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Announcements
Regrading requests for Assignment 1 will be accepted up to Monday,
March 9 at 3PM.
Five questions have been posted for the second asasignment. There
will be a couple more questons which will be added in the next couple
of days. . Assignment 2 is due March 16 at 2:59 PM.
Midterm March 4 and March 6. The test will cover everything in the
first six week. Wednesday, March 4 part of the test is in the usual
tutorial rooms. Friday, March 6 part of the text will be in GB248 and
for those in the other tutorial, the test will take place in Haultain
Building, room 403.
Comments on the critical review assignment.

I Due date: March 30
I You need to find a conference or journal article that has appeared in the

last 3 years; to be precise lets say, has appeared since January 1, 2017.
I The article can be about any topic in the course.
I You are to provide a critical review of the article as if you were on

program committee or a reviewer for a journal. I have elaborated on
this assignment in the Monday, February 26 lecture. Please send me
your suggestikon for the paper you will critically review. 2 / 1



This weeks agenda

Chapter 19: Influence spread in a social network

Choosing a set of initial adopters
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Chapter 19: Influence spread in a social network

We begin a study of the spread/diffusion of products/influence in an
existing social network (Chapter 19). This is in contrast to the
population wide influence spread that we are passing over in Chapters
16 and 17. Chapter 18 (on power laws) also dealt with population
wide influence phenomena. .

The goal (as thorughout the course) is to qualitatively understand a
process or observed phenomena in a highly stylized (but hopefully still
interesting) setting.

We will (as usual) be interested in what kind of general conclusions
can be inferred from such an understanding?
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The chapters preceding chapter 19
In Chapters 16 (herding effects), 17 (direct benefit effects), and 18
(rich get richer models) we did not have a social network per se.

These chapters dealt with population wide effects. Although :
I One can construe Chapter 16 as taking place in a network where the

i th individual is connected to all i − 1 previous individuals.
I Chapter 17 can be construed as taking place in the complete graph

network. Information about the entire population impacts decisions.
I In Chapter 18 we studied studied a random process (e.g., link creation)

by which an information network can grow. We also studied in this
chapter, an example (music downloading in the Salganik et al
exoeriment) where we can idientify how the presense of polulation wide
information will influence an outcome. Like Chapter 16, we can think
of this as taking placd in a social network where the i th person knows
some global information about the preceding i − 1 individuals.

But basically these are population wide effects absent from an existing
social network where influence spreads without any global information.

Note: It is interesting to contrast the herding effect in chapter 16 with
the impact of influence in the Salganik et al experiment in Chapter 18.
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Social network effects

Now we wish to consider an existing social network where edges (ties)
between individuals represent some sort of friendship/relationship.

This takes us back to concepts introduced in Chapters 3 and 4.

There we saw the contrast between
I selection (we tend to be friends with people of similar backgrounds,

geography, interests)
I social influence (we join clubs, are influenced) by our friends/relations.
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Models of influence spread/diffusion

One of the most important themes of the text (and CSC 303) is that
we construct models to gain insight.

I Our models are often (maybe always) very simplified given the
complexity of real social and economic networks.

I There is always a tradeoff between the adherence to reality and our
ability to analyze and gain insight.

How we model diffusion in a social network will clearly depend on
what product, idea, membership, etc. we are considering.

There are many assumptions as to how products, ideas, influence are
spread in a social network and what are the set of individual
alternatives.

The main emphasis in Chapter 19 is on a very simple process of
diffusion where each person has 2 alternative decisions:

1 stay with a current “product” B
2 or switch to a (new) product A.
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A simple model of diffusion in a social network

Let’s assume that we are making decisions based on the direct benefit
of being coordinated with our friends beyond any intinsic value
associated with the decision (e.g. when the decision is the purchase
of an item).

A standard example is what laptop or cell phone we decide to buy to
the extent that we are mostly influenced by our friends rather than by
general population wide usage. What influences you most? Friends or
general population information?

I Choosing between two weekly television shows that occur at the same
time or who to vote for are other examples.

In fact, the model given in this chapter dictates that certain decisions
(i.e. to change from B to A) are irreversible.

I The text calls this a “progressive process” in the sense that it
progresses in only one direction. Any good examples of truly (or
essentially) irreversible decisions?

I For example, the decision to get a tatoo.

