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Abstract. The performance of generic pedestrian detector usually declines se-
riously for videos in novel scenes, which is one of the major bottlenecks for
current pedestrian detection techniques. The conventional works improve pedes-
trian detection in video by mining new instances from detections and adapting
the detector according to the collected instances. However, when treating the two
tasks separately, the detector adaptation suffers from the defective output of in-
stance mining. In this paper, we propose to jointly handle the instance mining and
detector adaption using an adaptive structural model. The regularization function
of the model is applied on detector to prevent overfitting in adaption, and the
loss function is designed to evaluate the combination of mined instances set and
detector. Particularly, we extend the Deformable Part Model (DPM) to adaptive
DPM, where an adaptive feature transformation defined on low-level HOG cell is
learned to reduce the domain shift, and the regularization function for the detec-
tor is conducted on the transformation. The loss of the instance set and detector
is measured by a cost-flow network structure which incorporates both the appear-
ance of frame-wise detections and their spatio-temporal continuity. We demon-
strate an alternating minimization procedure to optimize the model. The proposed
method is evaluated on ETHZ, PETS2009 and Caltech datasets, and outperforms
baseline DPM by 7% in terms of mean miss rate.

1 Introduction

Pedestrian detection has been a hot research topic for decades. Benefitting from the
advances in low-level feature and high-level model, static image based pedestrian de-
tection has achieved impressive progresses in both effectiveness [1–8] and efficiency
[9–13]. With well-designed feature and model, current detectors trained on a large set
can handle some occlusions, pose and viewpoint variations. However, the performance
on novel scenes may drop disastrously due to the domain shift. For example, according
to the evaluation in [14], the state-of-the-art pedestrian detector Crosstalk [12] achieves
19% mean miss rate on INRIA test set, while increases to 54% on Caltech Pedestrian
Benchmark.

To handle the domain shift, one promising solution is the automatic adaption of
the generic detector to the target scenes, as recently explored in [15–22]. Most of the
works followed an unsupervised paradigm since the annotations in novel scenes are
often unavailable. These works usually considered two tasks in detector adaptation. The
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first is to mine new positive and negative instances of the target video in an unsupervised
manner, and the second is to adapt the the generic detector when the training instances
of the target video are collected. The standard paradigm in these works is as follows
(Fig. 1 (a)), (1) conduct frame-wise detection on video; (2) use various information
(e.g., tracking, background substraction and optical flow) to mine instances from the
detection result; (3) take the mined instances as online training samples to update the
detector.

Fig. 1. Different paradigms of detector adaptation for video based pedestrian detection. The con-
ventional methods take the training instance mining and detector adaptation as two separate tasks.
In this paper, to explore the benefit from each other, we propose to optimize the instance mining
and detector adaptation jointly in a structural model.

The motivation of our approach is that the instance mining and detector adaptation
procedures should be explored jointly. For example, the detector can benefit from the
confidently mined clear instances in adaptation, and the well adapted detector can fur-
ther improve the quality of mined instances. Given the frame-wise detection result, we
build a joint structural model to find an optimal combination of adapted detector and
new instances from the video (Fig. 1 (b)). Particularly, we build a frame-wise detector
with DPM. To avoid the complexity in shifting the high dimensional DPM parameters
directly, we propose to use a linear transformation to capture the domain shift on low-
level HOG cell, which can effectively capture the variations in different conditions with
much less parameters. The loss function in the structural model is built on a cost-flow
network to capture the structure in video, where both the frame-wise appearance and
the video continuity among frames are encoded. We show that when the instance set is
fixed, the optimal detector can be solved by standard quadratic programming, and when
the detector is fixed, the model can be solved by efficient successive shortest-path algo-
rithm. In optimizing the structural model, we conduct an alternating scheme to conduct
frame-wise detection and structural model adaptation iteratively.

