
CSC373, Winter/Spring Assignment 1 Solution Sketches

Due: Thursday, February 6, 202 4:59PM on MarkUs

You will receive 20% of the points for any (sub)problem for which you write “I do
not know how to answer this question.” You will receive 10% if you leave a question
blank. If instead you submit irrelevant or erroneous answers you will receive 0 points.
You may receive partial credit for the work that is clearly “on the right track.”
You mnay choose to spend your time looking for solutions on the internet and may
likely succeed in doing so but you probably won’t understand the concepts that way
and will then not do well on the quizzes, midterm and final. So at the very least try
to do the assignment iinitially without searching the internet. If you obtain a solution
directly from the internet, you must cite the link to avoid plagarizing.

1. (20 pts) You are writing a blog about restaurants in various cities. You have a list of the 16
top restaurants in Moscow but you don’t trust the reviewer. You have a friend in Moscow
is willing to help and all you want to do is provide the best of these 16 restaurants and the
worst of these 16 restaurants. So you ask your friend to compare restaurants and give you
his opinion on the best and the worst. How many retaurants does he/she have to compare?

(a) (5 points)It is reasonably obvious how your friend can provide his/her opinion doing 30
comparisons. Say why?

Solution sketch: We can maintain a candidate for the maximum element (i.e., best
restaurant) and keep updating it. This takes n − 1 comparisons when there are n
elements in an array. Once we eliminate the maximum elemenet we have n-1 elements
and finding the minium element will then take n− 2 more comparisons. So we have a
total of 2n− 3 and thus 30 comparisons when n = 16.

(b) (10 points) It is possible to provide the desired opinion in just 22 comparisons. Provide
a divide and conquer algorithm that will achieve this bound. State your algorithm (for
any arbitrary number n of restaurants) in pseudo code.

Solution sketch: The idea is to partition the array in two subarrays of size dn/2e and
bn/2c and apply recursion.

(c) (5 points) State the recurrence (when there are n = 2k restaurants) that describes the
number comparisons. (Do not forget the base case.)

When n = 2k we don’t have to worry about floors and ceilings and the resursion is
then simply T (n) = 2T (n/2) + 2 with the base case T (2) − 1. Then by induction, we
can then prove that T (n) = 3

2
n − 2. When we don’t assume n = 2k, we can prove

T (n) = d3n/2e − 2. Whe n = 16, we get T (16) = 22.

1 of 8

CSC373, Winter/Spring Assignment 1 Solution Sketches

2. (20 points) Let a(x) be a polynomial of degree n− 1 (say over the reals). We can evaluate
a(x) at a given point y in O(n) +,−,× arithmetic operations. In fact, the precise number is
2(n−1) arithmetic operations using Horner’s rule. Your goal is to provide an algorithm that
will evaluate a(x) at n distinct points y1, . . . , yn. Evaluating at each yi separately will result
in a totasl of O(n2). operations. We are aiming for an algorithm that uses asymptoticallly
much fewer arithmetic operations.

Assume we can multiply two degree n polynomials in O(n log n) arithmetic operations.
(Note: this can be done as we will indicate in class.) We also know that we can also do
polynomial division in O(n log n) arithmetic operations. By polynomial division, we mean
that for polynomials a(x) and b(x) we can compute polynomials q(x) and r(x) such that
a(x) = q(x)b(x) + r(x) with degree r < degree b.
You may assume n = 2k for some k ≥ 1. For simplicity (but without loss of generality), let
n = 2k.

(a) (5 points)

With and without recursion, show how to efficiently compute the polynomial
∏n

i=1(x−
yi) where y1, . . . , yn are n real numbers. Using the above assumption on the com-
plexity of polynomial multiplication, what is the time complexity for computing this
polynomial?

(b) (10 points) Provide a divide a conquer algorithm for evaluating a degree n−1 polynomial
a(x) at n distinct points y1, . . . , yn using only T (n) = O(n log2 n) airthmetic operations.
Hint: Divide a(x) by an appropriate b(x) of degree n/2 that can be efficiently computed.

(c) (5 points) Indicate the recursion and justfiy the bound on the number of arithmetic op-
erations using the assumptions about the complexity of polynomial multiplication and
division. What would the bound be if we only assume that polynomial multiplication
and division can be done in O(nlog2 3).

Solution sketch:

In the division theorem, if we let b1(x) =
∏n

2
i=1(x−yi), then a(yi) = r(yi) for 1 ≤ i ≤ n

2
.

