
CSC373, Winter/Spring 2020 Assignment 1

Due: Thursday, February 6, 202 4:59PM on MarkUs

You will receive 20% of the points for any (sub)problem for which you write “I do
not know how to answer this question.” You will receive 10% if you leave a question
blank. If instead you submit irrelevant or erroneous answers you will receive 0 points.
You may receive partial credit for the work that is clearly “on the right track.”
You mnay choose to spend your time looking for solutions on the internet and may
likely succeed in doing so but you probably won’t understand the concepts that way
and will then not do well on the quizzes, midterm and final. So at the very least try
to do the assignment initially without searching the internet. If you obtain a solution
directly from the internet, you must cite the link to avoid plagarizing.

1. (20 pts) You are writing a blog about restaurants in various cities. You have a list of the 16
top restaurants in Moscow but you don’t trust the reviewer. You have a friend in Moscow
is willing to help and all you want to do is provide the best of these 16 restaurants and the
worst of these 16 restaurants. So you ask your friend to compare restaurants and give you
his opinion on the best and the worst. How many retaurants does he/she have to compare?

(a) (5 points)It is reasonably obvious how your friend can provide his/her opinion doing 30
comparisons. Say why?

(b) (10 points) It is possible to provide the desired opinion in just 22 comparisons. Provide
a divide and conquer algorithm that will achieve this bound. State your algorithm (for
any arbitrary number n of restaurants) in pseudo code.

(c) (5 points) State the recurrence (when there are n = 2k restaurants) that describes the
number comparisons. (Do not forget the base case.)

1 of 6



CSC373, Winter/Spring 2020 Assignment 1

2. (20 points) Let a(x) be a polynomial of degree n− 1 (say over the reals). We can evaluate
a(x) at a given point y in O(n) +,−,× arithmetic operations. In fact, the precise number is
2(n−1) arithmetic operations using Horner’s rule. Your goal is to provide an algorithm that
will evaluate a(x) at n distinct points y1, . . . , yn. Evaluating at each yi separately will result
in a totasl of O(n2). operations. We are aiming for an algorithm that uses asymptoticallly
much fewer arithmetic operations.

Assume we can multiply two degree n polynomials in O(n log n) arithmetic operations.
(Note: this can be done as we will indicate in class.) We also know that we can also do
polynomial division in O(n log n) arithmetic operations. By polynomial division, we mean
that for polynomials a(x) and b(x) we can compute polynomials q(x) and r(x) such that
a(x) = q(x)b(x) + r(x) with degree r < degree b.

For simplicity (but without loss of generality), let n = 2k.

(a) (5 points)

With or without recursion, show how to compute the polynomial
∏n

i=1(x − yi) where
y1, . . . , yn are n real numbers. We suggest a recursive algorithm whose recursion will
make it easier to estimate the complexity.

(b) (10 points) Provide a divide a conquer algorithm for evaluating a degree n−1 polynomial
a(x) at n distinct points y1, . . . , yn using only T (n) = O(n log2 n) airthmetic operations.
Hint: Divide a(x) by an appropriate b(x) of degree n/2 that can be efficiently computed.

(c) (5 points) Indicate the recursion and justfiy the bound on the number of arithmetic op-
erations using the assumptions about the complexity of polynomial multiplication and
division. What would the bound be if we only assume that polynomial multiplication
and division can be done in O(nlog2 3).

2 of 6



CSC373, Winter/Spring 2020 Assignment 1

3. (20 points) The maximum subarray sum problem

Given an array A of n signed integers, design a divide and conquer algorithm in time
O(nlog(n)) to find a subarray A[i, ..., j] such that A[i] + A[i + 1] + ... + A[j] is maximized
(1 ≤ i ≤ j ≤ n). In other words, find a pair (i, j) such that ∀(x, y)Σj

k=iA[k] ≥ Σy
k′=xA[k′].

• (10 points)In English, describe your algorithm.

• (5 points) Describe your algorithm in pseudocode.

• (5) Using an appropriate recurrence, analyze the running time of your algorithm. (Do
not forget the base case).

3 of 6



CSC373, Winter/Spring 2020 Assignment 1

4. (15 points)

Consider the following greedy algorithm for graph colouring. Without loss of generality we
will let the input G = (V,E) be a connected graph with V = {v1, v2, . . . , vn} (n ≥ 1) and let
the colours be C = {1, 2, . . .}. We also let Nbhd(v) denote the neighbourhood (i.e. adjacent
vertices) of node v.

