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Abstract. The visual cues from multiple support regions of different
sizes and resolutions are complementary in classifying a candidate box in
object detection. How to effectively integrate local and contextual visual
cues from these regions has become a fundamental problem in object
detection. Most existing works simply concatenated features or scores
obtained from support regions. In this paper, we proposal a novel gated
bi-directional CNN (GBD-Net) to pass messages between features from
different support regions during both feature learning and feature ex-
traction. Such message passing can be implemented through convolution
in two directions and can be conducted in various layers. Therefore, local
and contextual visual patterns can validate the existence of each other by
learning their nonlinear relationships and their close iterations are mod-
eled in a much more complex way. It is also shown that message passing is
not always helpful depending on individual samples. Gated functions are
further introduced to control message transmission and their on-and-off
is controlled by extra visual evidence from the input sample. GBD-Net
is implemented under the Fast RCNN detection framework. Its effective-
ness is shown through experiments on three object detection datasets,
ImageNet, Pascal VOC2007 and Microsoft COCO.

1 Introduction

Object detection is one of the fundamental vision problems. It provides basic
information for semantic understanding of images and videos and has attracted
a lot of attentions. Detection is regarded as a problem classifying candidate
boxes. Due to large variations in viewpoints, poses, occlusions, lighting conditions
and background, object detection is challenging. Recently, convolutional neural
networks (CNNs) have been proved to be effective for object detection [1-4]
because of its power in learning features.

In object detection, a candidate box is counted as true-positive for an object
category if the intersection-over-union (IOU) between the candidate box and the
ground-truth box is greater than a threshold. When a candidate box cover a part
of the ground-truth regions, there are some potential problems.

— Visual cues in this candidate box may not be sufficient to distinguish object
categories. Take the candidate boxes in Fig. 1(a) for example, they cover
parts of bodies and have similar visual cues, but with different ground-truth
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(c) (d)

Fig. 1. Illustrate the motivation of passing messages among features from supporting
regions of different resolutions, and controlling message passing according different
image instances. Blue windows indicate the ground truth bounding boxes. Red windows
are candidate boxes. It is hard to classify candidate boxes which cover parts of objects
because of similar local visual cues in (a) and ignorance on the occlusion status in
(b). Local details of rabbit ears are useful for recognizing the rabbit head in (c¢). The
contextual human head help to find that the rabbit ear worn on human head should
not be used to validate the existence of the rabbit head in (d). Best viewed in color.

class labels. It is hard to distinguish their class labels without information
from larger surrounding regions of the candidate boxes.

— Classification on the candidate boxes depends on the occlusion status, which
has to be inferred from larger surrounding regions. Because of occlusion, the
candidate box covering a rabbit head in Fig. 1(bl) is considered as a true
positive of rabbit, because of large IOU. Without occlusion, however, the
candidate box covering a rabbit head in Fig. 1(b2) is not considered as a
true positive because of small IOU.

To handle these problems, contextual regions surrounding candidate boxes are
a natural help. Besides, surrounding regions also provide contextual information
about background and other nearby objects to help detection. Therefore, in our
deep model design and some existing works [5], information from surrounding
regions are used to improve classification of a candidate box.

On the other hand, when CNN takes a large region as input, it sacrifices the
ability in describing local details, which are sometimes critical in discriminating
object classes, since CNN encodes input to a fixed-length feature vector. For
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example, the sizes and shapes of ears are critical details in discriminating rabbits
from hamsters. But they may not be identified when they are in a very small
part of the CNN input. It is desirable to have a network structure that takes
both surrounding regions and local part regions into consideration. Besides, it is
well-known that features from different resolutions are complementary [5].

One of our motivations is that features from different resolutions and support
regions validate the existence of one another. For example, the existence of rabbit
ears in a local region helps to strengthen the existence of a rabbit head, while the
existence of the upper body of a rabbit in a larger contextual region also help to
validate the existence of a rabbit head. Therefore, we propose that features with
different resolutions and support regions should pass messages to each other in
multiple layers in order to validate their existences jointly during both feature
learning and feature extraction. This is different from the naive way of learning
a separate CNN for each support region and concatenating feature vectors or
scores from different support regions for classification.