Similarly, we can let b2(x) =
∏n

i=n
2
+1(x− yi)

Using the first part of the question, we can assume that the products b1(x) and b2(x)
are all available (as well as the product of polynomials needed in the recursive calls)
then the recursion is T (n) = 2T (n/2) + O(n). The master theorem gives the desired
asymptotic bound.

2 of 8

CSC373, Winter/Spring Assignment 1 Solution Sketches

3. (20 points) Maximum subarray sum

(a) Given an array A of n signed integers, design a divide and conquer algorithm in time
O(nlog(n)) to find a subarray A[i, ..., j] such that A[i] + A[i + 1] + ... + A[j] is maxi-
mized (1 ≤ i < j ≤ n). In other words, find a pair (i, j) such that ∀(x, y)Σj

k=iA[k] ≥
Σy

k′=xA[k′]. Note: empty set is not a valid input.

• In English, describe your algorithm.
Solution Partition array A into two almost equally size subarrays, L (for left) and
R (for right). The solution is maximum the following cases:

– Solution of the L

– Solution of the R

– Solution will cross the middle of A.

The first two cases can be solved recursively. If the third case is the solution, then
the left element of R subarray, Rl, and the right element of L subarray, Lr, must
be in the solution. Focusing on the R we start from Rl and scan R to the left to
find the MSS that included Rl. We denote it as Tr. For L, we start from Lr and
move to the right to find the MSS that included Lr. We denote it as Tl. Finally
we return the maximum of these three cases.

• Describe your algorithm in pseudocode.

CS 157: Assignment 4

Douglas R. Lanman
10 April 2006

Problem 3: Maximum Subarrays

This write-up presents the design and analysis of several algorithms for determining the maximum
sum of certain subsets of one-dimensional arrays. In the first section, we consider the Maximum
Subsequence Sum (MSS) problem: given an array A with signed integer elements, find a contiguous
subarray with the maximum possible sum. In Section 2, we extend our algorithm to handle the
case of cyclic shifts of the array elements. Finally, in Section 3 we consider the Maximum Non-
consecutive Sum (MNCS) problem. For this task, we find a subset of array elements (none of which
are contiguous) which achieve the maximum possible sum.

Part (a): Finding the Maximum Subsequence Sum

Given an array A of signed integers, design an algorithm that finds a subarray A[i, . . . , j] such that
A[i] + A[i + 1] + . . . + A[j] is maximum in time O(n log n). More specifically, find a pair (i, j) such
that 8(x, y) ßj

k=iA[k] ∏ ßy
k0=xA[k0].

High-level Description: To obtain a running time of O(n log n), we can apply the divide-and-
conquer method. Before we present the algorithm, note the following properties of the Maximum
Subsequence Sum (MSS). First, if the array elements are all nonnegative, then the MSS is given by
the sum from i = 1 to j = n. Second, if A[i] < 0 8i, then the MSS can be defined as the element
closest to zero. Note that, by definition, we disallow the empty set as a valid input (or solution
to) the Maximum Subsequence Sum problem. In addition, note that the MSS is not necessarily
unique; there could be more than one subarray which achieves the maximum sum.

Find-MSS(A, p, r)
1 if p = r
2 then return {p, p, A[p]}
3 q √ b(p + r)/2c
4 {il, jl, Tl} √ Find-MSS(A, p, q)
5 {ir, jr, Tr} √ Find-MSS(A, q + 1, r)
6 {is, js, Ts} √ Max-Span(A, p, q, r)
7 T √ max(Tl, Ts, Tr)
8 switch
9 case T = Tl :

10 return {il, jl, T}
11 case T = Ts :
12 return {is, js, T}
13 case T = Tr :
14 return {ir, jr, T}

To begin our analysis, let’s consider Find-MSS shown above. To initialize the recursion, we call
Find-MSS(A,1,length[A]). The output is a set of three elements {i, j, T}, where T is the Maximum
Subsequence Sum and i and j are the starting and ending indices of the subarray, respectively. On
lines 1-2 we handle the base case in which the input array is a single element. Lines 3-5 implement

