
Local Algorithms for Finding

Interesting Individuals in Large Networks
Mickey Brautbar Michael Kearns

Computer and Information Science, University of Pennsylvania, Philadelphia, 19104, USA
brautbar@cis.upenn.edu mkearns@cis.upenn.edu

Abstract: We initiate the study of local, sublinear time algorithms for finding vertices with extreme
topological properties — such as high degree or clustering coefficient — in large social or other net-
works. We introduce a new model, called theJump and Crawlmodel, in which algorithms are permitted
only two graph operations. TheJumpoperation returns a randomly chosen vertex, and is meant to model
the ability to discover “new” vertices via keyword search inthe Web, shared hobbies or interests in so-
cial networks such as Facebook, and other mechanisms that may return vertices that are distant from
all those currently known. TheCrawl operation permits an algorithm to explore the neighbors of any
currently known vertex, and has clear analogous in many modern networks.
We give both upper and lower bounds in the Jump and Crawl modelfor the problems of finding vertices
of high degree and high clustering coefficient. We consider both arbitrary graphs, and specializations in
which some common assumptions are made on the global topology (such as power law degree distri-
butions or generation via preferential attachment). We also examine local algorithms for some related
vertex or graph properties, and discuss areas for future investigation.

Keywords: social networks; graph theory; algorithms

1 Introduction

The proliferation of very large social and tech-
nological networks over the last decade or so —
and the attendant scientific and cultural interest
they have attracted — has led to the documentation
of certain local topological properties that are now
believed to be quite common. Perhaps beginning
with earlier sociological interest inglobal struc-
ture such as the “six degrees” phenomenon (small
diameter) and structural holes, recent research has
further identifiedlocal topological properties, such
as individuals with extraordinarily high degree
(sometimes dubbed “connectors” or “hubs”), lo-
cal neighborhoods with a high degree of clustering
(fraction of edges present) compared to the over-
all edge density, vertices of high “centrality” for
various definitions of that term, and so on. There
is now a compelling dialogue in the literature be-
tween empirical works documenting and refining
these various notions of extreme individuals and
neighborhoods, and theoretical works attempting
to explain their persistent emergence via genera-

tive models for network formation [11].
Given the presence of such “interesting” indi-

viduals in large networks, how would we actually
find them — especially considering that for many
such networks (including the Web, or for non-
employee researchers of online social networks
such as Facebook), there may not exist an acces-
sible, centralized description of the network? This
question is the topic of the current paper, and while
there are a few prior works that touch on related
topics (see Related Work below), it appears there
has been no systematic study of finding extremal
vertices from only local operations. In this paper
we initiate and partially populate such a study.

We introduce a simple model for local graph ex-
ploration that we call theJump and Crawlmodel.
As mentioned in the Abstract and detailed below,
this model is meant to capture the two kinds of
operations that seem to be commonly available in
many modern networks:
• Crawling. In many networks, once we are

aware of the existence or identity of a ver-
tex, we are also provided with links that al-

1

low us to examine any or all of its neigh-
bors. For instance, in the Web we have text
hyperlinks allowing us to crawl to neighbor-
ing pages. In Facebook (ignoring privacy set-
tings) and other social networks, knowing one
user’s profile lets us visit those of all their
friends.

• Jumping. Many modern networks also pro-
vide some sort of global search mechanism
that permits the discovery of “new” vertices
that may be quite distant from all those previ-
ously known. Web search lets us enter text
phrases and see relevant pages; Facebook’s
“Friend Finder” and other mechanisms lets
one similarly “jump” to new profiles. Ob-
viously in such cases there is clear structure
or bias to the vertices returned in response to
a query (since they are relevant to the query
itself); for simplicity we assume the Jump
operation produces a vertex uniformly cho-
sen at random from the entire network. Ob-
viously other distributional assumptions or
other Jump mechanisms should be considered
in future work.

As the Web, Facebook and other networks are
massive and growing, we would like to examine
algorithms in the Jump and Crawl model whose
running time scales slowly (certainly sublinearly)
with the global network size. Within this frame-
work, we examine the problems of finding vertices
of high degree, high clustering coefficient, and a
number of related properties.

1.1 Summary of Results
In Section 2 we provide nearly tight upper and

lower bounds for the problem of approximating the
maximum degree vertex in arbitrary graphs; these
bounds show a general trade-off between increased
Jump and Crawl operations and improved approx-
imation.

Still considering high degree vertices, we then
proceed to show that considerably improved upper
bounds can be obtained for more specific classes of
graphs. For graphs with a power law degree distri-
bution, we prove that a sampling-based algorithm
enjoys an improved bound due to the assumed de-
gree structure. For networks generated accord-
ing to preferential attachment — which have a
power law degree distribution in expectation, but
also obey additional structural restrictions — we

exploit rapid mixing results to obtain further im-
provements in approximation.

In Section 3 we turn our attention to finding
vertices of both high degree and high clustering
coefficient (densely connected neighborhood); re-
taining the high-degree condition prevents trivial
solutions such as a triangle of vertices. We pro-
vide a general impossibility result and a general
approximation algorithm, as well as an improved
approximation algorithm for power law networks
with some structural assumptions. We conclude by
discussing future research directions.

We now more formally define the Jump and
Crawl model, mention some related work, and pro-
ceed with the technical development.

1.2 TheJump and Crawl Model
We assume a graphG of n vertices, with the

value ofn given 1. We assume that each vertex
is identified by a unique and arbitrary label, with
no structure or relationship assumed between the
vertex labels and graph connectivity.

Upon visiting a vertex, we learn its label and
also the labels of all its neighbors (these are the
hyperlinks of the Web or the friends’ profiles of
Facebook), and nothing more. In aJumpopera-
tion, we visit a vertex uniformly chosen at random
from then vertices. In aCrawl operation, we must
first know the label of a given vertex and one of
its neighbors inG, upon which we can then visit
that neighbor via crawling. Our goal is to study al-
gorithms finding “interesting” individuals inG, as
discussed in the Introduction, using only Jump and
Crawl operations onG. The total number of such
operations is our complexity measure of interest.

