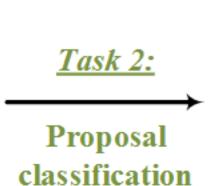
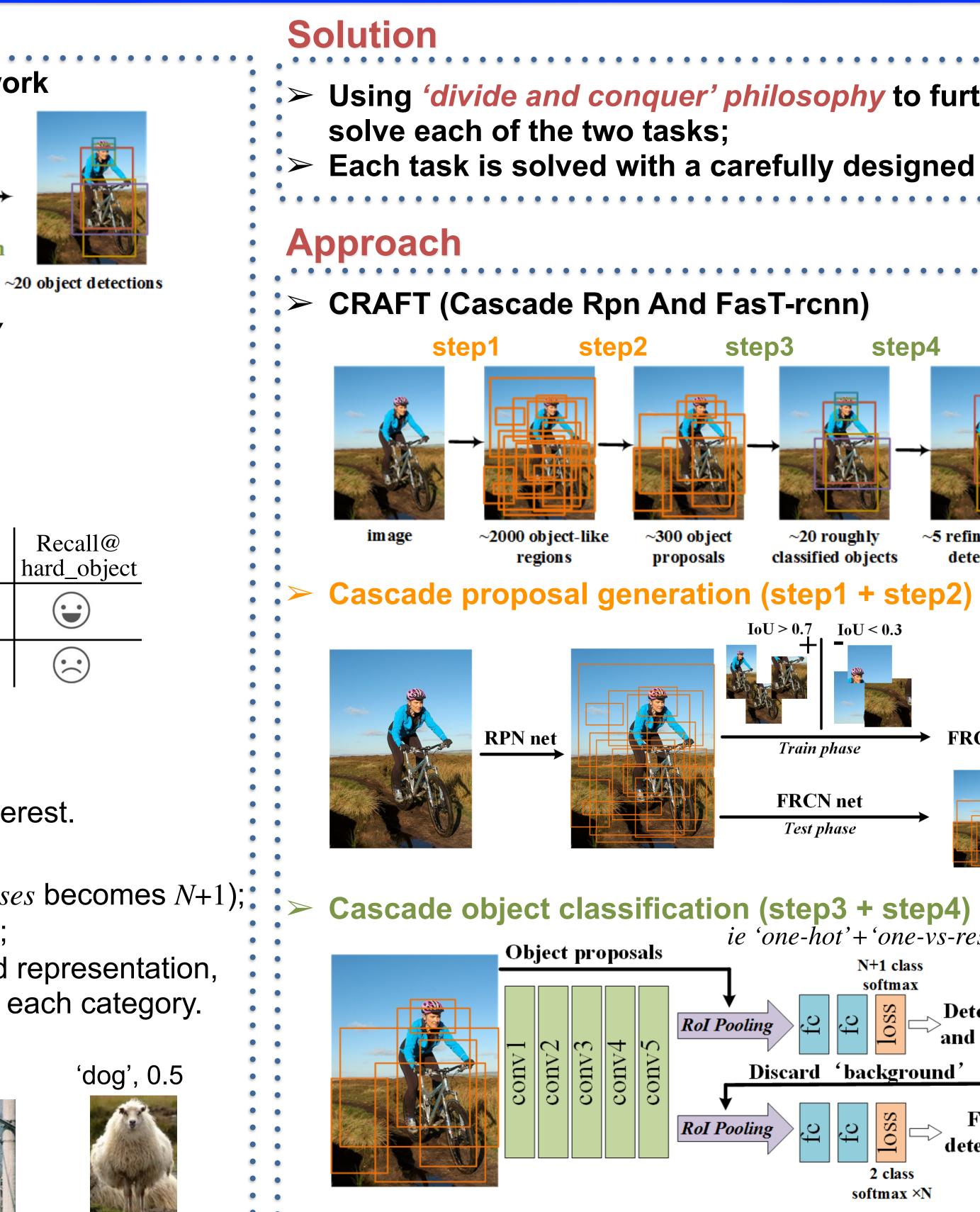

Code!

