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PnPNet: Tracking in-the-loop

e End-to-End Perception & Prediction, tracking in-the-loop
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e Performs discrete-continuous tracking between detection and prediction
e Explicit memory for past tracks and their features
e Exploits long history information with a new trajectory representation

e End-to-end optimization of multi-tasks

[1] PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [Liang, M. et al., CVPR 2020]



Model Architecture

e \We start with a joint perception & prediction architecture
e \We add a discrete tracker that links detections across time
e We smooth the updated trajectories in continuous space
e We perform motion forecasting from trajectory-level object feature
e The model runs in a recurrent fashion, and memorizes past trajectories
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A New Object Trajectory Representation

e History observation feature: per-frame feature extraction given the
trajectory

e History motion feature: location displacement over the trajectory

e Feature fusion and temporal modelling
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Discrete Tracking

e For each past track:

o It’s associated with a current detection Multi-Object Tracking

o It’s unassociated, therefore need to “hallucinate” its current state —— Single-Object Tracking

e For each current detection:

o It’s associated with a past track Multi-Object Tracking

Multi-Object Tracking

o It’s unassociated, therefore need to “birth” a new track
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Multi-Object Tracking

e Handle “newborn” objects by adding null nodes at past tracks side
e Learnable matching function

e Hungarian algorithm for optimal assignment
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Single-Object Tracking

e Perform on unassociated tracks
e Inherit the spirit from Siamese tracker [2], but replaces correlation with a
learnable match function

e Produce more accurate estimations by exploiting observations
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[2] Fully-Convolutional Siamese Networks for Object Tracking [Bertinetto, L. et al., ECCV 2016]



Continuous Tracking

e Classification: re-estimate the object confidence
e Regression: Smooth the past trajectory

e Post-Process: NMS, keep top-50 confident objects
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Motion Forecasting

e Prediction header: simple regression based prediction

e |nput features: trajectory features after tracking
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End-to-End Learning

e We adopt multi-task loss for detection, tracking and prediction
e \ideo-centric training, with online estimations from previous modules &

time steps

Affinity loss
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3D Detection Results on nuScenes

e The detection module of PnPNet achieves state-of-the-art performance

Methods APT AP@05Sm @lm @2m @4m
Mapillary [40] 47.9 10.2 36.2 64.9 80.1
PointPillars [27] 70.5 55.5 71.8 76.1 78.6
Megvii [55] 82.3 729 82.5 85.9 87.7
PnPNet, detonly  82.7 13.7 83.3 86.2 87.5
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Multi-Object Tracking Results on nuScenes

e Compared with state-of-the-art, PnPNet achieves 8.0% gain in AMOTA
e Compared with a Kalman Filter based tracker, PnPNet achieves 4.6% gain in

AMOTA

e PnPNet also produces more complete trajectories

Methods AMOTAT AMOTP| RECALLT MOTAT MOTP, MT? ML] FP| IDS| FRAG| TID] LGDJ
StanfordIPRL-TRI[13]  73.5% 0.53 73.8% 62.3% 026 1978 1053 6340 367 341  0.79  1.08
PnPNet, KF tracker 76.1% 0.52 79.1% 64.8% 024 2351 745 7555 802 628 051 097
PnPNet 81.5% 0.44 81.6% 69.7% 026 2518 804 6771 152 310 030  0.57

AMOTA/AMOTP: MOTA/MOTP averaged over different recall thresholds;
TID: average track initialization duration in seconds;
LGD: average longest gap duration in seconds.
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Joint P&P Results on nuScenes & ATG4D

Absolute gain in perception metrics
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Qualitative Results
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