We validate the detection performance following the protocol provided in [14] on
challenging videos from ETHZ, Caltech, and PETS2009. Our structural model de-
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creases mean miss rate by more than 7% compared to the baseline DPM (version 5),
and outperforms the best published results by a 2% margin.

The rest of the paper is organized as follows. We discuss the related work in Section
2 and provide the background of DPM and cost-flow network based data association
in Section 3. The joint structural model and the corresponding optimization method are
described in Section 4. We demonstrate the experimental results in Section 5 and finally
conclude the paper in Section 6.

2 Related work

There are numerous works on pedestrian detection, and we refer readers to [23, 24,
14] for the detailed survey. Our work is most related to the work on adapting the
generic pedestrian detector to videos, which is recently explored in [16–22, 25, 26].
These works differ in the training instances mining and detector adaptation methods.
Methods presented in [16, 18, 19] mined new instances from detections according to a
pre-defined threshold . To reduce the noise in the detected results, context cues were
applied to refine the detections. [19, 20, 25] explored context cues on background to re-
move the detections with high scores. [16] used multiple target tracking to associate de-
tections with trajectories, and took the non-associated detections as negative instances.
[18] conducted KLT tracking to collect positive instances with low detection scores.
[17] proposed an unsupervised tree coding method to cluster the detections. [20] pro-
posed a confidence score SVM to encode the confidence scores in the model updating.
The learning algorithms largely depend on the models used in the generic detector. For
example, [25, 16, 21, 26] were built on boosting detectors, [17–20] were built on SVM
detectors, [22] was built on the deep neural network. To the best of our knowledge, this
is the first work to jointly consider the instance mining and detector adaptation in one
objective function.

The problem setting is also related to the domain adaptation, which has been studied
extensively in computer vision. We learn a feature transformation between the source
and the target domain, as explored in [27–29] in an unsupervised manner. The most
similar models as ours are the unsupervised approaches proposed in [30, 31]. How-
ever, these unsupervised approaches were based on generative models, making them-
selves unsuitable for real world detection tasks where discriminative models are always
adopted. In addition, these work are designed for images instead of videos.

Our detector is built on DPM (Deformable Part Model) [6], which is one of the state-
of-the-art detectors for generic detection tasks on static images. However, as evaluated
in [14], its performance is unsatisfying for videos in real applications (e.g., Caltech
benchmark [14]). Our method can be seen as an extension of DPM to adaptive-DPM for
videos, where the detector is adapted automatically and the spatio-temporal continuity
in videos is explored. Since the feature dimension in DPM is very high (more than 20K),
it’s infeasible to adapt it directly. Instead we introduce a feature transform on the cell
level of HOG features, which can effectively capture the holistic low-level appearance
change caused by domain shift. In the description of the model, we use a bilinear form
of DPM used in [32] to simplify our notation.
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We employ cost-flow network as part of our structural model, which is related to de-
tection based multiple-target tracking [33–39]. Previous detection based multiple-target
tracking methods rely on a fixed detector, while we adapt the detector automatically.
The tracker outputs the trajectories of detections of multiple targets, while we focus
on improving the detection performance. Due to the noticeable improvement of object
detection in videos, our work can serve as a more reliable initialization for detection
based tracking.

3 Preliminaries

In this section, we briefly introduce the bilinear form of DPM [6] and the cost-flow
based data association [33]. The former model is the basis of our pedestrian detector,
and the latter one is the structure on which we define the objective function with both
appearance and spatio-temporal constraints.

3.1 Bilinear DPM

The popular DPM provides a hierarchical representation for pedestrians (as well as
other objects). It contains a root filter and a set of deformable part filters. Without loss
of generalization, we take the root as a special part here. Given an image I and a config-
uration of parts ζ = {l0, l1, · · · , lm} in the detection window, we define the detection
score of the configuration with respect to the DPM detector F as

score(F , I, ζ) =
m∑
i=0

wT
i φa(I, li) + wT

s φs(ζ), (1)

wherewi is the filter of the ith part, and φa(I, li) is the HOG [1] feature vector extracted
at li. ws is the shape prior which prefers a particular configuration, and φs(ζ) is the
spatial feature vector of the configuration ζ. Here l0 is the location of the root, and li is
the location of the ith part. It is straightforward to introduce the mixture components in
Eq. 1, so we leave them out to simplify the exposition.