1

Assignment 4 CS 157 Douglas R. Lanman

i=3 j=4

A 5 -7 23 -4 1 T = 6

i=3 j=5

B 4 5 -104 -7 3 T = 12

i=1 j=2

C -2 -3 44 4 -1 T = 8

(a) Find-MSS

i=6j=2

C -2 -3 44 4 -1 T = 12

i=6j=4

A 5 -7 23 -4 1 T = 7

i=3 j=5

B 4 5 -104 -7 3 T = 12

(b) Find-Cyclic-MSS

C -2 -3 44 4 -1 T = 8

S = {1, 4, 6}

A 5 -7 23 -4 1 T = 10

B 4 5 -104 -7 3 T = 12

S = {1, 3, 5}

S = {2, 6}

(c) Find-MNCS

Figure 1: Maximum subarray examples (with the maximum sum T). (a) Maximum Subsequence
Sum. (b) Maximum Subsequence Sum with cyclic shifts. (c) Maximum Non-consecutive Sum.

the basic divide-and-conquer strategy: partitioning the input array A into two nearly-equal length
subarrays and evaluating the MSS recursively.

Note that, in general, the MSS can either be included entirely within the left or right subarrays
or it can span the center. If the MSS spans the center, then it must include elements q and q + 1.
As a result, the procedure Max-Span is used to find the maximum subarray from p to r which
includes elements q and q + 1.

Max-Span(A, p, q, r)
1 § Find maximum sum to the left, beginning at q
2 i √ q, Tl √ °1, S √ 0
3 for k √ q downto p
4 do S √ S + A[k]
5 if S ∏ Tl

6 then i √ k, Tl √ S
7 § Find maximum sum to the right, beginning at q + 1
8 j √ q + 1, Tr √ °1, S √ 0
9 for k √ (q + 1) to r

10 do S √ S + A[k]
11 if S > Tr

12 then j √ k, Tr √ S
13 T √ Tl + Tr

14 return {i, j, T}

To complete our discussion of Find-MSS, note that on line 6 we evaluate the MSS spanning the
center. Finally, on lines 7-14 we determine the maximum sum of either the left, right, or spanning
subarrays and return the corresponding MSS subarray.

Proof of Correctness: Assuming that Max-Span is correct, the correctness of Find-MSS is
immediate. That is, the comparison on line 7 will determine the best-possible subsequence among
the three possibilities, i.e. the left, right, or spanning subarrays.

We can prove the correctness of Max-Span directly. Note that Max-Span can be separated
into two parts; first, on lines 1-6 we determine the MSS beginning at q and possibly extending to
p. Similarly, on lines 8-12 we determine the MSS beginning at q + 1 and possibly extending to
r. In either case, we can evaluate the MSS by looping over the array elements and storing the
current MSS estimate. For example, on line 2 we initialize the left index to i = q, the MSS to
Tl = °1, and the “accumulator” to S = 0. As we loop over the array elements from q down to

2

3 of 8

CSC373, Winter/Spring Assignment 1 Solution Sketches

• Using recurrence analyze the running time of your algorithm (Do not forget the
base case).
Solution In MAX-SPAN in lines 3 to 9 we have only one loop over the full array,
so its complexity is θ(n). In MAX MSS we have two recursive calls. So time
complexity is:

T (n) =

{
θ(1) for n = 1

2T (n/2) + θ(n) for n > 1

Based on Master Theorem, a = 2, b = 2, and d = 1, so T (n) = O(nlogn)

4. (15 points)

Consider the following greedy algorithm for graph colouring. Without loss of generality we
will let the input G = (V,E) be a connected graph with V = {v1, v2, . . . , vn} (n ≥ 1) and let
the colours be C = {1, 2, . . .}. We also let Nbhd(v) denote the neighbourhood (i.e. adjacent
vertices) of node v.

GREEDY COLOURING ALGORITHM (using breadth first search)

Let χ(v1) = 1;L(0) := {v1}; i := 0 % χ() is the colouring function
% L(i) will denote the nodes in the current level of the breadth first search

Let A := {v1} % A will be the nodes already coloured
Let U := V − {v1} % U will be the nodes not yet coloured
While U 6= ∅

L(i+ 1) := ∅
For j := 1..n : vj ∈ L(i)

For k = 1..n : vk ∈ Nbhd(vj) ∩ U
% colour the node being added to the next level
χ(vk) := minc∈C : c /∈ ∪vh∈Nbhd(vk)∩A χ(vh)
U := U − {vk};A := A ∪ {vk}
L(i+ 1) := L(i+ 1) ∪ {vk}

END For
END For
i := i+ 1

END While

(a) (10 points) Give a short but convincing argument showing that the above greedy algo-
rithm will colour every 2-colourable graph using 2 colours; that is, the greedy algorithm
is optimal for 2-colourable graphs.