A little thought (and our subsequent results) will
reveal that in general it is too much to expect algo-
rithms can find truly extremal vertices in sublinear
time. For this reason we introduce a natural notion
of approximation.

Definition 1 Given a numerical propertyP of ver-
tices (such as degree or clustering coefficient), let
u∗ be the vertex with the maximum value forP .
Then if vertexv is such thatP (u∗) ≤ k · P (v), we
say thatv is a k-approximation tou∗. A similar
definition holds for the minimum.

1In Appendix B we prove that knowledge ofn is necessary
in general, in that it cannot be approximated sublinearly in

√

n

in the Jump and Crawl model.

2

1.3 Related Work
While we are not aware of any systematic prior

studies of approximating extreme vertex properties
from only local operations, there are a number of
related works that we now briefly survey. Schank
et al. [16] are interested in estimating the average
clustering coefficient across theentirenetwork (in
contrast to our interest in findingindividual ver-
tices with high clustering, which is not implied by
a global approximation). The authors assume a
model where Jump queries are allowed and there is
a constant time oracle that checks whether two ver-
tices are connected by an edge. Under this model
the authors provide a constant time randomized al-
gorithm which computes an unbiased estimator for
the average clustering coefficient in the network.
The estimator is based towards counting triangles
in the network, and thus not appropriate for finding
extreme individual vertices.

Eubank et al. [8] are interested in computing
statistical properties of social networks, under a
model similar to the Jump and Crawl model. The
authors provide a general method for estimating
the number of pairs of vertices that are at distance
i from each other, given that the number of such
pairs is at least a constant fraction of all possible
pairs. In general their method runs in linear time
in the network size, in contrast to our interest in
sublinear algorithms. The authors also provide a
good estimation of the (again global) average clus-
tering coefficient using a logarithmic query size,
based on random sampling of vertices.

Also somewhat related is the large literature on
efficient search or message routing in social net-
works from local information [1, 2, 12], where
messages are passed between network vertices in
search of a target or destination individual; but
again there is no direct interest in explicitly iden-
tifying extremal vertices. Similarly, the literature
on property testing in large graphs often considers
local operations that are somewhat different than
Jump and Crawl (such as testing for the presence
of an edge between any pair of vertices) but again
focuses on global properties such as connectivity
rather than extreme vertices.

2 Finding a High Degree Vertex
Given a network onn vertices, denote the max-

imum degree in the network byd∗. Then given

0 < β < 1, consider the goal of finding a vertex
v such thatd∗ ≤ degree(v) · n1−β . In this section
we provide upper and lower bounds for this prob-
lem under a variety of assumptions on the network
structure, beginning with no assumptions.

2.1 Arbitrary Networks
Let us first assume we know the valued∗ in ad-

vance, an assumption we eventually remove. One
possible strategy proceeds as follows: If the max-
imum degree is smaller thann1−β , then any ver-
tex would provide the necessary approximation. If
not, we notice that the expected size of a random
sample one has to take in order to see a neighbor
of the maximum degree vertex is at mostn

d∗
. We

therefore sample aboutn
d∗

random vertices. If one
of them has a degree more thand

∗

n1−β we stop and
return its degree. Otherwise, one of these vertices
is a neighbor of the maximum degree vertex. This
strategy, which we callFindHighDegreeVertex, is
formalized below. Finally, to remove the assump-
tion thatd∗ is known, we are only left with simu-
lating the possible values ofd∗. This is done with
logarithmic overhead via a simple doubling trick.

Theorem 1 (Upper Bound) For any given0 <
β < 1, algorithm FindHighDegreeVertex uses
nβ log n Jump and Crawl queries and approxi-
mates the maximum degree to an expected multi-
plicative factor ofO(n1−β).

Proof: Without loss of generality one may as-
sume the network size to be a power of two. Next,
we may assume thatd∗, the highest degree in the
network, is known since we may use a simple
doubling trick where we may simulate the possi-
ble values ofd∗ in multiplicative intervals of2,
from 1 to n. Algorithm FindHighDegreeVertex,
given below, finds aO(n1−β) approximation, with
nβ log n queries.

The outer loop of the algorithm (line 5) costs at
most n

d∗
log n and the inner loop (line 10) at most

d∗

n1−β . Therefore the total cost is bounded by their
productO(nβ log n).

The maximum degree vertex hasd∗ neighbors.
Therefore, the probability of hitting such a neigh-
bor by making a Jump query isd

∗

n
. Therefore, by

making n
d∗

log n Jump queries, we hit such a ver-
tex with probability at least1− (1− d∗

n
)

n
d∗

log n ≥
1 − O(1

n
).

3

A close inspection of the algorithm reveals that
by feeding it with a value ofd that differ by a fac-
tor of two, the approximation value the algorithm
returns would change by at most a factor of at two.

As mentioned before, we end by using a sim-
ple doubling trick where we simulate all the pos-
sible values ofd∗ as1, 2, 4, . . . , n

2 , n. This simu-
lation adds only a multiplicative factor oflog n to
the query complexity. By the previous lemma, for
one of the simulated values, we will find a vertex
of degree at leastd∗ · n1−β .

We next show thatFindHighDegreeVertexis op-
timal (up to logarithmic factors).

Algorithm 1 FindHighDegreeVertex
Require: NetworkG, the maximum degree value

d∗, parameter0 < β < 1.
1: Initialize a pointer p to point to an arbitrary

vertex.
2: if d∗ < n1−β then
3: Stop and return the vertex found with one

Jump query.
4: else
5: for n

d∗
log n timesdo

6: Make a Jump query. Letv be the vertex
found.

7: if degree(v) ≥ d∗

n1−β then
8: Stop and returnv.
9: else

10: Make degree(v) Crawl queries fromv
to all of v’s neighbors to find the max-
imum degree neighbor ofv, call it u.

