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Abstract

A common two-tier structure for social networks is based on partitioning society into two

parts, referred to as the elite and the periphery, where the “elite” is the relatively small but

well-connected and highly influential group of powerful individuals around which the society

is centered, and the “periphery” consists of the rest of society. It is observed that the relative

sizes of economic and social elites in various societies appear to be continually declining.

One possible explanation is that this is a natural social phenomenon, resembling Price’s

“square root” law for the fraction of good scientists in the scientific community. We try to

assess the validity of this explanation by studying the elite-periphery structure via introduc-

ing a novel axiom-based model for representing and measuring the influence between the

elite and the periphery. The model is accompanied by a set of axioms that capture the elite’s

dominance, robustness and density, as well as a compactness property. Relying on the

model and the accompanying axioms, we are able to draw a number of insightful conclu-

sions about the elite-periphery structure. In particular, we show that in social networks that

respect our axioms, the size of a compact elite is sublinear in the network size. This agrees

with Price’s principle but appears to contradict the common belief that the elite size tends to

a linear fraction of society (recently claimed to be around 1%). We propose a natural method

to create partitions with nice properties, based on the key observation that an elite-periphery

partition is at what we call a ‘balance point’, where the elite and the periphery maintain a bal-

ance of powers. Our method is based on setting the elite to be the k most influential nodes in

the network and suggest the balance point as a tool for choosing k and therefore the size of

the elite. When using nodes degrees to order the nodes, the resulting k-rich club at the bal-

ance point is the elite of a partition we refer to as the balanced edge-based partition. We

accompany these findings with an empirical study on 32 real-world social networks, which

provides evidence that balanced edge-based partitions which satisfying our axioms com-

monly exist.

PLOS ONE | https://doi.org/10.1371/journal.pone.0205820 October 24, 2018 1 / 35

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Avin C, Lotker Z, Peleg D, Pignolet Y-A,

Turkel I (2018) Elites in social networks: An

axiomatic approach to power balance and Price’s

square root law. PLoS ONE 13(10): e0205820.

https://doi.org/10.1371/journal.pone.0205820

Editor: Takashi Nishikawa, Northwestern

University, UNITED STATES

Received: January 10, 2018

Accepted: October 2, 2018

Published: October 24, 2018

Copyright: © 2018 Avin et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files. All links to the original data are provided.

Funding: This work was supported by ISF 1549/13

(CA, ZL, DP) http://www.isf.org.il/. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript. The funder ABB Corporate Research

provided support in the form of salaries for

Yvonne-Anne Pignolet, but did not have any

additional role in the study design, data collection

and analysis, decision to publish, or preparation of

http://orcid.org/0000-0002-6647-8002
https://doi.org/10.1371/journal.pone.0205820
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0205820&domain=pdf&date_stamp=2018-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0205820&domain=pdf&date_stamp=2018-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0205820&domain=pdf&date_stamp=2018-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0205820&domain=pdf&date_stamp=2018-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0205820&domain=pdf&date_stamp=2018-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0205820&domain=pdf&date_stamp=2018-10-24
https://doi.org/10.1371/journal.pone.0205820
http://creativecommons.org/licenses/by/4.0/
http://www.isf.org.il/


1 Introduction

1.1 Elites in society

Almost all societies exhibit an (often radically) uneven distribution of power, influence, and

wealth among their members (rare exceptions are utopian or totally egalitarian societies). This

may be related to a well known and by now widely accepted observation made by the pioneer-

ing sociologist Vilfredo Pareto in his book Mind and Society [1]: “Every people is governed by

an elite, by a chosen element of the population”. Indeed, social inequality is particularly notable

when comparing the elite, namely, the small, powerful and influential group at the center of

society, against its typically larger, less organized, and less dominant complement, sometimes

referred to as the masses or the periphery.

The relative size of the elite from the population, is an ancient source of interest in the social

sciences. Jean-Jacques Rousseau, an 18th-century political philosopher (among other things)

who influenced the early French Revolution, stated a recommendation, sometimes known as

his “law of elites” [2, 3]. Rousseau claimed that a democratic government should be formed of

a number of people equal to the square root of the total number of citizens in the state.

A more recent and controversial observation was made by Derek DeSolla Price, a famous

historian of science and known as the father of scientometrics. In his classic book Little Science,
Big Science [4] Price wrote that “the total number of scientists goes up as the square, more or

less, of the number of good ones”, where the good scientists are noted as the elite group. This

became to be known as “Price’s square root law,” which, more formally, claimed that half

of the scientific papers are contributed by the square root of the total number of scientific

authors. In Price’s words, half of the papers form a ‘point of symmetry’ [4], hereafter referred

to as a ‘balance point’. Price’s claim was based on an empirical law for productivity, named

“Lotka’s law” [5], which is similar in spirit to other power law distributions like Zip’s law and

Pareto distribution [6, 7]. Price’s law was indeed controversial to many scientists and raised an

heated discussion [8, 9] about its accuracy. Empirical results on scientific contributions seem

not to match with the (too) strong and (too) exact statement of Price [9].

In economy, recent reports show that the gap between the richest people and the masses

keeps increasing, and that decreasingly fewer people amass more and more wealth [10, 11].

Claims like “The top 10 percent no longer takes in one-third of our income – it now takes

half,” made by former president Obama [12] when addressing the issue, are interpreted as

implying that the economic and political elites become increasingly more greedy and over-

bearing. Such claims are often used in order to criticize governments and regulatory financial

institutions for neglecting to cope with this disturbing development. The question raised by us

is: can society help it, or is this phenomenon an unavoidable by-product of some inherent nat-

ural properties of society? We claim that in fact, one can predict the shrinkage of elite size over

time (as a fraction of the entire society size) based on the very nature of social elites. In particu-

lar, in our model, such shrinkage is the natural result of a combination of two facts: First, soci-
ety grows, and second, elites are much better connected than peripheries. Combining these facts

implies that the fraction of the total population size comprising dense elites will decrease as the

population grows with time. And this is what we call Price’s square root law in networks and,

in particular, Price’s law for elites in social networks.

Taking a broader look at Price’s law, it states two fundamental principles. First, it claims

that to define the elite group, one should look at a balance point between the elite and the rest

of the population. Second, it claims that the elite size at this point is sub-linear, namely, the

fraction of the elite out of the total population tends to zero as the population increases. Price

claimed the elite size is about
ffiffiffi
n
p

for a population of n individuals. We study a weaker state-

ment where the elite is nx of the population (for 1

2
� x < 1), taking the stand that the important
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property is the sub-linearity of the elite and not the exact exponent x. As opposed to Price and

subsequent studies, we do not rely our statements on a particular family of exact distributions

of individuals influence (or productivity) like power law distributions, but take an axiomatic
approach to the study of elites.

The division between elite and periphery in social networks can be thought of as an instance

of a more general phenomenon, referred to as a core-periphery partition of the network [13],

which is exhibited by most complex networks. The resulting core-periphery structure may be

rightfully considered the most visible high-level structure of society. Consequently, consider-

able attention was recently given to the questions of identifying this partition and studying its

basic properties [14–16]. The common features of the core nodes are high connectivity and

higher centrality values than the periphery nodes. These properties are exhibited also by elites

in social networks. At the same time, social elites have some additional properties of interest,

which set them apart and justifies their independent study. In particular, two notable charac-

teristics of elites are that they are relatively small and that they possess a disproportionate frac-

tion of the power, resources, and influence in society.

1.2 Axioms of elite-centered networks

This paper concentrates on studying the properties of social elites. Its main contribution is a

characterization of elites, given in the form of a set of properties (stated as axioms) concerning

influence (on itself and on the periphery) that any elite must possess. Our axioms attempt to

capture the key ingredients occuring in elite definitions like the one from Wikipedia:

“In political and sociological theory, an elite is a small group of people who control a dispro-
portionate amount of wealth or political power”.

We conceptualize these informal notions by employing the fundamental notion of influence
among groups of nodes, and proposing three independent properties related to the influence

between the elite and the periphery, named dominance, robustness and density. (Note that our

treatment of these notions expands on our preliminary results, presented in [17]. In particular,

our results are now stated for general settings obeying a natural set of assumptions, and not

just for an influence model based on edges, as done in [17]. Moreover, in Sect. 4 we now pro-

vide empirical support for our claims.) We also look at a fourth property, the elite compactness,
and examine its implications.

It should be realized that our axioms are not claimed to hold for every core-periphery parti-

tion. Moreover, we do not claim that every social network has a core-periphery partition that

satisfies the axioms. In fact, there are examples of both real complex networks and known

evolutionary network models in the literature, where our axioms are not satisfied by any core-

periphery partition. Our claim is, rather, that there exists a class of natural social networks that

do admit core-periphery partitions that satisfy our axioms. This class is hereafter referred to as

the class of elite-centered social networks. We provide empirical data supporting the claim that

elite-centered social networks commonly exist in practice, and analyze the properties of these

social networks, with a focus on the size of the elite.

A small illustrative example of the terms we use is provided in Fig 1. It presents the network

of the top 208 Marvel [18] superheroes and the 912 links interconnecting them, where two

heroes are connected by a link if they appeared together in at least 50 comic book titles. The

superheroes are partitioned into an elite and a periphery as shown by different node colors.

The 32 superheroes with the highest degrees are assigned to the elite, the remaining 176 super-

heroes form the periphery. Two striking features can be clearly observed in this figure. First,
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Fig 1. Fictional illustrative example: The social network of the Marvel’s superheroes. Two heroes are linked if they appeared together in

at least 50 comic book titles [18]. (a) The network (208 superheroes, 912 edges), partitioned into an elite (red nodes and internal edges) and

a periphery (green nodes and internal edges). Blue “crossing” edges connect elite and periphery nodes. (b) The (dense) elite subgraph (32

nodes, 259 edges). (c) The (sparser) periphery subgraph (176 nodes, 257 edges).

https://doi.org/10.1371/journal.pone.0205820.g001
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the elite (containing, e.g., Captain America, Spiderman, and Thor), depicted in Fig 1(b), is

dense and organized, while the periphery, presented in Fig 1(c), is much sparser and less

structured. Second, despite their considerable size difference, the elite and the periphery have

almost the same number of internal edges (259 and 257, respectively), namely, they are bal-
anced. Moreover, the number of “crossing” edges connecting the core to the periphery is much

larger (396), reaching most of the nodes in the periphery.

Are those properties an artifact of our selected example and partitioning method? Or are

they universal, and should be expected to recur in many (or even most) networks? In particu-

lar, what are the rules that govern the elite size? We attempt to answer these questions in what

follows.

