
CSC373, Winter/Spring 2020 Solution sketches for Assignment 3

Note: You will receive 20% of the points for any (sub)problem for which you
write “I do not know how to answer this question.” You will receive 10% if you
leave a question blank. If instead you submit irrelevant or erroneous answers you will
receive 0 points. You will receive partial credit for the work that is clearly “on the
right track.”
You may choose to spend your time looking for solutions on the internet and may
likely succeed in doing so but you probably won’t understand the concepts that way
and will then not do well on the quizzes, midterm and final. So at the very least try
to do the assignment initially without searching the internet. If you obtain a solution
directly from the internet, you must cite the link and explain the solution in your
own words to avoid plagarizing.

Note: As we have to change the grading scheme, it is especially important that
you work individually (or in your established teams for this assignment) and not take
solutions from others. This is always important but if we are going to increase the
weight of assignments, we clearly have to have confidence that your work is your
work.

There was an error in the way we were weighting question 3, so we are going to reweight all
the questions to better reflect the time needed and importance of the questions.

1. (10 points)

We want to consider the following decision problem called DENSESUBGRAPH:
Given a graph G = (V,E) and two integers a, b, does there exist V ′ ⊆ V such that |V ′| = a
and |(V ′ × V ′) ∩E| ≥ b. That is, the problem is to determine if there is a subset of vertices
of size a such that the subgraph induced by V ′ has at least b edges.

Prove that DENSESUBGRAPH is NP complete.

Solution: We can transform the CLIQUE descion problem to DENSESUBGRAPH. CLIQUE
= {(G, k) : G has a clique of size at least k}. This is the same as having a clique of size
equal to k. The transformation sets a = k and b =

(
k
2

)
.

2. (10 pts)

Suppose P = NP . Show how to solve the graph coloring problem in polynomial time. That
is, given a graph G = (V,E), find a valid coloring χ(G) : V → {1, 2, . . . , k} for some k
satisfying the property that (u, v) ∈ E implies χ(u) 6= χ(v) so as to minimize the fewest
number k of “colors”.

Solution: Here is one way to do the reduction. We first use the decision problem for
coloering to determine the minimum number k of colors to color G. We then have to create
the coloring χ, one vertex at a time. Create a new graph G′ by adding a k clique on k new
vertices {c1, . . . , ck}. At first these k vertcies will be disjoint from the vertices in G. For
each vertex v ∈ G, we will try to color v by color i. We do this by adding an edge to each
cj with j 6= i and ask if this new graph (i.e. G′ plus these k − 1 edges) can be colored with
k colors. If yes, then we can color v by color i. There has to be one such color. We continue
this way coloring each vertex by adding k − 1 new edges to know how to color the vertex.
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3. (25 points) The standard form for an integer program is

Maximize cTx
Subject to Ax ≤ b

x ∈ Nn

Using the matrix notation, you can define the dual of an IP in standard form in the same
way as for an LP in standard form.

• (5 points) Show that the statement of weak duality ho lds for an IP.
Solution:

Let x̂ ∈ Zn is a solution to the primal, and ŷ ∈ Zn is a solution to the dual. Then we
need to show cT x̂ ≤ ŷT b.

ŷT b ≥ ŷT (Ax̂) = (ŷTA)x̂ ≥ cT x̂.

• Consider the following primal problem expressed as an IP and also as an LP .

maiximize y
subject to y − 3

2
x ≤ 0

y + 3
2
x ≤ 3

y, x ∈ N for the IP and y, x ≥ 0 for the LP

(a) (5 points) Draw the feasible region and determine the optimum integral solution
and the optimum fractional solution.

Solution: The IP primal optimum has optimum value = 1. The LP relaxation of
the primal has opitmum vale 3

2
.
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CSC373, Winter 2007 Assignment 3 Sample Solutions

1. (a) The IP dual is

Minimize yT b
Subject to yT A � cT

y � 0
y 2 Zn

Claim 0.1 (Principle of weak duality for IP). If bx 2 Zn is a solution to the primal,
and by 2 Zn is a solution to the dual, then cT bx  byT b.

Proof.
byT b � byT (Abx) = (byT A)bx � cT bx.

(b) Consider the following

Primal Dual
max y
subj. to y � 3

2
x  0

y + 3
2
x  3

y, x � 0
y, x 2 Z

min 3�
subj. to ↵ + � � 1

�3
2
↵ + 3

2
� � 0

↵, � � 0
↵, � 2 Z

Primal of this IP has optimal value 1 (draw the feasible region), while the dual has
optimal value 3 (achieved by setting ↵ = � = 1, note that � cannot be 0, because
then ↵ � 1 and this violates the second inequality in the dual). Also, note that if the
integrality constraint is dropped then both primal and dual have value 3/2 (achieved
for x = 1, y = 3/2 and ↵ = � = 1/2).

(c) LIP-feas = {hA, bi | A 2 Zm⇥n, b 2 Zm, 9x 2 {0, 1}nAx  b}.

Claim 0.2. LIP-feas is NP-complete.

Proof. (1) LIP-feas 2 NP: given A, b and a proposed solution x 2 {0, 1}n, we can verify
in polynomial time whether Ax  b. This is because matrix-vector multiplication takes
polynomial time.

