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Announcements

Assignment 1 is due this Friday (Feb 14) at 2:59.

The lectures this week are on Monday and Wednesday. There is a
common tutorial class on Friday.

Next week is reading week

There is no lecture but there is a tutorial on Monday February 24 in
GB248. Question about assignment 1 will be answered during this
time. The lectures that week will take place on Wednesday and Friday.

The term test is being conducted on two days, Wednesday March 4,
and Friday March 6. I am waiting to get a second room for Friday.
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Agenda

Having just observed a interesting power law (i.e., the probability of
friends as it relates to geographical and social distance), we continue
with Chapter 18 of the text. The focus is on power law distributions
in social and information networks and the preferential attachment
model. This model is propsed as a model for explaining the power law
distribution that exists in many social networks.

We will then discuss Chapter 14 which provides two ranking
algorithms, Hubs and Authorities and Page Rank, that utilize links to
rank Web pages relating to a search query.

I am going to think about the schedule of lectures for the second half
of the term. I am actually planning to read during reading week.
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Roadmap: where we have been and whats next
Chapter 20 started off with a discussion of the small worlds phenomena
and an insightful understanding of how decentralized search can work.

We have seen earlier (Chapters 3 and 4) how selection (i.e. homophily in
the sense of ”birds of a feather flock together”) causes friendship links.
Chapter 5 also relates to how links can form and dissolve to achieve
structural balance.

In the process of understanding decentralized search, we are led to the
observation that geographical distance (or social distance) correlates with
friendship in the sense that Prob[v is a friend of u] ≈ [ranku(v)]−1.

We even saw a claim (by Oscar Sandberg) that decentralized search might
implicitly be a partial explanation of network dynamics and structure
although (from my sense of how the chapter reads), it is left as an
intriguing question as to how network structure evolves to have this
friendship power law distribution.

Furthermore, (again as I read the chapter) the sense is that long distance
friendships are “rare”. 4 / 45



Power law distributions
A power law distribution for discrete random variable X satisfies
Prob[X = k] ≈ a

kc for some constants a and c . (We often just focus on on
the exponent c .)

Chapter 18 calls attention to the fact that power law distributions often
occur in network and natural phenomena. Moreover, power law
distributions in social and information networks arise from coupled or
correlated individual decisions and events that may at first glance seem
extremely rare are not so rare. For example, the popularity of certain
books, occurrences of specific words in a natural language, etc. More
specifically, the text considers the frequency of in-links to web sites.

That is, in the study of the web network (i.e. an information network), the
probability that a site will have k in-links is proportional to k−2. (More
precisely, proportional to k−(2+ε) for some ε > 0.

And here is a main message of chapter 18; such events (i.e., for a site to
have so many in-links) is not so rare when compared with what would be
predicted by independent decisions.

5 / 45



Power law distributions
A power law distribution for discrete random variable X satisfies
Prob[X = k] ≈ a

kc for some constants a and c . (We often just focus on on
the exponent c .)

Chapter 18 calls attention to the fact that power law distributions often
occur in network and natural phenomena. Moreover, power law
distributions in social and information networks arise from coupled or
correlated individual decisions and events that may at first glance seem
extremely rare are not so rare. For example, the popularity of certain
books, occurrences of specific words in a natural language, etc. More
specifically, the text considers the frequency of in-links to web sites.

That is, in the study of the web network (i.e. an information network), the
probability that a site will have k in-links is proportional to k−2. (More
precisely, proportional to k−(2+ε) for some ε > 0.

And here is a main message of chapter 18; such events (i.e., for a site to
have so many in-links) is not so rare when compared with what would be
predicted by independent decisions.

5 / 45



Power law distributions
A power law distribution for discrete random variable X satisfies
Prob[X = k] ≈ a

kc for some constants a and c . (We often just focus on on
the exponent c .)

Chapter 18 calls attention to the fact that power law distributions often
occur in network and natural phenomena. Moreover, power law
distributions in social and information networks arise from coupled or
correlated individual decisions and events that may at first glance seem
extremely rare are not so rare. For example, the popularity of certain
books, occurrences of specific words in a natural language, etc. More
specifically, the text considers the frequency of in-links to web sites.

That is, in the study of the web network (i.e. an information network), the
probability that a site will have k in-links is proportional to k−2. (More
precisely, proportional to k−(2+ε) for some ε > 0.

And here is a main message of chapter 18; such events (i.e., for a site to
have so many in-links) is not so rare when compared with what would be
predicted by independent decisions. 5 / 45



How rare is rare when compared with averages over
independent actions?

What if people chose friends independent of where they lived or what
interests they had, what would be (the distribution for) the number of
freinds we would each have?

What if we all independently chose to read books not dependent on
current events or what friends (or an online system) recommended,
how rare would it be to have a huge best seller?

What, if each web site chose their out-links independently and
without some underying dynamics to guide the process?

As is well understood, the Central Limit Theorem tells us that “a
quantity that can be viewed as the sum (or average) of many small
independent random effects will be well-approximated” by a normal
distribution.
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The normal distribution
The normal or Gaussian distrubution has the following probability density
function:

f (x) =
1√

2πσ2
e−

(x−µ)2

2σ2

As we know, normal distrubtions have a bell shaped curve.