Our further motivation is that care should be taken when passing messages
among contextual and local regions. The messages are not always useful. Taking
Fig. 1(c) as an example, the local details of the rabbit ear is helpful in recognizing
the rabbit head, and therefore, its existence has a large weight in determining the
existence of the rabbit head. However, when this rabbit ear is artificial and worn
on a girl’s head in Fig. 1(d), it should not be used as the evidence to support
a rabbit head. Extra information is needed to determine whether the message
from finding a contextual visual pattern, e.g. rabbit ear, should be transmitted
to finding a target visual pattern, e.g. rabbit head. In Fig. 1(d), for example, the
extra human-face visual cues indicates that the message of the rabbit ear should
not be transmitted to strengthen the evidence of seeing the rabbit head. Taking
this observation into account, we design a network that uses extra information
from the input image region to adaptively control message transmission.

In this paper, we propose a gated bi-directional CNN (GBD-Net) architecture
that adaptively models interactions of contextual and local visual cues during
feature learning and feature extraction. Our contributions are in two-fold.

— A bi-directional network structure is proposed to pass messages among fea-
tures from multiple support regions of different resolutions. With this design,
local patterns pass detailed visual messages to larger patterns and large pat-
terns passes contextual visual messages in the opposite direction. Therefore,
local and contextual features cooperate with each other in improving detec-
tion accuracy. It shows that message passing can be implemented through
convolution.

— We propose to control message passing with gate functions. With the de-
signed gate functions, message from a found pattern is transmitted when it
is useful in some samples, but is blocked for others.

The proposed GBD-Net is implemented under the Fast RCNN detection frame-
works [6]. The effectiveness is validated through the experiments on three datasets,
ImageNet [7], PASCAL VOC2007 [8] and Microsoft COCO [9].
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2 Related work

Great improvements have been achieved in object detection. They mainly come
from better region proposals, detection pipeline, feature learning algorithms and
CNN structures, and making better use of local and contextual visual cues.

Region proposal. Selective search [10] obtained region proposals by hier-
archically grouping segmentation results. Edgeboxes [11] evaluated the number
of contours enclosed by a bounding box to indicate the likelihood of an object.
Deep MultiBox [12], Faster RCNN [13] and YOLO [14] obtained region pro-
posals with the help of a convolution network. Pont-Tuest and Van Gool [15]
studied statistical difference between the Pascal-VOC dataset [8] to Microsoft
CoCo dataset [9] to obtain better object proposals.

Object detection pipeline. The state-of-the-art deep learning based object
detection pipeline RCNN [16] extracted CNN features from the warped image
regions and applied a linear svin as the classifier. By pre-training on the Ima-
geNet classification dataset, it achieved great improvement in detection accuracy
compared with previous sliding-window approaches that used handcrafted fea-
tures on PASCAL-VOC and the large-scale ImageNet object detection dataset.
In order to obtain a higher speed, Fast RCNN [6] shared the computational
cost among candidate boxes in the same image and proposed a novel roi-pooling
operation to extract feature vectors for each region proposal. Faster RCNN[13]
combined the region proposal step with the region classification step by sharing
the same convolution layers for both tasks.

Learning and design of CNN. A large number of works [1-4, 17, 18] aimed
at designing network structures and their effectiveness was shown in the detec-
tion task. The works in [1-4,19] proposed deeper networks. People [20,3,21]
also investigated how to effectively train deep networks. Simonyan et al. [3] learn
deeper networks based on the parameters in shallow networks. Ioffe et al. [20]
normalized each layer inputs for each training mini-batch in order to avoid inter-
nal covariate shift. He et al. [21] investigated parameter initialization approaches
and proposed parameterized RELU.

Our contributions focus on a novel bi-directional network structure to effec-
tively make use of multi-scale and multi-context regions. Our design is comple-
mentary to above region proposals, pipelines, CNN layer designs, and training
approaches. There are many works on using visual cues from object parts [22—
24] and contextual information [22,23]. Gidaris et al. [23] adopted a multi-region
CNN model and manually selected multiple image regions. Girshick et al. [24]
and Ouyang et al. [22] learned the deformable parts from CNNs. In order to use
the contextual information, multiple image regions surrounding the candidate
box were cropped in [23] and whole-image classification scores were used in [23].
These works simply concatenated features or scores from object parts or context
while we pass message among features representing local and contextual visual
patterns so that they validate the existence of each other by non-linear relation-
ship learning. As a step further, we propose to use gate functions for controlling
message passing, which was not investigated in existing works.
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Passing messages and gate functions. Message passing at the feature
level is allowed in Recurrent neural network (RNN) and gate functions are used
to control message passing in long short-term memory (LSTM) networks. How-
ever, both techniques have not been used to investigate feature extraction from
multi-resolution and multi-context regions yet, which is fundamental in object
detection. Our message passing mechanism and gate functions are specially de-
signed under this problem setting. GBD-Net is also different from RCNN and
LSTM in the sense that it does not share parameters across resolutions/contexts.