11: if degree(p) > degree(u) then
12: Setp = u
13: end if
14: end if
15: end for
16: Outputp
17: end if

Theorem 2 (Lower Bound) Let A be an algo-
rithm for approximating the maximum degree
property in the Jump and Crawl model. Let0 <
β < 1. Then ifA uses at mostnβ queries,A
approximates the maximum degree to an expected
multiplicative approximation ofΩ

(

n1−β
)

.

Proof: We shall build, for any given values ofn
andβ, a networkG(n, β). First setm = n(1−β),

Figure 1: The networkG(n, β)

k = n − n(1−β). Denote the set of vertices in the
network byV = {v1.v2, . . . , vn}. The network
G(n, β) may be thought of as a concatenation of
a line subgraph with a star subgraph; see Fig-
ure 1. The line subgraph is made up of the vertices
v1, v2, . . . , vk, where two consecutive vertices are
connected by an edge. The star subgraph is made
of a vertexvk+1 connected tom leaf vertices (de-
gree one vertices)vk+2, vk+3, . . . , vn. The final
networkG(n, β) is created by connectingvk (the
rightmost vertex of the line subgraph) with the hub
of the star subgraph, vertexvk+1.

Now set

S = {vk−m, vk−m+1, vk−m+2, . . . , vk, . . . , vn}.

Clearly, |S| = 2n1−β. Therefore, usingnβ Jump
queries algorithmA would fail to sample a vertex
from S with probability

(

1 − 2
n1−β

n

)nβ

≈ 1

e2
.

Therefore, with constant probability, any Jump
query will return a degree2 vertex fromV − S
(namely, from the “left side” of the line subgraph).
Now in order forA to discover the hub vertex it
must cross all the “right side” of the line subgraph,
namely the vertices inS, which is impossible since
the number of queries needed for doing so is more
thannβ. Therefore, with constant probability,A
would see only degree2 vertices, while the high-
est degree isn1−β and we are done. We remark
that a similar construction toG(n, β) would give
an analogous lower bound for densely connected
graphs.

4

2.2 Power Law Networks

Over the past decade researchers have discov-
ered that the degree distribution of many natural
networks resembles a power law. By this it is usu-
ally meant that for some constantγ, the fraction
of degreed vertices is “close” to 1

dγ , if d is “large
enough”. Both “close” and “large enough” are of-
ten left unspecified in the literature, but for rigor-
ous statements must be quantified. We thus sug-
gest a simple, rigorous definition of power law net-
works. Our definition formalizes the above intu-
ition and has the advantage that it treats all degree
values in a unifying way.

2.3 Rigorous Definition

We first define a finite power law distribution.

Definition 2 (Finite Power Law Distribution)
Letm < n be positive integers. Letγ > 1. We say
the P is a finite power law distribution, denoted
PL(m, n, γ), if:

I The support ofP is the integers betweenm
andn.

II P (d) = (1/Z) 1
dγ for m ≤ d ≤ m, where

Z = Z(m, n, γ) =
∑d=n

d=m
1
dγ .

Definition 3 (Power Law Network) Let G be a
network onn vertices. LetQ be its empirical de-
gree distribution, namely,Q(d) = 1

n
· |v ∈ G :

degree(v) = d|. LetP be a finite power law distri-
butionP = PL(m, n, γ). We say thatG is a power
law network, denotedG ∈ Network(m, n, γ), if:

1. The support ofQ is on the integers between
m andn.

2. For m ≤ d ≤ n, |Q(d) − P (d)| ≤ 1
dγ+1 .

It can be easily shown that many such networks
exist.

Two useful properties of power law networks
are given below.

Lemma 1 Let G ∈ Network(m, n, γ) be a
power law network. Then the highest de-
gree in the networkd∗ is upper bounded by

(n
Z

(1 + Zo(1)))
1
γ .

Lemma 2 Let G ∈ Network(m, n, γ) be a
power law network withγ > 2 and letd ≤ d∗

2 ,
whered∗ is the maximum degree inG. Then the
fraction of vertices with degree of at leastd is
θ(1

Zdγ−1)

The proof of the lemmas is given in appendix A.

2.4 A Faster Algorithm for Power Laws

We now show that faster algorithms for the max-
imum degree property exist when the network is a
power law network with exponentγ.

Theorem 3 (Upper Bound) Let 0 < β < γ−1
γ

.
Assumeγ > 2. Then algorithm FindHighDe-
greeVertexOnPowerLaws (see pseudocode) uses
O(nβ log n) Jump and Crawl queries and approx-
imates the maximum degree to an expected multi-

plicative factor ofO
(

n
1
γ
−

β

(γ−1)
)

.

Proof: Sinceγ > 2 it follows that1 ≤ Z ≤ π2

6 so
we may regardZ as a constant. The strategy be-
hind the algorithm is to randomly sample the ex-
pected number of vertices needed in order to see

a vertex of degree at leastd = n
β

(γ−1) . The al-
gorithm makesΘ(dγ−1 log n) Jump queries. By
Lemma 2 the inverse probability of sampling a
vertex of degree at leastd is Θ(dγ−1). There-
fore, by a standard amplification argument, one
indeed find such a vertex, withΘ(dγ−1 log n)
Jump queries, with probability1 − O(1

n
). Since

the maximum degree in the network is at most

(n
Z

(1 + Zo(1))
1
γ , the approximation guarantee is

O(
(n

Z
)
1
γ

d
) = O

(

n
1
γ
−

β

(γ−1)
)

2.5 Preferential Attachment Networks

In this section we make the further assumption
that the unknown network was created by thepref-
erential attachmentprocess of Barabasi [3]. In this
model, one first fixes an integer parameterm ≥ 1.
Then on each round, a new vertex is added and
is connected tom existing (previously added) ver-
tices; the probability the new vertex is connected
to existing vertexv is proportional to the (current)
degree ofv. As was shown by Bollobás et al.
[4], asymptotically, theexpecteddegree distribu-
tion of the network is a power law with exponent