Normal&Distribution

• Normal&(or&Gaussian)&
distribution&(bell&curve).
• Ubiquitous&in&Nature.

• Characterized&by&mean&! and&
standard&deviation&σ

!Probability&of&seeing&a&specific&&
sample&average&decreases&
exponentially with&distance&from&
mean&!.
!very&large,&or&very&small&
numbers&are&extremely&unlikely.

7

From:&http://www.answers.com/topic/normal0distribution
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So how rare is rare?

For a normal distrubution, the probability that an outlier (i.e. an
exceptional event) will occur decreases exponentially (with distance from
the mean). In particular, if say in-links followed a normal distruibution,
then the probability that a given site would have k links would decrease
exponentially in k. Very small or large “outliers” would be highly
improbable.

So how rare is rare when for example we compare Prob[k in-links] ≈ k−2

in comparison to Prob[k in-links] ≈ 2−k?

For say k = 30, 230 ≈ 109 where as (30)2 = 900.
One in a billion vs better than 1 in a 1000.
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So where are we going?

As we have mentioned before, one of the most fundamental questions for
social networks concerns how they involve. What is the interplay between
selection and influence?

Perhaps, information networks (albeit still created by individuals) can be
better understood than the dynamics of friendships, political affiliations,
opinion formation, etc.

Chapter 18 suggests a network dynamics that will lead to a power law
distribution.
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A power law distribution and network dynamics
We repeat the definition:

A power law distribution for a discrete random variable X satisifes
Prob[X = k] ≈ a

kc for some constants a and c . (We often just focus on on
the exponent c and say that the probability is proportional to k−c .) Such
distributions are called “scale-free” in the sense that the stated probability
is independent of the size of the network.

Having observed that many events in social and information networks have
a power law distribution, the big question is how this happens.

Chapter 18 considers the observed power law for the number of in-links in
the Web graph. We understand that this could not evolve from
independent decisions (that have averaged out) but rather results from the
feedback coming from correlated decisions.

In an influential article, Kumar et al [2000] proposed a preferential
attachment model that can explain the power law distribution. Recall, the
observed distribution of in-links is that Prob[a site has k in-links] is
proportional to k−(2+ε) for a small ε > 0. 10 / 45



A “rich get richer model” for in-links on the Web

Here is the model proposed in Kumar et al article (which has been
uploaded to the course Web page).

1 Web pages are created sequentially, and named 1, 2, . . .N.
(Of course, N keeps growing but we are looking at the web at some
point in time.)

2 With probability p, the j th page chooses a page i < j uniformly at
random and links to page i .

3 With probability q = 1− p, page j chooses a page i < j uniformly at
random and then creates a link to the page (say k < i) to which i has
a link.

Note: The model is more general in that multiple links from page j are
created in this stochastic model. Chapter 18 simplifies the model and only
creates one link. However, this does not change the power law
exponent. As will be seen, the key parameter is p.
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The linking model continued
There is an equivalent way to state the indirect linking that takes place
that makes clear the “rich get richer” preferential attachment phenomena.

[3’] With probability q = 1− p, page j chooses a page ` with
probability proportional to `’s current number of in-links and creates a
link to `.

This is, of course, the idea behind popularity. For example, the more
people that are reading a current novel, the more likely that you might
want to read it. And for various social and economic reasons why some
large cities continue to grow.

Note: As p → 0 (and q → 1), pages are more likely to copy the same
previous pages and the more likely that the process is creating some
popular pages.

Hedge: As the text states clearly, the goal of this model is not to capture
all the reasons why people create links on the Web (or links in other
networks) but rather to explain why it is reasonable to expect such
popularity effects.

12 / 45



The linking model continued
There is an equivalent way to state the indirect linking that takes place
that makes clear the “rich get richer” preferential attachment phenomena.

[3’] With probability q = 1− p, page j chooses a page ` with
probability proportional to `’s current number of in-links and creates a
link to `.

This is, of course, the idea behind popularity. For example, the more
people that are reading a current novel, the more likely that you might
want to read it. And for various social and economic reasons why some
large cities continue to grow.

Note: As p → 0 (and q → 1), pages are more likely to copy the same
previous pages and the more likely that the process is creating some
popular pages.

Hedge: As the text states clearly, the goal of this model is not to capture
all the reasons why people create links on the Web (or links in other
networks) but rather to explain why it is reasonable to expect such
popularity effects.

12 / 45



The linking model continued
There is an equivalent way to state the indirect linking that takes place
that makes clear the “rich get richer” preferential attachment phenomena.

[3’] With probability q = 1− p, page j chooses a page ` with
probability proportional to `’s current number of in-links and creates a
link to `.

This is, of course, the idea behind popularity. For example, the more
people that are reading a current novel, the more likely that you might
want to read it. And for various social and economic reasons why some
large cities continue to grow.