3 Gated Bi-directional CNN

We briefly introduce the fast RCNN pipeline in Section 3.1 and then provide an
overview of our approach in Section 3.2. Our use of roi-pooling is discussed in
Section3.3. Section3.4 focuses on the proposed bi-directional network structure
and its gate functions, and Section3.5 explains the details of the training scheme.
The influence of different implementations is finally discussed in Section 3.5.

3.1 Fast RCNN pipeline
We adopt the Fast RCNNJ[6] as the object detection pipeline with four steps.

1. Candidate box generation. There are multiple choices. For example, selective
search [10] groups super-pixels to generate candidate boxes while Bing [25]
is based on sliding window on feature maps.

2. Feature map generation. Given an input as the input of CNN, feature maps
are generated.

3. Roi-pooling. Each candidate box is considered as a region-of-interest (ROI)
and a pooling function is operated on the CNN feature maps generated in
(2). After roi-pooling, candidate boxes of different sizes are pooled to have
the same feature vector size.

4. Classification. CNN features after roi-pooling go through several convolu-
tions, pooling and fully connected layers to predict class of candidate boxes.

3.2 Framework Overview

The overview of our approach is shown in Fig.2. Based on the fast RCNN
pipeline, our proposed model takes an image as input, uses roi-pooling oper-
ations to obtain features with different resolutions and different support regions
for each candidate box, and then the gated bi-direction layer is used for passing
messages among features, and final classification is made. We use the BN-net
[20] as the baseline network structure, i.e. if only one support region and one
branch is considered, Fig.2 becomes a BN-net. Currently, messages are passed
between features in one layer. It can be extended by adding more layers between
f and h and also passing messages in these layers.
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Fig. 2. Overview of our framework. The network takes an image as input and produces
feature maps. The roi-pooling is done on feature maps to obtain features with different
resolutions and support regions, denoted by £7%2, f0-2 £0-8 and f1'7. Red arrows denote
our gated bi-directional structure for passing messages among features. Gate functions
G are defined for controlling the message passing rate. Then all features h? for i =
1,2,3,4 go through multiple CNN layers with shared parameters to obtain the final
features that are used to predict the class y. Parameters on black arrows are shared
across branches, while parameters on red arrows are not shared. Best viewed in color.

We use the same candidate box generation and feature map generation steps
as the fast RCNN introduced in Section 3.1. In order to take advantage of com-
plementary visual cues in the surrounding/inner regions, the major modifications
of fast RCNN are as follows.

— In the roi-pooling step, regions with the same center location but different
sizes are pooled from the same feature maps for a single candidate box. The
regions with different sizes before roi-pooling have the same size after roi-
pooling. In this way, the pooled features corresponds to different support
regions and have different resolutions.

— Features with different resolutions optionally go through several CNN layers
to extract their high-level features.

— The bi-directional structure is designed to pass messages among the roi-
pooled features with different resolutions and support regions. In this way,
features corresponding to different resolutions and support regions verify
each other by passing messages to each other.

— Gate functions are use to control message transmission.

— After message passing, the features for different resolutions and support
regions are then passed through several CNN layers for classification.

An exemplar implementation of our model is shown in Fig. 3. There are 9
inception modules in the BN-net [20]. Roi-pooling of multiple resolutions and
support regions is conducted after the 6th inception module, which is inception
(4d). Then the gated bi-directional network is used for passing messages among
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Fig. 3. Exemplar implementation of our model. The gated bi-directional network, ded-
icated as GBD-Net, is placed between Inception (4d) and Inception (4e). Inception
(4e),(5a) and (5b) are shared among all branches.

features h3-h}. After message passing, h3-h3 go through the 7th, 8th, 9th in-
ception modules and the average pooling layers separately and then used for
classification. There is option to place ROI-pooling and GBD-Net after differ-
ent layers of the BN-net. In Fig. 3, they are placed after inception (4e¢). In the
experiment, we also tried to place them right after the input image.