In this paper, we use the bilinear form of DPM originally introduced in [32]. It
equals to the standard DPM, but can simplify the notation of our adaptive DPM intro-
duced in the next section. Similar formulation is also proposed in [8]. The HOG feature
of the ith part is denoted as a nf × nk dimensional matrix φa(I, li) , where nk is the
number of cells in the part, and nf is the dimension of gradient histogram feature vec-
tor for a cell. Each column in φa(I, li) is a feature vector of a cell. φa(I, li) are further
concatenated to be a large matrix Φa(I, ζ) = [φa(I, l0), φa(I, l1), · · ·φa(I, lm)]. The
appearance filters in the detector are concatenated to be a matrix Wa in the same way.
With these notations, the detection score of DPM [6] equals

score(F , I, ζ) = Tr(WT
a Φa(I, ζ)) + wT

s φs(ζ), (2)

where Tr(·) is the trace operation which is defined as summation of the elements on
the main diagonal of a matrix. The bilinear form DPM detector is parameterized by the
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appearance parameter matrix Wa and spatial parameter matrix ws. For a scanning win-
dow in detection, only the root location l0 is given, and all the part locations are taken
as latent variables which are optimized at runtime. The detection score of the sliding
window is denoted as score(I, ζ∗), where ζ∗ is the best possible part configuration
when the root location is fixed to be l0. Using quadratic function to model the spatial
deformation of each part, the problem can be effectively solved with linear complexity
[6].

3.2 Cost-flow based Data Association

Cost-flow based data association is proposed in [33] to associate detections in a video
to be long trajectories. Finding the globally optimal trajectories for detections in video
is reformulated as finding the min-cost flow in a network. Let us define the detection
set in a video as D = {d1, · · · , dn}, where di = {ζi, σi, ti} and n is the number of
detections. ζi, σi, and ti stand for the location, scale, and frame index respectively.
The detection di corresponds to an edge from node ui to vi in the network. The ci
is the weight to represent the cost for di to be a pedestrian activation. For detections
between different frames that have the possibility to belong to the same trajectory, an
edge (vi, uj) is created and ci,j is used to represent the cost for the transition between
vi and uj in one trajectory. To start the flow, source node s and sink node t are added
to the network, where s links to all the ui with cost cs,i and all the vi are linked to
the sink node t with cost ct,i. The cost cs,i and ct,i are used to punish the number of
trajectories. For each edge in the flow, there is an indicator to represent whether the
edge is included in one trajectory, which is denoted as yi, yi,j , ys,i and yt,i for the
edge (ui, vi),(vi, uj),(s, ui) and (vi, t), respectively. To interpret the network flow as
no overlap trajectory, the model uses the following constraints

ys,i +

n∑
j=1

yj,i = yi = yt,i +

n∑
j=1

yi,j ,∀i (3)

yi, ys,i, yt,i, yi,j ∈ {0, 1},

where yi is 1 when the detection di is included in current trajectory, and otherwise 0.
The above constraints guarantee that no paths share a common edge. The flow in the
network is specified by Y = {yi, yi,j , ys,i, yt,i}. Given the network and a configuration
of Y , the total cost is