Adopting the *two-step* detection framework? Why don't we take *more baby steps*?


Motivation


The two-step detection framework

im age

~2000 object proposals

Gap between *ideal* and *reality*

• Task 1: Proposal generation

Ideal:

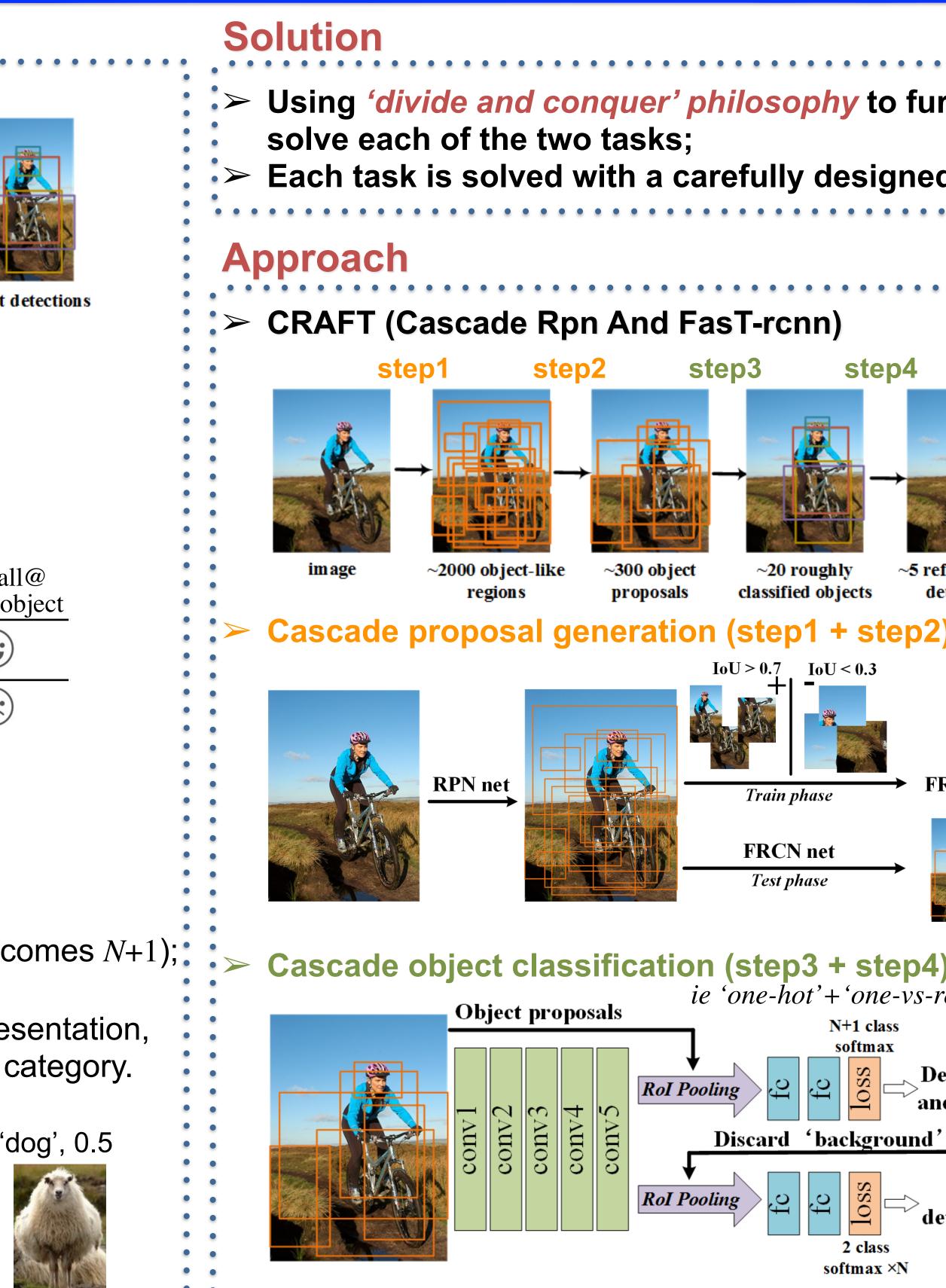
Output only object proposals.