3.3 Roi-pooling of features with different resolutions and support
regions

We use the roi-pooling layer designed in [6] to obtain features with different
resolutions and support regions. Given a candidate box b® = [x°, y°, w°, h°)
with center location (z°,y°) width w® and height h°, its padded bounding box
is denoted by bP. bP is obtained by enlarging the original box b along both x
and y directions in scale p as follows:

b? = [2°,9°, (1 + p)w®, (1 + p)h?]. (1)

In RCNN [16], p is 0.2 by default and the input to CNN is obtained by
warping all the pixels in the enlarged bounding box b? to a fixed size w X h,
where w = h = 224 for the BN-net [20]. In fast RCNN [6], warping is done on
feature maps instead of pixels. For a box b?, its corresponding feature box bf
on the feature maps is calculated and roi-pooling uses max pooling to convert
the features in b/ to feature maps with a fixed size.

In our implementation, a set of padded bounding boxes {b?} with different
p=—0.2,0.2,0.8,1.7 are generated for each candidate box b°. These boxes are
warped into the same size by roi-pooling on the CNN features. The CNN features
of these padded boxes have different resolutions and support regions. In the roi-
pooling step, regions corresponding to b=%2 b%2 b%® and b!" are warped into
features £70-2, £0-2 £0-8 and f'7 respectively. Figure 4 illustrates this procedure.

Since features f=02 02 £f0-8 and f'7 after roi-pooling are in the same size,
the context scale value p determines both the amount of padded context and
also the resolution of the features. A larger p value means a lower resolution for
the original box but more contextual information around the original box, while
a small p means a higher resolution for the original box but less context.
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Fig. 4. Illustration of using roi-pooling to obtain CNN features with different resolu-
tions and support regions. The red rectangle in the left image is a candidate box. The
right four image patches show the supporting regions for {b?}. Best viewed in color.

3.4 Gated Bi-directional network structure

Bi-direction structure Figure 5 shows the architecture of our proposed bi-
directional network. It takes features f=0-2, £0-2 98 and f*7 as input and outputs
features h3, h3, h3 and hj for a single candidate box. In order to have features
{h3} with different resolutions and support regions cooperate with each other,
this new structure builds two directional connections among them. One direc-
tional connection starts from features with the smallest region size and ends at
features with the largest region size. The other is the opposite.

ece hi® hd hiss® cece

eoe I‘ hi-lz eoe

(XX} hi-l1 i oo
Wi-Wi-12 wit

oo hi;0 h'i0 hi:lo oo

Fig. 5. Details of our bi-directional structure. The input of this structure is the features
{h?9} of multiple resolutions and contextual regions. Then bi-directional connections
among these features are used for passing messages across resolutions/contexts. The
output h? are updated features for different resolutions /contexts after message passing.

For a single candidate box b?, h? = fPi represents features with context pad
value p;. The forward propagation for the proposed bi-directional structure can
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be summarized as follows:

h! = o(h) @ w} + b?’l) +o(hf_; ® Wl-l,l_’i +b})  — high res. to low pass (2)
h? = o(h) @ w? + b?) + oh?, ® W?,Hl +b?)  —low res. to high pass (3)
h? = o(cat(h}, h?) @ w? + b?) — message integration (4)

— Since there are totally four different resolutions/contexts, ¢« = 1,2, 3, 4.

— h! represents the updated features after receiving message from h} ; with
a higher resolution and a smaller support region. It is assumed that h{ = 0,
since h} has the smallest support region and receives no message.

— h? represents the updated features after receiving message from h? 1 with
a lower resolution and a larger support region. It is assumed that h2 = 0,
since h? has the largest support region and receives no message.

— cat() concatenates CNN features maps along the channel direction.

— The features h}! and h? after message passing are integrated into h3 using
the convolutional filters w?3.

— ® represent the convolution operation. The biases and filters of convolutional
layers are respectively denoted by b} and w.

— Element-wise RELU is used as the non-linear function o(-).

