Due: Sunday, January 26 at the latest 5:59PM on MarkUs

This is a bonus question relating to question 5 in Assignment 1.
Consider the interval scheduling problem. We are given a set S of intervals $\left[s_{1}, f_{1}\right),\left[s_{2}, f_{2}\right), \ldots\left[s_{n}, f_{n}\right)$ and we need to color each interval in S so that intersecting intervals do not get colored with the same color. We know that if we sort the intervals so that $s_{1}, \leq s_{2} \ldots \leq s_{n}$, and then color greedily, we will obtain an optimum coloring. (By greedy coloring, we mean assigning each interval $\left[s_{i}, f_{i}\right.$) with the smallest available color (using colors $1,2, \ldots$) having colored the previous $i-1$ intervals. We called this the EST coloring algorithm as given in class. Now suppose instead we sort the intervals so that $f_{1} \leq f_{2} \ldots \leq f_{n}$ and then color greedily. We can call this the EFT coloring algorithm.

The bonus question is to find a set S of intervals such that EFT coloring will not result in an optimum coloring. That is, give a set S of intervals that can be coloried with say k colors (for some k) but EFT will use $\ell>k$ colors. Your example should show how the intervals in S can be colored with k colors and also how EFT would color the intervals.

The bonus is worth an additional 5 points. However, we will only award the bonus for the first person (or team) that submits an example that is substantially different from previously submitted examples. (For example, making disjoint copies of S does not constitute a different example.) We will accept submssions up until Sunday January 26 at 4:59PM.

If you submit a team solution, then that will be your team for the entire term and, in particular, that means at most 3 students in a team.

If you write your solution neatly and take a photo and submit the pdf that will be accepted.