Reality:

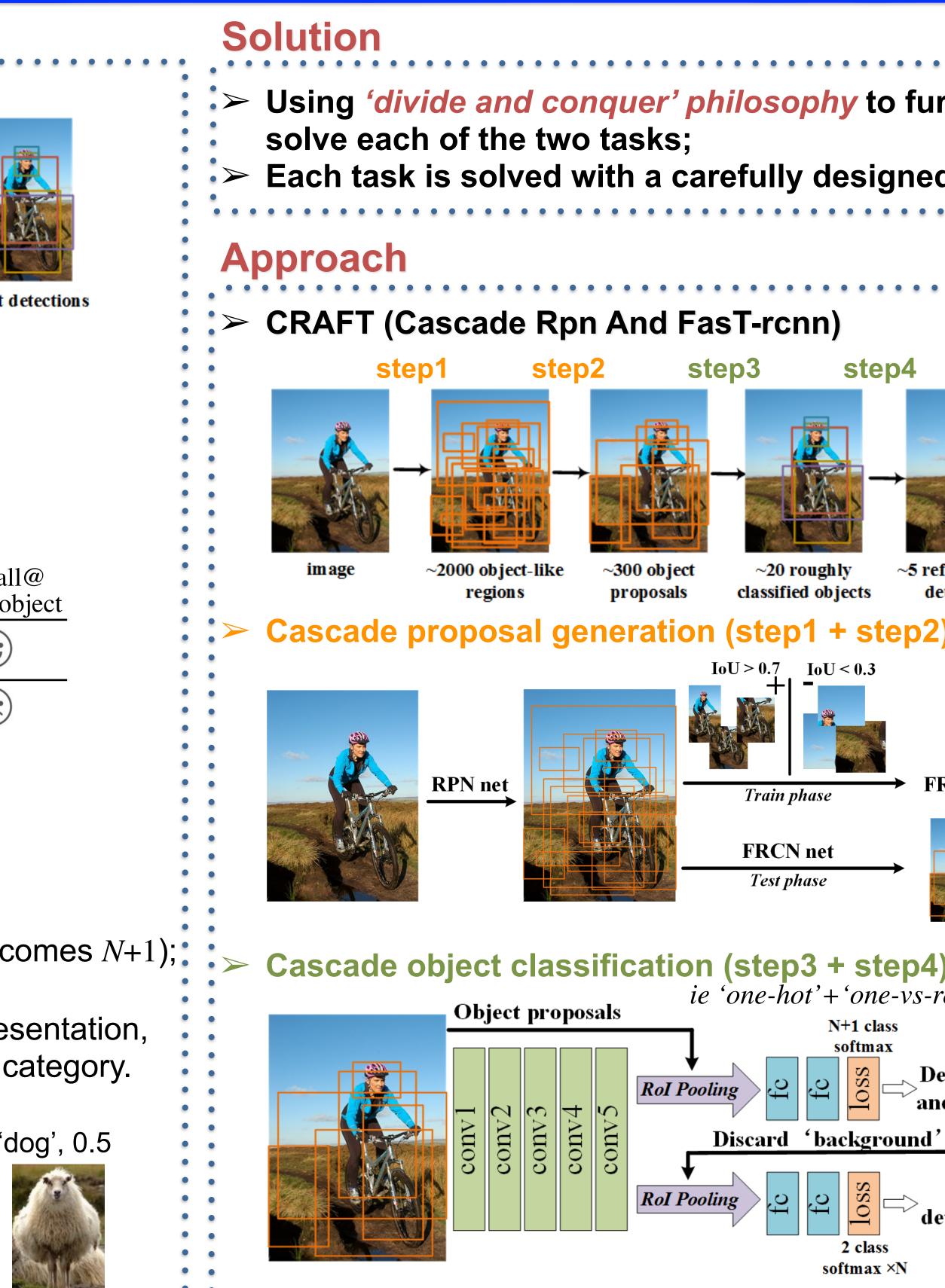
Method	#Regions	Background regions	Recall@ 0.5IoU	Recall@ >0.8IoU	Recall@ hard_objec		
Selective Search	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc$	(\cdot)				
RPN	(\odot	$\overline{ \cdot }$		

• Task 2: Object classification

Ideal:


Classify proposals into N object categories of interest.