L(D,Y) =
n∑

i=1

ciyi +

n∑
i=1

cs,iys,i +

n∑
i=1

ct,iyt,i +

n∑
i=1

n∑
j=1

ci,jyi,j , (4)

where costs of all activated edges are summarized. When the cost terms are properly de-
fined, finding the globally optimal trajectories is equivalent to solving the min-cost flow
problem, where the cost is defined in Eq. 4 with constrains in Eq. 3. The optimization
problem has been well explored. For example, [34] has shown an efficient successive
shortest-paths algorithm with the complexity of O(knlogn), where k is the number of
trajectories and n is the number of detections. It is efficient enough in real applications
(e.g., fewer than 10 seconds for a 103-frame video with 106 detections).
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4 Adaptive Structural Model

Conventional methods consider the instance mining and detector adaptation as two sep-
arate tasks. In this way, the errors in instance mining could result in the drift of the
detector, and the drift in detector adaptation could further harm the instance mining. To
avoid the vicious circle, in this work, we propose to capture instance mining and detec-
tor adaptation jointly, where the instance mining and detector adaptation are handled in
one objective function, and the joint optimization procedure outputs a combination of
new instances and adapted detector.

Given the target video, we first conduct frame-wise detection and denote the detec-
tion result as D. Due to the noise in detection, the detections in D cannot be taken as
ground truth, instead we take them as latent variables, and label D by Y via an instance
mining module. Here the indicator set Y = {y1, · · · , yn} and yi ∈ {0, 1}, where yi = 1
indicates that the detection di is taken as the true positive, otherwise yi = 0. Given the
original detector F0 and the detection set D, we propose to find the optimal adapted
detector F∗, and the new indicator set Y∗ with our designed objective function as

(F∗,Y∗) = argmin
F,Y

R(F ,F0) + ηL(D,F ,Y), (5)

where R(F ,F0) is used to regularize the new detector F by the original detector F0,
and L(F ,D,Y) is the loss term to measure the fitness between the adapted model F
and the final detection result, which is specified by D and its indicator set Y . The loss
function is designed to encode the structural information in the target video. Two kinds
of information can be encoded, the first is the appearance in detections, and the second
is the spatio-temporal continuity in the video. The objective function in Eq. 5 natu-
rally combines the instances mining and detector adaptation in a unified framework,
and enables two tasks to benefit from each other. In the following parts, we define the
regularization and loss function, and show how to optimize the objective function.

4.1 Adaptive DPM and Regularization

We use the generic DPM detector [6] as the initial detector F0 and aim to find an opti-
mized DPM detectorF on the target video. To avoid the direct adaptation of parameters
of high dimensionality in DPM, we introduce a simple but effective adaptive DPM and
show how to regularize it in the structural model defined below.

In DPM based representation, pedestrian consists of a number of local parts, and
each part is represented by HOG cells. In applying the generic pedestrian detector to a
novel scene, we only consider the domain shift in appearance (e.g., illumination, imag-
ing condition) and ignore the variations in viewpoint, since the viewpoint variations
could be naturally handled by the DPM mixture model. Under this assumption, we
argue that the structure of parts and HOG spatial relationship between different parts
should remain unchanged in detector adaptation process, while domain shift can be
captured at feature level. Particularly, we use a linear transformation P to model the
mapping between the source and target domain in HOG cell level, which is a nf × nf
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dimensional matrix. When the transformation matrix P is given, the detection score in
the adaptive DPM for a part configuration ζ is defined as

score(F , I, ζ) = Tr(WT
a PΦa(I, ζ)) + wT

s φs(ζ), (6)

where an additional feature transformation P is conducted before the feature Φa(I, ζ),
which is then fed into the appearance filter Wa. Here the model F is specified by Wa,
ws and P . The Eq. 2 can be taken as a special case of Eq. 6 when the transformation
matrix P is the identity matrix. To avoid the overfitting in model adaptation, we use the
identity matrix I to regularize P by

R(F ,F0) = ‖P − I‖2F , (7)

where the Frobenius norm ‖ · ‖F is defined as the square root of the sum of the absolute
squares of the elements in a matrix. It is of particular importance for video based detec-
tion since the feature vector is high dimensional while the number of mined instances is
usually about a few hundred. The number of variables needed for adaptation is nf ×nc
in the original DPM, where nc is the number of HOG cells in all parts. In adaptive
DPM, we only need to adapt nf × nf parameters, which brings about more efficiency
(in typical DPM models, nc is one order larger than nf ).