We argue using our axioms, supported by evidence collected from real network data, that

it is more accurate to consider 32 as about
ffiffiffiffiffiffiffiffi
912
p

in the Marvel example, and more generally,

view the elite size as roughly the square root of the number of edges in the network. This is our

“Price’s law” equivalent for elite size in social networks.

It should be clear that our axiomatic characterization does not provide a unique definition

for the elite, nor does it lead to a single group being identified as the elite in a given social net-

work. In fact, it seems unlikely that a single formal definition exists that suits all elite types in

all social networks. However, it narrows down the range of subsets of society that are suitable

candidates to be the elite, and moreover, the axioms are powerful enough to allow us to derive

several conclusions concerning basic properties about the distribution of power and the size of

the elite in society.

1.3 Balance point and balanced edge-based partition

It is not clear that the elite must be a unique subset of elements in a network. To illustrate this

last point, let us consider the following mental experiment. Sort the members of society by

decreasing order of influence. (The exact definition of “influence” is immaterial here, and will

be discussed later.) Add the society members to a set Ê (representing the intended elite) one by

one in this order. After the first step, Ê contains only one member of society, albeit the most

influential one, hence clearly it cannot yet be thought of as “the elite”—it simply has insuffi-

cient power. This holds true also for the next few sets obtained in this way. On the other

extreme, if the process is continued to its conclusion, we end up with Ê containing the entire

society, which is clearly too large to be considered “the elite”. The question is therefore: at

which point along this process does Ê qualify as an elite?

Intuitively, the “break-point” where the process should be halted is the point where adding

new members into Ê no longer serves to significantly strengthen the group but rather “dilutes”

its power relative to its size. Following Price’s principle, in this paper we propose a concrete

choice for this break-point, referred to as the balance point of the elite. At its balance point,

an elite-periphery partition exhibits a balance of influence of the elite and of the periphery on

each other.

We show that partitioning the network at the balance point has nice properties. For con-

creteness, we focus on the special case where influence is represented by a large number of

connections, or in other words by a high degree. We refer to this concrete choice as the edge-
based interpretation of influence, or the edge-based influence model. Given this interpretation,

we sort the nodes by their degrees in nonincreasing order (called the degree ordering πdeg) and

refer to the corresponding elite-periphery partition obtained at the balance point by the bal-
anced edge-based partition. In other words, we build an elite of the k nodes with the highest

degree, such the so-called k-rich club [19] is close to the balance point (bp). We demonstrate

empirically that for partitions based on this ordering, the maximum number of crossing edges
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between the core and the periphery occurs in many cases at or near bp. (Note that other order-

ing methods can be used to analyze the properties of cores of different size. In particular, any

node centrality can be used. In addition to the degree ordering presented in this article, we

have also run our experiments for the ordering derived from the c-core decomposition [20]

and results were very similar.) We also show theoretically that in the random configuration

model [21], such a partition maximizes the expected number of crossing edges between the

core and the periphery, for any ordering.

To illustrate these points let us consider the diagram of the influence between the elite and

periphery (called the Influence Shift Diagram) for growing rich clubs as the elite for the Marvel

example in Fig 2. In this plot we can see the change of influence between the elite and the

periphery for varying size, where we interpret the number of edges between sets of nodes X, Y
as a measure of influence I(X, Y). We observe that the influence of the elite on the periphery is

maximized at the balance point, bp, i.e., for the balanced edge-based partition, where the influ-

ence of the two partitions on themselves are equal.

1.4 Methods

The common approach to explaining empirical results on social networks is based on provid-

ing a new concrete (usually random) evolutionary model and comparing its predictions to the

observed data. In contrast, we follow an axiomatic approach to the questions at hand. This

approach is based on postulating a small set of axioms, capturing certain expectations about

the network structure and the basic properties that an elite must exhibit in order to maintain

its power in the society. We then use these axioms to infer some additional properties, such as

bounds on the elite size.

Employing an axiomatic approach instead of providing an evolutionary model has two

main advantages for studying social and complex networks. First, while a basic random model

provides us with a mechanism that generates networks with properties similar to the ones

observed empirically, a mechanism alone does not necessarily advance our understanding of

the meaning of the phenomenon. In contrast, a suitable set of axioms attaches an “interpreta-

tion” or “semantics” to observed phenomena. The second advantage is that given the axioms,

Fig 2. Illustration of the balance point of the Marvel superheroes network. The influence shift diagram, based on

adding the 208 nodes to the core in order of their degree πdeg, depicts the influence of the elite and periphery on

themselves and each other with growing elite size. The balance point is noted by a grey line. At this point we choose the

32 high degree nodes at the elite. They hold the same power as the rest of the population. The red dot marks the

maximum number of crossing edges.

https://doi.org/10.1371/journal.pone.0205820.g002
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it becomes possible to draw conclusions using logical arguments. E.g., it may be possible to

infer some information on the asymptotic behavior of a growing network, which is not always

clear from empirical findings. As a consequence, the axiomatic approach is, in some sense,

stronger than providing a particular model, since once agreeing on the axioms and their impli-

cations, every model should be consistent with them.

The underlying assumption is that the excess influence of the elite allows it on the one hand

to control the rest of the population, and on the other to protect its members from being con-

trolled by others outside the elite. We refer to these two properties as dominance and robust-
ness respectively. In addition, the “wealth” is shared by the elite few, implying that on average,

the elite members hold much more influence than individuals in the periphery. We refer to

this property as density. We characterize elite-centered social networks as the class of social net-

works that admit core-periphery partitions satisfying these three properties (which are made

more formal in what follows).

1.5 Contributions and organization

This paper makes the following contributions:

Theoretical Results

1. Elite Axioms: Based on the definition of influence in social networks, we introduce three

axioms that capture crucial properties of elites and show their independence. The axioms

concern the dominance, robustness and density of elites.

2. Balance Point: We prove (in Theorem 3.2) that elites satisfying the axioms of our model

and the compactness property are at their power balance point. This implies that the power

of the periphery is similar to that of the elite, or in other words, that as society evolves, the

“natural” core-periphery partition maintains a balance between these two groups.

3. Elite Size: We analyze the size of the elite. The combination of the facts that society grows

and that elites are denser than peripheries implies that the fraction of the total population

size decreases with time. We prove this by showing that the size of a compact elite is a sub-

linear function of the population size if the axioms are satisfied. In general, elites of constant

size can exist in societies where influence might be sharply asymmetric or unbounded. In

contrast, we prove that in bounded and influence-symmetric social networks an elite can-

not be smaller than roughly the square root of the total influence in the system. In particu-

lar, assuming the edge-based influence model, the elite size is Oð
ffiffiffiffi
m
p
Þ, where m is the

number of network edges.

We stress again that our theoretical results (with the exception of the last statement) do not

depend on the specific choice of using the edge-based influence model.

Empirical Results In addition to the theoretical results on elite axioms and properties, we

studied 32 real networks, in order to examine the extent to which our axioms are manifested

in reality, and check if there are core-periphery partitions that evolve over time according to

the axioms. In particular we have following results

1. Influence Shift Diagrams: We observe that in most networks, the growing rich-club cores

feature very similar behavior with respect to the influence between the core and periphery.

Among other results, we show that the number of crossing edges is maximized at the bal-

ance point and provide an analytical explanation for this phenomenon under the configura-

tion model. Furthermore, for completeness, we discuss network topologies that deviate

from the majority of the networks under scrutiny.
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2. Temporal Analysis, balanced edge-based partition: As a second step, we investigate how

core-periphery partitions evolve over time to gain a deeper understanding of their asymp-

totic behavior. In particular, we study the core-periphery partition according to the degree

ordering of nodes at its balance point, providing evidence for the existence of real elite-cen-

tered social networks, satisfying all axioms. Moreover, we compare this partition with parti-

tions at other breakpoints.

The rest of this article is organized as follows. The next section presents our model of influ-

ence, the notion of influence shift diagrams, the balance point and the balanced edge-based

partition. In Section 3 we introduce our axioms and derive the theoretical results of this article.

Subsequently, in Section 4 we present our empirical study of the balanced edge-based partition

in real world networks. Related work is provided in Section 5, and finally, we conclude with a

discussion in Section 6.

2 Influence, shift diagrams, balance points and core-periphery

partitions

2.1 An abstract influence model

We start by formally defining the notion of influence. We consider influence to be a measurable

quantity between any two groups of the population, X and Y. The influence of X on Y is denoted

by I(X, Y). The groups X and Y are not necessarily distinct, and we are also interested in the

internal influence exerted by the nodes of a group X on themselves, referred to by I(X, X).

We assume that influence satisfies an additivity property, namely,

(P1) Additivity: I(X [ Y, Z) = I(X, Z) + I(Y, Z),

I(Z, X [ Y) = I(Z, X) + I(Z, Y)).

We are interested in two special subclasses of social networks, exhibiting symmetric and

bounded influence. Note that in general I(X, Y) 6¼ I(Y, X). The subclass of influence-symmetric
networks consists of networks in which influence satisfies the following symmetry property:

(P2) Symmetry: I(X, Y) = I(Y, X) for every X, Y� V.

Networks satisfying property (P2) are hereafter referred to as influence-symmetric networks.

The next subclass of interest is the subclass of bounded influence. To begin with, in order to

reflect the self-influence of every individual’s opinion on itself, and at the same time calibrate

the measure of influence, we assume the following property.

(P3) Self-influence: I(x, x) = 1 for each individual x,

i.e., self-influence is a basic unit of influence. (Throughout we slightly abuse notation by

writing x instead of {x}.) Since we are interested in the relative (and not absolute) influence

between individuals, we shall assume that all other influences are measured in terms of this

unit.

Networks of bounded influence are ones where self-influence is at least as large as (a frac-

tion of) the influence of any other individual, or formally, where the following property holds,

for some positive constant cb:

(P4) Bounded influence: I(x, y)� cb for any two individuals x and y.

Networks satisfying properties (P3) and (P4) are hereafter referred to as bounded networks.

Note that the definitions here are more elaborate than, and slightly different from, those

given in [17]. In particular, the introduction of properties (P1)-(P4) allows us to prove our

main results in general, and not just for the edge-based model.
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We define the total power exerted by a set X to be

IðXÞ ¼ IðX;XÞ þ IðX;V nXÞ : ð1Þ

Specifically, denote the total amount of influence in the network by

Itot � IðVÞ ¼ IðV;VÞ :

A core-periphery partition of a network is a pair ðĈ; P̂Þ where Ĉ \ P̂ ¼ ;, Ĉ [ P̂ ¼ V and Ĉ
is the smaller set. We denote the set of core nodes by Ĉ and the rest of society (the periphery)

by P̂ and study the four influence quantities IðĈ; ĈÞ, IðP̂; P̂Þ, IðĈ; P̂Þ and IðP̂; ĈÞ.

