
A Friendly
Introduction to
Software
Documentation

Components of ACCEU

By Arist Bravo

Our Dimension-Based Framework, ACCEU

• We choose the dimension-based framework since it is commonly used (see references)

and provides rules-of-thumb for "good documentation"

• After all: most documentation is written without standards!

• We study five (unordered) qualities/dimensions based on common use:

Reference(s): Forward and Lethbridge, Garousi et al., Parnas, Treude et al., Zhi et al.

Accuracy Clarity Completeness Ease-of-use Up-to-dateness

Why ACCEU?

Accuracy Clarity Completeness Ease-of-use Up-to-dateness

Comment

Level

Document

Level

Process

Level

Accuracy

• Definition: docs which are true (i.e. correctly says what the code does) and relevant

• Some things are true but trivial; write key ideas (code's purpose), not obvious fluff

• "Misinformation can be more damaging than missing information" (Parnas)

Reference(s): Parnas, Zhi et al.

Accuracy

Clarity

• Definition: docs which can only be interpreted one way; they are not ambiguous

• If docs aren't written clearly, then your code gets viewed in many ways

• Many interpretations → many ways to "use" your code → a dev misuses or breaks code

Reference(s): Parnas, Zhi et al.

Clarity

Accuracy ≠ Clarity

• Having one does not mean having the other!

• EX from CSC207: online dating app, with a use case of figuring out

whether two users would like each other based on preferences

• Each user has these aspects:

o Gender (Male, Female, Non-binary)

o Sexuality (Heterosexual, Lesbian, Gay, Bisexual)

Reference(s): Parnas, Zhi et al.

User's Sexuality Preferred Gender Preconditions

H(eterosexual) User's opposite gender,
or N if the user is N

N/A

L(esbian) F Only F users can be L

G(ay) M Only M users can be G

B(isexual) Any N/A

S
p

e
c

if
ic

a
ti

o
n

s

Case Study: Compatibility of Users

// A constant outside any function

HashMap<String, String> desiredGender =

 new HashMap<>();

desiredGender.put("B", "MFN");

desiredGender.put("L", "F");

desiredGender.put("G", "M");

desiredGender.put("HM", "F");

desiredGender.put("HF", "M");

desiredGender.put("HN", "N");

public boolean genderSexMatches (String u1Gender,
String u1Sex, String u2Gender, String u2Sex) {
 String u1Wants;
 if (Objects.equals(u1Sex, "H")) {
 u1Wants = desiredGender.get("H" + u1Gender);
} else {
u1Wants = desiredGender.get(u1Sex);

}
String u2Wants;
if (Objects.equals(u2Sex, "H")) {
u2Wants = desiredGender.get("H" + u2Gender);

} else {
u2Wants = desiredGender.get(u2Sex);

}
return (u2Wants.contains(u1Gender) &&

u1Wants.contains(u2Gender));
}

Not Accurate (Truth Issue), Not Clear

// Get sexuality
 String u1Wants;
 if (Objects.equals(u1Sex, "H")) {
 u1Wants = desiredGender.get("H" + u1Gender);
} else {
u1Wants = desiredGender.get(u1Sex);

}
String u2Wants;
if (Objects.equals(u2Sex, "H")) {
u2Wants = desiredGender.get("H" + u2Gender);

} else {
u2Wants = desiredGender.get(u2Sex);

}

// Return whether sexualities match
return (u2Wants.contains(u1Gender) &&

u1Wants.contains(u2Gender));
}

Not Accurate (Relevance Issue), Not Clear

// Get genders from the hash map of desired genders
 String u1Wants;
 if (Objects.equals(u1Sex, "H")) {
 u1Wants = desiredGender.get("H" + u1Gender);
} else {
u1Wants = desiredGender.get(u1Sex);

}
String u2Wants;
if (Objects.equals(u2Sex, "H")) {
u2Wants = desiredGender.get("H" + u2Gender);

} else {
u2Wants = desiredGender.get(u2Sex);

}

// Return whether the users are compatible
return (u2Wants.contains(u1Gender) && u1Wants.contains(u2Gender));

}

Clear, But Not Accurate

// For each user, get a gender from the hash map of desired genders
 String u1Wants;
 if (Objects.equals(u1Sex, "H")) {
 u1Wants = desiredGender.get("H" + u1Gender);
} else {
u1Wants = desiredGender.get(u1Sex);

}
String u2Wants;
if (Objects.equals(u2Sex, "H")) {
u2Wants = desiredGender.get("H" + u2Gender);

} else {
u2Wants = desiredGender.get(u2Sex);

}
 ...