5

Algorithm 2 FindHighDegreeVertexOnPower-
Laws
Require: Power law networkG, the power law

network’s exponentγ, parameter0 < β < 1.
1: Initialize a pointer p to point to an arbitrary

vertex.
2: for nβ log n timesdo
3: Make a Jump query. Letv be the vertex

found.
4: if degree(p) > degree(v) then
5: Let p = v
6: end if
7: end for
8: Outputp

γ = 3; but it is also known that the actually re-
alized degree sequence may be far from its expec-
tation. However, for small degree values, the de-
gree distribution is close to its expectation[6]. In
this sense a preferential attachment network may
be seen as a special family of power law networks.
Moreover, the highest degree in a typical preferen-
tial attachment network is

√
n [9]. Therefore in or-

der to find a vertex with high degree one can apply
the techniques of the upper bound given in the pre-
vious section and get an

1
2−

β
2 approximation using

a query size ofO(nβ log n).
However, due to additional network structure in-

herent in the preferential attachment process we
can do even better, based on the following two
facts. Fact 1: a Lazy Random Walk on the pref-
erential attachment network is rapidly mixing (in
polylog time inn) to the degree distribution; Fact
2: When sampling the degree distribution, the ex-
pected time one has to wait in order to see a vertex
of degree at leastd is d. These intuitions are for-
malized inFindHighDegreeVertexOnPAbelow.

Theorem 4 (Upper Bound) Let 0 < β < 1
11 .

Then algorithm FindHighDegreeVertexOnPA uses
O(nβ log n) Jump and Crawl queries and approx-
imates the maximum degree to an expected multi-
plicative ratio ofO(n

1
2−β).

The first proof ingredient is to show that the
preferential attachment network mixes, w.h.p., in
poly logarithmic time. We start by defining the
lazy random walk onG and then proceed to show
it is rapidly mixing.

Algorithm 3 FindHighDegreeVertexOnPA
Require: Preferential attachment networkG, pa-

rameter0 < β < 1
11 .

1: Initialize a pointer p to point to an arbitrary
vertex.

2: for nβ log n timesdo
3: Run a lazy random walk from any arbitrary

vertex for2 log2 n steps via Crawl queries.
4: Take the vertexv found at the end of the

walk.
5: if degree(p) > degree(v) then
6: Let p = v
7: end if
8: end for
9: Outputp

Definition 4 A lazy random walkon a connected
networkG (LRW for short) stays at the current
vertex with probability1

2 , and with probability1
2

moves to a uniformly chosen random neighbor.
This random walk forms an ergodic Markov chain.
We denote this chain byK. We denote byKt its
t-th power, the stationary distribution ofK by π,
and the spectral gap ofK asg = max{λ2, |λn|}.

Note that the LRW requires only Jump and
Crawl queries in its operation. Algebraically,
the LRW is more appealing than its random
walk counterpart since all its eigenvalues are non-
negative. We next state a few known facts about
LRWs on connected networks (the proofs may be
found in [7], pages 153-167):

1. The unique stationary distribution ofK is
π(v) = degree(v)

2mn
.

2. The spectral gap equalsλ2 since all the eigen-
values of the LRW are nonnegative.

3. maxi,j{|K
t(i,j)
π(j) − 1|} ≤ 1

πmin
gt.

4. 1 − g ≥ h2

2 .

5. The conductance

h = minπ(S)≤ 1
2

∑

i∈S,j∈Sc π(i)K(i, j)

π(S)

is constant for preferential attachment net-
works.

6

Corollary 1 The mixing time for the lazy random
walk on a typical preferential attachment graph is

t = θ(log n). That is,maxi,j{|K
t(i,j)
π(j) − 1|} ≤

O(1
n
)

Proof: By the previous lemma we get that the
spectral gap is less than a constant smaller than1.
Next,πmin = Ω(1

n
), and the corollary follows im-

mediately.
The second proof ingredient is a theorem due to

Chung and Lu:

Theorem 5 (Adapted from [6], page 70)Let G
be a network ofn vertices created using the
preferential attachment process with parameter
m. Let mk,0 the number of vertices with de-
gree k in the initial network. Then the number
of verticesmn with degreed is nMk + mk,0 +

O(

√

(k + m − 1)3n logn), whereMm = 2
3 and

Mk = O(k−3), for k ≥ m + 1.

Next, we provide the proof sketch for Theorem
4. Line 4 in the algorithm returns the last node vis-
ited in an LRW walk of lengthlog2 n queries. By
returning this node we are in fact sampling a node
from the degree distribution of the network, as
shown in Corollary 1. Consider small degree val-
ues ofd, for which we know by the Chung and Lu
theorem that the degree distribution is very close
to its expected values. Choose the maximumk

such that1
n

√

(k + m − 1)
3
n log n ≤ 1

k3+1 . The

solution isk = o(n
1
11). Under such ak we con-

clude, using Theorem 5, that the probability of see-
ing a vertex with degree exactlyd, under the de-
gree distribution, isn ·c 1

d3 · d
2mn

∼ 1
d2 . By Lemma

2, the probability of sampling a vertex of degreed
or more isO(

∑

v:degree(v)≥d
1
d2) = O(1

d
) (this is

true since sampling a smaller thand vertex is1
minus the value given by the lemma). Next, no-
tice that the maximum degree of a preferential at-
tachment network is about

√
n [9]. Now define

the degree d to be the solution tod = nβ (any
0 < β < 1

11 is valid). ThenFindHighDegreeV-
ertexOnPA, constructs, withnβ log n queries, an
expected multiplicative approximation of

(

n
1
2−β

)

.
Discussion: Random walks allow effective sam-
pling from the degree distribution of the prefer-
ential attachment network. In fact, for sparse

graphs the probability of sampling a vertex of de-
greed or more, from any degree distribution is
always bigger then sampling such a vertex from
the uniform distribution. Thus, for any network
where the LRW mixes in polylogarithmic time we
may devise an analog algorithm to FindHighDe-
greeVertexOnPA. This algorithm would give bet-
ter query results then an algorithm that samples di-
rectly from the uniform distribution.

