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Abstract—The application of machine learning (ML) based
perception algorithms in safety-critical systems such as au-
tonomous vehicles have raised major safety concerns due to
the apparent risks to human lives. Yet assuring the safety of
such systems is a challenging task, in a large part because ML
components (MLCs) rarely have clearly specified requirements.
Instead, they learn their intended tasks from the training data.
One of the most well-studied properties that ensure the safety of
MLCs is the robustness against small changes in images. But the
range of changes considered small has not been systematically
defined. In this paper, we propose an approach for specifying and
testing requirements for robustness based on human perception.
With this approach, the MLCs are required to be robust to
changes that fall within the range defined based on human
perception performance studies. We demonstrate the approach
on a state-of-the-art object detector.

I. INTRODUCTION

Systems that use machine learning (ML) to replicate or
improve upon human competencies have become prevalent in
different areas of science and engineering. For example, ML
is used in automated driving systems for several purposes,
including perceptual tasks such as pedestrian detection. The
fast-paced development of such systems, e.g., Tesla Autopilot,
has brought forth safety concerns because erroneous behaviors
can lead to fatal accidents [23]. Guaranteeing safety for ML
components (MLCs) of such systems is challenging because
MLCs are designed to learn from training data rather than
follow a list of carefully defined requirements [14]. In addition,
it is often difficult to rigorously specify the tasks that MLCs
are expected to perform. For example, socially-constructed
concepts, like pedestrians, are hard to specify because there is
no consensus on their definition [14].

Ashmore et al. identified a list of desired properties of
MLCs that should be considered as requirements: perfor-
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Fig. 1. Taxonomy of requirements for machine-learned perception.

mance, robustness, reusability and interpretability [1] (see top
of Fig. 1). Robustness concerns the ability to handle stressful
environmental conditions and unseen or unexpected data [22],
both common in real world scenarios. Therefore, requirements
that ensure robustness are crucial to assure that decisions made
by ML can be trusted in safety-critical contexts. In this position
paper, we identify a class of robustness requirements that are
amenable to precise specification and propose a method for
doing so.

It has been shown that ML systems are vulnerable to
adversarial attacks, where minimal changes to the input image
can cause misclassification [13]. Such behaviour is clearly
undesirable for safety-critical systems. Thus, several studies
investigated testing (e.g., [20]) and verifying (e.g., [8]) MLCs
to guarantee their robustness within a small neighbourhood of
the original image [8]. Yet, several questions require further
investigation, e.g., how should this neighbourhood be defined?
How should the resulting requirements specification be com-
municated to the user? How should we check whether the
MLC satisfies this robustness requirement?

Position and contributions: Specifying full requirements
of the expected behaviour for MLCs may not be feasible.
Instead, we propose using human performance as a baseline



to express and formally specify a subset of the minimal
expected input-output behaviour of MLCs. We investigate
robustness requirements for MLCs designed for perception
tasks, since robustness is crucial for the decisions made by the
MLCs [5]. Human performance is used to bound the amount
of changes that the MLCs are required to be robust to. We
present a systematic method of generating such requirements
and a method for testing whether the requirements have been
satisfied. Our requirements can be used for verification and
safety guarantees for MLCs in safety-critical systems.

The rest of the paper is organized as follows: Sec. II defines
the proposed form of a robustness requirement for perception
MLCs. We describe, and illustrate with an example, our pro-
posed approach to specify and test the requirements based on
human performance in Sec. III. Sec. IV summarizes the work
related to requirement engineering, testing and verification for
MLCs. We conclude in Sec. V with the summary of the paper
and suggestions for future work.

II. ROBUSTNESS REQUIREMENTS

In this section, we discuss the form of robustness require-
ments for perception MLCs (see Fig. 1).

Using human performance as a baseline, we will assume
that perception MLCs are required to be robust to any input
modification that would not change human perception. For
example, a pedestrian detector should still classify an input as
a pedestrian even if a small amount of noise is added to the
image or it is rotated by a limited amount. This is a common
assumption made by work that explores robustness in the
context of adversarial examples (e.g., [8]). For our purposes,
we only consider modifications that can be formally defined
as transformations. Investigating modifications in images that
cannot be formally expressed as transformations, e.g., chang-
ing the clothes of a pedestrian, is left as future work. Some
examples of transformations are:
• Affine transformations [10] such as scaling and rotating.
• Transformations modifying different aspects of the percep-

tual context [22]:
– Light sources, e.g., changing the color or brightness of

the light.
– Medium, e.g., adding weather conditions like rain or fog.
– Objects, e.g., changing position of the object.
– Observer (camera), e.g., different viewpoint and exposure

of the camera, different amount of visual noise.
As shown in Fig. 1, we further refine requirements for

robustness as invariant and equivariant requirements. An
MLC can have multiple outputs and different outputs may
be required to be invariant or equivariant with respect to
given a transformation of the input. For example, an object
detector produces a class label and a bounding box position
and extent for each object it detects in the input image. With
respect to a translation transformation that moves objects, we
require that bounding box position is equivariant and moves
a corresponding amount, while the class and bounding box
extent is invariant. Another invariant here is that the set of
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Fig. 2. Process for generating perception MLC robustness requirements.

detections is preserved — every object previously detected will
still be detected (i.e, won’t create false negatives) while every
object now detected was also detected previously (i.e., won’t
create false positives). As another example, the transformation
that adds noise to an image should leave all the outputs
invariant.

