W)

Observation probs for action EX given by:

Observation probs for other actions:
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Interpretation of Machine Replacement

State transitions reflect each component having a 0.1 chance of failing 
after MN (or EX)

Observation probabilities reflect the noisy nature of product examination 
and defects:

• probability of each damaged component causing product defect is 0.5 
(noisy or, independent)
 if S=0, Pr(defect) = 0; S=1, Pr(defect)=0.5; S=2, Pr(defect) = 0.75

• if product is sound, will not detect a defect if EX (no false positive)
 Pr(obs=D|S=0) = 0

• if product is defective, detect it 90% of the time (10% false negatives)
 Pr(obs=D|S=1) = Pr(D|defect)Pr(defect|S=1) = 0.9*0.5 = 0.45
 Pr(obs=D|S=2) = Pr(D|defect)Pr(defect|S=2) = 0.9*0.75 = 0.675
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POMDPs: History-based Policies
Information available at time t:

• initial distribution (belief state)

• history of actions, observations: a1, z1, a2, z2,…, at-1, zt-1

Thus, we can view a policy as a mapping:

For given belief state b, it is a conditional plan

• notice distinction with MDPs: can’t map from state to actions
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POMDPs: Belief States
History-based policy grows exponentially with horizon

• infinite horizon POMDPs problematic
Belief state                summarizes history sufficiently [Aoki 

(1965), Astrom (1965)] 
Let b be belief state; suppose we take action a, get obs z
Let T(b,a,z) be updated belief state (transition to new b)
If we let bi denote Pr(S = i), we update:
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Belief State MDP
POMDP now an MDP with state space 

Reward:

Transitions:                             if b' = T(b,a,z);  0 o.w.

Optimality Equations:
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Belief State MDP Graphically
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Representation of Value Functions

This fully observable MDP still unmanageable
• |S|-1-dimensional continuous space (|S|-dim. simplex)

Sondik (1973) proved useful structure of VF
• Vk is piecewise linear and convex (pwlc)

Need only a finite set α(k) of linear functions of b such 
that:
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PWLC Value Function Graphically
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Why is Value Function PWLC?

 for k-step conditional plan p is constant

 for belief state b is expected value

• this is a linear function of b
• can be expressed as vector of coefficients

Best conditional plan for b is one with max value

Thus        is PWLC
• But can we construct it without computing this for all plans p ?
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Constructing PWLC VF (0)

Clearly                          is linear in b
Let
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Constructing PWLC VF (1)

 is similar, since each              
Q-function is linear in b:

Note: observations play no role (no chance to “respond”)
Thus
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V1 Graphically
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Observation Strategies

Q-value of action a with 2 stages-to-go depends on 
course of action chosen subsequently

• This can vary with specific observation made

We define observation strategies to be mappings from Z
into α-vectors at subsequent stage
OS(a,2) is the set of mappings
Intuitively, if z observed after doing a, we will execute 

conditional plan corresponding to σ(z)
• thus future value dictated by vector σ(z)
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Value of Fixed Observation Strategy

Value of fixed OS                       is linear in b
• specifically, constant for any state i

For any a, Q-value given by best

Thus       representable by vector set
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Representation of Q-function
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Constructing PWLC VF (General)

Since                               , we have PWLC 

In general, we have
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V2 Graphically
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Interpretation as Policy Trees

Each                   corresponds to a 
k-step policy tree: do action a and 
act according to k-1-step tree 
dictated by σ(z)

To implement policy given by set 
of policy trees (or α−vectors)

• exploit dynamic programming 
principle

• find max vector for belief state b
• execute action associated with vector
• observe some z, update b, repeat
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Monahan's Algorithm

Simple Exhaustive Enumeration algorithm
• generate from α(k) using all OSs in OS(k,a) (for all a)

Difficulty: |A| |α(k-1)||Z| vectors in α(k)

But some elements of α(k-1) obviously useless
• pruning dominated vectors  keeps subsequent set of alpha-

vectors, α(k), smaller

Monahan's Algorithm:
• Generate α(1); prune; generate α(2); prune; …
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Dominated Vectors
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Dominated Vectors
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Dominated Vectors

31CSC 2534 Lecture Slides (c) 2011-14, C. Boutilier

Belief State

Value
Function

α(k)

α1 α2



LP to Find Dominated Vectors
Can prune α(k) using a series of linear programs
Test vector α j as follows:

Variables

Minimize

Constraint

Constraint

If solution                             , α j is dominated
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Witness Algorithms

Enumeration algorithms seem wasteful:
• generate vectors that are subsequently pruned

“Witness” methods only add (potentially) useful vectors
Given current approximate version α(k):

• find b s.t. (b is a witness)
• generate vector suitable for b, add to α(k)
• Question: can you (easily) find “best” vector for a fixed belief b ?

Examples: Sondik's one-pass; Cheng's linear support; 
Cassandra, Littman, Kaelbling's witness
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Cheng’s Linear Support Algorithm

Largest error                                    must occur at vertex 
of regions defined by these α(k)

• vertices uncovered by an interior point algorithm
• can also find witnesses using an LP

Find true value at each vertex b;
• the b with max error is our witness

Add α -vector for OS(b) to α(k)    (b is witness with max. error)
Continue until each vertex has error 0
Several optimizations used to speed things up:

• only add corners of new vector to search list
• don't investigate duplicated witnesses
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Linear Support Graphically
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Incremental Pruning

Much like Monahan, enumerates OSs and prunes vectors
But builds up useful OSs incrementally
Focuses on OS “fragments”

• if fragment is dominated, no useful σ will use it
• keeps down number of vectors investigated

Key: clever building of             (rep'n of       )
• from this, build

• finally prune α(k)
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Incremental Pruning - Observation Value
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Incremental Pruning - Strategy Value
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Incremental Pruning
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Inc. Pruning Results (CLZ, UAI97)
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Problem Size Soln Time (sec)
Problem S A Z Stg Mon Wit IP
1DMaze 4 2 2 70 2.2 9.3 2.3
4x3 11 4 6 8 >28800 727.1 346
4x3CO 11 4 11 367 216.7 3226 1557
4x4 16 4 2 364 >28800 351.8 215.7
Cheese 11 4 7 373 1116.9 5608.4 4249.2
Paint 4 4 2 371 >28800 6622.9 1066.6
Network 7 4 2 14 >28800 417.0 234.1
Shuttle 8 3 5 7 >28800 1676.7 200.8
Aircraft 12 6 5 4 >28800 24.6 22.8



Sources of Intractability

Size of α –vectors
• each is size of state space (exp. in number of vars)

Number of α –vectors
• potentially grows exponentially with horizon

Belief state monitoring
• must maintain belief state online in order to implement policy 

using value function
• belief state rep’n: size of state space
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Approximation Strategies

Sizes of problems solved exactly are tiny
• various approximation methods developed
• often deal with 1000 or so states, not much more

Grid-Based Approximations
• compute value at small set of belief states
• require method to ``interpolate'' value function
• require grid-selection method (uniform, variable, etc.)

Finite Memory Approximations
• e.g., policy as function of most recent actions, obs
• can sometimes convert VF into finite-state controller
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Approximation Strategies

Learning Methods
• assume specific value function representation
• e.g., linear VF, smooth approximation, neural net
• train representation through simulation

Heuristic Search Methods
• search through belief space from initial state
• requires good heuristic for leverage
• heuristics could be generated by other methods

Structure-based Approximations
• E.g., based on decomposability of problem
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Next time

Next time we’ll discuss one approximation
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