Solution sketch: Without loss of generality we can consider the graph to be connetced.
Consider the breadth first search tree that is being constructed by the colouring algo-
rithm. If the graph is 2 colourable, each level of the search tree will correspond to one
side of a bipartite graph. Each node at level 2i − 1 is colored with colour 1 and each
node at level 2i will be coloured with clolour 2. If there was a conflit (i.e, twlo adjacent
nodes getting the same col,our, then there wlould have to be an lodd lenght cycle and
any odd length cycle requires 3 colours.

4 of 8

CSC373, Winter/Spring Assignment 1 Solution Sketches

(b) (5 points) Give an example of a 3-colourable graph for which the above greedy algo-
rithm will use more than 3 colours. You may label the verticess in any way (which then
fixes the order in which the algorithm assigns colours,)

Solution: Let {v1, v2, v6} be {v3, v4, v5} be triangles and let (v3, v6) be an edge. Then
the greedy colouring algorithm will require a 4th colour.

5. (20 points) Recall the EFT algorithm for interval scheduling on one machine. We wish to
extend this algorithm to m machines. That is, when considering the ith interval Ij we will
schedule it if there is an available machine. But on which machine? That is, what is the tie
breaking rule?

(a) Consider the First-Fit EFT greedy algorithm:

• Sort the intervals {Ij} so that f1 ≤ f2 . . . ≤ fn

• For j = 1 . . . n
For ` = 1 . . .m

If Ij fits on M` then schedule Ij on M`

EndFor
EndFor

Is First-Fit an optimal algorithm? If yes, provide a proof; otherwise provide a counter-
example.

Solution: First-Fit EFT is not an optimal algorithm even for m = 2 machines. Con-
sider the following 4 intervals (sorted by finishing times): [1, 3), [2, 5), [8, 10), [4, 11).
First-Fit EFT would schedule 3 intervalks while the optimum solution can schedule all
4 intervals.

(b) Consider Best-Fit EFT greedy algorithm:

• Sort the intervals {Ij} so that f1 ≤ f2 . . . ≤ fn

• For j = 1 . . . n
If there is a machine M` on which Ij can be scheduled, then

schedule Ij on M` where ` = argmaxk{fk ≤ sj and Ik scheduled on Mk}
EndFor

Is Best-Fit an optimal algorithm? If yes, provide a proof; otherwise provide a counter-
example.

Solution: Yes Best-Fit is an optimal algorithm. The proof is a “promising argument”
just like the proof for one machine but now there is one extra case to consider. That is,
for every i we need to show that there is an optimum solution OPTi that extends the
partial solution Si being created by Best-Fit. The extra case is that Best-Fit schedules
interval i on some machine m and OPTi schedules this interval on some macine m′ 6= m.
This extra case is handled by swapping all the intervals j ≥ i on these two machines.

5 of 8

CSC373, Winter/Spring Assignment 1 Solution Sketches

6. (20 pts) You are given two arrays D (of positive integers) and P (of positive reals) of size
n each. They describe n jobs. Job i is described by a deadline D[i] and profit P [i]. Each
job takes one unit of time to complete. Job i can be scheduled during any time interval
[t, t+ 1) with t being a positive integer as long as t+ 1 ≤ D[i] and no other job is scheduled
during the same time interval. Your goal is to schedule a subset of jobs on a single machine
to maximize the total profit - the sum of profits of all scheduled jobs. Design an efficient
greedy algorithm for this problem.

(a) Describe your algorithm in plain English (maximum 5 short sentences).

Solution: We can assume that D[i] ≤ n + 1 for all i since all jobs only take one unit
of time. This is not needed for correctness but does allow a time complexity just in
terms of n. We can also also argue that in any valid schedule the jobs will be scheduled
in increasing order of deadlines. This is not needed for the proof but might help in
viksualizing things. Mainly, we need to sort the jobs so that P [1] ≤ P [2] ≤ · ≤ P [n].
We can then take jobs greedily, shceduling each job at its deadline.

(b) Describe your algorithm in pseudocode.

(c) Prove correctness of your greedy procedure. One possibile proof is to argue by induction
that the partial solution constructed by the algorithm can be extended to an optimal
solution. But you can use any type of valid proof argument.

Solution: Once again, you can use a promising argument.

(d) Analyze the running time of your algorithm (in terms of the total number of opera-
tions).

Solution: The sorting will take time O(n log n) and then after that it is time O(n).