2.2 Edge-based model of influence for social networks

In Section 3 we present a theoretical analysis of the properties of elites, which is based on the

above abstract definition of influence. For the purpose of empirical analysis, however, it is con-

venient to employ a concrete interpretation and measure of influence. In a social network, a

network edge represents some social relation between the two connected nodes, such as

friendship, co-authorship, following on Twitter, etc. It is therefore natural to interpret influ-

ence using the edges, by simply stating that a directed edge (x, y) connecting the node x to the

node y represents the influence I(x, y) of x on y. The amount of influence can be represented

by associating a weight with each edge. (To represent the notion of self-influence discussed

above, we assume that each node in the network has a self-loop, namely, an edge connecting it

to itself, and its weight is 1.) It follows that under this interpretation, the total influence exerted

by a node (or a group of nodes) equals the total weight of the edges emanating from it, and

similarly, the total influence exerted on a node (or a group of nodes) equals the total weight of

the edges entering it. Note that assuming the symmetry property (P2) is tantamount to assum-

ing that the weights of the directed edges (x, y) and (y, x) are equal, or more simply, that the

network is undirected. Hereafter, we refer to this interpretation of influence as the edge-based
influence model, and use it to illustrate our result as well as for our empirical study.

It should be clear that focusing on one concrete interpretation involves a certain loss of gen-

erality, as certain aspects get fixed in a specific way. For example, note that under the edge-

based interpretation of influence, non-adjacent individuals (namely, ones not directly con-

nected by an edge) have zero influence. Needless to say, this is not necessitated by the notion

of influence, and one may think of other natural interpretations that do not possess this prop-

erty. For example, one may consider a flow-based influence model, where the influence between

two nodes x and y is defined to be the maximal amount of flow that can be transferred between

them in the network. If one is interested in a binary measure of influence, then it is possible to

define the influence between x and y as 1 if the maximal flow between them exceeds some

threshold f, and 0 otherwise. Clearly, such a flow-based interpretation and measure of influence

is independent of the existence of edges, in the sense that it may assign an influence value of

I(x, y) = 1 to some non-adjacent nodes x and y, or a value of I(x0, y0) = 0 to some adjacent x0

and y0. Nevertheless, we feel that for the sake of illustrating the concepts and notions intro-

duced and discussed in this paper, it is useful to adopt a single concrete interpretation, as done

herein with the edge-based influence model.

Formally, we model a social network as a directed, weighted graph G = (V, E, ω), with a set

V of n nodes representing the members of society, connected by a set E� V × V of m directed

edges, and a positive weight function o : E! R such that ω(e) > 0 for every e 2 E. For a set of

edges E0 � E, define the weight of E0 as ω(E0) = ∑e2E0 ω(e). Given an undirected network, we

consider each undirected edge as two equal weight directed edges of opposite directions.

Given an unweighted network, we consider all edges to have weight one.
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For every node v and set of nodes X, let the set of directed edges leading from v to nodes in

X be denoted by E(v, X). Similarly, for node sets X, Y� V, let E(X, Y) denote the set of directed

edges leading from nodes in X to nodes in Y. Relying on the edge weights, we define the influ-

ence of X on Y, for X, Y� V, as

IðX;YÞ ¼ oðEðX;YÞÞ : ð2Þ

Given a core-periphery partition ðĈ; P̂Þ of V, the edge set E can be partitioned into four dis-

joint edge sets EðĈ; ĈÞ;EðĈ; P̂Þ;EðP̂; ĈÞ and EðP̂; P̂Þ. Looking at the adjacency matrix A(G) of

the core-periphery network G [22], these sets correspond to the four basic parts of the block-
model representation [23] of A(G). The matrix A(G) can now be written as in the following figure.

AðGÞ ¼
EðĈ; ĈÞ EðĈ; P̂Þ

EðP̂; ĈÞ EðP̂; P̂Þ

2

6
4

3

7
5

Note that in this case Itot ¼ IðĈ; ĈÞ þ IðĈ; P̂Þ þ IðP̂; ĈÞ þ IðP̂; P̂Þ.

2.3 Influence shift diagram

As a fundamental tool for our analysis we consider the influence shift diagram. Consider an

influence-symmetric social network G(V, E) and assume some suitable ordering π of the nodes

of V, reflecting node influence, centrality, connectivity or any other measure of power. Recall

the gradual core building process mentioned in the introduction. It starts with the core defined

as the empty set, and the periphery containing all the nodes of the network, namely, Ĉp
0
¼ ;

and P̂p
0
¼ V: One by one, move the nodes from the periphery to the core, according to the

assumed ordering π, starting with the highest ranked nodes. As this transition evolves, and the

core Ĉp
k after k iterations consists of k nodes, the total influence of the core and the periphery

undergo a gradual shift, where the number of internal edges IðĈp
k ; Ĉ

p
kÞ increases, the number

of internal edges IðP̂pk ; P̂
p
kÞ decreases, and the number of crossing edges IðĈp

k ; P̂
p
kÞ first increases

and then decreases. The influence shift diagram presents these changes in IðĈp
k ; Ĉ

p
kÞ, IðP̂

p
k ; P̂

p
kÞ

and IðĈp
k ; P̂

p
kÞ graphically as the core Ĉp

k grows from its minimum size of 1 to its maximum

size of n. Let us remark that influence shift diagrams can be used also for directed (asymmet-

ric) networks. In that case the plots will include IðĈp
k ; P̂

p
kÞ and IðP̂pk ; Ĉ

p
kÞ. In this work we focus

on undirected networks where IðĈp
k ; P̂

p
kÞ ¼ IðP̂pk ; Ĉ

p
kÞ.

Formally, we use the following definition.

Definition 2.1 (Influence Shift Diagram). Let π be a total order over the n nodes of the graph
G(V, E). Denote the kth ranked node according to the order π by vk. The k-core according to π is
Ĉp

k ¼ fv1; v2; :::; vkg. The k-periphery according to π is P̂pk ¼ fvn; vn� 1:::; vn� kg. The Influence
Shift Diagram, ISD(G, π), over the graph G and the order π, consists of the three functions
IðĈp

k ; Ĉ
p
kÞ, IðP̂

p
k ; P̂

p
kÞ and IðĈ

p
k ; P̂

p
kÞ for k = 1 . . . n.

When the order π is clear from the context, we omit the superscript π from Ĉk and P̂k to

increase readability.

To facilitate a comparison of influence shift diagrams across networks with different num-

bers of nodes and edges, we need to normalize the X and Y axes in a meaningful way. There

are several plausible options for scaling of the X-axis when plotting an influence shift diagram.

The simplest one is a node-normalized linear scale, i.e., x ¼ jĈ j
n , which represents the relative

size of the core with respect to the number of nodes in network. Another option is a
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logarithmic scale, where a point x represents a core of size jĈj ¼ nx so x ¼ log jĈ j
logn . A third option

is a normalized influence scale, x ¼ IðĈÞ=Itot. To scale the values for the Y-axis in a consistent

way, we let it represent the fraction of the total influence contained in the relevant influence

sets, namely, the values of IðĈ; ĈÞ=Itot, IðP̂; P̂Þ=Itot, and IðĈ; P̂Þ=Itot respectively. (Recall that

under the edge-based interpretation, Itot = m).

Thus, it holds for all of these scaling options that x, y 2 [0, 1]. This enables us to compare

networks of different size and calculate their mean easily. The choice of the preferred scale is

dictated by the phenomenon that we wish to explore, thus making the influence shift diagram

a useful analysis tool.

Fig 3 depicts examples of influence shift diagrams of a real social network for the different

X-axis scaling methods. It uses the degree for the ordering of nodes (πdeg), i.e., the elite corre-

sponds to a k-rich club, containing the k highest degree nodes.

2.4 Balance point and balanced edge-based partition

Core-Periphery partitions of a given complex network are used to reveal the basic structural

properties of the network. A simple approach to selecting a partition for a given social network

G(V, E) requires a suitable stopping criterion for the process presented above: given some

Fig 3. Influence shift diagram of Buzznet, containing n = 101, 163 nodes and m = 2, 763, 066 edges. IðĈkÞ ¼ IðP̂kÞ, for

the balance point k = 3, 472. (a) Using the node-normalized scale, the balance point k = 3.4% is far to the left and it is hard

to study how the core and periphery influence each other around it. (b) In the plot with the normalized influence scale

(under the edge-based interpretation) the balance point is right at the center, while the third plot with a logarithmic scale

(c) hints at the asymptotic behavior k = n0.707. The balance point is marked by a grey line and the red dot marks the

maximum number of crossing edges.

https://doi.org/10.1371/journal.pone.0205820.g003
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ordering π on the nodes of V, the top k nodes in this ordering would then constitute the core,

yielding Ĉp
k , the k-core according to π (see Def. 2.1). However, it is still necessary to identify an

appropriate break-point k.

Our proposal for a suitable break-point relies on the key notion of a balanced distribution

of power between the core and the periphery. Aiming for such a balance, a natural break-point

for a given ordering π, referred to as the π-balance point, would be the k-core-periphery parti-

tion ðĈp
k ; P̂

p
kÞ satisfying that

(1) IðĈp
kÞ � IðP̂pkÞ, but

(2) IðĈp
k� 1
Þ < IðP̂pk� 1

Þ

We say that the partition ðĈp
k ; P̂

p
kÞ is at the π-balance point, and summarize the relations (1)

and (2) by writing IðĈp
kÞ �

p IðP̂pkÞ.
While the above definition provides a local balance point appropriate for a specific ordering

π, we are also interested in a more global notion of balance, applicable to all orderings. This

leads us to the following definition.

Definition 2.2 (Global Balance Point). A given core-periphery partition ðĈ; P̂Þ is at a global

balance point iff

(1) IðĈÞ � IðP̂Þ, but

(2) for every Ĉ 0 such that Ĉ 0 � Ĉ, the partition ðĈ 0; P̂ 0Þ satisfies IðĈ 0Þ < IðP̂ 0Þ.

We summarize (1) and (2) by writing IðĈÞ �D IðP̂Þ.
We are also interested in partitions that are not at the global balance point, or at the π-bal-

ance point for any particular ordering π, but are nevertheless close to being balanced. The par-

tition ðĈ; P̂Þ is said to be near its balance point, denoted IðĈÞ � IðP̂Þ, if IðĈÞ ¼ YðItotÞ and

IðP̂Þ ¼ YðItotÞ. (The Θ()-notation refers to asymptotic behavior as the network size grows).

Note that for influence-symmetric networks, by the symmetry property (P2),

IðĈ; P̂Þ ¼ IðP̂; ĈÞ, thus by Eq (1)

IðĈÞ ¼ IðP̂Þ ) IðĈ; ĈÞ ¼ IðP̂; P̂Þ:

Note also that for a given network there are many partitions at or near a balance point. In

fact, for each ordering π of the nodes there is a k-core Ĉp
k such that the partition ðĈp

k ; P̂
p
kÞ is at

its π-balance point, as discussed above.