4.2 Loss Function

The loss function is used to measure the detector F and indicator set Y on the target
video. In this paper, two kinds of information are considered. The first is the frame-
wise detection information, which means that detections activated in Y should have low
appearance loss (i.e. high detection score). The second is that the activated detections
should satisfy the video continuity, for example a stand alone detection in video is
very likely to be a false positive and should be indicated as a false detection in Y . To
capture the above two types of information, we borrow the idea from cost-flow based
data association, and measure the loss of indicator set Y and detector F jointly with the
following function

L(F ,D,Y) =
n∑

i=1

(ct,iyt,i + cs,iys,i + ciyi) (8)

where ci = max(ξ1, ξ2 − score(F , I, ζi))

s.t. ys,i +

n∑
j=1

yj,i = yi = yt,i +

n∑
j=1

yi,j ,∀i

and yi, yi,j , ys,i, yt,i ∈ {0, 1},

where the indicator Y now includes auxiliary variables. The score(F , I, ζi) is defined
in adaptive DPM as Eq. 6. The above problem can be seen as an instantiation of the gen-
eral cost-flow based data association problem introduced in Eq. 4. The appearance cost
ci is defined as a generalized hinge loss of adaptive DPM detection score. The intuition
inside the definition is that detections with high appearance scores should be activated
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with a negative loss value, while the detections with low appearance scores should be
suppressed with a positive value. The parameter ξ1 and ξ2 can be tuned according to
the range of detection scores. The costs cs,i and ct,i which involve the source and sink
nodes are fixed to be positive constraint. They can be considered as a punishment to the
number of trajectory, which can help to remove the discontinuous false positives.

4.3 Adaptive Optimization

In video based detection, we need to determine the new detector F specified by P , the
frame-wise detection set D, and the indicator set Y of the detection set. Advocated by
recent latent structural learning works, we adopt the alternating minimization procedure
to optimize them.

Algorithm 1 Adaptive Structural Optimization for Video based Pedestrian Detection.
1: Input:

The video V , and the generic detector F0.
2: Set F = F0, i.e. P = I .
3: for i=1 to T1 do
4: Conduct the frame-wise adaptive DPM detection procedure with detector F by Eq. 6, and

get the detection set D of the video.
5: for j=1 to T2 do
6: Fix the P , and solve the optimal indicator set Y by minimizing L(P,D,Y) with the

successive shortest-paths algorithm.
7: Fix the Y , and solve the optimal P in Eq. 11 with standard quadratic programming

procedure.
8: end for
9: end for

10: return (F ,D,Y).

The whole optimization procedure is shown in Algorithm 1. In the outer loop, we
conduct the adaptive DPM detector for frame-wise detection to get the detection set
D. When D is fixed, the detection indicator Y and the adapted detector F are jointly
optimized by the following problem

(Y∗, P ∗) = argmin
Y,P
‖P − I‖2F + ηL(P,D,Y) (9)

s.t. ys,i +

n∑
j=1

yj,i = yi = yt,i +

n∑
j=1

yi,j ,∀i

and yi, ys,i, yt,i, yi,j ∈ {0, 1},

where the L(P,D,Y) is exactly the L(F ,D,Y), since F can be specified by P . The
filters Wa and ws in F are from the generic detector and fixed in the whole procedure.
It is a difficult mixed programming non-convex problem when both Y and P are free.
We therefore resort to an iterative algorithm based on the fact that solving Y given P ,
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and solving P given Y are convex problems, and there exists off-the-shelf solvers. In
detail, we solve the following two problems.