Note: As p → 0 (and q → 1), pages are more likely to copy the same
previous pages and the more likely that the process is creating some
popular pages.

Hedge: As the text states clearly, the goal of this model is not to capture
all the reasons why people create links on the Web (or links in other
networks) but rather to explain why it is reasonable to expect such
popularity effects.

12 / 45



Sensitivity to unpredictable initial stages in network
dynamics

As we are all are familiar, it is never clear why say some “pop” singers
become so popular while other (perhaps of equal talent) never “make it”.
Clearly, the initial stages of a dynamic process are critical and that is why
advertising, promotions, etc. are so important.

How can we better understand the impact of the randomness in the initial
stages of a dynamic process? What if we could replay history many times?
We would, of course, expect the resulting distribution to be the same. But
would the same books, the same movies, the same pop stars, the same
web pages, etc continue to be the most popular?

Our intuition (and experience) suggets that there is often considerable
“luck” in exactly who or what becomes popular, On the flip side, we also
believe that “quality” is also important.

But how do we “rewind history”?
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An experiment to “rewind history”

While we do not have the ability to really rewind history, it is something
that I think we often think about.
Aside: There are some classic movies (e.g. Sliding Doors, Run Lola Run,
Blind Chance) that explore this theme about initial random effects that
lead to very different alternative outcomes. These are very interesting
movies but, as you might expect, do not consider distributions. See
https://www.denofgeek.com/us/movies/run-lola-run/256336/7-movies-
and-tv-shows-that-master-the-multiple-reality-narrative.

Salganik et al perform an interesting experiment (in fact, two experiments
at different times with different participants) to observe the impact of the
initial random stages in a dynamic process. (I have downloaded the article
and the supporting material.)
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The Salganik et al experiment

Here is their experiment:

They created 9 copies of 48 “obscure” (as determined by some
experts) songs of varying “quality”

In the experiment, approximately 7200 young participants were
recruited to listen to the music. At the start of the experiment, all
that is known is the name of the band and the name of the song.

In each of the copies, participants sequentially listened to some music
selections, rated the music and then were given the opportunity to
download copies of songs they liked.

In each of 8 copies of the music, 10% of the participants were also
given the number of times each song had been previously downloaded.

In the 9th version, this previous history of downloads was not provided
to the remaining 20% of the particpants. The average of the ratings
(from 1 = “I hated it” to 5 = “I loved it”) in this “no influence”
version determined the song “quality”.
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The findings in the Salganik experiement

The experiment was designed to measure the extent that social influence
leads to different outcomes in the “success” (i.e. the number of
downloads) of a particular song.
Simply stated, the results show that:

Increasing the strength of social influence increased both the
inequality (i.e. degrees of popularity) and unpredictability (i.e.,
relation to quality) of success.

However, quality was also a factor: the best rated songs rarely did
poorly and the the worst songs rarely did well.

As I said, this is an interesting study and one where the authors carefully
try to eliminate sources of bias. The article is worth reading.

As the text points out in section 18.6, how recommendation systems are
designed can impact how people make choices, leading to increased “rich
get richer” phenomena, or alternatively exposing people to less popular
items.
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Visualizing the long tail of a power law distribution
Once we accept a power law nature of popularity, it is instructive to
consider the consequences for a given industry. Namely, the nature of the
sales curve that would be dictated by a power law distribution.

The shape of the long tail in a power distribution raises the question as to
how many sales can be obtained from less popular (e.g. niche items).18.5. THE LONG TAIL 553

j

k

number of books

sales 

volume

The j-th most popular 

book has sold k 

copies.

Figure 18.4: The distribution of popularity: how many copies of the jth most popular item
have been sold?

considering; but while we won’t go through the derivation here, it’s possible to show that if

the original function was a power-law, then this new one is too. We show a schematic plot

of this new function in Figure 18.3; if we’re talking about the popularity of some item like

books, then a point (k, j) on this curve means, by definition, “There are j books that have

sold at least k copies.”

So far, this is still the conceptual view from the previous section: as we follow the x-axis

of the curve to the right, we’re essentially asking, “As you look at larger and larger sales

volumes, how few books do you find?” To capture the discussions of the Long Tail more

directly, we want to be asking the following question as we follow the x-axis to the right:

“As you look at less and less popular items, what sales volumes do you see?”

If we think about it, this simply involves switching the two axes. That is, suppose that

we plot exactly the same curve, but we interchange the roles of the x- and y-axes, as shown

in Figure 18.4. Interpreting this new curve literally from its definition, a point (j, k) on the

curve says, “The jth most popular book has sold k copies.” This is exactly what we want:

we order the books by “sales rank,” and then we look at the popularity of books as we move

out to larger and larger sales ranks — into the niche products.1 And the characteristic shape

of this curve, tailing o� slowly downward to the right, is the visual basis for the term “Long

Tail.”

One can now easily discuss trends in sales volume, and their consequences, in terms of

the curve in Figure 18.4. Essentially, the area under the curve from some point j outward is

1Our notion of “sales rank” simply reflects the sorted, decreasing order of all items by sales volume. When
the term “sales rank” is used by on-line retailers such as Amazon, it tends to be a more complex measure
that incorporates other factors as well.