From the equations above, the features in h} receive the messages from the
high-resolution/small-context features and the features h? receive messages from
the low-resolution/large-context features. Then h? collects messages from both
directions to have a better representation of the ith resolution/context. For ex-
ample, the visual pattern of a rabbit ear is obtained from features with a higher
resolution and a smaller support region, and its existence (high responses in
these features) can be used for validating the existence of a rabbit head, which
corresponds to features with a lower resolution and a larger support region. This
corresponds to message passing from high resolution to low resolution in (2).
Similarly, the existence of the rabbit head at the low resolution also helps to val-
idate the existence of the rabbit ear at the high resolution by using (3). w;_,
and w}, | are learned to control how strong the existence of a feature with
one resolution/context influences the existence of a feature with another resolu-
tion/context. Even after bi-directional message passing, {h?} are complementary
and will be jointly used for classification in later layers.

Our bi-directional structure is different from the bi-direction recurrent neural
network (RNN). RNN aims to capture dynamic temporal/spatial behavior with
a directed cycle. It is assumed that parameters are shared among directed con-
nections. Since our inputs differ in both resolutions and contextual regions, con-
volutions layers connecting them should learn different relationships at different
resolution/context levels. Therefore, the convolutional parameters for message
passing are not shared in our bi-directional structure.

Gate functions for message passing Instead of passing messages in the same
way for all the candidate boxes, gate functions are introduced to adapt message



10 X. Zeng, W. Ouyang, B. Yang, J. Yan, X. Wang

passing for individual candidate boxes. Gate functions are also implemented
through convolution. The design of gate filters consider the following aspects.

— h¥ has multiple feature channels. A different gate filter is learned for each
channel.

— The message passing rates should be controlled by the responses to particular
visual patterns which are captured by gate filters.

— The message passing rates can be determined by visual cues from nearby
regions, e.g. in Fig. 1, a girl’s face indicates that the rabbit ear is artificial
and should not pass message to the rabbit head. Therefore, the size of gate
filters should not be 1 x 1 and 3 x 3 is used in our implementation.

hit Q@ h h? Q@ hi?

w2 g 2
Wit %,ig wi I | Wit SN Wiy

hi_lo hio hio hi+10

Fig. 6. Illustration of the bi-directional structure with gate functions. Here ® represents
the gate function.

We design gate functions by convolution layers with the sigmoid non-linearity
to make the message passing rate in the range of (0,1). With gate functions,
message passing in (2) and (3) for the bi-directional structure is changed:

hj =o(hf @ w} +b}") + G(h_,wi |, bf | Jeo(hl @w i ;+b}), (5
hi = o(h) @ w] + b?g) + G(h?+1vwig+1,i’ bl ;)e o(hf, ® W122,11+1 +b?), (6)
G(x,w,b) = sigm(x @ w + b), (7)

where sigm(x) = 1/[1+exp(—x)] is the element-wise sigmoid function and e
denotes element-wise product. G is the gate function to control message message
passing. It contains learnable convolutional parameters w{, b and uses features
from the co-located regions to determine the rates of message passing. When
G(x,w,b) is 0, the message is not passed. The formulation for obtaining h3 is
unchanged. Fig. 6 illustrates the bi-directional structure with gate functions.

Discussion Our GBD-Net builds upon the features of different resolutions and
contexts. Its placement is independent of the place of roi-pooling. In an extreme
implementation, roi-pooling can be directly applied on raw pixels to obtain fea-
tures of multiple resolutions and contexts, and in the meanwhile GBD-Net can
be placed in the last convolution layer for message passing. In this implemen-
tation, fast RCNN is reduced to RCNN where multiple regions surrounding a
candidate box are cropped from raw pixels instead of feature maps.
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3.5 Implementation details, training scheme, and loss function

For the state-of-the-art fast RCNN object detection framework, CNN is first
pre-trained with the ImageNet image classification data, and then utilized as
the initial point for fine-tuning the CNN to learn both object confidence scores
s and bounding-box regression offsets ¢ for each candidate box. Our proposed
framework also follows this strategy and randomly initialize the filters in the
gated bi-direction structure while the other layers are initialized from the pre-
trained CNN. The final prediction on classification and bounding box regression
is based on the representations h? in equation (4). For a training sample with
class label y and ground-truth bounding box offsets v = [v1, v2, v3, v4], the loss
function of our framework is a summation of the cross-entropy loss for classifi-
cation and the smoothed L; loss for bounding box regression as follows:

L(y,ty,v,ty) = Lcls(y,ty) + Aly > 1] Lioc(v, to), (8)
Leis y7 26 yu IOg te, (9)
Lioe(v,ty) ZsmoothL1 i — tv,i), (10)

0.52> if |z] <1

|| — 0.5 otherwise’

smoothr, (z) = { (11)
where the predicted classification probability for class c is denoted by t., and the
predicted offset is denoted by t, = [ty 1,ty,2, w3, tva], 6(y,c) =1 if y = ¢ and
0(y,¢) = 0 otherwise. A = 1 in our implementation. Parameters in the networks
are learned by back-propagation.