2.6 Comparing the Rates
It is interesting to compare the approximation

rate achievable for arbitrary connected networks
with those possible for power law and preferen-
tial attachment networks. The relevant plots are
given in Figure 2. The x-axis measures the num-
ber of queries used, and units are the log number of
queries divided by log network size (thus extract-
ing the exponent or root ofn). The y-axis mea-
sures the approximation guarantee and is given in
units of log of approximation ratio divided by log
network size (again extracting the approximation
exponent). As we proved, for arbitrary networks
the optimal algorithm may achieve with query ex-
ponentβ an approximation exponent of1−β. For
power law networks with given degree distribution
exponentγ > 1 we could do better and achieve,
with query exponentβ, an approximation expo-
nent of 1

γ
− β

γ−1 . This exponent is always better
than the1 − β exponent achievable for arbitrary
graphs; we plot the achievable power law network
rates for two values ofγ. For preferential attach-
ment networks, with a query exponent ofβ we can
achieve an approximation ratio of1

2 −β, but could
only prove so forβ < 1/11, and thus this trade-
off is represented as a line fragment rather than a
full line. We note that while power law and pref-
erential graphs are of course subsets of the class
of all graphs, they are not directly comparable to
each other — as discussed above, preferential at-
tachment graphs obey our definition of power law
degree distributions only in expectation, and are
known with high probability to violate this expec-
tation at large degrees.

3 High Clustering Coefficient
The clustering coefficient (CC for short) of a

given vertex measures how densely connected its
neighbors are.

7

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(number of queries) / log(network size)

lo
g
(a

p
p
ro

x
im

a
ti
o
n
 r

a
ti
o
)

/
lo

g
(n

e
tw

o
rk

 s
iz

e
)

arbitrary graphs
power law graphs with exponent 3
power law graphs with exponent 10
preferential attachment graphs

Figure 2: Summary of achievable trade-offs between
Jump and Crawl query complexity and maximum degree
approximation for various assumptions on the network;
see text for details and discussion.

Definition 5 (Clustering Coefficient) Given a
vertexv with degreed, the clustering coefficient
(CC) ofv is defined as

CC(v) =
number of triangles containingv

(

d
2

) .

If d = 0 we defineCC(v) = 0.

This definition is equivalent to the edge den-
sity (fraction of possible edges present) among the
neighbors ofv (excludingv itself).

Many empirical papers have shown natural net-
works often have vertices of high clustering coef-
ficient (as well as high degree); see for instance
[11] Chapter2 for a detailed survey. In this section
we examine the problem of finding such vertices
in the Jump and Crawl model. Eubank et al. [8]
showed that the globalaverageof the CC can be
estimated quickly in a Jump and Crawl model us-
ing standard Chernoff bounds. This immediately
provides a strategy to find a vertex with more than
the average CC value (using Markov’s inequality).
However, finding a vertex with a high CC may not
be that illuminating: it may be the case that the ver-

tex with the highest CC has only very few neigh-
bors. Take the extreme case of a vertex with two
neighbors that are also connected to each other (a
triangle). In this case the CC ofv would be the
highest possible of 1. This motivates us to ask how
hard is it to find a vertex withsimultaneouslyhigh
CC and high degree. We shall phrase this approx-
imation problem as follows: given a degree lower
boundd as input, find a vertex of degree not much
smaller thand whose CC approximates the maxi-
mum CC among all vertices of degreed or larger.

Definition 6 Given a graph onn vertices, and a
degree valued, letv∗ be the vertex with the highest
CC among vertices of degreed or more. We say
thatv is a(α, d, ǫ)-approximation to the maximum
CC if degree(v) ≥ α ·d andCC(v∗) ≤ CC(v)+
ǫ, for 0 < α ≤ 1 and0 < ǫ < 1. If there are no
vertices of degree at leastα · d in the network we
say that every vertex is a(α, d, 0)-approximation.

Let us start by noting that since we are requiring
a degree lower bound on the vertices found in addi-
tion to high CC, it is natural to begin by attempting
to adapt our results for finding high degree ver-
tices to the CC problem. Indeed, a simple adap-
tation of the lower bound for arbitrary networks
given in Theorem 2 already yields similar diffi-
culty for the CC problem. Consider Figures 3 and
4, which are slight variants of the construction in
Theorem 2. In each variant there is a single high-
degree vertex, but in one variant the CC of that ver-
tex is 0 (the lowest possible) and in the other it is
1 (the highest possible). If an algorithm fails to
find this high-degree vertex, it cannot hope to ap-
proximate the clustering coefficient by a nontrivial
additive amount, thus establishing a lower bound
of n1−β queries on the(1, nβ, 1/2)-approximation
problem for CC.

On the other hand, it is unfortunatelynot clear
how to adapt theupper boundfor the degree prob-
lem on arbitrary graphs given by Theorem 1 to the
CC problem. The difficulty is that the algorithm
of that upper bound will only producesomever-
tex of high degree — but if there are many such
vertices, it provides no guarantee that the one pro-
duced will also have high CC. Therefore we next
ask whether a(α, d, ǫ) is achievable for some non-
trivial α < 1. In the following theorem we show
that at the expense of a logarithmic factor in the de-

8

Figure 3: The line-star networkG1

Figure 4: The line-clique networkG2

gree, we can obtain arbitrarily small degradation to
the maximum clustering coefficient.

Theorem 6 (Upper Bound) For any given0 <
β < 1, algorithm FindHighCCHighDegreeVer-
tex usesÕ(n1−β) Jump and Crawl queries and
returns a (1

log n
, nβ , 1

log n
) approximation to the

maximum clustering coefficient, whp. In other
words, ifv∗ is the vertex with the highestCC value
between all vertices with degree at leastnβ the al-
gorithm returns a vertexv of degree at leastn

β

log n

andcc(v∗) ≤ CC(v) + 1
log n

, with probability of

1 − O(1
n
).