8 / 1



A simple model of diffusion in a social network

Let’s assume that we are making decisions based on the direct benefit
of being coordinated with our friends beyond any intinsic value
associated with the decision (e.g. when the decision is the purchase
of an item).

A standard example is what laptop or cell phone we decide to buy to
the extent that we are mostly influenced by our friends rather than by
general population wide usage. What influences you most? Friends or
general population information?

I Choosing between two weekly television shows that occur at the same
time or who to vote for are other examples.

In fact, the model given in this chapter dictates that certain decisions
(i.e. to change from B to A) are irreversible.

I The text calls this a “progressive process” in the sense that it
progresses in only one direction. Any good examples of truly (or
essentially) irreversible decisions?

I For example, the decision to get a tatoo.

8 / 1



A simple model of diffusion in a social network

Let’s assume that we are making decisions based on the direct benefit
of being coordinated with our friends beyond any intinsic value
associated with the decision (e.g. when the decision is the purchase
of an item).

A standard example is what laptop or cell phone we decide to buy to
the extent that we are mostly influenced by our friends rather than by
general population wide usage. What influences you most? Friends or
general population information?

I Choosing between two weekly television shows that occur at the same
time or who to vote for are other examples.

In fact, the model given in this chapter dictates that certain decisions
(i.e. to change from B to A) are irreversible.

I The text calls this a “progressive process” in the sense that it
progresses in only one direction. Any good examples of truly (or
essentially) irreversible decisions?

I For example, the decision to get a tatoo.

8 / 1



A threshold model for spread

We assume that some number of individuals are enticed (at some
time t = 0) to adopt a new product A.

Outside of these “initial adopters”, we assume all other individuals in
the network are initially using a different product B (or equivalently
this is the first product in a given market).

This is not really a competitive influence model as B is not really
competing. (More comments later.)

The first model we consider for diffusion is that every node v has a
threshold q (in absolute or relative terms) for how many of its
neighbors must have adopted product A before v adopts A.
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Threshold model (continued)

For simplicity the text initially assumes that every node v (i.e.
individual) in the network has the same threshold but then later
explains how to deal with individual thresholds.

If at some time t, the threshold for a node v has been achieved, then
by time time t + 1, v will adopt product A.

If the threshold has not been reached then v decides not to adopt A
at this time.

Note

Although it is not explicitly stated, the initial adopters
never reverse their adoption.

Given these model assumptions, adopting A is irreversible for all
nodes in the network.
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Determining a (relative) threshold

One way (some might say is usually the best way) to reason about a
plausible threshold for a node is to view one’s decision in economic
terms.

Specifically for every edge (v ,w) in the network suppose
I There is payoff a to v and w if both v and w have adopted product A.
I There is payoff b to v and w if both v and w have adopted product B.
I A zero payoff when v and w do not currently utilize the same product.

This determines a simple coordination game.

566 CHAPTER 19. CASCADING BEHAVIOR IN NETWORKS

from informational effects [2, 38, 186] or direct-benefit effects [62, 147, 308, 420]. In this

chapter, we will focus on the latter, beginning with a natural model of direct-benefit effects

in networks due to Stephen Morris [308].

Network models based on direct-benefit effects involve the following underlying consid-

eration: you have certain social network neighbors — friends, acquaintances, or colleagues

— and the benefits to you of adopting a new behavior increase as more and more of these

neighbors adopt it. In such a case, simple self-interest will dictate that you should adopt the

new behavior once a sufficient proportion of your neighbors have done so. For example, you

may find it easier to collaborate with co-workers if you are using compatible technologies;

similarly, you may find it easier to engage in social interaction — all else being equal — with

people whose beliefs and opinions are similar to yours.

A Networked Coordination Game. These ideas can be captured very naturally using

a coordination game, a concept we first encountered in Section 6.5. In an underlying social

network, we will study a situation in which each node has a choice between two possible

behaviors, labeled A and B. If nodes v and w are linked by an edge, then there is an

incentive for them to have their behaviors match. We represent this using a game in which

v and w are the players and A and B are the possible strategies. The payoffs are defined as

follows:

• if v and w both adopt behavior A, they each get a payoff of a > 0;

• if they both adopt B, they each get a payoff of b > 0; and

• if they adopt opposite behaviors, they each get a payoff of 0.

