DecompoVision: Reliability Analysis of Machine Vision Components through Decomposition and Reuse

ESEC/FSE 2023

Boyue Caroline Hu

Lina Marsso

Nikita Dvornik

Huakun Shen

Marsha Chechik

Motivation

Machine Learning models solve a variety of vision tasks in many domains

- Atomic vision task: one type of output
 - e.g., image classification -> class label
- Complex vision task: multiple types of outputs
 - e.g., object detection -> bounding box and class label
 - e.g., instance segmentation -> bounding box, class label and segmentation masks

ML reliability: stability facing perturbations in the input

- Performance comparison with humans
- Reliability requirements
- Testing

. . .

Image source: https://imfreezeov.live/product_details/46780824.html

Reliability of atomic tasks Reliability of complex vision tasks?

DecompoVision: a modular reliability framework through <u>decomposing analysis</u> of vision tasks

Vision Task Decomposition

"Many complex vision tasks can be represented as a *sequence* of atomic vision subtasks" [Haralick, 1992]

<u>Decomposition Principle (DP)</u>: decompose the problem of solving a complex vision task into solving the corresponding atomic subtasks of each output type

Other decomposable complex vision tasks:

- human-object interaction detection
- trajectory prediction
- language visual grounding
- ...

Robert M. Haralick. 1992. Performance Characterization in Computer Vision. In Proceedings of the British Machine Vision Conference, BMVC 1992, Leeds, UK, September, 1992. BMVA Press, 1–8. https://doi.org/10.5244/C.6.1

Decomposition Principle (DP): decompose the problem of solving a complex vision task into solving the corresponding atomic subtasks of each output type

Why C|L?

Conditional probability chain rule: the probability of observing all the outputs can be decomposed into probabilities of observing a sequence of individual outputs

Modular Analysis through Analysis Decomposition

<u>Decomposition Principle (DP)</u>: decompose the problem of solving a complex vision task into solving the corresponding atomic subtasks of each output type

Decomposing Comparison with Humans

"A trustworthy ML model should at least reach human performance" [Firestone, 2020] Human performance experiments decomposed with DP:

- A fair comparison between human and machine
- Reuse of experiment data

Chaz Firestone. 2020. Performance vs. Competence in Human-Machine Comparisons. Proceedings of the National Academy of Sciences 117, 43 (2020), 26562-26571.

Decomposing Reliability Requirements

<u>ML reliability requirement REQ(M)</u>: performance measured with metric M should not be affected by perturbations [Hu et. al, 2022]

Boyue Caroline Hu, Lina Marsso, Krzysztof Czarnecki, Rick Salay, Huakun Shen, and Marsha Chechik. 2022. If a Human Can See It, So Should Your System: Reliability Requirements for Machine Vision Components. In Proceedings of the 44th International Conference on Software Engineering (ICSE'2022), Pittsburgh, USA. ACM.

Decomposing Reliability Testing

Enabled from decomposing

- o performance metric
- o reliability requirements

Decomposing Reliability Testing

Detecting people with the PASCAL-VOC dataset:

Model name	AP for V _D	Satisfaction of REQ _L	Satisfaction of REQ _{C L}	\leq
R101-C4-3x	0.39	0.77	0.84	
R101-DC5-3x	0.39	0.81	0.73	

Metric for measuring degree of satisfying a requirement. [0, 1]

- Same Average Precision (AP) value for object detection
- Different ability for localizing objects and classifying localized objects
- Subtask analysis allows:
- o improvements of model performance
- model selection for different application

Decomposing Reliability Testing

Multi-stage ML models, such as Mask RCNNs, correspond to DP

Thus, analysis artifacts (tests, metrics, requirements) of the object detector can be reused for instance segmentation.

	With Decomposition								No Decomposition	
	Object Detection			Instance Segmentation				O. D.	I. S.	
Runtime (s)	507.49	2.33	1.00	144.35	0.63	34.97	0.62	511.26	692.21	
Peak Mem (MB)	61.36	61.36	61.36	61.36	61.36	61.36	61.36	61.36	61.36	

Limitations and Future Work

Limitations

Applicable to only decomposable complex vision tasks and metrics

Satisfying all decomposed requirements => satisfying the requirement for the complex vision task

The other direction might not hold

Future Work

Decomposition for a broader range of vision tasks

- Improve satisfaction measures
- Improve requirements decomposition

Use of decomposition for other reliability analyses, e.g., verification

Conclusion

DecompoVision: Reliability Analysis of Machine Vision Components through Decomposition and Reuse

- Decomposition Principle (DP): complex vision tasks can be decomposed into a sequence of atomic subtasks
- DecompoVision a modular framework that decomposes reliability analysis of ML performing complex vision tasks
- DecompoVision's modularity enables:
 - reuse analysis artifacts
 - getting deeper insights about the subtask reliability