The balance point in edge-based partitions. We are particularly interested in the special

case of the edge-based influence model with the degree ordering deg. In fact, our experiments

focus on this model: we apply it to real-world networks and study the resulting rich club core-

periphery partition at the balance point of this ordering, which we denote by bp. This partition

is defined formally as follows.

Definition 2.3 (Balanced Edge-Based Partition). The balanced edge-based partition of a
network is the partition ðÊ�; P̂�Þ ¼ ðĈdeg

bp ; P̂
deg
bp Þ at the balance point bp with respect to the edge-

based influence model and the degree ordering deg.
It is important to observe that this particular setting yields a partition ðÊ�; P̂�Þ that is not

only locally balanced (w.r.t. the ordering deg), but also globally balanced (according to Def.

2.2). Formally, we make the following observation.

Fact. The balanced edge-based partition ðÊ�; P̂�Þ is both a (local) deg-balance point, satis-

fying IðÊ�Þ �
deg

IðP̂�Þ, and a global balance point, satisfying IðÊ�Þ �D IðP̂�Þ.
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We use the notation Ê� (instead of Ĉ�) to emphasize that we use this partition to define an

elite for the social network.

In the graphic presentation of our empirical results, the choice of the X-axis to represent

IðĈp
bpÞ=Itot aligns the balance point to x = 0.5. This alignment allows us to focus on the balance

point, observe its properties, and examine how the core and periphery influence measures

behave around this point. We mark the balance point in influence shift diagrams by a vertical

line (and when relevant, a red point marks maxðIðĈ; P̂ÞÞ), see Fig 3.

As we will see later, the Balanced Edge-Based Partition of many real world social networks

have interesting properties. The elite axioms formulated in the next section can help to explain

these.

3 Elite axioms

3.1 Dominance, robustness and density

The three simple axioms presented in this section capture basic structural properties required

of the core-periphery partition ðÊ; P̂Þ in elite-centered social networks. To emphasize our focus

on networks whose core is an elite, we denote the core set of the partition by Ê rather than Ĉ
where the core is a social elite.

In order to state our three axioms, we first define three corresponding measures for quanti-

fying the dominance, robustness, and density of an elite Ê in a ðÊ; P̂Þ partition.

Dominance: This measure concerns the balance between forces exerted on the periphery,

that is, it compares the influence of the elite on the periphery with the internal influence of the

periphery. Formally, for a given ðÊ; P̂Þ partition

domðÊÞ ¼ IðÊ; P̂Þ=IðP̂; P̂Þ:

The first axiom states the following.

(A1) Elite-dominance: domðÊÞ � cd, for a fixed constant cd> 0

This essentially says that the elite dominates the rest of society, in the sense that the external
influence maintained by the elite Ê on the periphery P̂ is higher, or at least not significantly

lower, than the internal influence of the periphery on itself. Intuitively, the elite must have

high dominance in order to maintain its superior status in society.

We remark that our definition of dominance is different from the notion of domination

commonly used in graph theory. Furthermore, while dominance is related to the concept of

conductance (also known as Cheeger’s constant), the two measures are not identical, as the

terms appearing in their denominators are different (see, e.g., the definitions in [24, 25]).

Robustness: The robustness measure concerns the forces exerted on the elite, and compares

the internal influence of the elite with the influence of the periphery on the elite. Formally, for

a given ðÊ; P̂Þ partition

robðÊÞ ¼ IðÊ; ÊÞ=IðP̂; ÊÞ:

The second axiom states the following.

(A2) Elite-robustness: robðÊÞ � cr, for a fixed constant cr> 0

This axiom ensures that elite is robust, and is capable of maintaining its cohesiveness,

sticking to its opinions, and resisting “outside” pressure (in the form of the periphery’s

external influence). This is guaranteed by requiring that the internal influence of the elite Ê on
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itself is greater, or at least not significantly less, than the external influence exerted on Ê by the

periphery.

Density: This measure concerns the disproportionality between the elite’s power and size.
Let

dðXÞ ¼
log IðXÞ
log jXj

denote the log-density of a set X� V. (Note that this measure is similar to (but slightly

stronger than) the notion of the average degree of a set of nodes X, which is formally defined

as (w(E(X, X)) + w(E(X, V \ X))) / |X| = I(X) / |X|.) Then, for a given ðÊ; P̂Þ partition

densðÊÞ ¼
dðÊÞ
dðVÞ

:

The third axiom states the following.

(A3) Elite-density: densðÊÞ � 1þ cc, for a fixed constant cc> 0

This axiom (named “elite compactness” in [17]) says that the subnetwork spanned by the

elite is denser than the entire network. The implication is that on average, an elite member

holds significantly more power than an arbitrary member of society.

The three axioms are illustrated graphically in Fig 4. We say that a family of n-node net-

works Gn, for growing n, satisfies the axiom A if there exists some n0 such that Gn satisfies A
for every n� n0.

We also examine the impact of another possible property of elites. The members of an elite

often strive to maintain their status by keeping the elite as small as possible. This tendency

conflicts with the need to maintain the elite’s robustness and dominance. Consequently, these

conflicting needs may yield convergence to a natural equilibrium point, characterized by the

following property.

(P5) Elite-compactness: The elite is a minimal set of individuals that satisfies the dominance

and robustness axioms (A1) and (A2).

While we do not assume this property to be an axiom (in fact, it was not considered in

[17]), we are still interested in its implications. In fact, we show that whenever this property

holds, the system attains a balance point, where the elite and the periphery have about equal

Fig 4. Graphical illustration of the three axioms. Elite nodes are gray. (A1) The elite’s external influence (blue edges),

IðÊ; P̂Þ, dominates the periphery’s internal influence (black edges), IðP̂; P̂Þ. (A2) The internal influence of the elite,

IðÊ; ÊÞ, is robust to the periphery’s external influence, IðP̂; ÊÞ. (A3) The elite is denser and its average individual is

more powerful than an average individual in the society.

https://doi.org/10.1371/journal.pone.0205820.g004
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total power. One may argue that the dynamic forces that generate the social structure of elite

and periphery cause it to converge to this balance point: going below this point will endanger

the elite’s robustness or dominance; going above it will yield an “inefficient” elite, namely, one

that is larger than is absolutely necessary.

3.2 Axiom independence

We begin our analysis by showing that the three axioms are independent of each other, that is,

for any two axioms out of the three, there exist a social network and a core-periphery partition

that satisfies the two axioms but not the third.

Theorem 3.1 (Axiom independence). Axioms (A1), (A2), (A3) are independent, namely,
assuming any two of them does not imply the third.

See Appendix A.1 for the proofs of the theorems in this section. Fig 5(a)–5(c) depicts net-

works that illustrate Theorem 3.1. Each of them satisfies exactly two of the three axioms. Note

that there are certain networks for which no core-periphery partition satisfies all three axioms

(A1), (A2), and (A3) simultaneously.

Interestingly, in the special case of influence-symmetric networks, axioms (A1) and (A2)

are “inversely dependent”, namely, every influence-symmetric network and every core-periph-

ery partition must satisfy at least one of them. (More precisely, if the partition ðĈ; P̂Þ disobeys

both axioms (A1) and (A2), then the dual partition ðP̂; ĈÞ, with P̂ as the core and Ĉ as the

periphery, satisfies both (A1) and (A2), with different constants.) This implies that there are

no influence-symmetric networks that disobey all three axioms.

3.3 Power distribution

We can now use our axioms to provide bounds for the influence of the elite and periphery on

each other and for the elite size. Recall that the class of elite-centered social networks consists of

social networks that admit a core-periphery partition satisfying all three axioms. For such net-

works we can draw the following result about the connection between the axioms and the

compactness property on the one hand, and the balance point on the other.

Theorem 3.2 (Balance Point). Let ðÊ; P̂Þ be a core-periphery partition that satisfies the domi-
nance, robustness and density axioms (A1), (A2), (A3), and the compactness property (P5). Then
the partition is near the balance point, i.e., IðÊÞ � IðP̂Þ, or, IðÊÞ ¼ YðItotÞ and IðP̂Þ ¼ YðItotÞ.
Specifically, using the edge-based influence model, both IðÊÞ ¼ YðmÞ and IðP̂Þ ¼ YðmÞ.

This means that for any elite that satisfies Axioms (A1), (A2), (A3) and property (P5), the

overall influence of the elite, IðÊÞ, is (nearly) equal to the overall influence of the periphery,

Fig 5. Network examples demonstrating the independence of the axioms (the gray nodes form the core). Here we

use the edge-based influence model. (a) The core is robust and dense but not dominant. (b) The core is dominant and

dense but not robust. (c) The core is dominant and robust but not dense. (d) An example of a network satisfying all

three axioms.

https://doi.org/10.1371/journal.pone.0205820.g005
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IðP̂Þ, which makes the elite-periphery power balance a universal property. In other words, an

elite that satisfies the axioms must be close to the balance point. We expect this “balance of

powers” between the elite and the periphery to be recognized as a significant element in under-

standing the internal balances in social networks.

3.4 Elite size

Our next theorem concerns the size of the elite. It shows that elite-centered social networks

have a sublinear elite. This is formalized as follows.

Theorem 3.3 (Elite Size). Let ðÊ; P̂Þ be a core-periphery partition that satisfies the domi-
nance, robustness and density axioms (A1), (A2) and (A3). Then the elite size is sublinear in the
size of society, namely,

c � n
dðVÞ
dðÊÞ � jÊj � n

1

1þ cc :

Note that the above discussion leaves open the question of upper bounding the size of a

“real” elite. As our results provide only asymptotic bounds, it is impossible to ascertain

whether the “universal” size of elites (if it exists) converge to a linear or sublinear function of

the network size. For illustration, consider the US population of about 314 million people. An

elite with a linear size of 0.1% of the whole population will consist of 314,000 people, while an

elite of sublinear size, e.g., n1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
314M
p

, will consist of only about 18,000 people. These

numbers differ by an order of magnitude; which of them is more plausible?

For growing networks, the above Theorem implies that the fact that elites are better con-

nected than peripheries leads to the often observed phenomenon that the fraction of the total

population size decreases with time. This is due to the fact that the elite size is a sublinear func-

tion of the population size if the axioms are satisfied.

In Section 4 we present evidence that many social networks are elite-centered (namely, sat-

isfy our axioms), which implies elites of sublinear size are common.

Interestingly, if Axiom (A3) does not hold, then it is possible for the elite to be of linear size.