Reality:


- A majority of samples are background (*num_classes* becomes *N*+1);
- Samples of N different categories may vary a lot;
- With cross-entropy objective, CNN learns biased representation, and it is hard to capture fine-grained variance of each category. Wrong detections of Fast R-CNN:

'potted_plant', 0.6 'tv_monitor', 0.8

CRAFT Objects from Images

Bin Yang¹, Junjie Yan², Zhen Lei¹, Stan Z. Li¹ ¹NLPR, CASIA, ²Tsinghua University http://byangderek.github.io/projects/craft.html

rther decompose and better			oject prop									
		• Rec	all analys	Ĩ	Ī	Ī					_	
d neural network cascade.		•	Method	#Boxe		Recall	bird	boat			plant	
		•	VGG_M	300		94.8	93.8	92.7	80.3	91.7	86.8	-
		•	VGG_19 Cascade VGG M	300 300		97.5 97.9	96.2 97.3	95.8 96.9		95.6 96.2	90.4 94.5	95.1 98.3
		- Rec	all analys	sis at	: va	rious	loUs a	and	the de	tectio	n mA	P
	Definition:	•	Method	∣ #Bo	oxes	0.5	0.6	Ĵ	0.7	0.8	0.9	mAP
	step1: standard RPN	•	SS	200		92.1	85.		72.5	52.9	26.6	70.0
	step2: binary Fast R-CNN step3: standard Fast R-CNN		RPN	200		98.5			84.1	40.7	4.1	-
Ref. s			RPN	30		96.3			78.8	37.9	3.9	71.6
CO	step4: Fast R-CNN with N	•	Ours	30)()	97.9	95.	5	89.6	63.7	13.0	72.2
ned object	binary classifiers	•	Ours_S	8	7	96.8	94.	1	87.8	62.4	12.9	72.5
ections	•		oject dete	ection	or	VOC	07/12	test	and II	_SVR0	C val2	
	Advantage:		Method	Ī		posal	classif	Ī	voc07	VOC		ilsvrc
	eliminate <i>difficult</i>		FRCN			SS	FRC		70.0	65		
	background regions;		RPN_unshared		RPN		FRC	CN 71.6		65.5		45.4
	 improve localization; 		RPN	R		RPN	FRCN		73.2 6		67.0	-
CN net	combine proposals from	•	Ours		cas	scade	FRC	N	72.5	-		47.0
	multiple sources;	•	Ours		cascade		cascac	le	75.7	71	.3	48.5
	 20% absolute recall gain at 0.8IoU with 5% proposals, 	ImageNet 2015 Object Detection from								i î		
			Team	Tas	Task Tr		rack I		Detector		_val	Rank
	Advantage:		CUvideo	CUvideo VID		Provided dat		ed data Ours		67		1
st'	 share full-image features; 	•		 • • • • •			De		epID-net	-net 65.8		
		Disc	noizzu									
ections Scores	 capture both <i>inter-</i> and <i>intra-</i> category variances; 	 Discussion CRAFT enjoys other advances in object detection like ION, ResN 										
	eliminate false positives	The cascade structure used in proposal task plays the role of har example mining for the following detection task;										
– 'inal	between ambiguous											
ctions	categories;	\sim The cascade structure used in detection task points out a pc							a pote			
	 3% absolute mAP gain on VOC07. 	drawback of current <i>loss function choice</i> for fast r-cnn, and									. and	

IEEE 2016 Conference on **Computer Vision and Pattern** Recognition

CVPR2016