GREEDY COLOURING ALGORITHM (using breadth first search)

Let χ(v1) = 1;L(0) := {v1}; i := 0 % χ() is the colouring function
% L(i) will denote the nodes in the current level of the breadth first search

Let A := {v1} % A will be the nodes already coloured
Let U := V − {v1} % U will be the nodes not yet coloured
While U 6= ∅

L(i+ 1) := ∅
For j := 1..n : vj ∈ L(i)

For k = 1..n : vk ∈ Nbhd(vj) ∩ U
% colour the node being added to the next level
χ(vk) := minc∈C : c /∈ ∪vh∈Nbhd(vk)∩A χ(vh)
U := U − {vk};A := A ∪ {vk}
L(i+ 1) := L(i+ 1) ∪ {vk}

END For
END For
i := i+ 1

END While

(a) (10 points) Give a short but convincing argument showing that the above greedy algo-
rithm will colour every 2-colourable graph using 2 colours; that is, the greedy algorithm
is optimal for 2-colourable graphs.

(b) (5 points) Give an example of a 3-colourable graph for which the above greedy algorithm
will use more than 3 colours. You may label the verticess in any way (which then fixes
the order in which the algorithm assigns colours,)

4 of 6



CSC373, Winter/Spring 2020 Assignment 1

5. (20 points) Recall the EFT algorithm for interval scheduling on one machine. We wish to
extend this algorithm to m machines. That is, when considering the ith interval Ij we will
schedule it if there is an available machine. But on which machine? That is, what is the tie
breaking rule?

(a) (10 points) Consider the First-Fit EFT greedy algorithm:

• Sort the intervals {Ij} so that f1 ≤ f2 . . . ≤ fn

• For j = 1 . . . n
For ` = 1 . . .m

If Ij fits on M` then schedule Ij on M`

EndFor
EndFor

Is First-Fit an optimal algorithm? If yes, provide a proof; otherwise provide a counter-
example.

(b) (10 points) Consider Best-Fit EFT greedy algorithm:

• Sort the intervals {Ij} so that f1 ≤ f2 . . . ≤ fn

• For j = 1 . . . n
If there is a machine M` on which Ij can be scheduled, then

schedule Ij on M` where ` = argmaxk{fk ≤ sj and Ik scheduled on Mk}
EndFor

Is Best-Fit an optimal algorithm? If yes, provide a proof; otherwise provide a counter-
example.

6. (20 pts) You are given two arrays D (of positive integers) and P (of positive reals) of size
n each. They describe n jobs. Job i is described by a deadline D[i] and profit P [i]. Each
job takes one unit of time to complete. Job i can be scheduled during any time interval
[t, t+ 1) with t being a positive integer as long as t+ 1 ≤ D[i] and no other job is scheduled
during the same time interval. Your goal is to schedule a subset of jobs on a single machine
to maximize the total profit - the sum of profits of all scheduled jobs. Design an efficient
greedy algorithm for this problem.

(a) (5 points) Describe your algorithm in plain English (maximum 5 short sentences).

(b) (5 points) Describe your algorithm in pseudocode.

(c) Prove (5 points) correctness of your greedy procedure. One possibile proof is to argue
by induction that the partial solution constructed by the algorithm can be extended to
an optimal solution. But you can use any type of valid proof argument.

(d) (5 points) Analyze the running time of your algorithm (in terms of the total number of
operations).

5 of 6



CSC373, Winter/Spring 2020 Assignment 1

7. (30 points) A is an array of n integers. Design a dynamic programming algorithm to find a
subset S ⊆ {1, 2, 3, ..., n} that maximizes

∑
i∈S A[i], subject to the constraint that no two

members of S can point to two consecutive elements of A, i.e., if i ∈ S then (i+ 1) /∈ S.

• (15 points) Describe your algorithm by giving a semantic array V (i.e. what is in each
entry of the array) and a recursively defined array V ′ that will be equal to V in each
entry. Don’t forget any base case(s) and explain how the desired set S is obtained from
V . Provide a brief explanation that V = V ′.

• (10 points) Implement your algorithm as an iterative (non recursive) algorithm.

• (5 points) What is the aysmptotic time comlexity of your algorithm whether executed
iteratively or recursively (with memoization).

6 of 6