Proof: The algorithm makes all its queries in
line 1 and therefore uses at mostÕ(n1−β) Jump
and Crawl queries. Letv∗ = argmax{CC(v) :
degree(v) ≥ d}. Then probability thev∗ is added
to T can be easily shown to be at least1−n− log n,
using Hoeffding bound. Next, verticesw with de-
gree at most nβ

log n
are excluded fromT with high

probability. For such vertexw the expected num-
ber of times a neighbor ofw is sampled is less
then log3 n. Therefore, using Hoeffding bound
(see appendix C for restatement of the bound), the
probability that at leastlog4 n neighbors ofw are

Algorithm 4 FindHighCCHighDegreeVertex
Require: NetworkG, parameter0 < β < 1.

1: Take2n1−β log4 n Jump queries and store the
vertices found (including repetitions) in a mul-
tisetS.

2: for each nodev in the networkdo
3: Computeneighbors[v] to be the number of

elementsu in S s.t.u is a neighbor ofv.
4: end for
5: Initialize T = ∅.
6: for each nodev in the networkdo
7: if neighbors[v] ≥ log4 n then
8: Add v to T .
9: end if

10: end for
11: for each nodev in T do
12: ComputeSv to equal the elements ofS (in-

cluding repetitions) that are neighbors ofv.
13: ComputeĈC(v)=ApproxCCBySample(v,Sv)
14: end for
15: return argmaxv∈T {ĈC(v)}

Algorithm 5 ApproxCCBySample
Require: NetworkG, a vertexv, a multisetSv of

elements that are neighbors ofv.
1: Setcount = 0.
2: for i = 1 to log3 n do
3: Find two elementsu, w in Sv that corre-

spond to different vertices ofG and set
Sv = Sv − {u, w}. If there are none return
FAIL.

4: if u is a neighbor ofw then
5: count = count + 1.
6: end if
7: end for
8: return count

log3 n

9

sampled and added toS is smaller thenn−2 log n.
Using the union bound this probability is kept as
n− log n over all suchw’s. To finish up the ar-
gument we need to show that for each vertex in
T the algorithm approximates its CC value to an
additive value of 1

log n
. To show this we first no-

tice that the projection ofS onto the set of neigh-
bors ofv, namelySv is a random sample of size
Sv taken form the neighbors ofv. Next, it was
shown that when one samples uniformly at random
from a set ofn elements then with probability of at
least1−n−1 each element appears at most3 log n

log log n

times (see for example [13] page93). Therefore,
Sv contains at leastlog3 n distinct pairs and al-
gorithm ApproxCCBySample, with high probabil-
ity, will not return FAIL. In that case, FindHighC-
CHighDegreeVertex computes a sum over indica-
tor functions where each indicator function checks
if two randomly sampled vertices are connected
and form a triangle together withv. By using
the additive Hoeffding bound we conclude that the
CC of v will be estimated to an additive factor
of 1

log n
with probability of at least1 − 1

n2 . Us-
ing the union bound the clustering coefficient of
each vertex inT is indeed estimated to an ad-
ditive factor of 1

log n
with probability of at least

1− 1
n

. Thus, algorithm FindHighCCHighDegreeV-

ertex returns a vertexv of degree at leastn
β

log n
and

CC(v∗) ≤ CC(v) + 1
log n

, with probability of

1 − O(1
n
).

For power law networks where the lazy random
walk converges fast we can do substantially better.
Denote the mixing time as usual byτ .

Theorem 7 (Upper Bound) Assume that the net-
work at hand follows a power law with exponent
γ ≥ 3, and that the LRW mixes in timeτ over
the network. Then for any given0 < β < 1,
algorithm FindHighCCHighDegreeVertexForPow-
erLaws uses̃O(n1−2β) · τ Crawl queries and re-
turns a (1, nβ, 1

log n
) approximation to the max-

imum clustering coefficient property. In other
words, ifv is the vertex with the highestCC value
between all vertices with degree at leastnβ the
algorithm returns vertexv of degree at leastnβ ,
andCC(v∗) ≤ CC(v)+ 1

log n
, with probability of

1 − e−2 − O(1
n
).

Proof: First, without loss of generality we assume
that the valueCC(v∗) is known to the algorithm.

We can then simulate the possible values using a
standard doubling trick, starting fromc = 1

log n
up

to 1, on the expense of an additional logarithmic
factor to the query time. Second, the number of
queries the algorithm makes is̃O(n

d2) sinceγ ≥ 3
andCC(v) ≥ 1

log n
. Next, we prove the correct-

ness of the algorithm. We use the following obser-
vation : if a vertex of degreed hasCC(v) = c then
at leastcd

5 of v’s neighbors each has degree at least
cd
5 (otherwise we get a contradictionCC(v) < c).

Therefore, by sampling25kn
d2 times from the LRW

we are effectively sampling that much from its sta-
tionary distribution which is the degree distribu-
tion. The probability to sample a neighbor ofv∗ is
therefore at leastcd2

25kn
. Therefore, with50kn

cd2 sam-
ples taken from the degree distribution we shall
samplev∗ with probability1−e−2. Using Hoeffd-
ing bound we conclude that with probability of at
least1−n− log n we shall not sample neighbors of
a vertex with degree less thand

4 log n
. Last, given

a vertexv in a graph ofn vertices,ApproxVertex-
CCValue(see pseudocode), withO(log3 n) Crawl
queries, approximatesv’s clustering coefficient to
an additive error of at most 1

log n
, with probability

1 − O(1
n2). Using the union bound the clustering

coefficient of each vertex inT is indeed estimated
to an additive factor of 1

log n
with probability of at

least1 − 1
n

. Last, by lemma 2 the network has at

mostn(1+o(1)(log n
d

)
γ−1

nodes of degree at least
d

log n
so the algorithm, with high probability, won’t

return FAIL andT will contain that many vertices.
Thus, the algorithm returns a vertexv of degree
at least nβ

log n
andCC(v∗) ≤ CC(v) + 1

log n
, with

probability of1 − e−2 − O(1
n
).