We can write this in terms of a payoff matrix, as in Figure 19.1. Of course, it is easy to

imagine many more general models for coordination, but for now we are trying to keep things

as simple as possible.

v

w
A B

A a, a 0, 0
B 0, 0 b, b

Figure 19.1: A-B Coordination Game

This describes what happens on a single edge of the network; but the point is that each

node v is playing a copy of this game with each of its neighbors, and its payoff is the sum of

its payoffs in the games played on each edge. Hence v’s choice of strategy will be based on

the choices made by all of its neighbors, taken together.

Figure: A− B coordination [Fig 19.1, E&K]
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Coordination game induces threshold

Suppose node v has not yet adopted A at time t, but a fraction p of
the d(v) neighbors of v have already adopted A, then:

I By switching, the payoff to v is p × d(v)× a.
I By staying with B, v has payoff (1− p)× d(v)× b.

Thus node v will switch to A if

p × d(v)× a ≥ (1− p)× d(v)× b

(for simplicity say v switches when payoffs are equal).

This is then equivalent to saying that v will switch whenever p is at
least b

a+b = q which is then the relative threshold.

That is, whenever there is at least a (threshold) fraction q of the
neighbours of node v that have adopted A, then v will also adopt A.
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The process unfolds (example: a = 3 and b = 2)

[Fig 19.3, E&K]

t = 0

A node adopts A if and only if the threshold q = b
a+b = 2/5 is

reached.

Two nodes v and w are initial adopters.
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The process unfolds (example: a = 3 and b = 2)

[Fig 19.3, E&K]

t = 2

A node adopts A if and only if the threshold q = b
a+b = 2/5 is

reached.

Two nodes v and w are initial adopters.
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Complete cascades vs tightly-knit communities
(example: a = 3, b = 2, q = 2/5)

The previous example showed a complete cascade where all nodes
eventually adopt A.

In the next example, “tightly-knit communities” block the spread.

t = 0
[Fig 19.4, E&K]
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Complete cascades vs tightly-knit communities
(example: a = 3, b = 2, q = 2/5)

The previous example showed a complete cascade where all nodes
eventually adopt A.

In the next example, “tightly-knit communities” block the spread.

t = 3
[Fig 19.4, E&K]
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Factors determining the rate and extent of diffusion
in a social network

1 The structure of the network.

2 The relative payoffs vs costs for adopting a new product.
I We haven’t spoken of costs yet but we usually do have a cost for

adopting a new product.
I We can introduce such a cost into the model by saying that v will not

adopt the new A unless

p × d(v)× a ≥ (1− p)× d(v)× b + cost

I We could also add intrinsic values for A and B to both sides of the
above inequality to determine the threshold for v adopting A.

3 The choice of initial adopters.
I This raises an interesting computational question as to how to select

the most influential nodes (within some budgetary constraint).
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Defining a tightly-knit community

We want to show that not only do tightly-knit communities cause a
cascade to be blocked but moreover this is the only thing that can
stop a cascade.

To do so, we need a more precise definition.

Definition

A non-empty subset S of nodes is a blocking cluster of density p if every
node v ∈ S has at least a fraction p of its edges go to nodes in S .

Aside

Clustering is a pervasive concept in many fields and contexts (beyond
networks).

It is an intuitive concept that can be defined in many ways.

There does not appear to be any one definition that is always (or
even usually) most preferred.
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Clusters at different levels of granularity

The given definition of a blocking cluster does not imply a unique way
of clustering the nodes.

Indeed if S and T are both clusters of density p, then the union of S
and T is a cluster of density p.

I Note: this is not generally true of the intersection of S and T .

This clustering definition also implies that the set of all nodes is a
cluster of density 1.
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Clusters vs complete cascades

Suppose we have a network threshold spread model with threshold q,
an initial set of A adopters I and V ′ = V − I is the set of nodes that
are not initial adopters.

Then we have the following (provable) intuitive result that
characterizes when complete clusters will or will not form:

I If V ′ contains a cluster C of density greater than 1− q, then the initial
adopters will not cause a complete cascade. Furthermore, no node in C will
adopt A.

I If in a network with threshold q and an initial set I of adopters does not
cause a complete cascade, then the non initial adopters nodes V ′ = V − I
must contain a cluster of density greater than 1− q.
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When nodes have different thresholds
As remarked before the assumption that all nodes have the same
threshold is not essential.