This will be the case, for example, in social networks where Dunbar’s theory holds [26]. Dun-

bar found a correlation between primate brain size and average social group size, and of people

with whom one can maintain stable social relationships. Since then, this limit has been esti-

mated to fall between 100 and 250, with a commonly used value of 150. If this is the case, then

one can show that an elite that satisfies Axioms (A1) and (A2) must be of linear size. One can

even claim a slightly stronger result, stating that the elite’s average degree is bounded from

above by a constant times the average degree in the network (which necessitates linear elite

size).

Formally, we state the following.

Lemma 3.4 (Large Cores). Consider an influence-symmetric network. Let ðÊ; P̂Þ be a core-
periphery partition that satisfies the dominance (A1) and robustness (A2) axioms. If there exists
some constant c, s.t.

IðÊÞ=jÊj � c � IðVÞ=jVj;

then jÊj � c3 � n for some constant c3.

We now turn lower bounds on the elite size. How small can the elite be while still maintain-

ing its power and satisfying the axioms? Here we again focus on the edge-based influence

model. Let us first observe that in the general case of asymmetric networks (allowing unequal

influences between two individuals, such as in twitter for example), or in unbounded networks

(violating the bounded influence property (P4) above), no nontrivial lower bounds hold, and
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the network may have an extremely small elite (possibly even constant size) that satisfies our

axioms.

Lemma 3.5 (Constant Elite Size). In an asymmetric or unbounded network, there may exist
core-periphery partitions ðÊ; P̂Þ that satisfy the dominance, robustness and density axioms (A1),
(A2) and (A3), where the elite Ê has a constant number of members.

In the proof of Lemma 3.5, we observe that elites of constant size can only exist in societies

with extremely asymmetric influence distributions, either by the weights or the direction of

the influence relationship.

At the other extreme, consider the typical situation occurring in networks where social

interactions are direct and personal. In such networks the influence relationship is usually bi-

directional and the “quality” of this influence is similar across different influence pairs, or

there is a bounded difference between the maximum and minimum weight. More formally,

such networks are influence-symmetric and bounded (i.e., satisfy properties (P2), (P3) and

(P4)). For such networks, a much higher lower bound for the elite size can be established.

More precisely, the elite size must be at least in the order of the square root of the total influ-

ence in the network (and under the edge-based influence model, the square root of m, the

number of edges).

Theorem 3.6 (Square Root Lower Bound). Consider an influence-symmetric and bounded
network of m edges. Let ðÊ; P̂Þ be a core-periphery partition that satisfies the dominance, robust-
ness and density axioms (A1), (A2), (A3). Then the size jÊj satisfies jÊj � c4 �

ffiffiffiffiffiffi
Itot
p

for some con-
stant c4 > 0. Specifically, for the edge-based influence model we get jÊj � c4 �

ffiffiffiffi
m
p

.

One can show an example of what we call a purely elitistic society where, under the edge-

based influence model, the elite reaches its minimum possible size of Yð
ffiffiffiffi
m
p
Þ in influence-

symmetric and bounded (i.e., undirected and unweighted) networks. See Fig 5(d) for an illus-

trative example. In this network, the elite is formed by a clique of five nodes, each connected to

five nodes of the periphery. In the periphery are connected to two other nodes in the periph-

ery. More generally, we can construct similar networks of n nodes with an elite being clique of
ffiffiffi
n
p

nodes, each connected to
ffiffiffi
n
p
� 1 nodes of the periphery. The total number of edges in

such networks is Θ(n) and in this scenario the dominance, robustness and density constants

are 1.

We find it remarkable that these simple and intuitive assumptions lead to such a strong

implication on the total power distribution and the elite size. Note that Theorem 3.3 is con-

troversial to the common belief that the elite size converges to a linear fraction of a society’s

size (most recently claimed to be 1% [27]). This discrepancy may perhaps be attributed to

the fact that our axiom-based approach characterizes the elite differently than in previous

approaches.

4 Empirical results: Balanced edge-based partition

In addition to the theoretical results on elite axioms and properties, we also studied some real

networks, in order to examine the extent to which our axioms manifest in reality, and provide

evidence for the existence of real elite-centered social networks.

We investigate both the static and dynamic properties of the balanced edge-based partition

of real networks. In total we analyzed 32 social networks (the full list is available at S1 Supporting

Information). Their observed behavior w.r.t. core and periphery relationships is surprisingly

consistent. We begin by investigating influence shift diagrams followed by providing evidence

that the balanced edge-based partition of many social networks satisfy our axioms, and there-

fore, their implication about the asymptotic size of the elite apply.
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4.1 The shape of the influence shift diagram

For each social network in our data set we examined the influence of the core and periphery.

To this end, we plot their influence shift diagrams for the degree ordering, πdeg, presenting the

changes in IðĈk; ĈkÞ; IðP̂k; P̂kÞ and IðĈk; P̂kÞ as the core Ĉk (i.e., the k-rich club) grows from its

minimum size, 1, to its maximum size, n. Fig 6 shows the influence shift diagrams of the k-

rich-club of four example networks. The influence shift diagrams of all networks we studied

can be found in S1 Supporting Information. Here, we present the plots of two different scaling

methods for the X-axis. The top row uses the edge-normalized influence scale where the bal-

ance point is at x = 0.5. In the second row, the diagrams are plotted for a logarithmic scale

where x = 0.5 corresponds to IðĈÞ ¼
ffiffiffi
n
p

. (Plots with a node-normalized scale can be found in

S1 Supporting Information for completeness).

The influence shift diagrams for most networks exhibit a similar pattern: as the rich-club

size k grows, the value IðĈk; ÊkÞ=m grows from 0 to 1, and the value IðP̂k; P̂kÞ=m decreases

from 1 to 0. The number of “crossing” edges (connecting the rich-club and the periphery),

IðĈk; P̂kÞ, grows with k up to some maximum, and then starts decreasing. An interesting and

less obvious pattern is that IðĈk; P̂kÞ grows faster than IðĈk; ĈkÞ right from the beginning, and

remains larger until the maximum point. The relation between these numbers changes only

after IðĈk; P̂kÞ begins to decrease, while IðĈk; ĈkÞ continues to grow. This seems to imply that

during their growth, rich clubs acquire external edges faster than internal edges.

The consistency in the shapes of the influence shift diagrams for the edge-normalized scale

for different networks, also enables some analytical observations which we will discuss later in

the section.

Fig 6. The influence shift diagrams for the degree ordering of four example networks, plotting the influence ratios (IðĈ; ĈÞ=m, IðP̂; P̂Þ=m and IðĈ; P̂Þ=m). The

diagrams in the top row feature an edge-normalized x-axis where the balance point is at x = 0.5. In the second row a logarithmic axis, where x = 0.5 represents k ¼
ffiffiffi
n
p

, is

used. The last row contains network details for the balanced edge-based partition.

https://doi.org/10.1371/journal.pone.0205820.g006
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One limitation of plots with an edge-normalized scale, is the fact that the size of the elite at

the balance point is not revealed. On the other end, the logarithmic scale, enables us to exam-

ine this aspect the balance point more closely. Recall that the balance point, is the size bp
where the internal influences of the core and the periphery are roughly equal; formally,

IðĈbp; ĈbpÞ �
deg

IðP̂bp; P̂bpÞ. Graphically, bp is the point where the red (dashed) and blue (dot-

dashed) lines intersect in Fig 6.

We summarizes the influence shift diagrams of all 32 networks in Fig 7 where we show the

average results for all of the 32 networks in our experiments. Fig 7(a) present the average of the

influence shift diagrams of all networks using the logarithmic scale. From this figure we see

that the average exponent of the elite size at the balance point, i.e., when IðÊÞ ¼ nx, is x = 0.75.

For most of the networks in our dataset the balanced edge-based partition core size lies

between n0.6 and n0.85, indicating a sublinear size of the elite. Fig 7(b) and 7(c) facilitates an

analytical understanding of the shape of the influence shift diagram. The figure compares

the average influence shift diagrams of our networks using the edge-normalized scale to the

expected influence shift diagrams of a well known random model for social networks, the ran-

dom configuration model [21]. The expected shape of the random configuration model can be

analyzed and presented in a closed form, see Appendix B for details. The similarity of these

two figures is striking. This may indicate that most of the edges in real networks are, in some

sense, distributed similarly to the random configuration model. They are “like” random edges,

making the influence shift diagram behave in a “nice” an expected way. Defining this more for-

mally is deferred to future work.

Two important additional observation are in place. First we note that the shape of the influ-

ence shift diagram does not have to behave “nice”. In Appendix 4.3 we examine theoretically

and empirically networks with different trends. The second observation is related to the

maximal “crossing” edges between the core and periphery. One of the most interesting proper-

ties of partitioning the network at the balance point is that in most networks, the maximal

number of crossing edges occurs at the balance point or near it. We mark this maximum

point, maxðIðĈk; P̂kÞÞ, by a red dot on the influence shift diagram. We discuss this farther in

Appendix C for the configuration model. We note that this topics offers many opportunities

for explorations in other generative network models and other orderings for an empirical

investigation beyond the scope of this work.

Fig 7. The average influence shift diagrams for the balanced edge-based partition of all 32 networks examined in our study (a) using the logarithmic scale axis

(b) using the edge-normalized axis and (c) the closed form shape of the expected influence shift diagrams of the configuration model.

https://doi.org/10.1371/journal.pone.0205820.g007
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Returning to Fig 7, we highlight again that Fig 7(b) and 7(c) do not reveal the size of the

elite at the balance point. To understand the asymptotic size of elites better we must turn to

growing networks.

4.2 Axiom stability and elite size in growing networks

Recall that Theorems 3.2 and 3.3 state that any elite-centered partition, i.e., a partition contain-

ing a core that satisfies Axioms (A1), (A2), and (A3) asymptotically, is close to the balance point

and that the core must be of sublinear size. In the previous section we presented evidence that

the balanced edge-based partition representing rich-clubs at the balance point generates a rela-

tively small elite. Although this observation concerns networks of different sizes, all of them

were static, i.e., made from a network snapshot at a single time instance. Thus one cannot

answer the question of the asymptotic size of the elite of networks of increasing size with cer-

tainty. Hence to validate our axioms and study the asymptotic size of the elite, it is necessary to

turn to networks that grow over time. This requires available data on the creation time of every

node and edge in the network. Some network data includes edges time stamps for the point in

time when edges are added or removed. For those we can examine how the elite metrics vary

over time for the balanced edge-based partition ðÊ�; P̂�Þ. If the axioms are indeed satisfied as the

network evolves over time, then we may draw conclusions about the asymptotic size of elites.