Figure: [Fig 18-4 in E&K] text; how many copies of the j th most popular items
have been sold.
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An informal analysis for the simplied preferential
attachment model proposed for Web in-links
A precise analysis of even the simple one link per page preferential
attachment model is technical. In section 18.7, the text provides a
heuristic argument as to how the power law exponent is determined by the
probability p (of the j th page linking uniformly at random to some page
i < j vs linking indirectly with probability q = 1− p to a page ` based on
the popularity of page `).

While we often gain insight by viewing a continuous process as a long
sequence of discrete events, it is often adventageous to model a sequence
of discrete events as a continuous process.

More specifically, the approximate analysis considers a continuous
deterministic variable x`(t), which is an approximation of the discrete
random variable X`(t), the number of in-links to a page ` at time t ≥ 0.
Aside: We often do this in the analysis of algorithms. For example, we
consider the continuous extension of a submodular function and what is
called a continuous greedy algorithm.
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The deterministic continuous model of the random
discrete process
Initially, X`(0) = x`(0) = 0.
The discrete propbability that the number of links to a page ` increases is :

p

t
+

q · X`(t)

t

and the corresponding continuous rate of growth is modeled by the
differential equation:

dx`
dt

=
p

t
+

q · x`(t)

t

The rest of the section uses some basic calculus to show that this leads to
a power law distribution proportional to k−c with c = 1 + 1/q. This
makes sense as the closer p gets to 0 (and q = 1− p goes to 1), the
exponent c = 1 + 1/q limits to the observed exponent c = 2 + ε for the
observed in-link power law distribution. The closer p goes to 1, the
exponent limits to ∞ making a large number of in-links very unlikely.
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End of February 10 Lecture

ANNOUNCEMENT: We had to change plans.
By popular demand, there is no tutorial this Friday, February 14. There
will be a tutorial on Monday, Feb24 in GB248 where we will go over the
assignment (and any other topics of interest if there are not that many
questions on the assignment).

Lectures on Wed, March 26 and Friday, March 28.

The assignment is due 2:59 this coming Friday, February 14.

Today we begin web search and, in particular, ranking of documents using
link analysis.
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Search and ranking on the Web
Our next topic is to undertstand how the popularity of a web page is
determined and how that impacts its rank in the responses to a query.

But first, how do search engines find and rank responses to a query?

The specific algorithms used by search engines such as Bing and Google is
a trade secret. To some extent this has to be kept secret as there is always
a “war” between a search engine and companies that create web sites to
enhance the ranking of a site.

However, we do have a basic idea as to how these search engines rank
sites given a query. In fact, at the most elementary level, the main idea is
an old one, but one that was not well accepted for many years. Here is my
sense of things.

Aside: In the 1960s and 70s, there was a basic argument as to whether
online search and ranking was a more or less normal algorithmic search
and optimization problem or one that required “intellegience” (i.e. the
ability to understand natural language). Who won this argument?
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Search and ranking of Web documents; the role of
link popularity

The most basic approach is to treat a document as a bag of words and
then use “normalized” word counts (and pairs,triplets of words) to identify
and rank documents relating to the query. This became enhanced by more
sophisticated contextual aspects of word occurrences, etc and today
machine learning algorithms are also used in classifiying a search query.

But early in the development of popular search engines, a popularity
aspect was added where the ranking of a document also depended on the
link structure and the popularity of a Web page in the Web network (or at
least in that part that seems relevant to the query).

Two algorithms were independently proposed for determinining the
popularity of a Web page, namely Hubs and Authorities developed at IBM
and used in their never released search engine, and Page Rank, developed
and integrated into Google’s search engine.
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Link analysis and page popularity

Neither Hubs and Authorities nor Page Rank use link in-degree as the
popularity measure but link analysis is (or at least was) used to determine
page popularity. Currently, it seems clear that popularity also depends on
recent behaviour of users to related queries.

We will not try to infer more precisely how say Google (or any search
engine) precisely determines the ranking of a document in resposne to a
query. In particular, we do not know how much page ranking depends on
content vs link analysis. But we do know that this ranking is essential in
determining how often a page will be downloaded. The quality of the
ranking algorithm leads to user activity and thus the resulting advertising.

We will begin with the Hubs and Authorites ranking algorithm and then
the Page Rank algorithm.
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Hubs and Authorities

A simple way to utilize links to rank web pages would be to think of
each link from A to B as an endorsement or vote by A for B.

And then one uses the number (or weight) of endorsements as a key
feature determining the rank. Of course, one would have to adjust
such scores coming from say the same domain name.

Even after adjusting for such “vote fixing”, if Auston Mathews,
William Nylander or John Tavares have web sites and any of them
have a link suggesting where they buy their hockey equipment you
might think that is more meaningful than say where I recommend to
buy hockey equipment.

Spoiler alert: I don’t play hockey.
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Reinforcement of Hubs and Authorities.
This then becomes the motivation (and seemingly circular reasoning)
behind hubs and authorities.