Fix Y to solve P When Y is given, the constrains in Eq. 9 can be removed, and the
problem becomes to be

argmin
P
‖P − I‖2F (10)

+η

n∑
i=1

yi ·max(ξ1, ξ2 − (Tr(WT
a PΦa(I, ζi)) + wT

s φs(ζi))),

Since Tr(WT
a PΦa(I, ζi)) is equal to Tr(PΦa(I, ζi)W

T
a ), the above problem equals

argmin
P
‖vec(P )− vec(I)‖2 (11)

+η

n∑
i=1

yi ·max(ξ1, ξ2 − (vec(P )T vec(Φa(I, ζi)W
T
a ) + wT

s φs(ζ))),

where vec(·) is the operator to reshape the matrix to be a vector in a column-wise man-
ner. The above problem can be solved effectively by standard quadratic programming
solvers [40].

Fix P to solve Y When the transformation matrix P is given, Eq. 5 becomes
argminY L(P,D,Y) under the cost-flow constraint, which can be effectively solved
by successive shortest-paths algorithm described in [34]. In the algorithm, we itera-
tively find the minimum-cost parts γ from the source to the sink in the residual graph,
and update the flow by pushing the unit-flow along γ if the total cost of the path is
negative.

Since the objective value is reduced in both of the two subproblems of the inner
loop, it can be easily proved that the inner loop will converge to a local minima. We set
the loop number T1 to be 5, the loop number T2 to be 8 and validate the convergence of
the whole optimization procedure in experiments.

5 Experiment

Experiments are conducted on challenging videos from ETHZ [41], Caltech [10] and
PETS2009 1 pedestrian datasets. The ETHZ and Caltech are captured from moving
camera, while the PETS2009 is captured from stationary camera. Particularly, the Bahn-
hof sequences from ETHZ, S2-L2 from PETS2009, and 8 sequences from Caltech with
most people are selected for evaluation. The ETHZ-Bahnhof sequences contain 999
frames and 8467 pedestrians; the PETS2009-S2-L2 sequences contain 436 frames and
8927 pedestrians; the 8 sequences from Caltech testset are with the length of about 1800
frames. These videos are challenging for cluttered background, large illumination varia-
tions, and heavy occlusion. The DPM detector (Version 5) trained on the INRIA dataset
[1] is taken as the baseline. Since the detector can only detect pedestrians of above 120
pixels in height, we resize every video frame with a scale of 2.5, and only measure

1 http://www.cvg.rdg.ac.uk/PETS2009/
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pedestrians of above 50 pixels in height as suggested in [14]. For all the experiments,
ξ1, ξ2, cs,i and ct,i used in Eq. 8 are fixed to be -1, 0.2, 10 and 10, respectively.

We follow the publicly available evaluation protocol in [14], except that the eval-
uations are conducted for each video separately. Full ROC curve and mean miss rate2

are used to compare different algorithms. In the following parts, we compare differ-
ent detector adaptation methods and examine the convergence of the outer loop in Al-
gorithm 1, and finally compare the detection performance with other state-of-the-art
detectors.

5.1 Different Methods for Video based Detection

In this part, we compare four different approaches for video based pedestrian detection
on PETS2009-S2-L2, which is challenging for appearance variations in illumination
and occlusion. These approaches include: (1) Generic DPM, the baseline DPM detector
(version 5) learned on INRIA; (2) DPM + Adaptation, which iteratively adds new train-
ing instances according to the frame-wise detection score, and then adapts the DPM
detector using the collected instances; (3) DPM + Tracking + Adaptation, which uses
the tracked detections as the new instances to adapt the DPM detector, where the track-
ing is solved by cost-flow network; (4) The proposed method that jointly considers
instance mining and detector adaptation.
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Fig. 2. Pedestrian detection results of different methods on PETS2009-S2-L2.