Thus, we evaluated 5 networks for which information was available about the creation time

of each edge. These include the coauthorship graph of DBLP, the trust network of Epinions, a

friendship network from Facebook, a network formed by Wall-To-Wall communication on

Facebook, the friendship network of Flickr, and the reply network among Slashdot users. The

full details of the datasets are available in S1 Supporting Information. Using this information,

we simulated the evolution of each network over time. As data on the appearance time of each

network node was not available, we made the assumption that each node joined the network at

the same time as the first edge incident to it appeared. We then divided the evolution time of

the network into 30 time frames, each corresponding to a time period during which the net-

work size increased by a constant factor, starting at 0.01n up to the final n. At each point in

time, the balanced edge-based partition, ðÊ�t ; P̂
�
t Þ, was calculated and the corresponding

observed axiom measures were computed for the elite. More precisely, we computed the

observed dominance, robustness and density measures, domðÊ�t Þ, robðÊ�t Þ, and densðÊ�t Þ,
respectively, for each time frame t.

Fig 8 presents the performance of these metrics for our five networks with temporal infor-

mation in their dataset. Note that the balanced edge-based partition (i.e., the rich clubs at the

balance point) for the networks ‘Epinions’, ‘Facebook’ and ‘Slashdot’ exhibit relatively stable

observed dominance, robustness, and density values, therefore validating the three axioms for

the balanced edge-based partition. We call these observed values stable since the trend on non

of them indicate they might converge to zero and therefore might violate one of the axioms

asymptotically. This implies that the core of the balanced edge-based partition for these net-

work is, asymptotically, of sublinear size. On the other hand, the dominance of the rich club in

the ‘Flickr’ network and the robustness of the rich club in ‘DBLP’ decrease with time, indicat-

ing that the respective axioms are not valid.

A possible explanation for the ‘Flickr’ case is that this network is composed of a community

of professionals and semi-professionals, strongly connected to each other and therefore robust

and dense, coexisting side by side with a larger community of occasional users of image storage

facilities (the periphery), which are more isolated, and mostly disconnected from the core.

Hence abstractly, this case resembles the one depicted in Fig 5(a) which does not satisfy the

dominance axiom.
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A possible explanation for the ‘DBLP’ case is that the balanced edge-based partition core Ê�

of this coauthorship network, consisting of the most successful and productive researchers, is

dominant and dense since these researchers collaborate extensively both with each other and

with individuals from the periphery (such as their students), whereas individuals of the periph-

ery are much less active overall, and each of them tends to work mainly with one (or a few)

core member (e.g., the advisor and a few colleagues). At the same time, this core is not robust,

since each core member is typically involved more in collaborations with certain individuals

from the periphery (such as her students) than with other core members. Hence despite the

fact that the Ê� is dense, IðÊ�; P̂�Þ is larger than both IðÊ�; Ê�Þ and IðP̂�; P̂�Þ, implying that Ê�

is dominant but not robust. This case abstractly resembles that of Fig 5(b) which does not satis-

fies the robustness axiom.

The lack of robustness in the ‘DBLP’ network may be partially related to the fact that

although this network covers mainly Computer Science and related areas, its scope includes

many different and sometimes distant research areas. This implies that the network members

Fig 8. Observed dominance, robustness and density at the balance point of time-varying networks as the networks grows in size over time. To improve the

presentation, we plot densðÊ�t Þ � 1 for the density measure.

https://doi.org/10.1371/journal.pone.0205820.g008

Elites in social networks: An axiomatic approach to power balance and Price’s square root law

PLOS ONE | https://doi.org/10.1371/journal.pone.0205820 October 24, 2018 21 / 35

https://doi.org/10.1371/journal.pone.0205820.g008
https://doi.org/10.1371/journal.pone.0205820


belong to different communities, possibly each with its own elite, and the amount of collabora-

tions between members of different communities is relatively small.

To eliminate this factor, we extracted several smaller and more cohesive communities from

‘DBLP’ and re-ran the evaluation on them. We focused on communities built around confer-

ences. More precisely, define the community of conference X as all the authors that published

at X since its first appearance (using ‘DBLP’ as the source of information). We then considered

the timed co-authorship graph between the community members (including publications out-

side the conference). Fig 9 shows the results for three example conference (’Infocom’, ‘KDD’,

and ‘WWW’) and the average over all 13 conferences examined. One can clearly observe that

the results are qualitatively different from those obtained for the whole DBLP. The dominance,

density and robustness values of these elites at the balance point seem to be more stable. Let us

remark, though, that one must be careful interpreting these last results, since the size of the

networks corresponding to the individual conferences are orders of magnitude smaller than

that of the whole ‘DBLP’ network.

Fig 9. Observed dominance and robustness and density at the balance point of the networks formed by conference communities

in DBLP as the networks grows in size over time. To improve the presentation, we plot densðÊ�t Þ � 1 for the density measure.

https://doi.org/10.1371/journal.pone.0205820.g009
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The above results suggests that the axiom are indeed satisfied asymptotically by the bal-

anced edge-based partition which partitions the network at the balance point using the degree

order. But, it may be the case that other partitions satisfy the axioms as well. To study this we

compared three possible alternative core sizes in addition to the size bp at the balance point, a

sublinear core of size n0.75, and two linear size cores, one containing 1% and the second con-

taining 10% of the network nodes.

At each point in time during the network evolution and for each of the four values of k
mentioned above, the size k core was calculated and the observed dominance, robustness and

density measures were computed.

Fig 10 shows the results of the average of all 5 networks for the four choices of the size. (The

Y axis is scaled differently for each figure to focus more on the presentation of the trends of the

observed measures and less on their absolute values.) A number of interesting features emerge

from this figure. For cores of size n0.75 and bp, the three axioms seem to be satisfied, since the

three measures dom(), rob(), and dens() − 1 appear to be bounded from below by a constant

(or at least do not diminish to zero). While this may be less surprising for cores of size n0.75

(since by Theorem 3.3, cores that satisfy the three axioms are expected to be of sublinear size),

the observation is more interesting for the balance point bp, as it indicates that in our net-

works, cores at the balance point satisfy all three axioms, namely, qualify as elites, and subse-

quently are also of sublinear size.

On the other hand, it can easily be seen from Fig 10 that cores of linear size (i.e. 1% and 10%

cores) violate axiom (A3), implying that cores of linear size cannot satisfy our three axioms

(and hence do not qualify as elites). Nevertheless, these (linear size) cores are still dominant and

robust, with these measures increasing over time (which is not the case at the balance point).

Since only for n> 108 we have n0.75 < n/100, in our dataset which contains networks with

at most few millions nodes it may still hold that an elite of size 1% satisfies all the axioms. Thus

it is important to note that these results are only an indication for the asymptotic behaviour of

the elite.

4.3 Networks with different trends

The random configuration model is a general model for random graphs. We observe, however,

that there are graph models and graph data sets that do not exhibit the same trends discussed

and shown here. An example of such a graph model is as follows. Use the random configura-

tion model to generate two separated graphs, Ga and Gb, where each graph Gi has degree

sequence di of degrees di
1
¼ di

2
¼ � � � ¼ din ¼ hi for constants ha and hb. Then join these two

graphs to form a graph G = Ga [ Gb, without any edge between its two subgraphs. The result-

ing graph G is clearly not a random configuration graph, and the resulting influence shift dia-

gram and maximal crossing edges do not have to follow the trends described above. This

model represents a network that is constructed by two separated communities. Fig 11(a)

shows the influence shift diagram for such graph, with na = 50, nb = 100 and ha = hb = 2. It can

be seen that the the influence behavior is very different from the configuration model and the

real world network discussed in Section 4.

Empirical results: Although most of the networks we studied exhibit the trends and prop-

erties discussed in the previous sections, not all networks do conform to them. Some of them

are shown in Fig 11. Fig 11(b) clearly exhibits a similar trend to the theoretical model described

above and shown in Fig 11(a). The influence shift diagram depicted in Fig 11(c) is more similar

to the plots in Fig 6, but the maximum number of crossing edges is almost reached when the

influence of periphery on itself equals the influence of the crossing edges, significantly before

the balance point, and it remains at a high level until the core influence exceeds it.
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5 Related work

Axioms are extensively used in many scientific fields, such as mathematics, physics and econ-

omy. Two examples for the use of an axiomatic paradigm in computer science areas related to

ours can be found in [28, 29].

The problems of measuring influence in a network, and identifying useful core-periphery

partitions, were also well-studied in the past (see the recent survey [30]). Borgatti and Everett

[13] measure the similarity between the adjacency matrix of a graph and the block matrix

Fig 10. Observed mean of dominance and robustness and density of 5 networks as the networks grows in size over time. To improve the

presentation, we plot densðÊ�t Þ � 1 for the density measure.

https://doi.org/10.1371/journal.pone.0205820.g010
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�
, following the intuition that social networks have a dense, cohesive core and a sparse,

disconnected periphery. an intuition also reflected in the axioms postulated herein.

Methods for identifying core-periphery structures and partitioning networks can be found

in [14–16, 31–34]. The recent [35] explains the core-periphery structure as the result of several

overlapping communities and proposes a community detection method coping with overlap.

None of these works consider the asymptotic size of a core/elite and the possibility that its size

is sublinear in the population size.

The term rich-club coefficient was introduced in [19] for the density of the nodes of degree k
or more. This was one of the first papers to observe that the highest degree nodes are well-con-

nected. Xu et al. [36] shows that the rich-club connectivity has a strong influence on the assor-

tativity and transitivity of a network. Weighted and hierarchical versions of the rich-club

coefficient have been studied in [37–40]. Mislove et al. [41] defined the core of a network to be

any (minimal) set of nodes that satisfies the following two properties: (1) the core is essential

for ensuring the connectivity of the network, i.e., removing it breaks the remaining nodes into

many small, disconnected clusters, and (2) the core is strongly connected with a relatively

Fig 11. Influence shift diagrams. (a) for the graph model described in 4.3 and for (b) ca −HelPh and (c) Foursquare, two real world networks that

exhibit different trends and behavior than most of the networks we examined, and from the average result of all networks. The plots features an edge-

normalized influence scale of the X-axis with the balance point at x = 0.5.

https://doi.org/10.1371/journal.pone.0205820.g011

Elites in social networks: An axiomatic approach to power balance and Price’s square root law

PLOS ONE | https://doi.org/10.1371/journal.pone.0205820 October 24, 2018 25 / 35

https://doi.org/10.1371/journal.pone.0205820.g011
https://doi.org/10.1371/journal.pone.0205820


small diameter. The paper used an approximation technique based on removing increasing

numbers of the highest degree nodes (rich clubs) and analyzing the connectivity of the remain-

ing graph. The graphs studied therein have a densely connected core containing 1% to 10% of

the highest degree nodes, so removing this core completely disconnects the graph. This pro-

vides further evidence that rich clubs are crucial in social networks and satisfy their core

properties.