The best “authorities” on a subject (places to buy equipment) are
being endorsed by the best “hubs” (people who know where to buy
equipment).

Similarly, the best hubs are those sites that recommend the best
authorities. Conceptually the link structure induces a bipartite graph.
The same web page can be both a hub and an authority.

Comment: The word “authority” is not generally an accurate way to
describe high ranking documents. These might better be referred to
(barring other information) as the most relied upon sites. This is also
different from “the most popular” sites which might better be
measured in terms of the number of clicks being received. Hubs then
are the most reliable endorsers.
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The result of applying the authority update rule: for each page p,
auth(p) is the sum of hub values (initially just the number) of hubs
pointing to p.

400 CHAPTER 14. LINK ANALYSIS AND WEB SEARCH
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Figure 14.1: Counting in-links to pages for the query “newspapers.”

A List-Finding Technique. It’s possible to make deeper use of the network structure

than just counting in-links, and this brings us to the second part of the argument that links

are essential. Consider, as a typical example, the one-word query “newspapers.” Unlike

the query “Cornell,” there is not necessarily a single, intuitively “best” answer here; there

are a number of prominent newspapers on the Web, and an ideal answer would consist of a

list of the most prominent among them. With the query “Cornell,” we discussed collecting

a sample of pages relevant to the query and then let them vote using their links. What

happens if we try this for the query “newspapers”?

What you will typically observe, if you try this experiment, is that you get high scores for a

mix of prominent newspapers (i.e. the results you’d want) along with pages that are going to

receive a lot of in-links no matter what the query is — pages like Yahoo!, Facebook, Amazon,

and others. In other words, to make up a very simple hyperlink structure for purposes of

[Fig 14.1, E&K]

Figure: Counting in-links to pages for the query “newspapers.”
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Then to recalibrate hub values, we use the hub update rule: for each
page p, hub(p) is the sum of values of all authorities that p points to.

14.2. LINK ANALYSIS USING HUBS AND AUTHORITIES 401
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Figure 14.2: Finding good lists for the query “newspapers”: each page’s value as a list is
written as a number inside it.

this example, we’d see something like Figure 14.1: the unlabeled circles represent our sample

of pages relevant to the query “newspapers,” and among the four pages receiving the most

votes from them, two are newspapers (New York Times and USA Today) and two are not

(Yahoo! and Amazon). This example is designed to be small enough to try by hand; in

a real setting, of course there would be many plausible newspaper pages and many more

off-topic pages.

But votes are only a very simple kind of measure that we can get from the link structure

— there is much more to be discovered if we look more closely. To try getting more, we

ask a different question. In addition to the newspapers themselves, there is another kind of

useful answer to our query: pages that compile lists of resources relevant to the topic. Such

pages exist for most broad enough queries: for “newspapers,” they would correspond to lists

[Fig 14.2, E&K]

Figure: Finding good lists for the query “newspapers”: each page’s value as a list
is written as a number inside it.
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Applying the authority update rule again we get figure 14.3.
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Figure 14.3: Re-weighting votes for the query “newspapers”: each of the labeled page’s new
score is equal to the sum of the values of all lists that point to it.

of links to on-line newspapers; for “Cornell,” one can find many alumni who maintain pages

with links to the University, its hockey team, its Medical School, its Art Museum, and so

forth. If we could find good list pages for newspapers, we would have another approach to

the problem of finding the newspapers themselves.

In fact, the example in Figure 14.1 suggests a useful technique for finding good lists. We

notice that among the pages casting votes, a few of them in fact voted for many of the pages

that received a lot of votes. It would be natural, therefore, to suspect that these pages have

some sense where the good answers are, and to score them highly as lists. Concretely, we

could say that a page’s value as a list is equal to the sum of the votes received by all pages

that it voted for. Figure 14.2 shows the result of applying this rule to the pages casting votes

in our example.

[Fig 14.3, E&K]

Figure: Re-weighting votes for the query “newspapers”: each of the labeled
page’s new score is equal to the sum of the values of all lists that point to it.
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Since we only care about the relative values of these numbers, both
authority and hub scores can be normalized to sum to 1 (to allow
convergence and avoid dealing with large numbers).
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Figure 14.4: Re-weighting votes after normalizing for the query “newspapers.”

Hub Update Rule: For each page p, update hub(p) to be the sum of the authority

scores of all pages that it points to.

Notice how a single application of the Authority Update Rule (starting from a setting in

which all scores are initially 1) is simply the original casting of votes by in-links. A single

application of the Authority Update Rule followed by a single application the Hub Update

Rule produces the results of the original list-finding technique. In general, the Principle of

Repeated Improvement says that to obtain better estimates, we should simply apply these

rules in alternating fashion, as follows.

• We start with all hub scores and all authority scores equal to 1.

• We choose a number of steps k.

[Fig 14.4, E&K]

Figure: Re-weighting votes after normalizing for the query “newspapers”.
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Keep repeating a good idea
Now having recalibrated and normalized both the authority and hub
scores, we can continue this process to continue to refine these scores.