4 Experimental Results

4.1 Implementation details

Our proposed framework is implemented based on the fast RCNN pipeline us-
ing the BN-net as the basic network structure. The exemplar implementation
in Section 3.2 and Fig. 3 is used in the experimental results if not specified.
The gated bi-directional structure is added after the 6th inception module (4d)
of BN-net. In the GBD-Net, layers belonging to the BN-net are initialized by
the baseline BN-net pre-trained on the ImageNet 1000-class classification and
localization dataset. The parameters in GBD-Net as shown in Fig. 5, which are
not present in the pre-trained BN-net, are randomly initialized when finetuning
on the detection task. In our implementation of GBD-Net, the feature maps h}
for n =1,2,3 in (2)-(4) have the same width, height and number of channels as
the input h? for i = 1,2, 3,4.

We evaluate our method on three public datasets, ImageNet object detection
dataset[7], Pascal VOC 2007 dataset[8] and Microsoft COCO object detection
dataset[9]. Since the ImageNet object detection task contains a sufficiently large
number of images and object categories to reach a conclusion, evaluations on
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component analysis of our training method are conducted on this dataset. This
dataset has 200 object categories and consists of three subsets. i.e., train, val-
idation and test data. In order to have a fair comparison with other methods,
we follow the same setting in [16] and split the whole validation subset into two
sub-folders, vall and val2. The network finetuning step uses training samples
from train and vall subsets and evaluation is done on the val2 subset. Because
the input for fast RCNN is an image from which both positive and negative
samples are sampled, we discard images with no ground-truth boxes in the vall.
Considering that lots of images in the train subset do not annotate all object
instances, we reduce the number of images from this subset in the batch. Both
the learning rate and weight decay are fixed to 0.0005 during training for all
experiments below. We use batch-based stochastic gradient descent to learn the
network and the batch size is 192. The overhead time at inference due to gated
connections is less than 40%.

4.2 Overall performance

ILSVRC2014 object detection dataset We compare our framework with
several other state-of-art approaches [16, 4, 20, 22, 26, 19]. The mean average pre-
cision for these approaches are shown in Table 4.2. Our work is trained using
the provided data of ImageNet. Compared with the published results and recent
results in the provided data track on ImageNet 2015 challenge, our single model
result ranks No. 2, lower than the ResNet [19] which uses a much deeper network
structure. In the future work, we may integrate GBD-Net with ResNet.

The BN-net on Fast RCNN implemented by us is our baseline, which is
denoted by BN+FRCN. From the table, it can be seen that BN-net with our
GBD-Net has 5.1% absolute mAP improvement compared with BN-net. We
also report the performance of feature combination method as opposed to gated
connections, which is denoted by BN+FC+FRCN. It uses the same four region
features as GBD-net by simple concatenation and obtains 47.3% mAP, while
ours is 51.4%.

Table 1. Object detection mAP (%) on ImageNet val2 for state-of-the-art approaches
with single model (sgl) and averaged model (avg).

appraoch RCNN Berkeley GoogleNet BN+ BN+FC DeeplD- Superpixel ResNet Ours

[16]  [16] [4  FRCN +FRCN Net[22]  [26] [19]
val2(sgl) 31.0 33.4 38.5 46.3 47.3 48.2 42.8 60.5 51.4
val2(avg) n/a n/a 40.9 n/a n/a 50.7 454 63.6 n/a

PASCAL VOC2007 dataset contains 20 object categories. Following the
most commonly used approach in [16], we finetune the nework with the 07412
trainval set and evaluate the performance on the test set. Our GBD-net obtains
77.2% mAP while the baseline BN+FRCN is only 73.1%.
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Microsoft COCO object detection dataset We use MCG[27] for region
proposal and report both the overall AP and AP%° on the closed-test data. The
baseline BN+FRCN implemented by us obtains 24.4% AP and 39.3% AP?°,
which is comparable with Faster RCNN (24.2% AP) on COCO detection lead-
board. With our proposal gated bi-directional structure, the network is improved
by 2.6% AP points and reaches 27.0% AP and 45.8% AP®°, which further proves
the effectiveness of our model.