Consider a node v . Suppose now that for every adjacent edge (v ,w),
node v has payoff a(v) (resp. b(v)) if both v and w have adopted
product A (resp. B) and a zero payoff if v and w currently utilize
different products.
If node v has not yet adopted A at time t, but a fraction p of the
d(v) neighbours of v have already adopted A, then:

I By switching, v has payoff p × d(v)× a(v).
I By staying with B, v has payoff (1− p)× d(v)× b(v).

Thus node v will switch to A if

p × d(v)× a(v) ≥ (1− p)× d(v)× b(v).

This is then equivalent to saying that v will switch whenever

p ≥ b(v)

a(v) + b(v)
= q(v)

which is then the threshold for node v .
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Redefining blocking clusters

A blocking cluster is now a set of nodes C such that every node
v ∈ C has more than a fraction 1− q(v) of its adjacent nodes in C .

It follows (as in the case of homogenous threshold nodes) that a given
set of adopters I in a network will not cause a complete cascade iff
V − I contains a blocking cluster C .

t = 0
[Fig 19.13, E&K]
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Redefining blocking clusters

A blocking cluster is now a set of nodes C such that every node
v ∈ C has more than a fraction 1− q(v) of its adjacent nodes in C .

It follows (as in the case of homogenous threshold nodes) that a given
set of adopters I in a network will not cause a complete cascade iff
V − I contains a blocking cluster C .

t = 3
[Fig 19.13, E&K]
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A blocking cluster is now a set of nodes C such that every node
v ∈ C has more than a fraction 1− q(v) of its adjacent nodes in C .

It follows (as in the case of homogenous threshold nodes) that a given
set of adopters I in a network will not cause a complete cascade iff
V − I contains a blocking cluster C .

t = 4
[Fig 19.13, E&K]
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Redefining blocking clusters

A blocking cluster is now a set of nodes C such that every node
v ∈ C has more than a fraction 1− q(v) of its adjacent nodes in C .

It follows (as in the case of homogenous threshold nodes) that a given
set of adopters I in a network will not cause a complete cascade iff
V − I contains a blocking cluster C .

t = 5
[Fig 19.13, E&K]
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Choosing influential adopters

Suppose we wish to spread a new technology and to do so we have
money to influence some “small” set of initial adopters (e.g. by giving
away the product or even paying people to adopt it).

Even in this simple model of (non-competitive) influence spread, and
even if we have complete knowledge of the social network, it is not at
all clear how to chose an initial set of adopters so as to achieve the
largest spread.

Furthermore the spread process could be much more sophisticated.
I For example, adoption by a node might be a more random process (say

adopting with some probability relative to the nodes threshold) and
maybe the influence of neighbors first increases and then decreases
over time.
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Choosing influential adopters continued

Suppose we have funds/ability to influence k nodes to become initial
adopters.

I We can try all possible subsets of the entire n = |V | nodes and for
each such subset simulate the spread process.

I But clearly as k gets larger, this “brute force” becomes prohibitive for
large (and not even massive) networks.

It turns out that the problem of the optimum set of initial adopters in
many settings is an NP-hard problem.

22 / 1



Can we determine a “good” set of initial adopters?

For even simple models of information spread as being discussed here,
complexity theory (the P vs NP conjecture) argues that we cannot
efficiently choose the best set of initial adopters. There is a class of
networks for which (assuming the P 6= NP conjecture) it is not
possible to obtain an approximation within a factor nc for any c < 1.

Instead we will identify properties of a spread process that will allow a
good approximation: a good set of initial adopters that will do
“almost as well” as the best set.

Note: What follows is a discussion as to how to choose a set of initial
adopters by a relatively efficient approximation algorithm when making
some assumptions on the spread process. However, as we discussed we
would need much more efficient methods for massive networks.
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Influence maximization models; monotone
submodular set functions

Some spread models have the following nice properties.

Let f (S) be size (or more generally a real value benefit since some nodes
may be more valuable) of the final set S of adopters satisfying:

1 Monotonicity: f (S) ≤ f (T ) if S is a subset of T

2 Submodularity: f (S + v)− f (S) ≥ f (T + v)− f (T ) if S is a subset of T

We also usally assume that f (∅) = 0. Such normalized, monotone,
submodular functions arise in many applications.

The simple threshold examples considered thus far are monotone
processes but are not submodular in general. Are these contrived
worst case network examples?

But some variants of the threshold model and related models do
satisfy these properties. We consider two such stochastic models.
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