That is, the hubs and authorities procedure is as follows:
I Initialize all hub values (say to some positive vector perhaps depending

on usage or content)
I For sufficiently large k , perform the following k times

F Apply authority update rule to each page
F Apply hub update rule to each page
F Normalize so that sum of A and H weights = 1.

Using linear algebra, it can be shown (in Section 14.6) that these A
and H normalized values will converge to a limit as k →∞ (which
can be approximated by some sufficiently large k)! The limiting value
is an equilibrium.

Hubs and Authorities can be extended to work for weighted edges
(e,g. weighting links in anchor text, or near a section heading, etc.)
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Figure 14.5: Limiting hub and authority values for the query “newspapers.”

• We then perform a sequence of k hub-authority updates. Each update works as follows:

– First apply the Authority Update Rule to the current set of scores.

– Then apply the Hub Update Rule to the resulting set of scores.

• At the end, the hub and authority scores may involve numbers that are very large. But

we only care about their relative sizes, so we can normalize to make them smaller: we

divide down each authority score by the sum of all authority scores, and divide down

each hub score by the sum of all hub scores. (For example, Figure 14.4 shows the result

of normalizing the authority scores that we determined in Figure 14.3.)

What happens if we do this for larger and larger values of k? It turns out that the

normalized values actually converge to limits as k goes to infinity: in other words, the

[Fig 14.5, E&K]

Figure: Limiting hub and authority values for the query “newspapers”.
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Page Rank

The motivation behind page rank is a somewhat different view of how
authority is conferred.

I Endorsement of authority is conveyed by other authorities
I That is, no hub concept
I This is how peer review works in the academic and scholarly world.

Authorities themselves convey authority on those they link to. This
naturally leads to a formulation in terms of two equivalent views of
page rank:

1 Authorities directly conveying authority (without hubs)
2 Authority values resulting from long term behaviour of a random walk

on a graph.
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How does Page rank spread authority?
Suppose at any point of time we have relevant authority scores.

I A page spreads its authority equally amongst all of its out links.
I If a page has no outlinks then all authority stays there.

This redistributes the authority scores. (We are not creating or losing
any authority, we are just redistributing it.)
We can initially start with every relevant page having authority 1/n
where there are n pages. Then we repeat this process k times for
some sufficiently large k .
With the exception of some “degenerate cases” (e.g. the process is
periodic) it can be proven (again using linear algebra) that this
process has a limiting behavior as k →∞.
The resulting limit values will form an equilibrium.
If the network is strongly connected then there is a unique equilibrium,

Remark

In many cases this won’t reflect the desired authority. Namely, if the
network has any sinks (or strongly connect components that are sinks)
which it will surely have, then all of the authority will pass to such sinks.
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Page rank equilibrium for a network
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Figure 14.7: Equilibrium PageRank values for the network of eight Web pages from Fig-
ure 14.6.

Notice that the total PageRank in the network will remain constant as we apply these

steps: since each page takes its PageRank, divides it up, and passes it along links, PageRank

is never created nor destroyed, just moved around from one node to another. As a result,

we don’t need to do any normalizing of the numbers to prevent them from growing, the way

we had to with hub and authority scores.

As an example, let’s consider how this computation works on the collection of 8 Web

pages in Figure 14.6. All pages start out with a PageRank of 1/8, and their PageRank

values after the first two updates are given by the following table:

Step A B C D E F G H
1 1/2 1/16 1/16 1/16 1/16 1/16 1/16 1/8
2 3/16 1/4 1/4 1/32 1/32 1/32 1/32 1/16

For example, A gets a PageRank of 1/2 after the first update because it gets all of F ’s,

G’s, and H’s PageRank, and half each of D’s and E’s. On the other hand, B and C each

get half of A’s PageRank, so they only get 1/16 each in the first step. But once A acquires

a lot of PageRank, B and C benefit in the next step. This is in keeping with the principle of

repeated improvement: after the first update causes us to estimate that A is an important

page, we weigh its endorsement more highly in the next update.

[Fig 14.7, E&K]

Figure: Equilibrium PageRank values for the network of eight Web page.
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Where has all the authority gone when we redirect
(F ,A) and (G ,A) edges?

410 CHAPTER 14. LINK ANALYSIS AND WEB SEARCH
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Figure 14.8: The same collection of eight pages, but F and G have changed their links to
point to each other instead of to A. Without a smoothing effect, all the PageRank would go
to F and G.

And it becomes a problem in almost any real network to which PageRank is applied: as

long as there are small sets of nodes that can be reached from the rest of the graph, but

have no paths back, then PageRank will build up there.1 Fortunately, there is a simple and

natural way to modify the definition of PageRank to get around this problem, and it follows

from the “fluid” intuition for PageRank. Specifically, if we think about the (admittedly

simplistic) question of why all the water on earth doesn’t inexorably run downhill and reside

exclusively at the lowest points, it’s because there’s a counter-balancing process at work:

water also evaporates and gets rained back down at higher elevations.