We can further refine an invariant based on whether the
modifications are (i) not visible to a human (e.g., adding slight
noise), or (ii) visible but do not affect a human’s ability to
recognize the object as structural information in the images
are preserved [25]. This distinction is important because if a
transformation can be shown to be non-visible to humans then
it must also be an invariant. On the other hand, the invariance
of each type of visible transformation must be argued for
separately.

Finally, to formally specify a robustness requirement based
on a transformation, the range of modifications for which an
MLC should be invariant or equivariant must be determined.
For example, there is a bound on the amount of noise that can
be added to an object image before a human will no longer
be able to detect it. Thus, based on the parameters of the
specific transformation, there is a range of parameter values
determined by human performance limitations that the MLC
must be robust to.

To summarize, a robustness requirement for a perception
MLC consists of the following components: a formally de-
fined transformation over the inputs of the MLC, a range of
values for transformation parameters, and, an indication of the
invariance or equivariance of each output of the MLC for this
range of transformations.

III. DERIVING AND CHECKING REQUIREMENTS

In Sec. II we defined the form of a robustness require-
ment for a perception MLC. In this section, we introduce a
systematic method for deriving such requirements based on
research about human performance in perception. We also
discuss how to verify that an MLC satisfies such a requirement.
We illustrate our method on the state-of-the-art object detector
YOLO v4 [4].

As the first step of our method, shown in Fig. 2, we
identify types of modifications that humans are invariant and
equivariant to when recognizing objects in images. To do that,
we propose to use studies of the Human Visual System (HVS).
The HVS includes the eyes, the connecting pathways to the
visual cortex, and the visual cortex [11]. Different versions
of the HVS model can be designed to include the relevant
human vision characteristics for different vision applications
to improve visual quality [12], such as image enhancement,
segmentation, coding, and image quality assessment [3]. For
example, research on the HVS has shown that spatial shifting
and rotations should have little effect on visual fidelity [6]



and therefore be equivariant. And noise in image is shown to
preserve local structure of an image well [25]; thus, human
performance should be invariant to certain amount of noise in
images.

In the next step, we identify transformations to formally
define the modifications in images discussed in the first step.
For example, a noise transformation can be modeled as adding
Gaussian noise to images, which has a probability density
function equal to that of the Gaussian distribution [2] and
takes two parameters: mean and variance. Thus, since noise
preserves the structure of the image, human performance
should be invariant to additional Gaussian noise within a range
of values for the parameters.

In the last step, we determine the range of parameters for
the transformations that MLCs are required to be invariant or
equivariant to. To do this, we propose to use a search (e.g.,
binary search) through the space of parameter values along
with an oracle for determining whether the transformation with
a given parameter value is invariant/equivariant for humans.
For example, Gaussian noise with different variance values
(we assume the mean is 0) are added to an image and the
result is checked with the oracle.

One possible choice for an oracle is an Image Quality
Assessment (IQA) metric based on HVS research. An IQA
metric is the algorithmic evaluation of the objective quality
of an image for a human viewer. With access to the original
(distortion-free) image, IQA metrics are able to determine the
effect of image distortions on visual quality [11].

A large variety of IQA metrics with different capabilities ex-
ist. Some check the perceivability of distortions by computing
computing contrast thresholds for detection and some include
overarching i.e., what the HVS attempts to achieve when the
human is shown a distorted image for example, some relate
loss of information to perceptual loss of quality [6]. Therefore,
we aim to determine which IQA metrics are well suited to
obtain the range of distortions that do not affect human’s
detection of an object. Further use these metrics to generate
requirements for an MLC’s robustness.

Continuing the example, an IQA like Signal-to-Noise Ratio
(VSNR) [6] that can check visibility of distortions would be
appropriate to determine the range of values for the variance
of Gaussian noise that is not visible to human. The search
process can use VSNR to check each noisy image generated
with a particular variance value to determine whether the noise
is visible. Fig. 3 shows an image obtained from Berkeley
DeepDrive [21]. For this image, the range of values for the
variance of the Gaussian noise resulting in invisible changes,
obtained using a simple linear search and VSNR as the oracle
is the interval [0, 0.067]. Therefore, MLCs are required to be
robust to additional Gaussian noise with mean 0 and variance
within this interval.