A very different perspective is offered in [42], which studies a network formation game
where benefits from connections exhibit decreasing returns and decay with network distance.

The equilibria of this game form core-periphery structures, which is consistent with our axi-

oms. Another network formation game, where players invest in collecting information, is

developed in [43]. The authors show that the economic forces are leading to a robust equilib-

rium where the majority of individuals to obtain most of the information from a very small

(sublinear-size) subset of the group. This observation is termed “The Law of the Few”. These

results hold under a more specific set of assumptions, yet they confirm the results derived

from our more general axioms.

Motivated by the results about core and periphery structure in social networks presented in

the current paper, the recent follow-up paper [44] introduced a complementary idea regarding

computer communication network designs achieving computational efficiency. A set of algo-
rithmic axioms that resemble a core-periphery structure was proposed as design principles,

exploring and promoting the idea that communication networks that satisfy these axioms

admit efficient algorithms for a variety of different problems. Indeed, it was established that

these algorithmic axioms are necessary and sufficient for a large family of problems to achieve

efficient distributed computation (e.g., minimum spanning tree, matrix operations, etc.).

Although both the current paper and [44] use the axiomatic approach to explain phenomena,

the two papers are radically different in their goals and techniques. Whereas the current paper

seeks to explain social networks, [44] is entirely engineering-oriented, seeking to design effi-

cient algorithms on communication networks, and does not address the structure of social

networks.

Ideas presented in the current paper were recently used in [45] to study the influence prop-

erties of the set of founders, the nodes arriving first, in the preferential attachment model of

[46] under different model parameters. It turns out that if the number of edges in the model is

linear in the number of nodes then networks generated by preferential attachment must have a

linear size founders set to be dominant, implying that this set will not satisfy our third axiom.

On the other hand, if the number of edges in the model is super-linear in the number of nodes

then the generated networks feature a sublinear size founders set that is dominant. This seems

to imply that both linear and sublinear cores are possible, depending on the network type.

In the second part of this work we offer a very simple method to identify a core, based on

the rich-club notion. Recent work on core-periphery identification proposes a decomposition

method using statistical inference [16]. The authors suggest to use an algorithm fitting the sto-

chastic block model with probability p11 for edges in the core> p12 for crossing edges > p22

for edges in the periphery using expectation maximization and belief propagation. This algo-

rithm is then compared to simply using rich-clubs. They show that for very weak and very

strong core-periphery structure, the degree-based distinction is the best one can do, followed

by derivations on how to compute the size of the rich-club core fitting the p11 > p12 > p22

block model. For core-periphery structures of intermediate strength, their expectation A

closely related approach is presented in [47]. To find the boundary of a rich-club core, they

examine the escape time it takes a random walker to leave a core. Based on this, they create a

decision criterion for the nodes belonging to the core and compare the obtained core size to

the total number of nodes in the network. Note that we pursue a slightly different goal. We do

Elites in social networks: An axiomatic approach to power balance and Price’s square root law

PLOS ONE | https://doi.org/10.1371/journal.pone.0205820 October 24, 2018 26 / 35

https://doi.org/10.1371/journal.pone.0205820


not strive for the best partition offering a close fit to a model or a high cohesiveness in the core,

but a simple method that lends itself to understanding large graphs better, with a special focus

on maximizing the crossing edges.

To the best of our knowledge, the key question of quantifying which degree should be con-

sidered as the “stopping criterion”, or in other words, deciding whether a node can still be con-

sidered rich, has not received much attention except in [16]. This is one of the main questions

to which this article proposes a very simple answer.

6 Conclusion

One of the interesting consequences of our results is that, for a core-periphery partition that

satisfies the axioms used to model the influence relationships between the elite and the periph-

ery, the core forms an elite of sublinear size in the number of network nodes. In particular, this

means that an elite is much smaller than a constant fraction of the network. This is in agree-

ment with the frequent observation that the gap between the very rich and the rest of society is

widening as society grows. In turn, this also validates a weaker version of Prices’ law: a a sub-
linear fraction of the population (namely the elite) holds a linear fraction of the power.

To understand better what these axioms mean in practice, we studied a multitude of large

real-world social networks. We approximated the elites by k-rich-clubs of various sizes k. Our

findings indicate that in these networks, there are cores exhibiting elite properties such as dis-

proportionate dominance, robustness, and density, as stated by the axioms.

In addition, we presented an analysis of partitioning the network into core and periphery at

the balance point for rich-clubs and establish unique properties of this balanced edge-based

partition. More precisely, we observed the following on real world data sets. First, at the bal-

ance point, or very close to it, the number of crossing edges EðĈk; P̂kÞ reaches its maximum.

This is not a mere consequence of the rich-club ordering nor the choice of the balance point,

as can be observed by considering the influence shift diagrams we discuss in Section 4.3. Sec-

ond, the size of the core of the balanced edge-based partition is disproportionally small, con-

firming the results derived by the axioms.

Some of our findings may have been observed before on an anecdotal level, or may seem

obvious; our axioms allow us to quantify the forces at play and compare different core-periph-

ery partitions. For instance, the fact that the k-rich-club contains the highest degree nodes

does not suffice to account for the behavior of its influence ratios. In particular, inspecting the

structure of the k-rich-club in arbitrary networks reveals that these properties do not necessar-

ily hold. For example, when comparing our findings on real-world data to the properties

exhibited by the popular Erdös-Renyi class of random graphs, the same behavior cannot be

observed there. Furthermore, it is shown in [45] that also in the well-accepted preferential

attachment model, that founder cores might not satisfy all our axioms. Thus, it is of a major

interest to find evolutionary models in which elites as described here emerge naturally.

We believe that dividing the network to core-periphery structure at the balanced edge-

based partition (at the balance point bp, using the degree ordering πdeg) provides a very simple

and useful partition. The properties of this partition lead to partition where the obtained two

parts are much simpler for further analysis. First, we obtain a small and dense graph for the

core, which is simpler to handle than the entire graph and second, we obtain the periphery,

which is a large graph, however sparse, and thus also simpler to handle.

In summary, our results advance the theoretical understanding of the elite of social struc-

tures, and moreover, may also help to improve infrastructure and algorithms targeted at online

social networks [44], e.g., to organize institutions better, or identify sources of power in social

networks in general.
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A Appendix

A.1 Proofs

The proofs of the statements in Section 3 are presented in this part.

A.1.1 Axiom independence. We prove that the axioms are independent, by constructing

three examples of families of n-vertex (undirected, unweighted) networks and core-periphery

partitions. Under the edge-based influence model, each of these partitions satisfies two of the

axioms, but violates the third. The existence of an interpretation exhibiting such behavior

implies axiom independence (Theorem 3.1).

Proof of Theorem 3.1.

The first network and partition (Fig 5(a)), depict a core that is robust and dense but whose

dominance tends to zero as the network size n grows to infinity. The second example (Fig

5(b)) describes a core that is dominant and dense but whose robustness tends to zero as the

network grows. The last example (Fig 5(c)) describes a core that is dominant and robust but

whose density tends to one as the network size n grows to infinity, i.e., the average degree of

core members and periphery members is almost the same.

A.1.2 Balance of power. In this part we show that for any elite that satisfies Axioms (A1)

and (A2) and the compactness property (P5), the overall influence of the elite, IðÊÞ, is (nearly)

equal to the overall influence of the periphery and thus is close to the balance point (Theorem

3.2).

Proof of Theorem 3.2.

To prove this theorem we need a simple fact and two lemmas. Recall that the number of

edges in the graph is m. As ðÊ; P̂Þ forms a partition of the network vertices, we have

Fact A.1. IðÊ; ÊÞ þ IðÊ; P̂Þ þ IðP̂; ÊÞ þ IðP̂; P̂Þ ¼ Itot.
Lemma A.2. In a symmetric system, if ðÊ; P̂Þ satisfies the dominance and robustness axioms

(A1)-(A2), then for some constants c1, c2 > 0,

1. IðÊ; ÊÞ � c1 � IðP̂; P̂Þ,

2. IðÊ; ÊÞ � c2 � Itot.

Proof. By the symmetry property (P2) and the two axioms, we have that

IðÊ; ÊÞ � cr � IðP̂; ÊÞ ¼ cr � IðÊ; P̂Þ � crcd � IðP̂; P̂Þ;

implying the first claim with c1 = crcd.
Also, by the symmetry property (P2) and Fact A.1, combined with the two axioms,

Itot � 1þ
2

cr
þ

1

crcD

� �

IðÊ; ÊÞ:

Hence IðÊ; ÊÞ � c2Itot for c2 = (1 + 2/cr + 1/(crcD))−1. The second claim follows.

Let us next consider the implications of the compactness property (P5).

Lemma A.3. If the elite Ê satisfies axioms (A1), (A2), (A3) and also the compactness property
(P5), then IðÊ; P̂Þ ¼ OðItotÞ.

Proof. By Thm. 3.3, jÊj � n, which implies that jP̂j � n=2. By the self-influence

property (P3) it follows that IðP̂; P̂Þ � n=2. Combining this with Axiom (A1), we get that

IðÊ; P̂Þ � cd � n=2. Hence if, say, Itot �
2ð1þcrÞ

c2
� n, for the constant c2 of Lemma A.2, then the
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lemma holds trivially. Hence herafter we consider networks where

Itot >
2ð1þ crÞ

c2

� n: ð3Þ

Consider an elite Ê that satisfies the compactness property (P5), i.e., it is a minimal set of verti-

ces satisfying Axioms (A1) and (A2). This implies that for every vertex v 2 Ê, moving v from Ê
to P̂ violates either (A1) or (A2).