We can use this idea here. We pick a scaling factor s that should be strictly between 0

and 1. We then replace the Basic PageRank Update Rule with the following:

Scaled PageRank Update Rule: First apply the Basic PageRank Update Rule.

Then scale down all PageRank values by a factor of s. This means that the total

PageRank in the network has shrunk from 1 to s. We divide the residual 1 − s

units of PageRank equally over all nodes, giving (1 − s)/n to each.

1If we think back to the bow-tie structure of the Web from Chapter 13, there is a way to describe the
problem in those terms as well: there are many “slow leaks” out of the giant SCC, and so in the limit, all
nodes in the giant SCC will get PageRank values of 0; instead, all the PageRank will end up in the set OUT
of downstream nodes.

[Fig 14.8, E&K]

Figure: The same collection of eight pages, but F and G have changed their
links to point to each other instead of to A. Without “scaling”, all the PageRank
would go to F and G .
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Scaled page rank

The way around this sink hole of authority is to have a scaled version
of page rank where

I only a fraction s of the authority of a page is distributed to its out links
I the remaining (1− s) fraction is distributed equally amongst all

relevant pages.

For any value of s < 1 (which effectively makes the graph strongly
connected), we get convergence to a unique set of scores for each
page and that is its page rank (for that particular value of s). It is
reported that Google uses 0.8 ≤ s ≤ 0.9.

(See the footnote on page 410 of E&K as to why in the previous
example, nodes F and G will still get most of the authority but that
for realistically large networks, the process works well.)
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Some additional remarks

The limiting scores for both the authority and hubs approach and the
page rank approach are equilibrium points for an appropriate algebraic
process.

That is, if we actually were in the limiting state, we would be in the
equilibrium state. In practice, we can stop the process when the
change in each iteration is sufficiently small.

We can weight the network edges (say according to some concept of
link importance) and apply the same authority and hubs or page rank
approach distributing authority in proportion to these weights.
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Advanced material (section 14.6): Handwaving
argument why these processes converge

We have already suggested that both the page rank and hubs and
authorities processes can be understood in terms of an algebraic process,
namely, a linear transformation.

Suppose we are considering a web network of n pages. We can
represent the hub, authority or page rank values at any time k of the
process by an n-dimensional (column) vector, denoted (respectively)
by h(k), a(k), r(k).

Here we are using boldface v =< v1, . . . , vn > to represent a vector

whose components are the vj so that (for example), r
(k)
j repesents the

page rank of the j th web page after k steps of the page rank process.

Let v be any of the hub, authority or page rank vectors. In each case
it is not difficult to see that the process can be viewed as a linear
transformation v(k+1) = Mv(k) for some appropriate n × n matrix M
whose entries are non negative real numbers.
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Advanced material continued: page rank
convergence

Section 14.6 tells us how to define the appropriate matrices and gives
the conditions that will guarantee the convergence of the process;
that is, when there exists v(∗) = limk→∞ v(k) and when this limit
vector v(∗) is unique and independent of the starting vector v(0).
Figure 14.3 of the text illustrates a simple directed graph and the
matrix N that defines the unscaled page rank update process. That
is, < rk+1

1 , . . . , rk+1
n >= Ntr < rk1 , . . . , r

k
n > where Ntr is the

transpose of matrix N.
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0 1/2 0 1/2

0 0 1/2 1/2
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Figure 14.13: The flow of PageRank under the Basic PageRank Update Rule can be repre-
sented using a matrix N derived from the adjacency matrix M : the entry Nij specifies the
portion of i’s PageRank that should be passed to j in one update step.

doesn’t link to j, and otherwise Nij is the reciprocal of the number of nodes that i points

to. In other words, when i links to j, then Nij = 1/◆i, where ◆i is the number of links out of

i. (If i has no outgoing links, then we define Nii = 1, in keeping with the rule that a node

with no outgoing links passes all its PageRank to itself.) In this way, N is similar in spirit

to the adjacency matrix M , but with a di�erent definition when i links to j.

Now, let’s represent the PageRanks of all nodes using a vector r, where the coordinate

ri is the PageRank of node i. Using this notation, we can write the Basic PageRank Update

Rule as

ri ⌃ N1ir1 + N2ir2 + · · · + Nnirn. (14.5)

This corresponds to multiplication by the transpose of the matrix, just as we saw for the

Authority Update Rule; thus, Equation (14.5) can be written as

r ⌃ NT r. (14.6)

The Scaled PageRank Update Rule can be represented in essentially the same way, but

with a di�erent matrix Ñ to represent the di�erent flow of PageRank, as indicated in Fig-

ure 14.14. Recall that in the scaled version of the update rule, the updated PageRank is

scaled down by a factor of s, and the residual 1� s units are divided equally over all nodes.

