A Friendly
Introduction to
Software
Documentation

Components of ACCEU
By Arist Bravo

Our Dimension-Based Framework, ACCEU

« We choose the dimension-based framework since it is commonly used (see references)
and provides rules-of-thumb for "good documentation”

« After all: most documentation is written without standards!

« We study five (unordered) qualities/dimensions based on common use:

Q @ @ ¢

Accuracy Clarity Completeness Ease-of-use Up-to-dateness

Reference(s): Forward and Lethbridge, Garousi et al., Parnas, Treude et al., Zhi et al.

| Why ACCEU?

Comment
Level

k Accuracy

Clarity /

/

Completeness Ease-of-use/
\J N

Document
Level

\

¢ @

Process
Level

a N

Up-to-dateness

' Accuracy

 Definition: docs which are true (i.e. correctly says what the code does) and relevant
« Some things are true but trivial; write key ideas (code's purpose), not obvious fluff

« "Misinformation can be more damaging than missing information" (Parnas)

Accuracy

Reference(s): Parnas, Zhi et al.

Clarity

« Definition: docs which can only be interpreted one way; they are not ambiguous
 If docs aren't written clearly, then your code gets viewed in many ways

« Many interpretations — many ways to "use" your code — a dev misuses or breaks code

Clarity

Reference(s): Parnas, Zhi et al.

Accuracy # Clarity

« Having one does not mean having the other!

« EX from CSC207: online dating app, with a use case of figuring out
whether two users would like each other based on preferences

« Each user has these aspects:

o Gender (Male, Female, Non-binary)

o Sexuality (Heterosexual, Lesbian, Gay, Bisexual)

User's Sexuality Preferred Gender

2]

_5 H(eterosexual) User's opposite gender, N/A

"g or N if the user is N

% L (esbian) F Only F users can be L

é’_ G(ay) M Only M users can be G
B(isexual) Any N/A

Reference(s): Parnas, Zhi et al.

Case Study: Compatibility of Users

public boolean genderSexMatches (String ulGender,
String ulSex, String u2Gender, String u2Sex) {
String ulWants;

// A constant outside any function if (Objects.equals(ulSex, "H")) {
HashMap<String, String> desiredGender = ulWants = desiredGender.get("H" + ulGender);
new HashMap<>(); } else {
desiredGender.put("B", "MFN"); ulWants = desiredGender.get(ulSex);
desiredGender.put("L", "F"); }
desiredGender.put("G", "M"); String u2Wants;
desiredGender.put ("HM", "F"); if (Objects.equals(u2Sex, "H")) {
desiredGender.put ("HF", "M"); u2Wants = desiredGender.get("H" + u2Gender);
desiredGender.put ("HN", "N"); } else { .
u2Wants = desiredGender.get(u2Sex);
}

return (u2Wants.contains(ulGender) &&
ulWants.contains(u2Gender));

¥

Not Accurate (Truth Issue), Not Clear

// Get sexuality
String ulWants;
if (Objects.equals(ulSex, "H")) {
ulWants = desiredGender.get("H" + ulGender);
} else {
ulWants

desiredGender.get(ulSex);

}
String u2Wants;

if (Objects.equals(u2Sex, "H")) {
u2Wants = desiredGender.get("H" + u2Gender);
} else {
u2Wants

desiredGender.get(u2Sex);
}

// Return whether sexualities match
return (u2Wants.contains(ulGender) &&
ulWants.contains(u2Gender));

}

Not Accurate (Relevance Issue), Not Clear

// Get genders from the hash map of desired genders
String ulWants;
if (Objects.equals(ulSex, "H")) {

ulWants = desiredGender.get("H" + ulGender);
} else {

ulWants = desiredGender.get(ulSex);
}
String u2Wants;
if (Objects.equals(u2Sex, "H")) {

u2Wants = desiredGender.get("H" + u2Gender);
} else {

u2Wants = desiredGender.get(u2Sex);

¥

// Return whether the users are compatible
return (u2Wants.contains(ulGender) && ulWants.contains(u2Gender));

Clear, But Not Accurate

// For each user, get a gender from the hash map of desired genders
String ulWants;
if (Objects.equals(ulSex, "H")) {

ulWants = desiredGender.get("H" + ulGender);
} else {

ulWants = desiredGender.get(ulSex);
}
String u2Wants;
if (Objects.equals(u2Sex, "H")) {

u2Wants = desiredGender.get("H" + u2Gender);
1} else {

u2Wants = desiredGender.get(u2Sex);

¥

Accurate, But Not Clear

// For each user, use the hash map to get the gender they desire from
a partner
String ulWants;
if (Objects.equals(ulSex, "H")) {
ulWants = desiredGender.get("H" + ulGender);
} else {
ulWants = desiredGender.get(ulSex);
}
String u2Wants;
if (Objects.equals(u2Sex, "H")) {
u2Wants = desiredGender.get("H" + u2Gender);
} else {
u2Wants = desiredGender.get(u2Sex);

}

Accurate and Clear

// For each user, get the gender (that the user desires in a partner)
by referencing the hash map
// if a user is heterosexual, then use that sexuality and the user's
gender to determine the desired gender; else, only use the user's
sexuality
String ulWants;
if (Objects.equals(ulSex, "H")) {
ulWants = desiredGender.get("H" + ulGender);
1} else {
ullWants = desiredGender.get(ulSex);
}
String u2Wants;
if (Objects.equals(u2Sex, "H")) {
u2Wants = desiredGender.get("H" + u2Gender);
1 else {
u2Wants = desiredGender.get(u2Sex);

}

Completeness

« Definition: docs provide all the info you need to understand how the code works
« Describes behaviour of a program (depending on inputs) + data used + data format

« Good variable names and format can provide info too, reducing the need for comments

O

Completeness

Reference(s): Parnas, Zhi et al.