(2) We will show that L3-SAT p LIP-feas. We are given a 3-CNF � = C1 ^C2 ^ . . .^Cm,
where the Ci are clauses, i.e, Ci = `1i _ `2i _ `3i . We will encode each clause as a linear
inequality. Let pos(Ci) denote the variables that appear positively in Ci, and neg(Ci)
be the variables appear negated in Ci. Then the inequality corresponding to clause Ci isP

xj2pos(Ci)
xj +

P
xj2neg(Ci)

(1�xj) � 1. For example, if clause C1 = x1_x2_¬x3, then

the inequality we get from it is x1+x2+(1�x3) � 1. Note that x 2 {0, 1}n satisfies clause
i if and only if x satisfies the derived inequality. We can transform these inequalities
into the form aT

i x  bi by collecting constant terms on the LHS and brining them to
the RHS and multiplying the inequality by �1 to change � into . Putting all such
inequalities together we end up with an IP-feasibility instance Ax  b. By the above
observation, it follows that x 2 {0, 1}n satisfies all clauses of � if and only if the same x
satisfies all inequalities aT

i x  bi. This shows that h�i 2 L3-SAT () hA, bi 2 LIP-feas.
Clearly, construction of A and b can be carried out in polynomial time.

2. (20 pts)
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(b) (5 points) Provide the dual of this primal and verify that the optimum fractional
value for the dual matches the optimum fractional value for the primal.

Solution: See above

(c) (5 points) Determine an integral value for the dual that is greater than the integral
optimum for the primal thereby showing that strong duality does not generally
hold for IP.

Soution: Dual IP has optimnum value 3.

4. (20 points) Consider the weighted set cover problem as defined in the KT text chapter on
approximation algorithms. Namely, the input is a collection of C = {S1, S2, . . . , Sn} where
Si ⊂ U ,

∑
i Si = U and wi is the weight of set Si. The objective is to select a subcollection

C ′ covering the elements in U so as to minimize
∑

Si∈C′ wi.

Now suppose that we restrict attention to those inputs (which we will call frequency f
instances) where each universe element occurs in at most f sets.

(a) (10 points)

Show that the vertex cover problem can be viewed as a a set cover problem where every
input is a frequency 2 instance.

Solution: Let G = (V,E). For each vertex vi, we create a set Si consisting of the
names of the edges adjacent to vi. The universe U is the names of the edges in E.
Clearly, each edge e = (vi, vj) is in exactly two sets, Si and Sj.

(b) (10 points) Show how to represent the set cover problem as an integer programming
problem. Then show how to use linear programming and rounding to derive a factor f
approximation algorithm for every frequency f instance of the set cover problem.

Solution: The IP/LP rounding is just a generalization of the vertex cover IP/LP round-
ing. Namely, the IP is to minimize

∑
iwixi subject to the constraints

∑
i:e∈Si

xi ≥ 1
for each eleemnt e ∈ U .
xi ∈ {0, 1}.
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The LP relaxtion has the constraint xi ≥ 0 for each i.
We round each xi to x̄i = 1 iff xi ≥ 1

f
.

5. (20 points) Consider the knapsack problem with inputs {(s1, v1), . . . , (sn, vn)};W}. We
know that there is an algorithm (using dynamic programming and rounding) that uses time
O(n3/ε) time and computes a solution within a factor (1 + ε) of the optimal solution for the
(general) knapsack problem. Now consider the simple knapsack problem where vi = si for
all i. We want a faster approximation algorithm for this problem.

(a) (10 points) Describe a greedy O(n log n) time algorithm Greedy for the simple knapsack
problem that always produce a solution within a factor of 2 of the optimal solution;
that is, Greedy(I) ≥ (1/2)OPT (I) for every input I = (s1, s2, . . . , sn;W ). Here we
assume si ≤ W for all i.

Give a brief argument as to why your solution obtains the stated approximation guar-
antee.

S
¯
olution: Sort the inputs so that s1 ≥ s2 . . . ≥ sn and accept greedily (i.e, if the

items fits then take it). If s1 ≥ W
2

, th en the first item alone will satisfy the stated
approximation.

(b) (10 points) Describe anO(n log n) time algorithmALG such thatALG(I) ≥ (2/3)OPT (I)
for every input I.
Hint: Partition the inputs into three sets, those with weight wi ≤ W/3, those with
weight W/3 < wi ≤ (2/3)W and those with weight wi > (2/3)W . Your algorithm
should be “greedy-like” in the sense that in each iteration it will consider a couple of
items and then decide what items to place in the knapsack.

Give a brief argument as to why your solution obtains the stated approximation guar-
antee.

Solution: Again initially sort so that s1 ≥ s2 . . . sn. If s1 ≥ 2
3
W , we are done. If there

is exactly one item such that 1
3
W ≤ si <

2
3
W , then take that item and fill in greedily.

Ant item that doesn’t fit can be at most 2
3
. If there are at least two such items, then if

two fit take them. Othwerwise take the largest and then fill in greedily with the smaller
size items.

6. (20 points) Comsider the following weighted set packing problem. The input is collection
C = {S1, S2, . . . , Sm} of sets where |Si| ≤ k for some fixed integer k and wi is the weight
of Si. The objective is to select a subcollection C ′ of disjoint sets so as to maximize

∑
Si∈C′ wi.

Design a greedy algorithm Greedy that achieves a k approximation ratio. That is, for every
input C, Greedy(C) ≥ 1

k
OPT (C). Use a charging argument to show that your algorithm

obtains the stated approximation.

Solution: One way to do this is to view the problem as an instance of the maximum
weighted independent set for a k+ 1 claw free graph. Namely, each set becomes a node, and
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there is an edge between Si and Sj iff the sets intersect. Now sort the vertices (in this k+ 1
claw free graph) so that w1 ≥ w2 . . . ≥ wn. Now using the same type of charging argument
we have used before we form a k to 1 mapping from OPT to Greedy.
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