ROC curves and mean miss rates of the four methods are demonstrated in Fig. 2.
Due to the noise in training instances used, direct adaptation could cause the drift prob-
lem, and in this experiment it only improves a small margin over the original generic

2 The mean miss rate defined in P. Dollár’s toolbox is used here, which is the average miss rate
at 0.0100, 0.0178, 0.0316, 0.0562, 0.1000, 0.1778, 0.3162, 0.5623 and 1.0000 false-positive-
per-image.
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detector. Since a lot of false positives can be removed by optimizing the cost-flow net-
work, the instances used in adapting the detector are clear enough in the DPM + Track-
ing + Adaptation procedure, and it improves the performance with quite a large margin.
Benefiting from the joint model, our approach achieves the best performance and out-
performs the baseline generic DPM with 14% reduction in mean miss rate. Compared
with the sequential instance mining and detector adaptation approach, the proposed
joint learning method further reduces the mean miss rate by 4%.

5.2 The Convergence

In this part, we validate the convergence of the proposed method. 8 videos from Cal-
tech testset with most pedestrians are selected for evaluation. Since the inner loop in
Algorithm 1 is sure to converge to a local stable point, in this part, we only validate
the convergence of the outer loop, which iteratively conducts frame-wise detection and
optimizes the structural model. The selected video ID and the mean miss rate at each
loop are reported in Fig. 3.
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Fig. 3. The convergence illustration of the proposed optimization method in video based pedes-
trian detection.

From Fig. 3, we can find the noticeable performance improvement and the fast con-
vergence rate of our approach. On the 8 videos, the proposed method has an average
of 16% reduction in mean miss rate and the performance is close to convergence after
3 loops. Since the first loop can mine most of the instances, it contributes most to the
performance.

5.3 Comparisons with State-of-the-art Methods

In this part, we compare the proposed method with other state-of-the-art algorithms,
collected in [14], including Viola-Jones [42], Shapelet [43], LatSVM-V1, LatSVM-V2
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[6], PoseInv [44], HOGLbp [4], HikSVM [3], HOG[1], FtrMine [45], MultFtr [43],
MultiFtr+CSS [43], Pls [46], MultiFtr+Motion [43], FPDW [10], FeatSynth [47], Chn-
Ftrs [48], MultiResC [7], Veryfast [11], and CrossTalk [12]. We show the results of the
video Bahnhof in ETHZ, the set07-V000 and set07-V011 in Caltech 3.
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Fig. 4. Quantitative evaluations on ETHZ and Caltech.

Fig. 4 illustrates the quantitative results of different methods. On all the three videos,
the proposed method outperforms the baseline DPM (version 5) by more than 7%, and
outperforms the published state-of-the-art results. It improves about 5% on the ETHZ

3 The two videos are selected as they contain more people than other videos.



Adaptive Structural Model for Video Based Pedestrian Detection 13

Bahnhof, 2% on Caltech Set07-V000, and 4% on Caltech Set07-V011 than the best
published results. Some qualitative examples are shown in Fig. 5.

While the structural model optimization step is very efficient, most of the calculation
is spent on frame-wise detection. In our implementation, we modify the code of the FFT
based implementation [49] for fast convolution computation. Some techniques can be
used to further accelerate the loop, such as the cascade detection or only detecting a
subset in the early steps of the outer loop in Algorithm 1, and we leave it in future
work.

Fig. 5. Qualitative results of the proposed video base pedestrian detection on the ETHZ, Caltech
and PETS2009.

6 Conclusion

In this paper, we propose a joint structural model to adapt the generic pedestrian detec-
tor for video based pedestrian detection. The instance mining and detector adaptation
are formulated in one objective function, and an alternating minimization procedure
is adopted to optimize it. The DPM is extended to be adaptive-DPM, where a feature
transformation defined on low-level HOG cell is used to reduce the domain shift. We
demonstrate noticeable improvement over the methods that treat the two tasks indepen-
dently, and other state-of-the-art detectors on challenging videos from Caltech, ETHZ
and PETS2009.
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