To demonstrate the testability of our example robustness
requirement, we use it to evaluate the state-of-the-art object
detector, YOLO v4 [4] with pre-trained weights. Fig. 3 and
Fig. 4 show YOLO’s output for the same image without and
with the additional Gaussian noise, respectively. The added

Fig. 3. YOLO detection of the original image.

Fig. 4. YOLO detection of the image with additional Gaussian noise added
(mean=0, variance=0.001). The sign between the traffic lights and the red
building is misclassified as a traffic light. In addition, a car below this sign,
which was not detected in the original image, is now detected.

noise is invisible to humans, but it caused YOLO to misclassify
the sign between the traffic lights and the red building as a
traffic light. In addition, a car below this sign, which was
not detected in the original image, is now detected. lead
to misclassification by YOLO (details are in Fig. 4). These
differences clearly show that the specific YOLO model is not
robust with respect to the addition of the Gaussian noise that
is not visible to humans. These mistakes can lead to deadly
consequences in safety-critial systems like automated driving
and thus the use of this version of YOLO would be unsafe.

In general, there are a number of systematic approaches to
determine whether a robustness requirement is satisfied by a
given MLC. One of these is using metamorphic testing [24]—
a technique to generate follow-up test cases based on existing
ones [20]. The first step of this method is to identify metamor-
phic relations (MRs) that relate multiple pairs of inputs and
outputs of the software being tested. For invariant robustness
requirements, the transformation relates inputs and the IQA
metric is used as an equivalence relation on the corresponding
outputs. This MR is then used to generate new test cases
by generating new images from the original one by applying
the transformation, and then checking whether the results are
considered identical to the original by the IQA metric.

While testing can reveal counter-examples and thus show
that the requirement is not satisfied, it is not sufficient to prove
requirement satisfaction—formal verification would be needed
for this task.



IV. RELATED WORK

In this section, we list previous work on requirements for
MLCs, testing or verifying robustness of MLCs and adversar-
ial examples generation using HVS.

For requirements specifications for MLCs, Vogelsang et
al. [19] conducted interviews with data scientists to know their
opinions about the types of requirements that are necessary for
MLCs, but they did not proceed with detailed specifications
of the requirements mentioned in the paper. Rahimi et al. [14]
suggest a method for creating MLC requirements by explic-
itly specifying domain-related concepts, whereas we focus
on robustness requirements using human perception studies.
There are other attempts by different communities to specify
requirements for MLCs in different types of software sys-
tems by creating component-level specifications [18], dataset
specifications [9], model specifications [17] and development
process specifications [16] of MLCs. We proposed a different
approach to robustness requirements specification using human
performance as a base line.

Testing and verification of the robustness of MLCs have
been explored by the software engineering community. Xie et
al. [20] gave partial specifications of robustness of ML models
with respect to mutations in the training set or test set or
both. In contrast, we aim to study mutations of test images
and measure the similarity of the original and mutated images
based on how humans perceive the difference. Huang et al. [8]
explored safety verification for the robustness of MLCs. They
focused on verifying that adding small perturbations to an
image, e.g., changes to the values of a few pixels, should
not affect the output of MLCs. Our approach differs in the
definition of the “small range”—we define the range based
on human perception as a range that can be added without
changing a human interpretation of the objects.

Previous work has explored generation of adversarial ex-
amples using HVS. Ho et al. [7] demonstrated the idea of
incorporating HVS models into adversarial AI to produce
adversarial examples with small visual difference. But the
work did not clearly define the notion of the perceptual
distance, did not include a mathematical interpretation of
the HVS, and focused on invisible changes only. Rozsa et
al. [15] proposed calculating an adversarial similarity score
to quantify the differences between the original image and
adversarial images using SSIM [25], a type of IQA.

V. CONCLUSION

In this paper, we emphasized the importance of require-
ments specification for machine-learned perception in safety-
critical systems when making safety guarantees. We proposed
a method to specify and test the robustness requirements of
MLCs based on human performance approximated using HVS
models. A demonstration on YOLO v4 showed that it is not
robust against changes, e.g., Gaussian noise that are not visible
to humans.

Our next steps are to conduct more experiments with
different types of transformations and IQAs; to implement the

specification and testing procedure for the requirements; to
verify the requirements and to validate our approach.

Other questions remain open for future investigation: How
to specify requirements related to changes that cannot be
expressed as transformations, e.g., changing clothes on a
pedestrian? How to specify requirements related to changes
that are not structure preserving but where humans are still
able to detect the objects, e.g., shadows that cover parts of
an object? Which IQA metrics better suit different types of
requirements? Are there other studies that can be used to assess
human performance besides HVS models?
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