4.3 Component-wise Investigation

Investigation on using roi-pooling for different layers The placement of
roi-pooling is independent of the placement of the GBD-Net. Experimental re-
sults on placing the roi-pooling after the image pixels and after the 6th inception
module are reported in this section. If the roi-pooling is placed after the 6th in-
ception module (4d) for generating features of multiple resolutions, the model is
faster in both training and testing stages. If the roi-pooling is placed after the
image pixels for generating features of multiple resolutions, the model is slower
because the computation in CNN layers up to the 6th inception module cannot
be shared. Compared with the GBD-Net placing roi-pooling after the 6th incep-
tion module with mAP 48.9%, the GBD-Net placing the roi-pooling after the
pixel values with mAP 51.4% has better detection accuracy. This is because the
features for GBD-Net are more diverse and more complementary to each other
when roi-pooling is placed after pixel values.

Investigation on gate functions Gate functions are introduced to control
message passing for individual candidate boxes. Without gate functions, it is
hard to train the network with message passing layers in our implementation.
It is because nonlinearity increases significantly by message passing layers and
gradients explode or vanish, just like it is hard to train RNN without LSTM
(gating). In order to verify it, we tried different initializations. The network
with message passing layers but without gate functions has 42.3% mAP if those
message passing layers are randomly initialized. However, if those layers are ini-
tialized from a well-trained GBD-net, the network without gate functions reaches
48.2% mAP. Both two results also show the effectiveness of gate functions.

Table 2. Detection mAP (%) for features with different padding values p for our
GBD-Net using BN-net as the baseline. Different ps leads to different resolutions and
contexts.

Single resolution Multiple resolutions
-0.210.2|0.8|1.7-0.2,0.2|0.241.7|-0.24-0.24-1.7|-0.24-0.24-0.84-1.7
mAP 46.3|46.3]46.0(45.2| 47.4 47.0 48.0 48.9

Padding value p
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Investigation on using different feature region sizes The goal of our
proposed gated bi-directional structure is to pass messages among features with
different resolutions and contexts. In order to investigate the influence from
different settings of resolutions and contexts, we conduct a series of experiments.
In these experiments, features of a particular padding value p is added one by
one.The experimental results for these settings are shown in Table 2. When single
padding value is used, it can be seen that simply enlarging the support region of
CNN by increasing the padding value p from 0.2 to 1.7 does harm to detection
performance because it loses resolution and is influenced by background clutter.
On the other hand, integrating features with multiple resolutions and contexts
using our GBD-Net substantially improves the detection performance as the
number of resolutions/contexts increases. Therefore, with the GBD-Net, features
with different resolutions and contexts help to validate the existence of each other
in learning features and improve detection accuracy.

Investigation on combination with multi-region This section investigates
experimental results when combing our gated bi-directional structure with the
multi-region approach. We adopt the simple straightforward method and average
the detection scores of the two approaches. The baseline BN model has mAP
46.3%. With our GBD-Net the mAP is 48.9%. The multi-region approach based
on BN-net has mAP 47.3%. The performance of combining our GBD-Net with
mutli-region BN is 51.2%, which has 2.3% mAP improvement compared with
the GBD-Net and 3.9% mAP improvement compared with the multi-region BN-
net. This experiment shows that the improvement brought by our GBD-Net is
complementary the multi-region approach in [23].

5 Conclusion

In this paper, we propose a gated bi-directional CNN (GBD-Net) for object
detection. In this CNN, features of different resolutions and support regions
pass messages to each other to validate their existence through the bi-directional
structure. And the gate function is used for controlling the message passing rate
among these features. Our GBD-Net is a general layer design which can be
used for any network architecture and placed after any convolutional layer for
utilizing the relationship among features of different resolutions and support
regions. The effectiveness of the proposed approach is validated on three object
detection datasets, ImageNet, Pascal VOC2007 and Microsoft COCO.
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