Let us first consider the case where there exists a vertex v 2 Ê whose movement from Ê to

P̂ violates the robustness Axiom (A2). In other words, letting Ê0 ¼ Ê n fvg and P̂ 0 ¼ P̂ [ fvg,
we have, by the additivity property (P1), that

IðÊ0; Ê0Þ < cr � IðÊ 0; P̂ 0Þ ;

or

IðÊ; ÊÞ � IðÊ; vÞ < cr � ðIðP̂; ÊÞ þ ðIðÊ; vÞ � 1Þ � IðP̂; vÞÞ:

Rearranging, we get that

IðÊ; P̂Þ >
IðÊ; ÊÞ � ð1þ crÞIðÊ; vÞ

cr
>
IðÊ; ÊÞ � ð1þ crÞn

cr
;

where the last inequality relies on Property (P3). Applying Lemma A.2 (2) and Eq (3) we get

that

IðÊ; P̂Þ >
1

cr
� c2Itot � ð1þ crÞnð Þ >

c2

2cr
� Itot:

Next, let us consider the complementary case, where for every vertex v 2 Ê, moving v from

Ê to P̂ does not violate the robustness Axiom (A2). In this case, for every vertex v 2 Ê, moving

v from Ê to P̂ necessarily violates the dominance Axiom (A1). This means that for every vertex

v 2 Ê, again letting Ê0 ¼ Ê n fvg and P̂ 0 ¼ P̂ [ fvg,

IðÊ 0; P̂ 0Þ < cd � IðP̂ 0; P̂ 0Þ ;

or

IðÊ; P̂Þ þ ðIðÊ; vÞ � 1Þ � IðP̂; vÞ < cd � ðIðP̂; P̂Þ þ ðIðP̂; vÞ þ 1ÞÞ:

On the other hand we have by Axiom (A1) that

IðÊ; P̂Þ � cd � IðP̂; P̂Þ:

Adding up these two inequalities and simplifying,

IðÊ; vÞ < ð1þ cdÞ � IðP̂; vÞ þ 2 < 2IðP̂; vÞ þ 2:

Summing over all v 2 Ê, 2IðÊ; ÊÞ < 2IðÊ; P̂Þ þ 2jÊj, so

IðÊ; P̂Þ > IðÊ; ÊÞ � jÊj � c2Itot � n �
c2

2
� Itot:

Theorem 3.2 now follows by the above lemmas.
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A.1.3 Elite size. We now consider the size of the elite and prove Theorem 3.3, showing

that elite-centered social networks feature an elite of sublinear size, i.e.,

c1 � n
dðVÞ
dðÊÞ � jÊj � n

1
1þcc : ð4Þ

Proof of Theorem 3.3.

To prove this theorem we first observe that by Lemma A.2(2) and Eq (1) we immediatelly

have the following.

Lemma A.4. In a symmetric system, if ðÊ; P̂Þ satisfies the dominance and robustness axioms
(A1) and (A2), then c1 � Itot � IðÊÞ � Itot for some constant c1 > 0.

Recall that by the definition of δ(X) we have

Itot ¼ ndðVÞ; ð5Þ

IðÊÞ ¼ jÊjdðÊÞ: ð6Þ

Using Lemma A.4 we get that

c1 � ndðVÞ � jÊj
dðÊÞ
� ndðVÞ ¼ Itot :

Raising by the power of 1=dðÊÞ we get that

c1 � n
dðVÞ
dðÊÞ � c

1

dðÊÞ
1 � n

dðVÞ
dðÊÞ � jÊj � n

dðVÞ
dðÊÞ: ð7Þ

The left hand side of Eq (4) follows directly from the left hand side of Eq (7). The upper

bound of Eq (4) follows from the right hand side of Eq (7) by Axiom (A3), which implies that

dðVÞ=dðÊÞ � 1=ð1þ ccÞ.
Axiom (A3) is crucial for determining the core size, since for every core-periphery partition

ðÊ; P̂Þ that satisfies Axioms (A1) and (A2) but does not satisfy Axiom (A3), the core size is lin-

ear in the network size (Lemma 3.4).

Proof of Lemma 3.4.

By the premise of the lemma, jÊj � IðÊÞ � n=ðc � ItotÞ. By Lemma A.4, IðÊÞ=Itot � c1. Com-

bining, we have jÊj � ðc1=cÞn.

On the other hand, there are elite-centered asymmetric or unbounded networks with an

elite of constant size (Lemma 3.5).

Proof of Lemma 3.5.

For asymmetric but bounded networks, a simple example is the star graph, under the edge-

based influence model, where a single vertex (the center, forming the elite) has a directed edge

to each of the periphery vertices (with no incoming edges). Assuming the edge-based influence

model, the star center clearly dominates the periphery, and it is robust and dense.

Next consider symmetric but unbounded networks. Again using the edge-based influence

model, consider a tree network with n = 2k vertices, so m = 4k − 1 (including self-loops). The

weight of each self-loop is 1, totaling 2k. Now the tree is constructed from two stars, with uni-

form edge weights of 1/2, plus an edge of weight k connecting the two centers of the stars. It is

easy to check that the sum of the edge weights is m. The elite consisting of the two star centers

satisfies all three axioms.

For symmetric bounded networks again using the edge-based influence model, we prove a

tighter square root lower bound on the elite size (Theorem 3.6).

First note that as a result of the additivity property (P1) and the bounded influence property

(P4), the following holds.
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Fact A.5. For every X, Y� V,

IðX;YÞ ¼
X

x2X

X

y2Y

Iðx; yÞ � cb � jXj � jYj:

Proof of Theorem 3.6.

By Lemma A.2(2), IðÊ; ÊÞ � c2 � Itot for some constant c2 > 0. By Fact A.5,

IðÊ; ÊÞ � cb � jÊj
2
, implying that jÊj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IðÊ; ÊÞ=cb
q

. Combining these two inequalities, the

theorem follows.

B The shape of the influence shift diagram in the configuration

model

In this section we study the shape of the Influence Shift Diagram in a very general random

graph model known as the configuration model [21]. We study the behavior of IðĈk; P̂kÞ,

IðĈk; ĈkÞ and IðP̂k; P̂kÞ for k = 1, . . ., n under this model, and prove formally some of the prop-

erties discussed (and observed empirically) in this paper for any order π.

Let d = d1, d2, . . ., dn, where 1� di� n − 1 be a positive degree sequence (it is not necessary

that d1� d2� . . .� dn). A random configuration (multi)graph �Gðn; dÞ is constructed in the

following way over the set of nodes [n]. Let W = [2m] be the set of configuration points where

m ¼
Pn

1
di=2 is the number of edges. Define the ranges Wj ¼ ½1þ

Pj� 1

1
di ;

Pj
1
di� for j 2 [n].

Given a pairing F (i.e., a partition of W into m pairs) we obtain a (multi) graph GF, with node

set [n] and for each pair (u, v) 2 F we add an edge (i, j) to GF where u 2Wi and v 2Wj (includ-

ing self loops). Choosing F uniformly from all possible pairings of W we obtain a random

(multi-)graph �Gðn; dÞ.
First we study the behavior of the influence shift diagram for random configuration graphs.

For U� {1, . . ., n}, let

pðUÞ ¼
X

i2U

di
2m

:

For 1� k� n, consider the core-periphery partition Ĉk ¼ f1; . . . ; kg and P̂k ¼ fkþ 1; . . . ; ng,
and set Zk ¼ pðĈkÞ.

Theorem B.1. Let �Gðn; dÞ be a random configuration graph of a given positive degree
sequence d. Then

1. E½IðĈk; ĈkÞ=m� ¼ Z2
k ,

2. E½IðP̂k; P̂kÞ=m� ¼ ð1 � ZkÞ
2
,

3. E½IðĈk; P̂kÞ=m� ¼ 2Zkð1 � ZkÞ.

Proof. In the configuration model, the process of generating an edge (pairing) is to choose

one end of the edge, out of the 2m configuration points, and then the other end. Given one

end of the edge already picked to be node i, the probability of choosing j is p(j) = dj/(2m).

Given a set of nodes U� V, the probability of choosing one end of an edge to be in U is p(U).

For two (not necessarily distinct) sets of nodes U1, U2 2 V, the probability of an edge (i, j)
where i 2 U1 and j 2 U2 is p(U1) � p(U2). (There is a slight inaccuracy in this calculation, since

in the situation where U1 and U2 are not distinct, after choosing one end of the edge from U1,

which may be also in U2, the probability of choosing the second end at U2 becomes smaller.

However, this effect is negligible when the sets of nodes are relatively large.) The expected
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number of edges between U1 and U2 is E½IðU1;U2Þ� ¼ m � pðU1Þ � pðU2Þ. Given a core-periph-

ery with a partition index k, the expected number of edges of each component satisfies

E½IðĈk; ĈkÞ� ¼ m � pðĈkÞ � pðĈkÞ ¼ m � Z2
k ,

E½IðP̂k; P̂kÞ� ¼ m � pðP̂kÞ
2
¼ m � ð1 � ZkÞ

2
,

E½IðĈk; P̂kÞ� ¼ m � 2pðĈkÞ � pðP̂kÞ ¼ m � 2Zkð1 � ZkÞ.

Fig 7(c) shows the influence shift diagram and the expected behavior of IðĈk; P̂kÞ, IðĈk; ĈkÞ

and IðP̂k; P̂kÞ for random configuration graphs.

C Maximal number of crossing edges

One of the most striking properties of partitioning the network at the balance point is that in

most networks, the maximal number of crossing edges occurs at the balance point or near it. We

show this empirically and also prove it theoretically for the random configuration graph model.

This is not a trivial phenomenon that is expected from the ordering, πdeg, (or another ordering).

It is also not the result of the fact that we focus on the point of equality between the powers of the

core and periphery. Section 4.3 discusses and shows theoretical and real examples where this

property does not hold. In terms of dividing the network into the most simple parts, this means

that the balanced edge-based partition ‘discards’ the maximal number of edges, thus minimizing

the number of meaningful edges left in the induced subgraphs of edges within the same part.

We first prove this observation theoretically for the random configuration graphs model

(see Appendix B for definitions). Define the balance point bp(d) of the degree sequence d as

bpðdÞ ¼ argmin
j

Xj

i¼1

di=ð2mÞ �
1

2

�
�
�
�
�

�
�
�
�
�
¼ argmin

j
Zj �

1

2

�
�
�
�

�
�
�
�:

Recall that Ĉk ¼ f1; . . . ; kg and P̂k ¼ fkþ 1; . . . ; ng. We now prove that in expectation

E½IðĈk; P̂kÞ� is maximized at the balance point.

Theorem C.1. Let �Gðn; dÞ be a random configuration graph of a given positive degree
sequence d and let bp = bp(d) be the balance point of d. Then

8k E½IðĈk; P̂kÞ� � E½IðĈbp; P̂bpÞ�

Proof. As shown in Theorem B.1, E½IðĈk; P̂kÞ� ¼ m � 2Zið1 � ZiÞ. This function reaches its

maximum at Zi ¼
1

2
, which is exactly the balance point, i = bp(d).

Empirical results: In Fig 6 we can see that IðĈk; P̂kÞ, the number of crossing edges between

the core and periphery, achieves its maximum at (or very close to) the balance point. Most of the

networks that we studied exhibit this behavior. We show in Fig 6 example networks that exhibit

this behavior, but also most of the networks that are not presented here show the same behavior.

Fig 7(b) shows the average of all 32 networks and as we can see IðĈk; P̂kÞ achieves its maximum

very close to the balance point in this figure too. We must stress that although most of the net-

works we studied exhibit the same trend as discussed, not all networks do conform to this trend

(see Section 4.3). Note that the average graph given in Fig 7(b) does not include these networks.
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