Using a standard amplification trick the success
probability can be amplified to1 − O(1

n
) on the

expense of an additional logarithmic factor in the
query complexity.

As a sample application of this theorem to an-
other well-studied class of networks, we have:

Corollary 2 Taked = nβ for 0 < β < 1. Then
with Õ(n1−2β) queries, algorithm FindHigh-
CCHighDegreeVertexForPowerLaws produces a
node v of degree at leastnβ and CC(v∗) ≤
CC(v) + 1

log n
, in the following cases.

1. Take a network created using the preferential
attachment process. Then with high probabil-

10

Algorithm 6 FindHighCCHighDegreeVertexFor-
PowerLaws
Require: Power law network G ∈

Network(m, n, γ) with n vertices and
kn edges, mixing timeτ , a degree valued, the
clustering coefficient valuec.

1: S = ∅.
2: for for 50kn

cd2 times dodo
3: Run an LRW from an arbitrary vertex for

τ steps via Crawl queries. Add the vertex
found at the end of the walk toS.

4: end for
5: Initialize a setT = ∅.
6: for each nodev in the networkdo
7: if there exists a vertexu in S that is a neigh-

bor ofv then
8: Add v to T if v /∈ T .
9: end if

10: end for
11: if size ofT is bigger than2n(log n

d
)
γ−1

then
12: return FAIL
13: end if
14: if ∀v ∈ T degree(v) < d then
15: return FAIL
16: end if
17: for each nodev in T do
18: ApproximateCC[v] directly by computing

ĈC(v)=ApproxVertexCCValue(v).
19: end for
20: return argmaxv∈T {ĈC(v) : degree(v) ≥ d}

Algorithm 7 ApproxVertexCCValue
Require: NetworkG, a vertexv.

1: Initialize a counter,cnt = 0.
2: for log3 n timesdo
3: choose two distinct random neighbors ofv,

call themu, w.
4: if u appears in the adjacency list ofw then
5: cnt = cnt + 1.
6: end if
7: end for
8: Output cnt

log3 n

ity over the process the LRW over the network
is O(log n) mixing and follows a power law
over degreesnβ ≤ n11.

2. Consider the model of producing a random
graph with a given degree sequence of New-
man et al [14]. It was shown that with high
probability a random network would have a
O(log3 n)-mixing time, if all the degrees are
bigger than2 (see [7] page 160 for more de-
tails). Take the given graph to be a power law
networkG ∈ Network(3, n, γ), for γ ≥ 3.

Thus, we again beat the hardness results for ar-
bitrary networks — by making structural assump-
tions that allow the additive error to go to 0 with
network size.

4 Future Research

In this work we initiated a study of local algo-
rithms for finding vertices with extreme topolog-
ical properties in large social or other networks.
The next property we wish to understand is thebe-
tweenness centrality(and other common central-
ity measures). Betweenness centrality measures
how many shortest paths are passing through a
vertex. Vertices with high betweenness centrality
value may therefore be susceptible to many kinds
of attacks, or play important roles in organizations.
It is of interest to understand how quickly one can
find such vertices in the Jump and Crawl model.

Acknowledgments

This research was supported by ONR MURI
grant number N00014-08-1-0747.

References
[1] L. A. Adamic, R. M. Lukose and B. A. Huberman.

Local search in unstructured networks.Handbook
of Graphs and Networks: From the Genome to the
Internet, S. Bornholdt, and H.G. Schuster (eds.),
Wiley, 2002.

[2] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and
B. A. Huberman. Search in power law networks.
Physical Review E, Volume 64, 2001.

[3] A. Barabsi. Emergence of scaling in random net-
works.Science, 286, 509-512, 1999.

11

[4] B. Bollobás, O. Riordan, J. Spencer, and G.
Tusnády. The degree sequence of a scale-free ran-
dom graph process.Random Struct. Algorithms,
18, 279, 2001.

[5] H. Chernoff. A measure of asymptotic efficiency
for tests of a hypothesis based on the sum of ob-
servations.Annals of Mathematical Statistics, 23
(4), 493-507, 1952.

[6] F. Chung and L. Lu.Complex Graphs and Net-
works. American Mathematical Society, 2006.

[7] R. Durrett.Random Graph Dynamics. Cambridge
University Press, 2007.

[8] S. Eubank, V.S. Anil Kumar, M.V. Marathe, A.
Srinivasan, and N. Wang. Structural and algorith-
mic aspects of massive social networks.SODA,
718-726, 2004.

[9] A. Flaxman , A. Frieze, and T. Fenner. High de-
gree vertices and eignenvalues in the preferential
attachment graph.Internet Mathematics, 2, 1-19,
2005.

[10] W. Hoeffding. Probability inequalities for sums of
bounded random variables.J. American Statistical
Association, 58, 13–30, 1963.

[11] M. Jackson. Social and Economic Networks.
Princeton University Press, 2008.

[12] M. Kleinberg. The small-world phenomenon: an
algorithm perspective.STOC 2000, 163–170,
2000.

[13] M. Mitzenmacher and E. Upfal.Probability and
Computing. Cambridge University Press, 2005.

[14] M.E.J. Newman, and S.H. Strogatz, and D.J.
Watts. Random graph models of social networks.
PNAS, 99, 2566-2572, 2002.

[15] S. Raskhodnikova, D. Ron, A. Shpilka, and A.
Smith. Strong lower bounds for approximating dis-
tribution support size and the distinct elements
problem.FOCS, 559-569, 2007.

[16] T. Schank, and D. Wagner. Approximating clus-
tering coefficient and transitivity.J. Graph Algo-
rithms Appl., 9(2), 265-275, 2005.