Accurate, But Not Clear

// For each user, use the hash map to get the gender they desire from
a partner
 String u1Wants;
 if (Objects.equals(u1Sex, "H")) {
 u1Wants = desiredGender.get("H" + u1Gender);
} else {
u1Wants = desiredGender.get(u1Sex);

}
String u2Wants;
if (Objects.equals(u2Sex, "H")) {
u2Wants = desiredGender.get("H" + u2Gender);

} else {
u2Wants = desiredGender.get(u2Sex);

}
 ...

Accurate and Clear

// For each user, get the gender (that the user desires in a partner)
by referencing the hash map
// if a user is heterosexual, then use that sexuality and the user's

gender to determine the desired gender; else, only use the user's
sexuality
 String u1Wants;
 if (Objects.equals(u1Sex, "H")) {
 u1Wants = desiredGender.get("H" + u1Gender);
} else {
u1Wants = desiredGender.get(u1Sex);

}
String u2Wants;
if (Objects.equals(u2Sex, "H")) {
u2Wants = desiredGender.get("H" + u2Gender);

} else {
u2Wants = desiredGender.get(u2Sex);

}
 ...

Completeness

• Definition: docs provide all the info you need to understand how the code works

• Describes behaviour of a program (depending on inputs) + data used + data format

• Good variable names and format can provide info too, reducing the need for comments

Reference(s): Parnas, Zhi et al.

Completeness

Ease-of-Use

• Definition: docs are easy to navigate; you can easily find the info you need

• Uniformly organized docs (same format for function headers, program headers, etc.)

• Don't have to go all over the doc to find info about one object, entity, or idea

Ease-of-use

Reference(s): Parnas, Zhi et al.

Case Study: ArrayList.java

• ArrayList.java is the Java implementation of the ArrayList data structure

• Has examples of good documentation

0 1 2 3

ArrayList.java: Program Header

ArrayList.java: Function Header Example

ArrayList.java: Class Header Snippet

Side Note: Inline Comments?

• If you study ArrayList.java, you see inline comments occasionally occur

• They're used to justify the reasons for doing something – why implement in this particular

way? What exactly is going on?

• Clarifies the code's purpose when it's not obvious → more completeness

Up-to-dateness

• Definition: docs are kept up-to-date and accurate, as new versions of code are released

• Includes (but not limited to) updating headers, comments, and even README files

• Requires good practices put into your workflow

Up-to-dateness

Best Practices for Updating Docs

Reference(s): M, Novikova, Savonen, Veerman

• Keep docs in one place with version control (same repo)

• Do not mark a task as "done" before updating the docs

• Describe what sections are changed in pull requests

• Before approving pull requests, ensure docs are updated

• Do regular code reviews where you check for updated docs

Creating Checklists

• ACCEU can be used to guide the creation of checklists for documenting a program file

• But a checklist is not the be-all, end-all; be flexible and use discretion

• Different programs require different details to be documented

	Slide 1: A Friendly Introduction to Software Documentation
	Slide 2: Our Dimension-Based Framework, ACCEU
	Slide 3: Why ACCEU?
	Slide 4: Accuracy
	Slide 5: Clarity
	Slide 6: Accuracy ≠ Clarity
	Slide 7: Case Study: Compatibility of Users
	Slide 8: Not Accurate (Truth Issue), Not Clear
	Slide 9: Not Accurate (Relevance Issue), Not Clear
	Slide 10: Clear, But Not Accurate
	Slide 11: Accurate, But Not Clear
	Slide 12: Accurate and Clear
	Slide 13: Completeness
	Slide 14: Ease-of-Use
	Slide 15: Case Study: ArrayList.java
	Slide 16: ArrayList.java: Program Header
	Slide 17: ArrayList.java: Function Header Example
	Slide 18: ArrayList.java: Class Header Snippet
	Slide 19: Side Note: Inline Comments?
	Slide 20: Up-to-dateness
	Slide 21: Best Practices for Updating Docs
	Slide 22: Creating Checklists