6 of 8

CSC373, Winter/Spring Assignment 1 Solution Sketches

7. (30 points) A is an array of n integers. Design a dynamic programming algorithm to find a
subset S ⊆ {1, 2, 3, ..., n} that maximizes

∑
i∈S A[i], subject to the constraint that no two

members of S can point to two consecutive elements of A, i.e., if i ∈ S then (i+ 1) /∈ S.

• (15 points) Describe your algorithm by giving a semantic array M (i.e. what is in each
entry of the array) and a recursively defined array M ′ that will be equal to M in each
entry. Don’t forget any base case(s) and explain how the desired set S is obtained from
M . Provide a brief explanation that M = M ′.

Solution: To solve the problem using DP we need to define: (1) the optimal sub-
structure solution, and (2) the recursive solution. Let M [i] the value of the optimal
solution for the subarray A[1, . . . , i]. Now the array M can be extended to add a
solution corresponding to the optimum value in M [i].

Here quickly is the recursive algorithm. The base case can be i = 0 and M [n] = 0. For
the recursion, M [i] = max{S1, S2} where S1 = M [i− 1] and S2 = A[i] +M [i− 2].

To find the members of the optimal solution, here is what we do: If A[i] is part of the
optimal solution, then A[i + 1] cannot be in the optimal solution and thus, the optimal
solution will be the union of A[i] with the optimal solution for A[i + 2, . . . , n]. If A[i]
is not part of the optimal solution then the optimal solution will be the best solution
for A[i + 1, . . . , n].

• (10 points) Implement your algorithm as an iterative (non recursive) algorithm.

Solution: Note that since we want to know elements of S in addition to the opti-
mal value, we need to traverse M and construct the optimal solution for S.

Find-MNCS(A)
 % Compute the lookup table M

% Determine members of S

Assignment 4 CS 157 Douglas R. Lanman

M 2 0

(a) initial value of M

M 2 2 0

(b) i = 5

M 7 2 2 0

(c) i = 4

M 7 2 27 0

(d) i = 3

M 7 2 27 7 0

(e) i = 2

M 7 2 210 7 7 0

(f) i = 1

Figure 3: Creation of “maximum sum” lookup table M , as implemented by Find-MNCS on lines
2-12. The input array is A = {3,°4, 1, 5,°7, 2}. The state of M after each iteration of the for loop
(on line 7) is shown in (b)-(f). Note that M [1] is equal to the Maximum Non-consecutive Sum.

for the subarray A[i, . . . , n]. The construction of M is implemented on lines 2-12 of Find-MNCS
shown below (the correctness of M is described in the following section). By the definition of M ,
the Maximum Non-consecutive Sum for the array A[1, . . . , n] is given by M [1] (as assigned on line
13). Note that, since we also want to know the elements of S in addition to the value of the MNCS,
lines 15-21 traverse M and construct the optimal solution for S. Finally, the subset S and MNCS
T are returned on line 22.

Find-MNCS(A)
1 § Compute the lookup table M
2 n √ length[A]
3 M [n + 1] √ 0
4 if A[n] > 0
5 then M [n] √ A[n]
6 else M [n] √ 0
7 for i √ (n ° 1) downto 1
8 do if A[i] > 0
9 then S1 √ A[i] + M [i + 2]

10 else S1 √ 0
11 S2 √ M [i + 1]
12 M [i] √ max(S1, S2)
13 T √ M [1]
14 § Determine elements in subset S
15 S √ ;
16 i √ 1
17 while i ∑ n
18 do if M [i] > M [i + 1]
19 then S √ S [i
20 i √ i + 2
21 else i √ i + 1
22 return S and T

Proof of Correctness: In order to prove the correctness of Find-MNCS, we must prove: (1)
that lines 1-12 correctly construct M and (2) that lines 13-22 correctly construct the subset S and
MNCS T from M . We begin our analysis by verifying the estimate of S – assuming M correctly
contains the MNCS for the subarray A[i, . . . , n]. For example, consider A = {3,°4, 1, 5,°7, 2}
and M = {10, 7, 7, 7, 2, 2, 0}, as shown in Figure 3. We initialize S √ ; on line 15. Next, we
check whether M [1] > M [2]; if it is, then A[1] must be included in the MNCS and, as a result,
A[2] cannot be included. If the first element is included, then we skip the second and search the

6

• (5 points) What is the aysmptotic time complexity of your algorithm whether executed

7 of 8

CSC373, Winter/Spring Assignment 1 Solution Sketches

iteratively or recursively (with memoization).

Solution: The complexity is O(n) as no sorting is needed.

8 of 8