Ease-of-Use

« Definition: docs are easy to navigate; you can easily find the info you need
« Uniformly organized docs (same format for function headers, program headers, etc.)

« Don't have to go all over the doc to find info about one object, entity, or idea

Ease-of-use

Reference(s): Parnas, Zhi et al.

| Case Study: ArrayList.java

« ArrayListjava is the Java implementation of the ArrayList data structure

« Has examples of good documentation

.

| ArraylList.java: Program Header

* Copyright (c) 1997, 2824, Oracle andfor its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT MOTICES OR THIS FILE HEADER.

* This code is free software; you can redistribute it and/or modify it
ynder the terms of the GNU General Public License wversion 2 only, as
* published by the Free Software Foundation. Oracle designates this

* particular file as subject to the "Classpath" exception as provided

by Oracle in the LICENSE file that accompanied this code.

* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITMESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

* yersion 2 for more details (a copy is included in the LICEMSE file that

* accompanied this code).

Header Example

ion

Funct

ArraylList.java

-
Li]

o
~
QU

L]

...
Y
|
(W]
Q
Q
v

()

-
o
'w]
Q

(v

V2
1Py
“r4
r~

v

v

)

Q)
Jd
w1
Q

i)
L0
Q

i

-

w1

i

i
“r4

c
-r4

L
(")

)
1
O
(& B

L i)

U

aJ

)
~
QU
o
o
Y-
|
(v
QU

(& |
i

r.,.u.)

-
- |
3]

A.M:

boolean

(&
o

4

pub

.

| ArraylList.java: Class Header Snippet

* <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},

* {@code getFirst}, {@code getlast}, {@code removelast}, {@code iterator},

* {@code listIterator}, and {@code reversed} operations run in constant time.
* The {@code add}, and {@code addlLast} operations runs in <i>amortized

* constant time</i>, that is, adding n elements requires 0O(n) time. All of
* the other operations run in linear time (roughly speaking). The constant

* factor 1is low compared to that for the {@code LinkedlList} implementation.

* <p>Each {@code ArraylList} instance has a <i>capacity</i>. The capacity is
* the size of the array used to store the elements in the list. It is always
* at least as large as the list size. As elements are added to an Arraylist,
* its capacity grows automatically. The details of the growth policy are not
* specified beyond the fact that adding an element has constant amortized

* time cost.

* <p>An application can increase the capacity of an {@code ArraylList} instance
* before adding a large number of elements using the {@code ensurelapacity?}

* operation. This may reduce the amount of incremental reallocation.

Side Note: Inline Comments?

 If you study ArrayList.java, you see inline comments occasionally occur

* They're used to justify the reasons for doing something — why implement in this particular
way? What exactly is going on?
« Clarifies the code's purpose when it's not obvious — more completeness

if (size > @) {
/f like clone(), allocate array based upon size not capacity

SharedSecrets.getlavalbjectInputStreamAccess().checkArray(s, Object[].class, size);

Object[] elements = new Object[size];

// Make a new array of a's runtime type, but my contents:

return (T[]) Arrays.copyOf(elementData, size, a.getClass());

Up-to-dateness

« Definition: docs are kept up-to-date and accurate, as new versions of code are released
* Includes (but not limited to) updating headers, comments, and even README files

« Requires good practices put into your workflow

Up-to-dateness

| Best Practices for Updating Docs

Keep docs in one place with version control (same repo)

Do not mark a task as "done" before updating the docs

Describe what sections are changed in pull requests

Before approving pull requests, ensure docs are updated

Do regular code reviews where you check for updated docs

Reference(s): M, Novikova, Savonen, Veerman

Creating Checklists

« ACCEU can be used to guide the creation of checklists for documenting a program file

« But a checklist is not the be-all, end-all; be flexible and use discretion

« Different programs require different details to be documented

	Slide 1: A Friendly Introduction to Software Documentation
	Slide 2: Our Dimension-Based Framework, ACCEU
	Slide 3: Why ACCEU?
	Slide 4: Accuracy
	Slide 5: Clarity
	Slide 6: Accuracy ≠ Clarity
	Slide 7: Case Study: Compatibility of Users
	Slide 8: Not Accurate (Truth Issue), Not Clear
	Slide 9: Not Accurate (Relevance Issue), Not Clear
	Slide 10: Clear, But Not Accurate
	Slide 11: Accurate, But Not Clear
	Slide 12: Accurate and Clear
	Slide 13: Completeness
	Slide 14: Ease-of-Use
	Slide 15: Case Study: ArrayList.java
	Slide 16: ArrayList.java: Program Header
	Slide 17: ArrayList.java: Function Header Example
	Slide 18: ArrayList.java: Class Header Snippet
	Slide 19: Side Note: Inline Comments?
	Slide 20: Up-to-dateness
	Slide 21: Best Practices for Updating Docs
	Slide 22: Creating Checklists

