
A Friendly 
Introduction to 
Software 
Documentation 

Recap and Concluding Thoughts

By Arist Bravo



What is Documentation?

• Any item which conveys information about software

• 2 types: technical docs (for SWEs) and user manuals (for users)

• Our focus: technical docs

• EX of technical docs:

Reference(s): Garousi et al., de Souza et al.

Source Code

// Output the tickets
System.out.println(ticket_string);

Comments and 
READMEs

Diagrams and Code for Classes

List of Specifications



Why is Documentation Important?

• Researchers found:

• Documentation gives key info about the projects you code

• OOP developers look at source code, comments, classes, etc. for help as they program

• 61.5% of surveyed developers saw documentation as moderately important (Plösch et al.)

Reference(s): Forward and Lethbridge, De Souza et al., Plösch et al.



Defining "Good Documentation"

• There are different approaches or theories which define "good documentation"

• Broadly 2 types of theories:

o How to design docs

o How to assess docs

VS



Our Dimension-Based Framework, ACCEU

• We choose the dimension-based framework since it is commonly used (see references) 

and provides rules-of-thumb for "good documentation"

• After all: most documentation is written without standards!

• We study five (unordered) qualities/dimensions based on common use: 

Reference(s): Forward and Lethbridge, Garousi et al., Parnas, Treude et al., Zhi et al.

Accuracy Clarity Completeness Ease-of-use Up-to-dateness



ACCEU's Components

Reference(s): Forward and Lethbridge, Garousi et al., Parnas, Treude et al., Zhi et al.

Accuracy

True and 

relevant

Clarity

Only 

interpreted 

one way

Completeness

Provides all info 

on how the code 

works

Ease-of-use

Easily find the 

info you need

Up-to-dateness

Docs stay 

accurate as code 

is updated



ACCEU and Higher-Level Views

• Key: high-level documentation links to/references other files (i.e. "graph of files")

• High-level docs must be complete (covering all related items), easy to use (in an obvious 

place), and consistent (with other files' documentation)

Reference(s): Treude et al., Wingkvist et al.

SpecificGeneral



Possible Sections of a GitHub README

• Title, authors, and short description of 

the repo or project's purpose

• Table of contents

• Features (what the code can do)

• Installation instructions

• Usage (how to use the project, with 

examples)

• License (how others can use your 

code)

• Feedback and Contributions (how 

others can give feedback or help)

Reference(s): Drupal, GitHub, Guo, Nyakundi, Otieno, Patel, Sullivan



Final Thoughts

"The faintest ink is more powerful than the 

strongest memory."

- Chinese proverb

Best of luck with your software projects!


	Slide 1: A Friendly Introduction to Software Documentation 
	Slide 2: What is Documentation?
	Slide 3: Why is Documentation Important?
	Slide 4: Defining "Good Documentation"
	Slide 5: Our Dimension-Based Framework, ACCEU
	Slide 6: ACCEU's Components
	Slide 7: ACCEU and Higher-Level Views
	Slide 8: Possible Sections of a GitHub README
	Slide 9: Final Thoughts