Thus, we can simply define Ñij to be sNij + (1 � s)/n, and then the scaled update rule can

be written as

ri ⌃ Ñ1ir1 + Ñ2ir2 + · · · + Ñnirn. (14.7)

[Fig 14.13, E&K]

Figure: A toy web graph and the associated matrix N describing the
unscaled update process.
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Page rank analysis for the scaled update

Similarly Figure 14.4 illustrates the same graph and the matrix Ñ that
defines the scaled page rank update process with scaling factor s = .8.
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Figure 14.14: The flow of PageRank under the Scaled PageRank Update Rule can also be
represented using a matrix derived from the adjacency matrix M (shown here with scaling
factor s = 0.8). We denote this matrix by Ñ ; the entry Ñij specifies the portion of i’s
PageRank that should be passed to j in one update step.

or equivalently

r ⌃ ÑT r. (14.8)

Repeated Improvement Using the Scaled PageRank Update Rule. As we apply

the scaled update rule repeatedly, starting from an initial PageRank vector r⌅0⇧, we produce

a sequence of vectors r⌅1⇧, r⌅2⇧, . . . where each is obtained from the previous via multiplication

by ÑT . Thus, unwinding this process, we see that

r⌅k⇧ = (ÑT )kr⌅0⇧.

Moreover, since PageRank is conserved as it is updated — that is, the sum of the PageRanks

at all nodes remains constant through the application of the scaled update rule — we don’t

have to worry about normalizing these vectors as we proceed.

So by analogy with the limiting values of the hub-authority computation (but with the

added fact that normalization isn’t needed), one expects that if the Scaled PageRank Update

Rule converges to a limiting vector r⌅⇥⇧, this limit should satisfy ÑT r⌅⇥⇧ = r⌅⇥⇧ — that is, we

should expect r⌅⇥⇧ to be an eigenvector of ÑT with corresponding eigenvalue 1. Such an r⌅⇥⇧

has the property that it will not change under further refinements by the Scaled PageRank

Update Rule.

In fact, all this turns out to be true: repeated application of the Scaled PageRank Update

Rule converges to precisely such an r⌅⇥⇧. To prove this, however, we can’t use the same

[Fig 14.14, E&K]

Figure: The same toy web graph and the associated matrix Ñ describing the
scaled update process with s = 0.8.

It follows that rk = (Ñtr )kr0

If the process is converging then it would be converging to some r∗

satisfying r∗ = Ntr r∗
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Now comes the necessary linear algebra

So far we have mainly used matrices as a convenient way to represent the
process. But to understand convergence we need to mention some more
essential aspects of linear algebra.

Let Mn×n be a full rank matrix. Recall that the matrix-vector
multiplication Mv can rotate and expand/shrink the vector v.

Since it is hard to “visualize” an n-dimensional vectore space, we can
simply think about the meaning of such a linear transformation in
2-space or 3-space.

A vector v is an eigenvector of M with associated eigenvalue λ if
Mv = λv. It follows that v is also an eigenvector of Mk with
eigenvalue λk .

When λ = 1, the eigenvector then becomes an equilibrium of the
process!
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More linear algebra

For each full rank matrix there is a set of n eigenvectors with (not
necessarily distinct) associated eigenvalues λ1, . . . , λn; these
eigenvectors span the n-dimensional Euclidean space so that any
vector can be expressed as a linear combination of the eigenvectors.

An important result from linear algebra (Perron’s Theorem) states
that any matrix which has all positive entries has a unique eigenvector
y corresponding to the largest positive eigenvalue λ1 and furthermore
λ1 > |λi | for i > 1.

Since λ1 > |λi | for i > 1, and since every vector is a linear
combination of the eigenvectors, it follows that as k →∞, the
transformation Mk is being dominated by the largest eigenvalue
acting on its associated eigenvector.

For the scaled matrix Ñtr , all entries are positive and the largest
eigenvalue is 1. It follows that as k →∞, (Ñtr )kv will converge to
the eignevector y associated with the largest eigenvalue 1.
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Similar analysis for hubs and authorites

If M is the adjacency matrix of the web graph, then the process can
be described by h = Ma and a = Mtrh.

Then
1 a(1) = M trh(0)

2 h(1) = Ma(1) = MM trh(0)

It follows that
1 a(k) = (MM tr )k−1M trh(0)

2 h(k) = (MM tr )kh(0)
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Hubs and authorities analysis continued

The matrices (MMtr ) and (MtrM) are symmetric and have
non-negative entries.

Any n × n symmetric matrix S with non negative entries has an
orthonormal set of n eigenvectors all of whose associated eigenvalues
are real. By normalizing the scores, we can assume that the largest
eigenvalue λ1 = 1.

If the largest eigenvalue is unique (which is what would happen in a
real web graph), then the same analysis for page rank applies
(assuming that the starting hub scores are all positive).
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Returning to the issue of influence

In some sense or another we are often talking about social influence in this
course. Even in Chapter 14, we can view, for example, hubs as influencing
which Web pages will be ranked highly.

In chapter 18, we observed two sequential processes where previous
individual decisions had a significant impact on
1) The evolution of links on the Web, and
2) The evolution of opinions in evaluating music.

The music evaluation experiment is closer to reality in the sense that it
explicitly integrates a changing measure of quality into the decision
making process. (We could augment the link generation process to use a
measure of similarity between web pages to enhance the process by which
Web pages are generated, but the goal of that discussion was to illustrate
how power law distributions can arise.
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