Appendix A: Omitted Proofs

Proof of lemma 1: Let Q be the empirical degree
distribution ofG. We need to find a degreed such
thatQ(d) = 1

n
. Namely, we need to solve1

Zdγ +
∆ = 1

n
, where∆ is the difference betweenP (d),

the power law distributionPL(m, n, γ) and the dis-
tribution Q(d). Since 1

dγ+1 = o(1
dγ), the solution

is (n
Z

(1 − Zo(1)))
1
γ ≤ d ≤ (n

Z
(1 + Zo(1)))

1
γ .

Proof of lemma 2: As before, letP be a fi-
nite power law distributionPL(m, n, γ), and de-

note as usualZ =
∑d=n

d=m
1

dγ . By the pre-
vious lemma the probability to uniformly sam-
ple a vertex v with a degree at least d is at

least
∑i=(n

Z
(1−Zo(1))

1
γ

i=d [1
Z(d+i)γ (1 − o(1))]. De-

noter1 =
∑i=(n

Z
)
1
γ

i=d
1

Z(d+i)γ . It suffices to show

thatr1 = θ(1
Zdγ−1).

Let d > 1. Sincef(x) = 1
xγ is continuous and

monotonically decreasing we get,

∫ x=(n
Z

)
1
γ

x=d−1

1

Z(d + x)γ
dx ≤ r1

and

r1 ≤
∫ x=(n

Z
)
1
γ +1

x=d−1

1

Z(d + x)γ
dx.

Next,
∫ x=(n

Z
)
1
γ

x=d

1

Z(d + x)γ
dx =

1

Z(γ + 1)dγ−1
− 1

Z(γ + 1)(d + (n
Z

)
1
γ)γ−1

=

θ(1
Zdγ−1) , sinced ≤ d∗

2 .

Appendix B: Network Size
We discuss here a related problem of estimat-

ing the network size in theJump and Crawl model.
The goal is to compute an estimatorn̂ which gives
a k-approximation to the network size:1

k
≤ n̂

n
≤

k. Clearly, any known algorithm that estimates the
uniform distribution support size is a valid algo-
rithm to use here. For the distribution support size
problem it is known that any algorithm must use at
least

√
n samples and thatO(

√
n) suffices, in or-

der to get a tight approximation (see [15] for a dis-
cussion). However, in theJump and Crawl model
one is allowed to take Crawl queries in addition to
Jump queries. Therefore, given a connected net-
work theJump and Crawl modelseems more pow-
erful than just a model with Jump queries. Interest-
ingly, we next show this isn’t the case - namely, no
algorithm can estimate the network size well using
less than

√
n queries.

Theorem 8 (Lower Bound) Let G be a 2-vertex
connected graph. Let A be an algorithm for esti-
mating the network size, working under the Jump

12

and Crawl model. Then if A useso(
√

n) queriesA
would fail to approximate the network size to any
finite factor.

Proof: Fix an integers > 1. Take two cycle
networks one withn nodes and the other withns

(a cycle network is another name for a2 regular
graph). We next show that witho(

√
n) queriesA

will fail to differentiate between the two networks.
First, without loss of generality, we may assume

that any given algorithm first make all its Jump
queries before making its Crawl queries. We can
always simulate the behavior of the original algo-
rithm by first taking all the Jump queries. The cost
(number of queries) of the simulation would be at
most twice of that the original algorithm. Saying
that, we now consider what strategy an algorithm
may use on the cycle network (even when know-
ing in advance it is a cycle network). After the
Jump phase, the algorithm is only left with mak-
ing Crawl queries so it can move left or right from
each vertex found, a long the cycle. We next show
that not only there are no repetitions in the ver-
tices found in the Jump phase but that these ver-
tices are spread around the cycle, with distance of
at leasto(

√
n) between any pair of them. There-

fore, any algorithm that useso(
√

n) queries will
never see a vertex twice. This behavior would
still be true even if we replacedn by ns. There-
fore, the algorithm cannot differentiate between
these two cases. To finish up the proof we are
left with the calculation of the distance between
vertices found in the Jump phase. Letvi be the
vertex found by thei’th Jump query. Letk be
the total number of vertices found in the Jump
phase. We know thatk = o(

√
n). Next we show

the probability that the distance between any two
such vertices is less thank tends to1 asn goes
to infinity. It is suffice to show that the comple-
ment probability goes to zero. LetEi be the event
that the vertex added by thei’th Jump query is
closer thank to some of the verticesv1, v2, . . . , vn.
In particular we are interested in calculating
Pr(Ei|¬Ei−1, . . . ,¬E2,¬E1). This probabil-
ity is upper bounded by2ik

n
(1 − (i−1)k

n
)(1 −

(i−2)k
n

) . . . (1 − k
n
). Using the inequality1 − x ≤

exp(−x), we get,

Pr(Ei|¬Ei−1, . . . ,¬E2,¬E1) ≤
2ik

n
exp (

−ki2

2n
)

≤ 2i√
n

exp (
−ki2

2n
).

By the union bound the probability that some
queryi is bad, namely, the new vertex is close to
some previous vertex, iso(1) and goes to zero asn
goes to infinity.

Appendix C: Concentration Bounds
Theorem 9 (Additive Hoeffding Bound) [10]
Let X1, X2, . . . , Xm be a sequence ofm inde-
pendent Bernoulli trials, each with probability of
successE[Xi] = p. Let,S = X1+X2+. . .+Xm.
Let0 ≤ γ ≤ 1. Then,

Pr[
S

m
> p + γ] ≤ exp(−2mγ2)

and,

Pr[
S

m
< p − γ] ≤ exp(−2mγ2).

Theorem 10 (Multiplicative Chernoff Bound)
[5] Let X1, X2, . . . , Xm be a sequence ofm inde-
pendent Bernoulli trials, each with probability of
successE[Xi] = p. Let,S = X1+X2+. . .+Xm.
Letγ ≥ 0. Then,

Pr[
S

m
> (1 + γ)p] ≤ exp(

−mpγ2

3
)

and,

Pr[
S

m
< (1 − γ)p] ≤ exp(

−mpγ2

2
).

13

